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Elastic response of a grounded ice sheet coupled to a floating ice shelf
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An ice sheet that spreads into an ocean is forced to bend owing to its buoyancy and detaches from the bedrock
to form a floating ice shelf. The location of the transition between the grounded sheet and the floating shelf,
defined as the grounding line, behaves as a free boundary. We develop a model of an elastic grounded sheet
resting on a deformable elastic bed and coupled to an elastic floating shelf. We find that the grounding-line
position is determined by the geometry of the bed and the bending-buoyancy length scale of the system. These
two contributions depend on the reaction modulus of the bed in opposite ways. We show that the structure of the
floating shelf depends on the bending-buoyancy length scale only, allowing us to calculate the bending stiffness
of the elastic sheet independently of the properties of the bed. Relations between the structure of the floating shelf
and the grounding-line position are also developed. Our theoretical predictions agree with laboratory experiments
made using thick elastic sheets and a dense salt solution. Our findings may provide new insights into the dynamics
near grounding lines, as well as methods to infer the bending stiffness of ice sheets and the grounding-line position
from satellite altimetery that can be applied to elastic sheets in general.
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I. INTRODUCTION

An ice sheet that extends into an ocean is composed of
one part that is grounded to the underlying bed and another
part that is detached from the bed to become a floating ice
shelf. The force balance near the line that joins these two parts
and the bed, known as the grounding line, may be related to
instabilities of steady marine ice sheets [1] and consequently
to abrupt change in sea level.

The position of the grounding line is determined by the
interactions between the ice, the ocean, and the underlying bed.
The major dynamic contribution of the ocean is through the
buoyancy force it exerts on the ice, while the bed underneath
the ice, which has composition that varies from stiff rock to
deformable mixture of water and sediments, may act as an
elastic cushion [2] that supports the weight of the ice sheet.
The response of the ice, which may be reflected through its
surface geometry near the grounding line, depends on the
dominant rheology of the ice. Specifically, in the vicinity of the
grounding line, the surface of the ice often has an undulated
structure with a length scale of several kilometers, e.g. [3].
Such undulations can be explained by continuum models
employing a range of rheologies from elastic to viscous [4–12].
Here, we consider the deformation of a purely elastic sheet,
noting that this is relevant to cases in which the transit time
of ice across an undulation is short compared to the viscous
relaxation time scale [13].

Conceptually, the grounded sheet and the floating shelf can
be modelled separately, with the grounding line being a free
boundary in between. This is analogous to a Stefan problem
for solidifying boundaries [14], which requires an additional
(Stefan) condition to resolve the free boundary. However, such
a boundary condition for grounding lines is not known a
priori. A common assumption is that the ice thickness at the
grounding line satisfies Archimedean balance, yet viscous ice
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models that assume that balance do not resolve the undulated
structure of the grounded zone, e.g. [15–17]. Other viscous
ice models that do not assume Archimedean balance at the
grounding line do resolve an undulated structure on the side of
the floating shelf [4–7]. Studies that model ice as an elastic or
viscoelastic material also resolve an undulated structure, yet
these have typically included only the floating ice shelf and
treated the grounding line as a fixed boundary, e.g. [8–12].

We analyze a coupled model for an elastic sheet-shelf
system, in which the grounding line is treated as a free
boundary. The bed beneath the grounded sheet has a softness
parameter that can be physically interpreted as a foundation
modulus [18]. This accounts for the observed features of
ice-sheet beds and also allows smoother transition of the
reaction forces across the grounding line. We present analytical
and numerical solutions for the deflection profiles and for
the grounding-line position and we verify some theoretical
predictions using a laboratory scale experiment (Fig. 1).

Although motivated by marine ice shelves, our theory is
developed in complete generality for an elastic sheet supported
in part by an elastic solid and in part by a denser fluid.

II. MATHEMATICAL MODEL

Consider an elastic sheet of thickness H , density ρi ,
and bending stiffness D that is positioned on a bed that
is partially immersed in an ocean of density ρw > ρi , as
illustrated in Fig. 2. The bed may represent a soil that is
allowed to deform according to a linear elastic model (Winkler
foundation) with a modulus of subgrade reaction k0. The
intersection of the ocean surface with the bed is the position
x = 0, where the x coordinate is along the undisturbed ocean
surface and the y coordinate is positive upward. The bed has
an undisturbed profile yb(x) = −Sx, where tan−1 S is the
angle that the undeformed bed makes with the horizontal.
Hydrostatic pressure on the immersed part of the sheet causes
it to bend and detach from the bed to form a shelf, with a
grounding line at x = xg .
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(a)

(b)

FIG. 1. (Color online) Images of the grounding zone formed
with a 2-cm elastic sheet and a 1.52-g/cm3 ocean for a ∼3.7◦ bed
inclination (a), where the free surface of the ocean fluid intersects the
bed at 44 cm and the grounding line is below it near 31 cm, and for
a ∼15◦ bed inclination (b), where the free surface of the ocean fluid
intersects the bed at 37 cm and the grounding line is above it near
42 cm.

