
Axisymmetric gravity currents of power-law
fluids over a rigid horizontal surface
Roiy Sayag† and M. Grae Worster

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, UK

(Received 12 August 2012; revised 20 September 2012; accepted 2 November 2012)

We analyse axisymmetric gravity currents of power-law fluids theoretically and
experimentally. We use aqueous suspensions of Xanthan gum in laboratory
experiments of constant-volume and constant-flux release to resolve the rheological
parameters of the fluid, which we then compare with measurements made using a
strain-controlled rheometer. We find that the constant-volume release of highly shear-
thinning fluids involves an early-time evolution dominated by inertia, and non-convex
free surfaces that make the application of similarity solutions of the late-time viscously
dominated evolution inefficient at resolving material properties. In contrast, constant-
flux release of the same fluids can be viscously dominated and consistent with the
self-similar solution from early in the evolution, which makes it a more useful method
for measuring rheological parameters.
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1. Introduction

The propagation of axisymmetric, viscous gravity currents has been studied
extensively for different configurations and fluid rheologies, and can be used, among
other applications, to model geophysical flows on laboratory scales and to measure the
rheological parameters of fluids.

Early studies of gravity currents of power-law fluids analysed the perfect-plastic
limit (Nye 1952). The asymptotic evolution of Newtonian gravity currents was studied
by Huppert (1982) using laboratory experiments and similarity solutions in which
the position of the current front was found to be proportional to t1/8 for a constant-
volume release and to t1/2 for a constant-flux release. The front evolution of a general
power-law fluid having exponent n has been found to be proportional to t1/(5n+3) for
a constant-volume release (Halfar 1983; Gratton, Minotti & Mahajan 1999), and to
t(2n+2)/(5n+3) for a constant-flux release (Gratton et al. 1999; Balmforth et al. 2000).
Similarity solutions have also been studied for a mass source that is proportional to the
thickness and inversely proportional to time (Bueler et al. 2005).
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Gravity currents are also being used to measure the rheological parameters of
fluids. Devices such as the Bostwick and Adams consistometers provide quantitative
measurements of rheological properties by finite-volume releases of fluid in a
horizontal channel and axisymmetric geometries, respectively. The difficulty associated
with the lateral friction at the sidewalls in channel geometry (Balmforth et al.
2007) is eliminated by the use of axisymmetric geometry (Piau & Debiane 2005).
However, shear-thinning fluids in both geometries can undergo a slumping phase that
is potentially dominated by inertia (Balmforth et al. 2007), followed by the viscous
phase, which can be extremely slow for practical measurements. The presence of such
a slumping phase may substantially reduce the efficacy of these systems as rheometers,
yet so far this has not been assessed quantitatively.

In this study we present theoretical and experimental analysis of power-law fluids
(zero yield stress) released with constant volume or constant flux in cylindrical
geometry. We model an axisymmetric gravity current of low Reynolds number and
derive similarity solutions for time-dependent volume release. We perform experiments,
using highly shear-thinning suspensions, and demonstrate the dynamical differences
that can arise between these two release mechanisms. In particular, we present
completely new observations, with high temporal and spatial resolution, of the
inertia-dominated regime in constant-volume experiments, and quantitatively evaluate
the situations where inertia is important. For the constant-flux release we use our
experimental results to predict the rheological parameters of the material used, and
then compare our results to independent measurements made using standard rheometry
techniques.

