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[1] Ice streams are regions of fast flowing glacier ice that transport a significant portion of
the total ice flux from present ice sheets. The flow pattern of ice streams can vary both
temporally and spatially. In particular, ice streams can become stagnant and change their
path. We study the dynamics of ice streams using an idealized model of an isothermal and
power law viscous ice flow that includes horizontal (lateral) shear stresses. The basal
sliding law is assumed to be triple‐valued. We investigate the spatiotemporal patterns
formed because of the flow over a flat bed, fed from an upstream mass source. The ice
flows from the mass source region through one or two gaps in a prescribed upstream
topographic ridge which restricts the flow, leading to the formation of one or two ice
streams. We find a relation between the parameters of the ice rheology and the width of the
ice stream shear margins and show how these parameters can affect the minimum width
of an ice stream. We also find that complex asymmetric spatiotemporal patterns can
result from the interaction of two ice streams sharing a common mass source. The rich
spatiotemporal variability is found to mostly be a result of the triple‐valued sliding law, but
non‐Newtonian effects are found to play a significant role in setting a more realistic
shear margin width and allowing for relevant time scales of the variability.

Citation: Sayag, R., and E. Tziperman (2011), Interaction and variability of ice streams under a triple‐valued sliding law and
non‐Newtonian rheology, J. Geophys. Res., 116, F01009, doi:10.1029/2010JF001839.

1. Introduction

[2] Ice streams are bands of fast flowing ice embedded
within a region of slower ice flow that are observed in the
present ice sheets and may have been active in past ice
sheets. In Antarctica, ice streams cover merely 10% of the
ice sheet surface but may account for about 90% of the ice
transport [Bamber et al., 2000; Bennett, 2003]. Observa-
tional evidence suggests that the pattern of ice stream flow
can change both spatially and temporally and that ice streams
were possibly involved in events of past ice sheet collapses
[Heinrich, 1988; MacAyeal, 1993a, 1993b; Marshall and
Clarke, 1997]. Understanding the dynamics of ice streams
is therefore important to be able to predict the evolution of
ice sheets on many time scales.
[3] The ice streams in the Siple Coast, which drain part of

the West Antarctic Ice Sheet, extend over a length of several
hundreds of kilometers and are 20–50 km wide. The velocity
contrast between the stream and the interstream regions can
be two orders of magnitude, which results in high horizontal
(lateral) shear stresses at the few kilometers wide ice stream
margins [Echelmeyer et al., 1994]. This suggests that hori-

zontal shear stresses may be dynamically important in the
vicinity of the shear margins. Observations indicate that
shear margins of some ice streams can change their position
at an average speed of the order of 100 m/yr [Bindschadler
and Vornberger, 1998]. Some evidence also suggests that
regions that were active streams several hundreds of years ago
are currently stagnant [Retzlaff and Bentley, 1993; Jacobel
et al., 2000; Catania et al., 2006], or being crossed by more
recent ice streams [Gades et al., 2000; Conway et al., 2002].
This spatiotemporal behavior may be the consequence of a
competition of several ice streams over a commonmass source
[Anandakrishnan and Alley, 1997; Joughin et al., 1999].
[4] The topography beneath the Siple Coast ice streams

seems to, at most, weakly constrain the flow of the ice stream
trunks. In particular, no consistent relation between the shear
margin position and the bottom topography has been identi-
fied [Raymond et al., 2001]. This is in contrast to the prom-
inent role of the bed topography in the ice stream onset area
[Bell et al., 1998; Anandakrishnan et al., 1998]. Measure-
ments also suggest that the ice stream onset occurs atop
several hundreds of meters to a kilometer thick layer of
sediments, which apply an order of magnitude less frictional
resistance to the ice above as compared to the material of the
surrounding ridges [Anandakrishnan et al., 1998; Bell et al.,
1998; Peters et al., 2006]. Moreover, the ice‐bed interface
under the downstream section of ice streams can be sub-
stantially lubricated by meltwater and deformable sediments
[Kamb, 1991; Stokes et al., 2007].
[5] Various mechanisms have been examined with rela-