Mathematically, this situation can be modelled using the
Euler-Bernoulli beam equation,

D
d4y

dx4
= p(x,y), (1)

where y is the deflection of the center line of the sheet from
the ocean free surface, p(x,y) is the load on the sheet, and

D = EH 3

12(1 − ν2)
, (2)

where ν is the Poisson ratio and E is Young’s elastic modulus.
Equation (1) is valid for a slender sheet having a small
thickness compared with the minimum radius of curvature and
a uniform bending stiffness and assuming that longitudinal
stretching is negligible compared with bending. We also
constrain the analysis to the case where the shelf surface is
everywhere above the ocean surface.

A. Grounding line below the surface of the ocean

We first consider the case where the grounding line is below
the surface of the ocean. We identify two regions that meet at
xg (Fig. 2, top): a grounded region, x ! xg (in full contact with
the bed), and an ungrounded region, x > xg (detached). The
vertical force balance in each region is

Dyiv = −ρigH + k0(H/2 − y + yb) xf ! x ! xg, (3a)

Dyiv = −ρigH + ρwg(H/2 − y) xg < x ! xs, (3b)

where the second term on the right-hand side of each equation
represents the restoring force applied by the bed (3a) or by
the ocean (3b), as appropriate. Equations (3) are a set of two
fourth-order ordinary differential equations (ODE’s) with two
free parameters; the position of the grounding line xg and the

FIG. 2. (Color online) Schematic diagrams of the vertical cross
section of a sheet-shelf system near the grounding line. For a bed
profile yb of shallow angles tan−1 S (top panel), the grounding
line xg is below the ocean free surface (dashed line). The same
sheet-shelf at larger angles (bottom panel) can have a grounding
line above the free surface. In the latter situation there is a free
boundary within the floating shelf at the position xo where it
penetrates the ocean. The position xI marks a local minimum of
the shelf elevation, and the position xH is the nearest point down
from xI where ice elevation equals the hydrostatic value (dotted
line). The position x = 0 is where sea level intersects with the
bed.

position of the shelf edge xs . The 10 boundary conditions
required to close the problem are

y = H

(
1
2

− ρig

k0

)
+ yb(x) x = xf , (4a)

y ′ = y ′
b(x) x = xf , (4b)

[y] = [y ′] = [y ′′] = [y ′′′] = 0 x = xg, (4c)

y = H/2 + yb x = xg, (4d)

y ′′ = y ′′′ = 0 x = xs, (4e)

along with a constraint on the total arclength of the sheet,

∫ xs

xf

√
1 + y ′2dx = L, (5)

where L is given. The interpretation of Eqs. (4a) and (4b) is
that xf is sufficiently far from the grounding zone that the edge
of the grounded sheet behaves as if there is no shelf. In fact,
imposing these two boundary conditions at xf → −∞ has a
negligible effect on the results but simplifies the calculation.
Across the grounding line we assume continuity of position,
slope, bending moment, and shear force (4c); at the grounding
line the shelf is grounded (4d) and the shelf edge is free (4e).
The conditions above are slightly modified when we consider
the long-shelf limit, L → ∞. In that case, xs → ∞ so there is
one fewer free boundary and therefore the boundary conditions
(4) are sufficient to close the system (3).

We nondimensionalize using

ŷi = yi/H, (6)
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where the subscript i = 0,1 refers to the grounded part and the
floating part, respectively, which leads to (hats removed)

yiv
0 = −4γ 4

0

(
y0 − 1

2
+ ρig

k0
− yb

)
, (7a)

yiv
1 = −4γ 4

1

(
y1 − 1

2
+ ρiw

)
, (7b)

where yb(x) = −S x
H

, ρiw = ρi/ρw and

γ0 = 1

l
√

2

(
k0

ρwg

)1/4

= 1√
2

(
k0

D

)1/4

, (8a)

γ1 = 1

l
√

2
, (8b)

with the bending-buoyancy length scale

l =
(

D

ρwg

)1/4

, (9)

which depends on the bending stiffness of the sheet and the
buoyancy per unit volume of the surrounding fluid. Note that
the length scale γ−1

0 depends only on the bending stiffness of
the sheet and the reaction modulus of the bed.

The solution to Eqs. (7a) and (7b) has the general form
yi = yih + yip , where

y0p
= 1

2
− ρig

k0
+ yb, (10a)

y1p
= 1

2
− ρiw, (10b)

representing a sheet resting on a bed with no shelf (10a) and
an iceberg (10b) and where the homogeneous solution is

yih = eγi x[ai1 cos(γix) + ai2 sin(γix)]

+ e−γi x[ai3 cos(γix) + ai4 sin(γix)], (11)

with the coefficients aij and the unknown free boundaries xg,xs

determined by the boundary conditions.