2. Theory

2.1. Mathematical model
Consider a fluid of viscosity µ and density ρ that propagates as a thin layer over a
flat and rigid surface into an inviscid fluid of density ρ − 1ρ. Assuming the flow is
axisymmetric, the radial force balance and the local and global mass balances within
the limits of lubrication theory are, respectively,

∂

∂z

(
µ
∂u

∂z

)
= ρg′

∂h

∂r
, (2.1a)

∂h

∂t
+ 1

r

∂

∂r

(
r
∫ h

0
u dz

)
= 0, (2.1b)

2π
∫ rN (t)

0
rh dr = Qtα, (2.1c)

where r, z, t are the radial, vertical and time coordinates respectively, u is the radial
velocity of the viscous fluid and h its thickness, g′ = (1ρ/ρ)g, rN is the position
of the head of the current, and Qtα is the total volume, where α = 0 represents
constant-volume release and α = 1 represents constant-flux release (Huppert 1982). For
a power-law fluid the effective dynamic viscosity is

µ= µ̃
∣∣∣∣12 ∂u

∂z

∣∣∣∣1/n−1

, (2.2)

where µ̃ is the consistency index and n is the flow-law exponent, which determines if
the fluid is shear-thinning (n> 1) or shear-thickening (n< 1). The boundary conditions
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at the fluid base and surface are

µ
∂u

∂z
(z= h)= 0, u(z= 0)= 0, (2.3a)

and at the head of the current r = rN ,

h= 0, q≡
∫ h

0
u dz= hṙN, (2.3b)

where the dot denotes differentiation with respect to time, and the second condition
can be derived by combining (2.1b) with the derivative of (2.1c) with respect to time,
noting the source condition limr→0 (2πrq)= αQtα−1. Integrating (2.1a) and using (2.3a)
gives

u(z)=−21−n

(
ρg′

µ̃

)n∣∣∣∣∂h

∂r

∣∣∣∣n−1
∂h

∂r

hn+1

n+ 1

[
1−

(
1− z

h

)n+1
]
. (2.4)

Integrating (2.4) over the fluid thickness and substituting the result into (2.1b) yields
an ordinary differential equation for the current thickness:
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∂t
− 21−n
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(
ρg′
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)n 1
r

∂

∂r

[
r

∣∣∣∣∂h
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∂r
hn+2

]
= 0. (2.5)

Equations (2.1c) and (2.5) admit a similarity solution

h(r, t)= ξ (n+1)/(2n+1)
N Qb−2t[α(n+1)−2]/(5n+3)ψ(χ) (2.6a)

in terms of the variable

ξ = rb−1t−[α(2n+1)+1]/(5n+3), (2.6b)

where

b=
[

21−n

n+ 2

(
ρg′

µ̃

)n

Q2n+1

]1/(5n+3)

, χ = ξ/ξN, (2.7)

and ξN = ξ(r = rN(t)). The dimensional radius of the current head is therefore

rN = ξNbt[α(2n+1)+1]/(5n+3). (2.8)

These results are consistent with previous studies (Huppert 1982; Halfar 1983; Gratton
et al. 1999; Balmforth et al. 2000). Substituting (2.6) into (2.5) and (2.1c), we find
that ψ(χ) satisfies the equations[

χψ ′|ψ ′ |n−1 ψn+2
]′ + α(2n+ 1)+ 1

5n+ 3
χ 2ψ ′ − α(n+ 1)− 2

5n+ 3
χψ = 0, (2.9a)

ξN =
[

2π
∫ 1

0
χψ(χ) dχ

]−(2n+1)/(5n+3)

, (2.9b)

where the prime denotes d/dχ , and the boundary conditions (2.3b) become

ψ = 0, ψ ′|ψ ′ |n−1 ψn+2 = 0 at χ = 1. (2.9c)

Solutions to (2.9) for different α and n (figure 1) show that as n decreases the slope
near the head of the current increases, and that the slope at both the axis of symmetry
(χ = 0) and the head of the current increase with α. Below we discuss in more detail
the solutions for α = 0 and for arbitrary α > 0.
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FIGURE 1. Numerical computation of the self-similar solutions of an axisymmetric gravity
current of shear-thickening (solid red line, n = 1/5), Newtonian (solid black line, n = 1), and
shear-thinning (dot-dashed line, n = 5) fluids, showing thickness profiles ψ for (a) constant-
volume release compared with (2.10) (dashed line) and (b) for constant-flux release, and (c) the
similarity variable at the current front ξN as a function of α. The solutions for n = 1 in (b, c)
(dashed line) are consistent with Huppert (1982).