tion to the formation and spatiotemporal variability of ice
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streams. Thermoviscous effects were considered by Payne
[1995], Marshall and Clarke [1997], Payne and Dongelmans
[1997], Hindmarsh [1998], Hulbe and MacAyeal [1999],
Payne et al. [2000], Pattyn [2003], Saito et al. [2006], and
Hindmarsh [2009]. In particular, Payne and Dongelmans
[1997] attributed ice stream variability to the competition
over a common source, although these results may be model‐
dependent [Payne et al., 2000]. Ice shear thinning rheology
may be incapable to leading to spontaneous formation of
ice streams through shear flow instability [Sayag and
Tziperman, 2008]. Bed properties and conditions beneath
the ice are believed to play a dominant role in the dynamics
of ice flow [e.g., Fowler, 1986; Tulaczyk et al., 2000; Schoof,
2004b, 2004a, 2006]. In particular, a triple‐valued sliding
law (similar to the one shown in Figure 1), was extensively
studied in the context of glacier temporal variability and was
shown to be useful for modeling glacier surging [Lliboutry,
1969; Hutter, 1982a, 1982b; McMeeking and Johnson,
1986; Fowler, 1986, 1987; Greenberg and Shyong, 1990;
Fowler and Johnson, 1995; Fowler and Schiavi, 1998].
Fowler and Johnson [1996] showed that a triple‐valued
sliding law can lead to isolated domains of rapid flow, and
suggested this as a possible mechanism for the development
of ice streams. In a model that included horizontal shear
stresses, Sayag and Tziperman [2009, henceforth ST2009]
showed that a triple‐valued sliding law (Figure 1) can lead to
an ice‐stream‐like solution and account for both steady and
time oscillatory behaviors (section 2). Note that a multivalued
sliding law, which describes the sliding velocity as function of
the basal stress, could also be described alternatively as a
“cubic‐like friction law,” giving the stress as function of the
sliding velocity.

[6] In this work we extend the study of ST2009 in two
main directions. First, we investigate the effect of a non‐
Newtonian ice rheology on the spatial patterns of the flow
under a triple‐valued sliding law. Second, we study the
spatiotemporal patterns of flow due to the interaction of two
ice streams. For this purpose, we specify a transversely
uniform mass source along the full width of the ice sheet
surface at the upstream boundary. A specified topographic
ridge constrains the ice to flow via one or two openings in
the topography, creating one or two streams whose vari-
ability and interaction we study. We use numerical simu-
lation with adaptive time step and spatial resolution of
2.5 km. This setup allows us to resolve idealized yet robust
model solutions of coexisting ice streams and interstreams,
and the shear margins in between, as confirmed by com-
parison with higher‐resolution (1.25 km) simulations.
[7] The model and geometry used here are highly ideal-

ized, and we intentionally do not limit the parameter regime
to a physically realizable one. Thus, this work does not
attempt to realistically model ice streams, but rather attempts
to study ice flow regimes motivated by observed ice streams
and spanning a wider parameter range. This approach of
exploring near‐physical regimes, often results in interesting
insights and is commonly used in bifurcation studies of
geophysical systems [e.g., Dijkstra, 2000].
[8] By using the simplified dynamics and geometry, we

are able to develop a relation between the parameters
describing the ice rheology and the width of the model ice
stream shear margins. We demonstrate how ice rheology
affects the minimum sustainable ice stream width, as well as
a lower bound on its maximum speed. Finally, we show the
spontaneous symmetry breaking of a time oscillatory solu-

Figure 1. The triple‐valued sliding law (or a cubic‐like friction law) (ST2009) used in the present study.
This friction law is composed of two linearly stable branches, slow (v < vc−) and fast (v > vc+), and
therefore can sustain stable flows of coexisting streams and interstreams.
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tion of two streams that is initially spatially symmetric.
Specifically, as a result of an asymmetric initial perturbation
to the ice thickness field, such a flow becomes spatially
asymmetric, and gives rise to complex variability patterns
such as the competition of two ice streams over a common
source.