B. Grounding line above the surface of the ocean

A grounding line above the surface of the ocean (Fig. 2,
bottom) is not realistic in natural ice sheets. Nevertheless, it is
a natural continuation to the configuration in Sec. II A and we
use it in the experimental validation of the theory in Sec. IV.
In this configuration, there is additional ungrounded region
between the partially submerged shelf and the grounded sheet,
where the shelf is above the ocean surface. The vertical force
balance at each of those regions is then

Dyiv = −ρigH + k0(H/2 − y + yb) xf ! x ! xg, (12a)

Dyiv = −ρigH xg < x ! xo, (12b)

Dyiv = −ρigH + ρwg(H/2 − y) xo < x ! xs, (12c)

where xo represents the contact point of the shelf with the
ocean surface. The system (12) is a set of three fourth-order
ODE’s with three free parameters, xg , xo, and xs , therefore

15 boundary conditions are required to close the problem.
Following the same arguments as in Sec. II A we set,

y = H

(
1
2

− ρig

k0

)
+ yb(x) x = xf , (13a)

y ′ = y ′
b(x) x = xf , (13b)

[y] = [y ′] = [y ′′] = [y ′′′] = 0 x = xg, (13c)

y = H/2 + yb x = xg, (13d)

[y] = [y ′] = [y ′′] = [y ′′′] = 0 x = xo, (13e)

y = H/2 x = xo, (13f)

y ′′ = y ′′′ = 0 x = xs, (13g)

along with the constraint (5). We nondimensionalize as before
to obtain

yiv
0 = −4γ 4

0

(
y0 − 1

2
+ ρig

k0
− yb

)
, (14a)

yiv
1 = −4γ̄1

4, (14b)

yiv
2 = −4γ 4

2

(
y2 − 1

2
+ ρiw

)
, (14c)

where now

γ̄1 = 1

l
√

2
ρ

1/4
iw , γ2 = 1

l
√

2
, (15)

with the subscripts 0, 1, and 2 referring to the grounded part of
the sheet and the two shelf parts, respectively. The solutions
to y0 and y2 have identical form to the solutions for y0 and y1
in Sec. II A, while the solution for y1 is

y1 = − 1
3!
γ̄1

4x4 + a13x
3 + a12x

2 + a11x + a10, (16)

where xg ! x ! xo and a1j are constants that are chosen to
satisfy the boundary conditions.

III. RESULTS

The models described in Secs. II A and II B have a
nonlinear component due to the finite length of the shelf,
introduced through constraint (5). This requires solving the
models numerically. However, in the limit of a long shelf
(xs − xg → ∞) the edge of the shelf xs is no longer modelled
as a free boundary and therefore the length constraint (5) is
not required, making it simpler to attain analytical solutions.
Below, we present an analytical solution for the case of a
grounding line below sea level (Sec. II A) and results from
numerical solutions for a system of finite length and for the
case where the grounding line is above the ocean free surface.

A. Solutions in the long shelf limit

The solution of the grounded sheet in the limit of a long
shelf and for the case xg > 0 is

y0 = 1
2

− ρig

k0
− Sx

H
+ eγ0(x−xg )

{
cos[γ0(x − xg])

ρig

k0

+ sin[γ0(x − xgt)]
1 + γ1

γ0

[
ρig

k0
+ γ1

3

γ0
3

(
ρiw − Sxg

H

)]}
, (17)

which is a superposition of a flat sheet that rests parallel to
the undisturbed bed (10a) and an oscillatory component (11)
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FIG. 3. (Color online) Deflection profile near the grounding line
(l/H ( 3.9) with 3◦ bed slope, over a soft bed (k0/ρig = 10, top)
and over a stiff bed (k0/ρig = 108, bottom), showing a grounding line
below the ocean free surface. The sheet-shelf profile (blue and red,
respectively) is marked by two curves that correspond to its surface
and its bottom. The undisturbed bed profile is shown by a thick black
line, and the sea surface is the dashed line, y = 0. The positions xI0

and xH1 are marked on each profile. Note that the soft bed below the
sheet is depressed (top).

that decays exponentially as x → −∞ over a relaxation length
1/γ0 (8a). The solution for the floating shelf is

y1 = 1
2

− ρiw + e−γ1(x−xg )
{

cos[γ1(x − xg)]
(
ρiw − Sxg

H

)

− sin[γ1(x − xg)]
1 + γ1

γ0

[
γ0

2ρig

γ1
2k0

+ γ1

γ0

(
ρiw− Sxg

H

)]}
, (18)

which is a superposition of a free iceberg component (10b)
and an oscillatory component (11) that decays exponentially
as x → ∞ over a relaxation length 1/γ1 (8b). These solutions
(Fig. 3) and the deflection profiles for the case xg < 0
(Fig. 4) indicate that the variation of the grounding-line
position between a soft bed (k0/ρig = 10) and a stiffer bed
(k0/ρig = 108) is comparable to the undulation length scale.