2.2. Constant-volume release (α = 0)
In the case α = 0 a closed-form solution exists for (2.9), given by

ψ =
[
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, (2.10)
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)
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−(2n+1)/(5n+3)

,

(2.11)

as was previously found by Huppert (1982), and by Gratton et al. (1999) for the
case n = 1. Note that the constant-volume solution (2.10), shown in figure 1(a)
for n = 1/5, 1, 5, has zero slope at χ = 0 for all values of n. This property is
less apparent in the case n > 1 because the curvature near χ = 0 behaves like
ψ ′′(χ ∼ 0) ∼ −χ (1−n)/n, which is singular for n > 1, leading to the apparent large
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slope observed near χ = 0.

2.3. Solution for arbitrary α
We estimate the solution for (2.9) using the leading-order asymptotic expansion at
χ = 1, which gives

ψ(χ)=
[
α(2n+ 1)+ 1

5n+ 3

(
2n+ 1

n

)n]1/(2n+1)

(1− χ)n/(2n+1), (2.12)

and is consistent with Huppert (1982) for n= 1. We then use (2.12) as an initial guess
in the computation of numerical solutions to (2.9) for arbitrary α. A description of
the numerical procedure we applied is given in the supplementary material available
at http://dx.doi.org/10.1017/jfm.2012.545. We tested the numerical solver against the
analytical solution for α = 0 given in § 2.2 (figure 1a), and against solutions for n = 1
and arbitrary α (Huppert 1982) (figure 1b,c), and find very good agreement.

The numerical results indicate that for shear-thickening fluids (n < 1) the pressure
gradient of the current near the origin becomes singular for α > 0, whereas for shear-
thinning fluids it is regular (figure 1). The scaled front position of the current ξN is
monotonically decreasing with α for all n, and when α = 1 it is nearly independent of
n (figure 1c).

3. Experiments

To validate the theoretical prediction of the front position as a function of time
(equation (2.8)), we performed a set of experiments of axisymmetric gravity currents
at constant-volume (α = 0) and constant-flux (α = 1) release. In addition we performed
an independent measurement of the viscosity using a strain-controlled rheometer. In all
experiments we used an aqueous suspension of Xanthan gum of 1 % concentration by
weight, which is known to be a shear-thinning material (e.g. Escudier et al. 2001).

3.1. Constant-volume release
The experimental setup for a constant volume release is shown in figure 2(a,b). The
suspension (490 cm3) was contained in a cylinder (64 mm inner diameter) with open
ends that was initially in contact at its base with a flat aluminium surface. The cylinder
was fixed to a pneumatic actuator, which when triggered moved at ∼70 cm s−1 in
a vertical direction upward. The evolution of the discharged fluid was captured by
a fast camera (2000 Hz) and the current thickness was measured along a radius by
a laser sheet with a range finder (100 Hz). To enhance the laser reflection from the
free surface, the Xanthan suspension was mixed with TiO2 (0.25 % in weight), which
modifies the rheology slightly but insignificantly, as indicated in later experiments
performed with constant flux in § 3.2.

The propagation of the head of the current rN (figure 3a), which was resolved
from the thickness profiles (figure 3b), shows three dynamical regimes: (i) early-time
evolution (t < 0.35 s) in which the front advances at 460 mm s−1 on average from
a radius of 32 mm when confined in the cylinder to 180 mm; (ii) intermediate-time
evolution (0.35< t < 0.5 s) in which the front retreats back about 1 mm; and (iii) late-
time evolution (t > 0.5 s) in which the front advances at 10−4 mm s−1 on average to
a radius of ∼187 mm. On time scales longer than 104 s dehydration of the suspension
becomes evident near the front as it retreats and leaves deposits on the aluminium
surface.
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FIGURE 2. Schematic diagrams of the experimental apparatus used for (a) constant-volume
release and (c) constant-flux release. Snapshot of (b) constant-volume experiment (oblique
view), showing a thick ring of material at the head of the current (full evolution available in the
accompanying video available at http://dx.doi.org/10.1017/jfm.2012.545), and (d) constant-flux
experiment (plan view), showing an axisymmetric front.

