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Introduction
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Obijects of Interest

@ Mathematical aspects of the theories of fluxes and stresses, particularly,
existence theory.

@ Geometric aspects: Formulations that do not use the traditional
geometric and kinematic assumptions. For example, Euclidean
structure of the physical space, mass conservation. Materials with
micro-structure (sub-structure), growing bodies.

@ Analytic aspects: Irregular bodies and flux fields. Fractal bodies.

Main Tool: Various aspects of duality ]
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Topics

Scalar-Valued Extensive Properties and Fluxes on Manifolds,
Fluxes and Geometric Integration Theory: Fractal Bodies,
The Material Structure Induced by an Extensive Property,
Forces and Cauchy Stresses—Geometric Aspects,
Variational Stresses,

Stresses for Generalized Bodies,

@ Stress Optimization, Stress Concentration, and Load Capacity.

And maybe also
@ The Global Point of View: C!-Functionals,

@ Locality and Continuity in Constitutive Theory.
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Notation: Basic Variables of Continuum Mechanics

Kinematics
@ A mapping of the body into space;
@ material impenetrability—one-to-one;
@ continuous deformation gradient (derivative); o meentTTITIII

@ do not “crash” volumes—invertible derivative.

Abody 8

Space\\\\
K4
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Fluxes: Traditional Approach
In terms of scalar extensive property p with density p in space, one assumes
for every “control region” 8 C % = R*:

@ Consider B, interpreted as the time derivative of the density p of the
property, so for any control region 2 in space, [, BdV is the rate of
change of the property inside 2.

@ For each control region # there is a flux density T4 such that
5.4 T#dA is the total flux of the property out of .

@ There is a positive m-form s on % such that for each region %

/,BdVJr/T@dA g/sdv.

B 0% B

Usually, equality is assume to hold (no absolute value) and s is
interpreted as the source density of the property p (e.g., s = 0 for mass).
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Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of T4 on £.

@ It uses the metric properties of space.

@ Ty(x) is assumed to depend on Z only through the unit normal to the
boundary at x. Generalize this to dependence on T,0%.

@ The resulting Cauchy theorem asserts the existence of the flux vector h
such that T4(x) = h - n.
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Cauchy’s Theorem for Fluxes on Manifolds
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Scalar-Valued Extensive Properties

We will consider the generalization of the classical analysis to the geometry of
differentiable manifolds where no particular metric is given. The concepts
introduced will be useful later in the analytic generalizations.

Consider for example the heat flux field in a body. This will enable us to treat
the Cauchy heat flux (defined relative to the current configuration of the
body) and the Piola-Kirchhoff heat flux (defined relative to the reference
configuration of the body) as two representations of a single mathematical
entity. Clearly, a vector field is not the right mathematical object.
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Integration: Volume Elements

U3
An infinitesimal element defined by the 71

tangent vectors vy, v, v3 € Tx %, U —
the space (3-dimensional) manifold.

02

@ For a given property p, px(v1, v2, v3)—the amount of the property in
the element. p,: (T,% )% — R.

@ oy should be linear in each of the three vectors—p, multi-linear.

@ p4(v1,v2,v3) should vanish if the three are not linearly independent
(flat element). Hence, for example, since px(v + u,v3,v+u) =0

0 = px(v,02,0) + px (11, V2, 1) + px (v, V2, u) + px(11,02,0)
= px(v, 02, 1) + px (1,2, V).

px is anti-symmetric (alternating), i.e., px(v,va, u) = —px(u, v, v)!
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Integration: Volume Elements and m-Forms

For a manifold % of dimension m integration for the total quantity of the
property p is defined using alternating forms.

o N"Ti% is the collection of m-alternating multi-linear mappings on
T . N"'(T*U ) = Uyeqy N" Ti% is the bundle of m-multi-linear
alternating forms on % .

e An m-differential form p: % — A" (T*% ), or a volume element (not
the infinitesimal elements generated by the vectors), p(x) € N" Ti%
is integrated to give the sum of the contents of the extensive property in
the various infinitesimal elements in any region 4 C %,

Je
2
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Integrating an (1 — 1)-Form over the Boundary:
Flux Density

An infinitesimal area element
is defined by the tangent vec-
tors v1, v € T 0%, 0%—the
boundary (say 2-dimensional) of
a control region A.

@ For a given property p, we would like to integrate the flux density out of
the boundary. Now T.(v1, vo)—the flux through the the element.
T (T0%8)? — R.

@ Since 04 is an (m — 1)-dimensional manifold, the flux density is a
mapping T: 9B — N" 1 T*0B, an (m — 1)-form on 9.
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Orientation

The fact that the volume element
is anti-symmetric causes a com-
plication. The sign of the evalu-
ation 7(v1,v2) (or p(v1,v2,03))
will change according to the way
we order the vectors.

e Orientability—the ability to construct the various coordinate systems
such that the Jacobian transformation matrix has a positive determinant.

@ This is equivalent to the ability to construct a volume element that does
not vanish at any point on the manifold.