The grounding-line position corresponding to solutions (17)
and (18) is determined by

xg = Hρiw

S

[
1 +

(
ρwg

k0

)1/2]
− l

√
2

1 +
(
ρwg
k0

)1/4 , (19)

which has two contributions: one proportional to 1/S due to
the bed geometry and the other, proportional to l, due to the
elastic deformations of the sheet and shelf. Both contributions
also depend on the reaction modulus of the bed but in opposite
ways. Specifically, on a softer bed the geometrical component
is enhanced by the deforming elastic bed like k

−1/2
0 , whereas

the elastic component is weakened like k
−1/4
0 , and vice versa

on a stiffer bed. This behavior is emphasized when considering
the grounding-line position in the limits of stiff and soft beds,

xg =
{

Hρiw

S
− l

√
2, k0 → ∞

Hρiw

S

(
ρwg
k0

)1/2
, k0 → 0

, (20)

y
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FIG. 4. (Color online) Deflection profile near the grounding line
(l/H ( 3.9) with 24◦ bed slope, over a soft bed (k0/ρig = 10, top)
and over a stiff bed (k0/ρig = 108, bottom), showing a grounding line
above the ocean free surface. The interpretation of lines and symbols
is similar to that in Fig. 3.

implying that the grounding-line position is much more
sensitive to changes in the reaction modulus over soft beds
than over stiff beds (Fig. 5).

It is also evident from (20) that in the stiff-bed limit the
elastic contribution to the grounding-line position is maximal
while it is negligible in the limit of soft beds. In particular, in
the stiff bed limit of xg the geometrical component balances the
elastic one when S = Hρiw/ l

√
2. Another situation where the

elastic contribution can become insignificant is over shallow
angles of the undisturbed bed.

10
0

10
4

10
82

3

4

k0/ρig

xg

l

Numerical
Analytical

FIG. 5. (Color online) The grounding-line position xg in units of
the bending-buoyancy length scale l, as a function of the normalized
reaction modulus of the bed for a bed slope 3◦, obtained by numerical
simulation (solid curve) and analytic solution (dashed curve).
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FIG. 6. (Color online) Dimensionless curvature yxx , and the
vertical shear force −yxxx , of the solutions shown in Fig. 3 with
bed slope 3◦ [(a) and (c)] and for the solutions shown in Fig. 4 with
bed slope 24◦ [(b) and (d)]. Profile with thin line is over a soft bed
(k0/ρig = 10), and thick line is over stiffer bed (k0/ρig = 108). The
grounding-line positions are marked with ◦’s.

B. The curvature and shear force at the grounding line

The curvature and the shear force at the grounding line can
vary substantially with the reaction modulus of the bed. In the
long-shelf limit the curvature at the grounding line is

yxx(x = xg) = 2γ 2
1

1 + γ1
γ0

[(
γ0

γ1

)2
ρig

k0
+ γ1

γ0

(
ρiw − Sxg

H

)]
,

(21)

which tends to zero in the limit of a stiff bed [Figs. 6(a)
and 6(b)]. This behavior recovers the typical heavy elastica
boundary condition, e.g. [19].

The shear force in the sheet is confined to a region near
the grounding line of width that is proportional to 1/γ0 and
narrows with the increase of the bed stiffness [Figs. 6(c)
and 6(d)]. The confined shear force in the stiff bed limit
reflects the sharp change in the reaction force on the sheet
at the transition from a rigid bed support to an ocean support
across the grounding line. However, in the asymptotic limit
k0 → ∞ the model in Sec. II is no longer valid since 1/γ0 ∼
l/k

1/4
0 becomes much smaller than the thickness H , implying

that the region near the grounding line on the sheet side is no
longer slender and therefore that the beam equations are no
longer valid.

To study this asymptotic limit in a more complete model,
we consider an elastic sheet having one region in contact
with a horizontal and stiff surface and a blistered region that
represents the shelf, with a grounding line in between at xg .
The full stress model for the grounded part of the sheet of
length δ from the grounding line is,

∇ · σ + F = 0, (22)

where σ is the stress tensor and F is the net force due to
gravity. We limit the analysis to the same spatial dimensions
considered in Sec. II, so the force balance simplifies to

σxx,x + σxy,y = 0, (23a)

σyx,x + σyy,y = ρig, (23b)

where x is the same as in Sec. II, y is the vertical coordinate,
and the stress field is given by [20], equations [5.13],

σxx = E

(1 + ν)(1 − 2ν)
[(1 − ν)εxx + νεyy],

σyy = E

(1 + ν)(1 − 2ν)
[(1 − ν)εyy + νεxx], (24)

σyx = E

1 + ν
εxy,

where εxx = u,x , εyy = w,y , and εxy = 1/2(u,y + w,x) are the
deformation tensor components. Equations (23) describe the
stress balance in a boundary layer of width δ at the grounded
side of the grounding line. Therefore, the boundary conditions
at the grounding line (4c) should be satisfied when matching
the solution to (23) with the outer solutions described in
Sec. II. Our interest here is to use (23) to estimate δ. We
define dimensionless variables,

ŷ = y

H
, x̂ = xg − x

δ
, û = u

U
, ŵ = w

W
, (25)

where U and W are the scales for the horizontal and vertical
deformations, respectively, and we get the dimensionless form
of equations (23),