The thickness evolution (figure 3b) reveals another level of complexity. During the
early phase the propagating front is about three times thicker than the tail of the
current. This bulged profile is roughly axisymmetric, as indicated in figure 2(b) and
the associated video of the experiment (available at http://dx.doi.org/10.1017/jfm.2012.
545), which is typical of high Re gravity currents. During the late-time evolution
the free surface is non-convex, which leads to radial flow in both directions and is
inconsistent with the similarity solution of § 2. These characteristics are inconsistent
with the underlying assumptions of the similarity solution developed in § 2, and
resolving those may require different analysis or incorporating additional physics, as
we discuss in § 4.

3.2. Constant-flux release
The experimental setup for a constant-flux release (figure 2c) consisted of a peristaltic
pump that drove the viscous fluid from a container and through a cylindrical nozzle
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FIGURE 3. Experimental results of a constant-volume release of an aqueous suspension of
Xanthan gum (1 % in weight). (a) The leading edge of the current rN advances at a rate
of 460 mm s−1 within the first 0.35 s and then slows down abruptly to an average rate of
10−4 mm s−1. (b) Evolution of the current thickness along a radius (time shifted by 0.25 s).
During the rapid phase the head of the current is substantially thicker than the tail, which implies
that the flow is dominated by inertia. The dotted line at r = 32 mm marks the inner radius of the
cylinder, which was lifted from the flat surface at t = −0.25 s. The t = 0 curve corresponds to
the snapshot in figure 2(b).

onto a flat, transparent acrylic surface. The weight of the container as a function
of time was recorded throughout the experiment and was used to compute the flux,
which ranged between 3 and 10 g s−1 for the different experiments. Uniform light was
projected from beneath the flat surface and a camera mounted above that surface took
plan-view images (figure 2d) at constant time intervals (1–3 s) and of 5 pixels mm−1

resolution. By fitting a circle to each, we determined the evolution of the front
radius rN . We then computed a regression to the function rN = Ctν (2.8), where
ν = (2n + 2)/(5n + 3) and C = ξNb were free parameters, including only the later
part of the evolution that is consistent with the lubrication approximation. We estimate
this by assuming that the total volume at each instant Qt is distributed in a disc
shape with radius rN and thickness h= Qt/πr2

N , and then estimating the time when the
lubrication approximation is satisfied by when the ratio rN/h = πr3

n/Qt is larger than
10 (figure 4a). We find that n ' 5.9 ± 0.2 and that µ̃ = 11.4 ± 0.25 Pa s1/n, where the
uncertainties are the standard deviations (figure 4b). The suspension with TiO2 that
was used in the constant-volume experiments has n' 5.0± 0.3 and similar µ̃.

3.3. Strain-controlled rheometer
As an additional and independent evaluation of the material parameters, we performed
a series of shear-viscosity measurements using a strain-controlled rheometer (ARES).
The measurements were performed using parallel plates of radius R = 50 mm and
several gap sizes d, where the bottom plate was heated by a water jacket to keep
the temperature constant (20 ◦C) and both plates were covered by a humidity cover
to reduce evaporation. By specifying the rotation rate ω, the dynamical viscosity was
measured for a range of shear rates γ̇ ≡ (1/2)∂u/∂z = (1/2)Rω/d varying between
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FIGURE 4. (a) The position of the leading edge rN of a constant-flux (Q0 = 3 g s−1) gravity
current as a function of time (×), and a regression to (2.8) with α = 1 (solid line) using only
the data with rN/h > 10, which is on the right-hand side of the dotted line. (b) The normalized
position rN as a function of time for a range of inlet fluxes Q/Q0 (×, ♦, ◦) and the regression
result (solid line). (c) The dynamic viscosity of the same suspension as a function of shear
rate measured using a strain-controlled rheometer (×) is consistent with power-law rheology
with exponent n ' 5.4 for low shear rates (γ̇ . 0.1 s−1, solid line) and with n ' 11.4 for
higher shear rates (γ̇ & 0.1 s−1, dashed line), where the consistency index is approximately
10 Pa s1/n.