2. The Triple‐Valued Sliding Law: Motivation
and Possible Physical Mechanism

[9] A triple‐valued sliding law relating the ice sliding
velocity v to the bottom stress tb is shown in Figure 1. Note
that for small velocities, v < vc−, the stress increases with
velocity. For intermediate velocities, vc− < v < vc+, the stress
decreases with the increasing velocity, and for larger veloc-
ities, v > vc+, the stress again increases with v. Such sliding
laws have been used in particular in the context of surging
glaciers [e.g., Lliboutry, 1969; Fowler, 1987], and Fowler
and Johnson [1996] suggested that it may also account for
ice streams.
[10] Measurements in the Siple Coast Whillans Ice Stream

(originally ice stream B) show that the longitudinal com-
ponent of velocity can drop from 400 m/yr to several meters
per year across a narrow 4–5 km shear margin [e.g.,
Echelmeyer et al., 1994]. In an effort to understand this
transition ST2009 have assumed a unidirectional plug flow,
Newtonian rheology and that the basal stress is a function of
the ice velocity alone. Under these idealized assumptions
one obtains a simple one‐dimensional force balance, which
in dimensionless form is

"v;xx þ !d " !b vð Þ ¼ 0; ð1Þ

where v(x) is the plug flow velocity, x is the coordinate
across that flow, " & 1 is a dimensionless parameter
representing the ratio of vertically‐integrated horizontal
shear stress to basal shear stress, and the terms on the LHS
are horizontal shear stress divergence, driving stress (assumed
constant), and basal shear stress, respectively. The structure
of equation (1) indicates that the viscous shear stress
divergence has negligible contribution to the force balance
everywhere except in regions where divergence of strain
rates is large, namely, where v,xx ∼ 1/". This implies that
equation (1) can have solutions with boundary layers (shear
margins) where sharp velocity gradients and concentrated
stresses occur. Such concentrated shear stresses are hinted
in observations of shear margins via the presence of cre-
vassing. ST2009 showed that a triple‐valued relation between
the ice velocity and the basal shear stress, tb(v), is naturally
motivated by equation (1), together with a nonuniform
velocity profile representing an ice stream and an interstream
ridge, coupled by a narrow shear margin.
[11] The triple‐valued property of the sliding law permits

two distinct and linearly stable modes of flow for the same
basal drag: a fast one (v > vc+ in Figure 1) and a slower
one (v < vc−). A stable flow velocity at a given position will
become unstable if the basal shear stress at that position
reaches one of the critical values, tc±. For example, starting
with a flow velocity on the slower branch and corresponding
basal stress, tb, a small increase in the applied driving stress
can increase the flow velocity slightly if tb & tc−, but will

lead to a significant amount if tb = tc−. In addition, these
two modes of flow can coexist in a bistable state of flow
(motionless margins) or an unstable state (margins move
toward the ice stream center or away from it). These stability
properties of the friction lawmay change inmore complicated
3‐D ice flows. When the dynamics of model ice streams are
dominated by a triple‐valued sliding law, ST2009 find that
there is no preferred ice stream width, and the model stream
width is then found to be controlled by external factors such
as the rate and distribution of snow accumulation.
[12] Numerical simulations with an ice sheet model that