2(1 − ν)
U

δ2
u,xx +(1 − 2ν)

U

H 2
u,yy − W

H δ
w,xy = 0, (26a)

2(1 − ν)
W

H 2
w,yy +(1 − 2ν)

W

δ2
w,xx − U

H δ
u,xy =−Fy, (26b)

where all the hats were removed and Fy = −2ρig(1 + ν)(1 −
2ν)/E. We assume that the dominant balance in Eq. (26a) is
determined by the first and last terms, namely that

[
2(1 − ν)

U

δ2
,
W

H δ

]
) (1 − 2ν)

U

H 2
, (27)

which will prove to be consistent with the final result.
Therefore, equating the dominant terms leads to

U ∼ W
δ

H

1
2(1 − ν)

, (28)

which simplifies Eq. (26b) to

2(1 − ν)
W

H 2
(w,yy − u,xy) + (1 − 2ν)

W

δ2
w,xx = −Fy. (29)

In the absence of shear force at xg , the second term on the
left-hand side of (29) is negligible and the dominant balance
is between the constant body force Fy and the first term. In the
presence of a shear force, the second term becomes significant
and therefore the only term that can vary and balance it is
the first term. Therefore, the dominant balance is governed
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by the left-hand side of (29), which leads to an explicit scale
for the length scale δ,

δ = H

√
1 − 2ν

2(1 − ν)
, (30)

which is consistent with the assumption at (27) for ν < 0.5
(and in particular for ν ( 0.3, the typical Poisson ratio for
ice [21], p. 62). The limit (30) implies that the grounded sheet
supports shear forces over a length scale that cannot be less
than the order of the sheet’s thickness. Hence, there is a critical
reaction modulus kc such that for all k0 " kc that length scale
does not change. We can evaluate kc by balancing Eqs. (30)
and (8a) to obtain

kc = 16
D

H 4

(
1 − ν

1 − 2ν

)2

. (31)

C. A shelf test for the bending-buoyancy length scale and
bending stiffness

It is useful to find relations between the floating shelf
deflection profile to the physical properties of the elastic
sheet and the grounding-line position. Such relations could
be applied to interpret geophysical data of ice sheets and ice
shelves and to measure the bending-buoyancy length scale and
the bending stiffness of an elastic sheet in a general context.

The length scale of the oscillatory pattern of the shelf is
related to the bending-buoyancy length scale l [e.g., Eqs. (18)
and (8b)]. In the limit of a long shelf, we can get an explicit
relation for the positions of local minima or maxima in the
shelf surface profile. Using (18), we find that the position of a
local minimum or a local maximum in the shelf deflection is

xI = xg + l
√

2 tan−1




(
γ0
γ1

)2 ρi g
k0

+
(
ρiw − Sxg

H

)(
1 + 2 γ1

γ0

)

(
γ0
γ1

)2 ρi g
k0

−
(
ρiw − Sxg

H

)



 .

(32)

In the limits of stiff and soft beds this simplifies to

xIn
=

{
xg + l

√
2

( 3π
4 + nπ

)
, k0 → ∞

xg + l
√

2
( 3π

2 + nπ
)
, k0 → 0

, (33)

where n is an integer index. Therefore, the interval between a
local minimum and a consecutive local maximum is

dII ≡ xIn+1 − xIn
= l

√
2π (34)

in both limits, which is independent of both k0 and the bed
slope S. The bending stiffness of the sheet in terms of dII is,
therefore,

D = ρwg

(√
2

2π
dII

)4

. (35)

For the geophysical application a common observable is
the position xH , where the shelf surface elevation has the

l/H

dIH
H

l
=

H

10
0

10
1

10
2

10
1

10
2

Numerical
Analytical

FIG. 7. (Color online) The dimensionless interval, dIH /H as a
function of l/H (log-log). Numerical values (+) were computed for
several bed slopes and over a range of bed stiffnesses 10 ! k0/ρig !
108, resulting in a variance smaller than 10−4. Linear regression
reveals a proportionality constant of 3.34, which differs by 0.3%
from the theoretical value l 3π

2
√

2
(line) in Eq. (38).

Archimedean value, satisfying y(xH ) = 1/2 − ρiw. Using the
long-shelf limit (18),

xH = xg + l
√

2 tan−1




(
ρiw − Sxg

H

)(
1 + γ1

γ0

)

(
γ0
γ1

)2 ρi g
k0

+ γ1
γ0

(
ρiw − Sxg

H

)



 , (36)

which in the limits of stiff and soft beds becomes

xHn
=

{
xg + l

√
2

(
π
2 + nπ

)
, k0 → ∞

xg + l
√

2
( 5π

4 + nπ
)
, k0 → 0

, (37)

implying that the surface elevation at the grounding line is not
Archimedean in those limits. We can now calculate the interval
dIH between a local minimum and the nearest Archimedean
position, which results in identical values at both stiff and soft
bed limits and is given by

dIH ≡ xH1 − xI0 = l
3π

2
√

2
, (38)

implying that dIH is independent of both k0 and the bed slope
S. The bending stiffness in terms of dIH is

D = ρwg

(
2
√

2
3π

dIH

)4

. (39)

A numerical computation of dIH is consistent with (38) in
the range 10 ! k0/ρig ! 108 and under variations of l and S
(Fig. 7).