0.03 and 200 s−1 (figure 4b). We evaluate n and µ̃ by regression to (2.2) in the
range of shear rates associated with the constant-flux experiments in § 3.2. By order of
magnitude the shear rate in those experiments is

γ̇ ∼ U

H
∼ R

TH
, (3.1)

where U is the radial-velocity scale, R ∼ 10 cm is the radial length scale, H ∼ 1 cm
is the thickness scale, and T ∼ 100–1000 s is the time scale. This implies that
our constant-flux gravity-current experiments were in the range γ̇ ∼ 10−2–10−1 s−1.
Therefore we compute the regression for γ̇ . 0.1 s−1 and find that n ' 5.4 and
µ̃' 10.9. For γ̇ > 0.1 s−1 the parameters are n' 11.4 and µ̃' 9.4 Pa s1/n.

4. Discussion

Evaluation of the experiments done in §§ 3.1 and 3.2 using the viscous theory
presented in § 2 requires us to validate that the underlying assumptions of the theory
are satisfied during some interval in the experiment. In particular Re� 1 has to be
satisfied. We can estimate Re for the viscous case based on the self-similar solutions
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that were developed earlier. Specifically,

Re= ρUH2

MR
= ρ
µ̃

U2−1/nH1+1/n

R
, (4.1)

where R,H are the radius and the thickness length scales, U is the velocity scale at
the current surface and M is the viscosity scale given by (2.2). Using (2.4), (2.6a)
and (2.8) we find

Re(t)= ρ

µ̃

[
21−n

n+ 1

(
ρg′

µ̃

)n]2−1/n

Q4n+1
α b−2(5n+1)t(2nα−2(5n+1))/(5n+3), (4.2)

where we have assumed ξN ∼ ψ(χ)∼ 1. In particular, for α = 0, 1 we have

Re(t, α = 0)∼ (µ̃−4nQ3n+1
0 t−(10n+2)

)1/(5n+3)
, (4.3a)

Re(t, α = 1)∼ (µ̃−4nQ3n+1
1 t−(8n+2)

)1/(5n+3)
, (4.3b)

where Q0 represents volume and Q1 represents volume flux. These expressions show
that Re declines much faster in the constant-volume case than in the constant-flux case.
The asymptotic behaviour for highly shear-thinning material (n� 1) is Re ∼ Q3/5

0 t−2

for α = 0 and Re∼ Q3/5
1 t−1.6 for α = 1, while for highly shear-thickening fluid (n� 1)

Re∼ Q1/3
α t−2/3 independently of α.

Estimating Re for the constant-volume experiments performed in § 3.1 using n = 5
and Q0 ' 500 cm3, we find that Re = 1 near t = 3 s when all the volume has already
been discharged, which implies that the early-time (slumping) phase is governed by
inertia. This suggests that the late-time evolution of the constant-volume experiment
may be consistent with the self-similar solutions in § 2. However, due to the inertia-
dominated evolution at early times, the free surface of the gravity current is non-
convex by the time Re� 1 (figure 3b), implying that the similarity solutions may only
become useful at much later times, assuming no dehydration takes place.

In contrast, the constant-flux experiment with n = 5 and Q1 ' 10 cm3 s−1 becomes
viscously dominated (Re . 1) at time t ∼ 1 s, when the volume discharged (about
10 cm3) is a small fraction of the total volume used compared with the finite-
volume experiment. This implies that the similarity solutions in § 2 should predict
the evolution of the constant-flux experiment from very early times, and can be used to
predict the material properties, as was done in § 3.2.