includes membrane stresses (shelf stream approximation)
with a triple‐valued sliding law similar to Figure 1 show
solutions of both a steady ice stream over a uniform bed, and
a periodically surging ice stream (ST2009). This suggests
that the physical mechanism of ice streams and surges may
be related, as also proposed earlier by Weertman [1964] and
Fowler and Johnson [1996]. Mechanisms that were proposed
to explain glacier surging, such as the reorganization of the
subglacial drainage system [e.g., Walder, 1982; Kamb et al.,
1985; Kamb, 1987; Fowler and Johnson, 1996; Raymond,
2000] or related mechanism that results in bimodal flow
states [e.g.,MacAyeal, 1993a; Tulaczyk et al., 2000], are also
potential candidates to account for ice streams. More spe-
cifically, the triple‐valued sliding law may be rationalized
following these references as follows: at low sliding veloc-
ities (v < vc−), meltwater production is at low rate and
effectively drained, leading to an inefficient lubrication and
large basal stress. At faster sliding velocities (vc− < v < vc+),
drainage rate is insufficient to balance meltwater production,
leading to efficient lubrication and reduced friction. Finally,
at yet higher sliding velocities (v > vc+) low‐pressure channels
may form close to the ice stream center, and drain subglacial
water effectively, leading again to an increase in basal stress
(similar principle to “drainage limited” stability [Raymond,
2000]).
[13] A critical element of the triple‐valued sliding law is

therefore the faster branch (v > vc+), which allows a fast and
stable flow regime and therefore a steady ice stream solu-
tion, in contrast to a “runaway” situation. This triple‐valued
structure also leads to roughly similar basal shear stresses
near the ice stream center and in interstream regions far from
shear margins, where they are of the order of the driving
stress, td. Basal shear stress near the shear margins, where
horizontal shear stresses are important, can be significantly
smaller than the driving stress (Figure 1) (ST2009, Figure 8).
In reality, basal shear stress in the vicinity of the ice stream
center may be smaller than that at the interstream far from
the margin, due to processes that the idealized model of
ST2009 does not include.
[14] The subglacial processes mentioned above were not

explicitly included in the triple‐valued sliding law of ST2009.
Nevertheless, it was suggested there that it may be possible
to account for some of the observed ice stream features
using any other basal processes which lead to a triple‐valued
relation between ice velocity and basal shear stress.

3. The Model

[15] Consider the flow of ice of density r and constant
temperature, within a rectangular domain. The two hori-
zontal coordinates are x (transverse to the mean flow) and
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y (along the mean flow), and z is the vertical coordinate.
The ice force balance is derived under the assumptions that
the basal shear stress is much smaller than the ice viscous
stresses, which leads to plug flow; that the ice sheet ratio
of the vertical to horizontal length scales, [h]/[L], is small
(see notation section); and incompressibility. Under these
assumptions, the three‐dimensional Stokes equations can
be approximated to leading order as a horizontal plain flow
(shelf stream approximation) [MacAyeal, 1989],

0 ¼ 2"h 2u;x þ v;y
! "# $

;xþ "h u;y þ v;x
! "# $

;y"#gh hþ bð Þ;x"!xb ;

ð2Þ

0 ¼ "h u;y þ v;x
! "# $

;xþ 2"h u;x þ 2v;y
! "# $

;y"#gh hþ bð Þ;y"!yb :

ð3Þ

Variables and parameters are defined in the notation section.
The velocity field is given by v = ux + vy, where x, y are unit
vectors in the horizontal coordinate directions, and m is the
effective viscosity governed by a power law viscous con-
stitutive relation [e.g., Hutter, 1983],

" ¼ 1
2
A"1

n
_$II þ R
1þ R

% &1
2

1
n"1ð Þ

: ð4Þ

The ice stiffness parameter, A, is an Arrhenius function
of the temperature and of the activation energy;
_$II ¼ u2;x þ v2;y þ u;xv;y þ 1