D. Finite shelf length

So far we have considered solutions in the asymptotic limit
of a long shelf. The length of the shelf may become important
when it is of the order of the bending-buoyancy length scale
l. A finite shelf system includes the edge of the shelf xs as an
additional free boundary and hence the length constraint (5)
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FIG. 8. (Color online) (a) Shelf profiles at the limit of stiff bed
and with bed inclination of 3◦, of the set lengths, {L1,L2, . . . ,L6} (
{2.3,3,3.7,5,6.4,11.7}l. (b) The grounding-line position as a function
of the shelf length (log scale) L =

∫ xs

xg

√
1 + y ′2dx. The ticks

L1 . . . L6 refer to the shelf profiles in (a).

as an additional boundary condition, which is nonlinear in y ′.
We therefore solve the finite shelf model numerically.

The models in Secs. II A and II B can be rescaled into
the fixed domain [0,1] by the mapping ξi = x−xi

)i
, where

i = 0,1 for the model in Sec. II A with xi representing xf ,xg ,
respectively, and )i are the intervals xg − xf and xs − xg ,
respectively, and with a similar mapping for the model in
Sec. II B but with an additional region due to extra free
boundary at xo. The rescaled model can then be rearranged
to a set of algebraic equations for the coefficients aij and
the free boundaries xg,xo,xs , which are solved using the
MATLAB optimization toolbox. To test the numerical simulation
we compare its results with the analytical solution for the
grounding-line position (19) under variation of the bed reaction
modulus (Fig. 5) and variation of the bed slope and find good
agreement between the two. Moreover, we find that (19), which
was developed for the case xg > 0 accounts also for the case
where xg < 0 over stiff beds with angles less than ∼15◦ and
over soft beds.

The numerical results for the deflection profile [Fig. 8(a)]
and for the grounding-line position [Fig. 8(b)] suggest that the
length of the shelf becomes relevant to the solution when it
is of the order of the bending-buoyancy length scale l. For
example, the response of the grounding line is negligible as
long as L > L4 = 5l, while it is about 10% of l when the shelf
length drops by 50% between L4 to L1 [Fig. 8(b)].

IV. EXPERIMENTS

To validate some of the theoretical results, we set up an
experiment to measure the grounding-line position xg and the
position of the first local minimum in the shelf profile xI0 as
functions of bed slope.

To represent an elastic sheet-shelf we used two different
bands of silicone rubber having dimensions of 120 × 4 ×

TABLE I. Parameters of the elastic sheets used in the experiments.

Physical quantity Symbol Values Units

Sheet density ρi 1.14 g/cm3

Sheet thickness H 0.93 1.92 cm
Loop height yM 7.4 11.8 cm
Bending stiffness D 0.566 4.744 106 gm(cm/s)2

1 cm and 120 × 8 × 2 cm and density ρi ( 1.14 gm/cm3.
The bands were prepared by mixing two fluid components
(‘Zhermack and Elite Double 22) and leaving the mixture to
polymerize inside a mold of high precision so the thicknesses
of the sheets were uniform to within ±0.1 mm. To measure
the bending stiffness D, defined in (2), the rubber sheets were
placed on a flat, rigid surface where one end was coiled to form
a loop so its edge was placed back parallel to the flat surface.
The maximum height of the loop yM is related to the stiffness
of the sheet by [22]

li = 1.103yM, (40)

where li = (D/ρigH )1/3, which implies (Table I) that E∗ (
0.845 MPa for the thin sheet and E∗ ( 0.804 MPa for the
thicker one, where E∗ ≡ E/(1 − ν2). This ∼5% difference
possibly resulted from nonuniformities in volume ratio and
quality of mixing of the two components in the molding pro-
cedure. To represent the ocean, we used a potassium-carbonate
salt solution of two different concentrations (Table II).

The elastic sheets and the salt solution were contained
inside an acrylic rectangular tank of dimensions 200 × 20 ×
25 cm, with an opaque base. The tank was mounted on a rigid,
flat surface that had adjustable inclination (Figs. 9 and 1). We
used a laser sheet mounted to a traversing platform to measure
the deflection profile of the elastic sheet, the bed slope, and
the position of the “coast” (intersection of the ocean, the tank
base, and air). The laser sheet was aligned perpendicularly to
the long axis of the tank and had a sampling rate of 25 s−1 and
accuracy of 0.1 mm. The traversing platform traveled parallel
to the long axis of the tank at 25 mm s−1. This resulted in
a total spatial resolution of 1 mm along the long axis of the
elastic sheet. The length of the projected laser sheet on the tank
surface was about 12 cm so the range it captured included the
entire width of the elastic sheet and either the bottom surface
of the tank or the ocean surface.