The difference between the results of our constant-flux experiments and the
rheometer measurements may be partly accounted for by experimental error, yet it
is conceivable that a major part of the error is due to a non-power-law rheology, in
particular at low strain rates. One potential non-power-law effect is the presence of a
yield stress. To evaluate how significant a yield-stress effect may be we estimate the
Bingham number,

B= τ0

µU/H
= τ0R

ρg′H2
, (4.4)

which is the ratio of the yield stress τ0 to the shear stress σrz = µ∂u/∂z, where
the latter is evaluated using (2.1a). The yield stress for 1 % aqueous suspension
of Xanthan is estimated as τ0 ∼ 10 dyn cm−2 through a nonlinear regression to the
Herschel–Bulkley model (Song, Kim & Chang 2006). Given that the density of
the suspension is the same as that of water, then g′ ∼ g and therefore B ' 0.1,
which implies that the yield stress, if present, is insignificant in our gravity-current
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experiments. This argument is also supported by numerical computations that power-
law behaviour is hardly distinguishable from the yield-stress effect for a constant-
flux source, and that the discrepancy between these two models diminishes with the
increase of the exponent n (Balmforth et al. 2000).

The rheometer measurements may imply a yield-stress effect. However, this could
be an artifact of the limited shear rates we measured, and may also appear due to
insufficient sensitivity of strain-controlled rheometers at low shear rates (Balmforth
et al. 2000). More sensitive measurements in the low-shear-rate regime performed with
stress-controlled rheometers indicate that Xanthan suspensions of properties similar to
those used here do become highly viscous, yet Newtonian at sufficiently low shear
rates (Choppe et al. 2010). This implies that Xanthan rheology over a wide range of
shear rates may be more consistent with Cross or Carreau–Yasuda models (Escudier
et al. 2001), which suggests that a power-law approximation would be consistent
only with a finite and narrow range of shear rates. This argument can explain why
our gravity-current experiments, which were done in a narrow shear-rate range, are
consistent with a power-law rheology (figure 4a), whereas the viscosity measured with
the rheometer over a wider range of shear rates is better matched with a piecewise
power-law relation with a declining exponent at smaller shear rates (figure 4b).

5. Conclusions

We analysed axisymmetric gravity currents of power-law fluids on a flat plane
released in constant volume and constant flux, and compared theoretical predictions
with laboratory experiments and rheometry measurements.

Our theoretical analysis focused on viscously dominated, self-similar solutions and
is consistent with previous studies (Huppert 1982; Gratton et al. 1999; Balmforth
et al. 2000). Laboratory experiments of constant-volume release of shear-thinning
fluids demonstrated inertia-dominated evolution at early times with a non-convex free
surface, and viscously dominated evolution at late times. Consequently, predicting the
evolution of such flows using self-similar solutions of viscously dominated theory
may be possible only at very late times. In addition, due to front propagation that is
proportional to t1/(5n+3), measurements of such flows using highly shear-thinning fluids
(large n) may take a long time (e.g. rN ∝ t1/28 for n = 5) compared with constant-
flux release, require more sensitive instruments, and can involve the risk of changes
in material properties owing to external forcing such as dehydration. In contrast, a
constant-flux release is viscously dominated from very early times, with fronts that
propagate in proportion to t(2n+2)/(5n+3) (i.e. rN ∝ t3/7 for n = 5), and can therefore be
more useful for obtaining accurate measurements of a material rheology. Using this
method to measure the rheological parameters of aqueous suspensions of Xanthan gum
led to consistent results with rheometric measurements.

Measuring rheological properties of power-law fluids using a conventional rheometer
requires numerous experiments of different shear rates. The viscous gravity current,
following a power law in time, conveniently explores a range of shear rates in a single
experiment. The particular geometry and fluid release mechanism of the setup that we
propose is free of sidewalls and inertial effects, which are inherent to some industrial
rheometers. This paper provides a protocol for a convenient method to determine the
rheological properties of power-law fluids with sufficient accuracy to study various
fluid-mechanical systems.
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