4 u;y þ v;x
! "2

is the leading‐order
approximation of the second invariant of the strain rate
tensor; and n is the flow law exponent. Typically, n > 1,
suggesting that the model ice behaves as a shear thinning
fluid (reduction of effective viscosity with increased rate of
strain), and therefore requires a regularizing parameter, R,
that is introduced into equation (4) [e.g., Hutter et al., 1981].
We choose log10 R = −28 by matching equation (4) with
rheological experimental data of Barnes et al. [1971]
[Sayag, 2009]. Below, we study the flow in a range of the
rheological parameters n and A that is within the experi-
mental uncertainty [e.g., Barnes et al., 1971; Goldsby and
Kohlstedt, 2001].
[16] The ice thickness is h(x, y, t) = s − b, where z = s(x, y, t)

is the ice surface and z = b(x, y) is the bed topography, which
is specified as a ridge that separates the mass source area
upstream from a flat downstream region. The ridge has either
a single opening (Figure 2a) or two openings (Figure 10a) and
is specified as

b x; yð Þ ¼ b0
X

j

exp "
x" xj
%xj

% &qj

" y" y0
%y

% &2
" #

; ð5Þ

where the number of exponents in the sum over j determines
the number of openings in the topography, and the related
parameters are specified in Table 1. Such bed topography
allows us to control the outflow of the mass source and
therefore the number, and to some degree the maximum
width, of the ice streams, as further discussed below. As
explained in the introduction, this geometry is not meant to
realistically simulate the Siple Coast topography, but to
allow us to control the number and location of ice streams
and to study their interaction.

[17] The cubic‐like friction law (section 2) used to cal-
culate the bottom shear stress, tb = (tbx, tby), is a critical
element of this study and is based on the one used by
ST2009 (Figure 1),

tb ¼
!b½ (
v½ (

v
#
ð #" 1ð Þ3þa #" 1ð Þ þ 1þ b x; yð Þ=b0Þ tanh &#ð Þ;

ð6Þ

where [v] is the velocity scale, [tb] is the basal shear stress
scale, # = |v|/[v] is the nondimensional magnitude of the
velocity, and where the parameters a and b are chosen such
that the slow and fast velocity regimes are similar to those
observed (see notation section). The friction term b/b0, is
introduced to account for the observed larger friction due to
subgrid‐scale bottom roughness in ice stream onset regions
of prominent bed topography (see references in section 1),
with the purpose of artificially forcing the ice to flow pri-
marily via the opening(s) in the basal topography.
[18] Conservation of mass implies

h;t ¼ M " uhð Þ;x" vhð Þ;y; ð7Þ

where the specified net accumulation rate, M, is prescribed
to be independent of x,

M yð Þ ¼ M0 exp "y2=%2m
! "

; ð8Þ

and where M0 is the mass source intensity (Tables 2 and 3).
Note that the large and unrealistic values of the mass
accumulation source, here specified over a small area of the
domain, are meant to represent smaller accumulation rates
over larger upstream areas in reality.
[19] The model we use is based on assumptions that may

not hold in regions where vertical shear or thermal effects on
creep become of leading importance, such as in the onset
regions. However, we argue that the triple‐valued sliding
law is the key dynamical component responsible for the
results we show below, and that the above processes would
only affect these results quantitatively, as further discussed
in section 6.
[20] We use finite difference to discretize the force and

mass balance equations on a staggered grid. The domain
size is 250 km by 250 km, with 2.5 km or 1.25 km grid
spacing. The diagnostic and nonlinear force balance equa-
tions and the effective viscosity field are iteratively solved
simultaneously using Picard iteration with a subspace cor-
rection [Hindmarsh and Payne, 1996] to cope with the high‐
velocity shear. The time‐dependent mass balance equation is
integrated using an adaptive time step approach, with time
step ranging from 1 min to 12 h. The boundary conditions
on the domain sides, x = 0, 1, are periodic, while the
upstream boundary at y = 0 is free slip (txy = 0) and allows
no normal flow (v = 0). The down stream boundary con-
ditions are based on the outflow condition suggested by
Papanastasiou et al. [1992], which is essentially an upwind
difference scheme near the boundary. However, this con-
dition is insufficient since the solution becomes numerically
unstable as the shear margin front approaches the outflow
boundary. We overcome this problem by adding the con-
dition v,y = 0 at the outflow, y = 1. Computations are per-
formed with Intel FORTRAN using parallel sparse direct
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solver, PARDISO. The numerical model is presented thor-
oughly by ST2009, where a constant viscosity mwas assumed.