We performed four sets of experiments using elastic
sheets of two different thicknesses and ocean solutions of
two different densities (Table II). In each experiment we
measured the deflection profile of the sheet surface for a set
of inclinations ranging from ∼2◦ to about 15◦ in intervals

TABLE II. Experiment parameters and regression results.

H ρw Hρiw C1 l
√

2 C2

Expt. (cm) (g/cm3) (cm) (cm) (cm) (cm)

1a 0.93 1.534 0.693 0.711 6.23 6.80
1b 0.93 1.202 0.884 1.021 6.62 7.69
2a 1.92 1.532 1.432 1.477 10.6 11.04
2b 1.92 1.202 1.825 1.711 11.26 10.8
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FIG. 9. (Color online) Experimental apparatus to measure xg(S) and xI0 . A rigid tank, 2 m long, was mounted to a flat surface with
adjustable inclination. An elastic sheet made of silicone rubber was placed inside the tank, and a potassium-carbonate solution denser than the
sheet partially filled the tank. A laser sheet was mounted to a platform that can move parallel to the tank and measure the deflection of the
elastic sheet. The inset diagram is a vertical cross section, transverse to the sheet long axis at the position marked by the arrow, showing a
grounded part of the elastic sheet, the surrounding ocean, and the laser sheet.

of 0.2 to 0.5◦. Each experiment started by setting the tank
at the largest inclination and adding the potassium-carbonate
solution. An elastic sheet was then placed on the tank surface
so a little more than 4l of the sheet’s length was supported by
the liquid and the rest by the solid surface of the tank. This was
to diminish the effect of the shelf length on the grounding-line
position. The inside of the tank was then scanned by the laser
sheet and the two-dimensional laser reading was stored in a
data file. Then the procedure of reducing the tank inclination
and scanning was repeated.

The data was later processed to produce two curves; the
elevation of the elastic sheet surface h′(x ′), and the elevation
of the surface surrounding the sheet b′(x ′), which included the
tank surface and the ocean surface (primes mark quantities in
the reference frame of the tank). Those curves were generated
by splitting the data at each position x ′ along the sheet into two

x[cm]

y

−30 −20 −10 0 10 20 30

−H

0

H

Regression
xg
xo
Bed
Sea level

Theory
xg
xo

yxx

−30 −20 −10 0 10 20 30

0

1
2

H
l2

Data
Regression
xg
xo

(a)

(b)

FIG. 10. (Color online) (a) The regression result of the theoretical
curvature (line) to the curvature derived from the measured deflection
profile (×). (b) The corresponding deflection profile based on the
fitted parameters (line) compared with the theoretical prediction
(dash-dot), validating that the other regression fitting parameters
converged properly. Bed inclination is 14.9◦ and the experiment
parameters are of line 2a in Table II.

segments and then averaging each segment. The curve b′(x ′)
was used to extract the bed slope tan−1 S and the position of
the coast, which defines the origin x ′ = x = 0. We used those
values to compute the deflection profile y(x) in the reference
frame of the laboratory.

The technique to resolve the grounding-line position given
y(x) was based on the theoretical result that the curvature
of the sheet at the grounding line is negligible (Sec. III B)
compared to that of the shelf near the grounding line in the
limit of stiff bed. We first obtained the curvature yxx and then
computed a piecewise regression to the theoretical curvature
function. More specifically, the curvature was obtained by
differencing y(x) twice; however, this operation significantly
reduced the signal-to-noise ratio, so we overcame that by
dividing the deflection data into a set of consecutive intervals,
2 cm long, and fitted to each interval n a parabolic profile,
yn = Anx

2 + Bnx + Cn, where the capitals represent the fitted
parameters. The curvature at that interval was then defined as
κn = 2An, so the set κ(x) ≡ {κn} represented the measured
curvature of the elastic sheet. Next, we used the theoretical
curvature derived from the solutions to Eqs. (31) and (12)
as a regression function, where the coefficients aij were
determined by the boundary conditions as in Sec. II, and the
positions xg,xo,xs and the coefficients γ0,1,2 and γ̄1 were the
free parameters of the regression [e.g., Fig. 10(a)]. We verified
that the free parameters converged to reasonable values by
comparing the theoretical deflection profile to the one resulting
from the regression [e.g., Fig. 10(b)].

We note that the deflection profile we measured was of the
elastic sheet surface. Consistency with slender beam theory
required to extrapolate the measured deflection profile to the
midsurface of the sheet. This correction had two contributions.
First, the position of edge of the sheet surface (xf ,yf )
was translated to the midsurface (xf − 1

2HS/
√

1 + S2,yf −
1
2H

√
1 + S2). Then an arclength element at the sheet surface

ds was adjusted to the corresponding arc-length element at the
midsurface d̃s according to d̃sn = dsn(1 + 1

2Hκn).
The results of the data analysis is a graph, xg(S), for

each of the four experiments in Table II. We then used
the theoretical prediction, Eq. (20) as a regression function,
xg(S) = C1/S − C2, where C1,2 are free parameters. The
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FIG. 11. (Color online) Experimental data and theoretical predic-
tion of the dimensionless grounding line χg as a function of the bed
inclination [Eq. (41)]. The data were produced from four experiments
where the elastic sheet thickness and the ocean density were varied
(Table II).

grounding-line position was then nondimensionalized by
writing

χg = (xg + C2)/C1, (41)

such that all the data collapsed into a single curve shown in
Fig. 11. Comparing the regression results to the theoretical
values of C1,2 (Table II) indicated errors of less than 7% for
the thicker elastic sheet, whereas the thinner sheet experiments
had errors of less than 14%.