@ A choice of such a form, say 6, determines an orientation on the
manifold. If 6(vy, . ..,v,,) > 0, the vectors are positively oriented.
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An orientable manifold and a non-orientable manifold
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The Balance of an Extensive Property

For an oriented manifold % of dimension m we consider control regions,
m-dimensional compact submanifolds with boundary.

@ p is time dependent with time-derivative B. For a fixed control region
2 in space [, B is the rate of change of the property inside 2.

@ For each control region # there is a flux density T4 such that fa,@ T is
the total flux of the property out of %.

@ There is a positive m-form s on % such that for each region %

/,B+/ng§/s.

B 0% B

Usually, equality is assume to hold (no absolute value) and s is
interpreted as the source density of the property p.
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Review of the Classical Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of T4 on £.

@ It uses the metric properties of space.

@ Ty4(x) is assumed to depend on Z only through the unit normal to the
boundary at x. Generalize this to dependence on T,0%.

@ The resulting Cauchy theorem asserts the existence of the flux vector h
such that Tz(x) = h - n.
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The Generalization of Cauchy’s Theorem
(m — 1)-Forms on an m-Dimensional Manifold

For the 3-dimensional example, we
want to measure the flux through
any infinitesimal surface element
(on the various planes through x),
say the one generated by the vec-
tors v, u.

v+

u
u

Denote by J(v, 1) the flux through that infinitesimal element.
@ J(v,u) should be linear in both arguments—J is multilinear.

@ J(v,u) should vanish it they are not linearly independent—J is
alternating.

Conclusion:

J should be a 2-form in a 3-dimensional space, or generally, an (m — 1)-form
on an m-dimensional manifold.

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 19 /26




The Dimension of the Space of m-Forms

Say {e1,ep,e3} is a base of the e

. . €1
tangent space at a fixed point
x. The matrix of p is pjx =
e, e, ex).
P( irbj k) e

@ However, because it is alternating, p has only one independent
component, e.g., p;x = 0 if any two indices are equal.

@ Itis enough to know p123 = p(e1, €2, €3), the volume of the basic
element, to know the amount of property in all other infinitesimal
elements.

In general, the dimension of N" (Ti% ) is 1. J
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The Dimension of the Space of (1 — 1)-Forms

@ Again, {e1,e,e3} is a base of the tangent space at x. The matrix of the
2-form ] is ]z] = ](ez-,e]-).

@ Now, as | is alternating there are 3 different independent components,
namely, J(ez,e3), J(e1,e3), J(e1,€2).

In general, the dimension of N™ ' T:% is m.
In other words, if we know the flux density through the three basic surface
elements we know the flux through any other infinitesimal surface element.

J(u,0) = Jijuv;.

J13 = J(eg.e3)

The three components of the flux
2-form are the generalizations of
the three components of the flux
vector field.

2! 23 = J(e,e3)

Jio =

] (6‘1 ’ 62)
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Cauchy’s Formula and the Restriction of Forms

The (m —1)-form J on % (m com-
ponents) induces by restriction an
(m — 1)-form T on 0.A.

e Tis given by 4

T(v,u) = J(v,u). Tx0%

The induced form T has a single component as it is an (m — 1)-form on the
(m — 1)-dimensional manifold 0.2. The mapping that assigns T to ] is the
restriction and it is denoted as

T =i ()).

This equation is the required generalization of Cauchy’s formula. )
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Inclusion and Restriction
The inclusion
1: Ty0%B X Ty0B — Ty B X TP
induces the dual restriction mapping
1 (TyB x Ty B)* — (Tx0B X T10B)",

which restricts to the mapping S
X

2 2
2 \NTi# — N\ T:02.

In the general m-dimensional case,

m—1 m—1

i /\ Ty A — /\ T,0%8

used in Cauchy’s formula T = *(]).
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The Induced Orientation and Newton’s Third Law

Now, %' has the same tangent space at x
as #. w is a vector pointing out of Z (into
A'). The form 1*(]) is one for both % and
B

How do we distinguish the surface flux den-
sities Ty and Top?

@ It was assumed that % was oriented so there is a way to tell whether any
ordered triplet {u, v, w} is positively or negatively oriented.

@ This induces an orientation on the boundary of each region. At x € 04, take
any outwards (relative to %) pointing vector w and set {1, v} to be positively
oriented on 0% if {w, u,v} is positively oriented in % .

@ Hence, the orientation on 9%’ is opposite to that of 0.%. Thus, if J(u,v) is the
flux out of the infinitesimal Z-positively oriented element {u, v}, the flux out
of &' for the same geometric element is J (v, u) = —J(u,v).
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Notes on the Proof:

The proof is analogous to the proof of the classical version, using the image
under a chart of a simplex.
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Stokes’ Theorem and the Differential Balance Law

@ The boundary integral in the balance law

Lo+ =1

of the property p assumes now the form
Ty = ().
/a 2= [, 0

Stokes’ theorem (a generalization of the divergence theorem etc.): There is an m-form
dJ (having a single component and calculated like the divergence of a vector field),

such that
/agg o) = /gg .

@ Then, for each %, the balance takes the form

/ﬁ—i-/ d]z/ s, hence, B+d]=s.
B 4 B
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