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Generalized Bodies

The Material Structure Induced by an Extensive Property
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Organisms

@ Material points, bodies and subbodies are primitive concepts in
continuum mechanics. These notions are somehow related to the
conservation of mass.

@ In growing bodies, material points are added and removed from the
body.
@ Examples: fingerprints, birthmarks are distinguishable.

@ An organism has a body structure although mass is not preserved. Can
formalize this idea?

@ Assume we have an extensive property.
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The Material Structure Induced by an Extensive Property

In the classical case we have the flux vec-
tor field h. It can be integrated to give us
a material structure.

A material point is identified with an
integral line (a flow line). This procedure
may induce material structure associated
with any extensive property, e.g., color
and energy.

h
@ — will be the velocity field of the material points.

o Can we generalize the same idea for the general manifold case where the
flow (m — 1)-form replaces the vector field?
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The Case where a Volume Element is Specified

It is not necessary to have a metric
structure in order that the flux form |
be represented by a vector field.

Assume that you have a volume ele- ©
ment 6 (m-form) on % . This may be
thought of as the density of the prop-
erty p if it is positive or another positive U
property, e.g., mass.

@ Given | and 0, find a vector v such that for every pair of tangent vectors,
u, w,

0(v,u,w) = J(u,w)  writtenas ] =ov.0.

@ For a given 6 there is a unique such vector v—the kinematic flux—a
generalization of the velocity field.

@ The vector field v depends linearly on the flux J.
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The Flux Bundle

Let us examine how the kinematic flux v
varies as we vary the volume element.
Since the space of m-forms at x is 1-
dimensional, as we vary the volume ele-
ment the resulting vectors v remain on a
line (1-D subspace of the tangent space).

@ Another characterization: If a surface element (say the one defined by the
vectors u, w) contains the line, the flux through it vanishes.

@ This is analogous to the situation with the velocity field.

@ A collections of subspaces is referred to as a distribution. This
distribution is the flux bundle.
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Generalized Body Points

Integral manifolds of the distribution, the
1-dimensional flux bundle in this case,
are submanifolds whose tangent space at
a point is the corresponding line of the
flux bundle at that point.

In general such integral manifolds need
not exist (higher dimensions), however
they always exist for 1-dimensional bun-
dles as is the case here.

@ Each integral line manifold is identified with a body point.

@ Actual formulation is done on space-time manifold to allow time
dependent fluxes. There B is included in T and d] = s.
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Frames in Space-Time

Cartesian Product

an event e
.

a frame

Space-Time % Space
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Property-Induced Fibration and Frame

No volume element: Fibration A volume element: Integrable vector field
—no real valued time is assigned to events : —real valued time is assigned to events
time
©axis
a worldline a worldline
Space-Time non-unique Space-Time

models of space
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Space Formulation VS. Space-Time Formulation

Space Formulation Space-Time Formulati
dim% =3 dimé& =4
dim % =3 dimR =4
Balance /‘B—f-/’f:/s /t:/s
& 0% Y N R

surface term  2-form on a 3-D manifold 3-form on a 4-D manifold
source term 3-form on a 3-D manifold 4-form on a 4-D manifold

flux form J—3 components J—4 components
variables —time dependent —fixed values at events
field equation B+dJ =s Ay =s
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Flow Potentials

@ Although we do not have vector velocity fields, we have material points.
@ In addition, we have analogs for the flow potentials.
@ In the case s = 0 we obtain (say the 4-D case) d] = 0.

@ Assume that A is any (m — 2)-form on % . Then, | = dA satisfies the
differential balance equation—A is a flow potential. Since in general,

/L*a): /dw,
M

oM

for every control region %

Ja=[rn=[ran= [ r@@)-o
B

9B 9B 3(08)=2
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Summary: The Structure on Space-Time manifold
Associated with an Extensive Property

@ Balance laws are formulated in terms of forms.

@ The flux vector field is replaced by a flux (m — 1)-form in the
m-dimensional space.

@ Flow lines still make sense using the flux bundle.

@ Generalized body points may be associated with an arbitrary extensive
property—organisms.

@ A particularly compact formulation in space-time.

@ A positive extensive property induces a material frame.
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Stresses for Generalized Bodies
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Forces for Generalized Bodies

@ Force densities are linear mappings on the values of the generalized
velocities.

@ In the case where a material structure is induce by an extensive
property and a volume element is given, the induced generalized
velocity w depends linearly on the flux form J.

@ It would be a natural generalization to replace generalized velocities by
flux forms as fields on which forces operate to produce power.

@ The physical dimension of forces will not be power per unit velocity but
power per per unit flux of the property p.
@ For the spacetime formulation F(]) = /tgg(]), B CE.
oA
o ty(e): N"IT:6 — N1 T:05.
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Stresses for Generalized Bodies
@ Consider the energy extensive property. It has a flux density term
Jo 7(9) and a corresponding flux form J©) such that T(¢) = /* o J(©),

@ On the other hand the flux density of energy may be written in terms of
the boundary force as t ().

@ Cauchy’s theorem implies that t z = 1* o 0 so the energy flux density is
1) = * 0 ] = /* 0 ¢(]). Hence,

The Cauchy stress is the linear mapping that transforms the flux of the
property p into the flux of energy.

o 0p: N"IT:& — N""LT:&. The stress at a point (event) is a linear
transformation on the space of (m — 1)-forms.

@ May be applied to “resources” other then energy?
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Local Representation of Stress-Tensors
@ Denote by {#'} the basis of the m-dimensional space of (1 — 1)-forms.
Denote its dual basis by {&;}.
@ Since the stress at a point is a linear transformation on the space of
(m — 1)-forms it may be represented in the form ?71.] g ® e

@ If we had a volume element 8 we would have an isomorphism
A" W(T*%) < T of (m — 1)-forms and vectors, such that ] > v are given
by 6(v, u,w) = J(u, w).

@ Thus, with a volume element and due to the following structure,

/\mfl (T*@/) L) /\mfl (T*OZZ)

i;lT lfe
v ——  TZ,
one may represent a stress ¢ by a linear transformation & on T% .

@ Surprisingly, & is independent of the volume element 6. In fact, you can
construct a natural isomorphism o < & without a volume element.
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Maxwell Stress-Energy Tensor without a Metric

@ Maxwell 2-form: g, a flow potential for J, i.e., | = dg.
@ Faraday 2-form: { such that df = 0.

@ Assume a volume element and set w = iy(]) to be the vector field
representing the flux form.

@ define the stress-energy tensor as the section ¢ of

LA™ (T*%), N" " (T*%)) by

a(]) = (ng) Nf— (uuf) A g.

@ The power is
do(]) = (waf) AN]+ (Lwg) A f— (Zof) A g

—a generalization of the Lorentz force (w1 f) AJ. (£ is the Lie
derivative.) The two additional terms cancel in the traditional situation.
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