To demonstrate that our experimental apparatus is sensitive
to the elastic contribution to the grounding-line position l

√
2,

we eliminate the geometrical contribution to the grounding-
line position, denoted as x ′

g , from the experimental data
(Fig. 12, bottom). The result indicates that most of the exper-
imental data embeds a clear signal of the elastic contribution
to the grounding-line position to within 10% of the predicted
value. A larger discrepancy is present in experiment 1a at the
range of lower angles.

Another confirmation of the theory was obtained by measur-
ing the position of the nearest local minimum to the grounding
line, xI0 . The calculation of this position was performed by
computing the first derivative of the deflection data and then
interpolating a curve using four data points nearest to where
the slope first vanishes after the grounding-line position.
Comparing the value of interval xI0 − xg to the theoretical
prediction of l3π/2

√
2 (33) demonstrates a good agreement

(Fig. 12, top).
The agreement within acceptable uncertainty between the

experiments and the theory in Figs. 11 and 12 was achieved
without having to account for surface forces such as van der
Waals adhesion of the sheet to the tank surface or surface
tension. These surface effects are less important compared to
the body forces for the materials we use owing to the large
sheet thickness. Specifically, when the sheet is in full contact
with a stiff and flat bed its total energy is a sum of gravitational
energy Ug and surface energy Us . Bending energy in that case

-10%

+10%

-10%

+10%

51015

√
2

3π
2
√

2

x−xg

l

x = xI

x = xg

tan−1 S [deg]

1a
1b
2a
2b
Theory

FIG. 12. (Color online) The difference between the geometrical
component of the grounding-line position x ′

g and the grounding line
xg , normalized by the bending-buoyancy length scale l, compared
with the predicted value in Eq. (20), and the interval between the
grounding line and the nearest local minimum normalized by l,
compared with the predicted value in Eq. (33) (experimental data at
Table II). Dash lines represent ±10% departures from the theoretical
values.

is zero as there is no curvature. If the interface has surface
area A then by order of magnitude Ug/A = ρigh2 ( 1 J m−2

(Table I). The surface energy per unit area is Us/A = ,γ ,
where ,γ is the interfacial toughness, which for the elastomer
we use a typical value is 0.1 J m−2 [23]. Therefore Ug ) Us

and so to leading order the surface energy can be neglected.

V. SUMMARY AND CONCLUSIONS

We have presented a theoretical and experimental analysis
of a grounded elastic sheet coupled to a floating elastic shelf,
motivated by similar systems of ice sheets and ice shelves
observed in polar regions. In particular, we modelled the
grounding line as a free boundary and the bed beneath the
grounded sheet with variable softness. Our analysis focused on
the dynamics near and at the grounding line and on the relation
between the structure of the shelf to the physical properties of
the system and to the grounding-line position.

In the long-shelf limit we found analytical solutions for the
deflection profile and the grounding-line position. Specifically,
the grounding-line position has two contributions, due to the
geometry of the bed and to the bending-buoyancy length scale,
which encapsulates the bending stiffness of the elastic sheet
and the reaction force due to the denser ocean. These two
contributions depend on the bed reaction modulus in opposite
ways so the geometrical component tends to diminish over a
stiffer bed while the elastic component intensifies. We showed
that the curvature at the grounding line tends to zero in
the limit of a stiff bed and that the shear force within the
grounded sheet is confined into an increasingly narrow layer
near the grounding line as the bed stiffens. In particular, ice
elevation at the grounding line does not necessarily satisfy the
Archimedean balance due to the nonzero shear force there.
We also showed that ice bending stiffness can be computed
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directly from measurable intervals on the surface of the
shelf, such as the interval between a local minimum in the
deflection and the nearest Archimedean position, and that this
quantity is independent of the bed structure or stiffness. We
also presented explicit relations between the grounding-line
position and measurable positions on the undulated shelf.
Numerical computations indicated that the length of the shelf
has a small effect on the solution, and that it becomes
important when it is of the same order of magnitude as the
bending-buoyancy length scale. We then showed consistency
of some theoretical results with laboratory scale experiments
using silicone rubber sheets and dense salt solutions.

This study provides a practical method to measure the
bending stiffness and bending-buoyancy length scale of elastic
sheets directly from the geometrical characteristics of the

floating shelf. In particular this method can be used to study
the elastic properties of ice sheets using available satellite data
and to put better constraints on the grounding-line position and
on the properties of the bed beneath the grounded sheet.
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