4. Analysis of a Single Stream Scenario

4.1. Shear Margin Width
[21] We start by analyzing the factors that determine the

width of the ice stream shear margins in this model. The
shear thinning rheology of ice implies that where the shear
rate is larger, the effective viscosity is lower. This effect is
clearly reflected in simulation results where a steady ice
stream develops (Figure 2). The model ice stream emerges
downstream from the opening in the ridge (Figure 2c) and

has narrow yet clear shear margins that separate the region
of fast and slow flow. The effective viscosity in the shear
margins is about three orders of magnitude smaller than at
the center of the stream or in regions outside of the stream,
indicating significant shear thinning (Figure 2d).
[22] The extent of shear thinning depends on the rate of

shear and also on the parameters n and A in equation (4).
The effect of these parameters on the width of an ice stream
shear margin can be estimated directly from equation (3) to

Table 1. Bed Topography Parametersa

Parameter One Gap Two Gaps

J 2 3
qj 32, 32 32, 32, 32
xj 0, 1 0, 1/2, 1
sxj 0.42, 0.42 24, 14, 24
sy, y0 10, 0.25 10, 0.25

aSee equation (5).

Figure 2. Simulation results for a single ice stream in steady state (run 1e, Table 2). (a) Geometry. The
ice flows over a plane through an opening in the center of an upstream ridge. The mass source is dis-
tributed uniformly in x farther upstream of the ridge (color contours, red is higher than blue). (b) Ice
thickness (nondimensional). Thickness gradients of the ice are maximal upstream, around the region of
the bottom topography ridge. (c) Color contours of the velocity magnitude (meters per year) and velocity
arrows of an ice stream solution, showing the region of fast flowing ice (red). Arrows are plotted every ten
grid points. (d) Effective viscosity (log10 m), showing values that are ∼3 orders of magnitude smaller in
the shear margins than in the interstream regions.

Table 2. One‐Gap Simulationsa

Run n log10 A M0(m/yr) Dx(y = 0.7) (km) Variability

1a 2 −19.6 7 7.71 steady
1b 2 −20.2 6 11.6 oscillatory
1c 2 −21.1 10 24 steady
1d 2 −21.1 8 26.4 oscillatory
1e 3 −24.0 7 5.22 steady
1f 3.15 −26.3 7 11.95 steady
1g 3.15 −26.3 6 13.1 oscillatory
1h 3.15 −26.5 9 13.3 steady
1i 4 −30.4 8 8.9 steady
1j 5 −34.9 7 7 steady

aVelocity and basal shear stress scales are [v]’ 70 m/yr and [tb]’ 63 KPa.
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within constant factors that can be evaluated numerically.
Neglecting variations of the flow field in y and assuming
u & v and u,x & v,x, equation (3) becomes

0 ¼ "hv;x
# $

;x"#gh hþ bð Þ;y"!yb : ð9Þ

Substituting m = (1/2)A−1/n∣v,x∣1/n−1, we find that the interval
Dx, representing the shear margin width across which the
velocity drop is Dv, is given by,

Dx ¼ h½ (=2
#g h½ (2= L½ ( þ !b½ (

 ! n
1þn Dv

A

% & 1
1þn

: ð10Þ

[23] The choice of Dv is motivated by the friction law,
which defines the slowest stable velocity a rapid stream can
have (vc+), and the fastest stable velocity an interstream
(slow) region can have (vc−) (ST2009). These are defined as
the local maximum and minimum of the basal shear stress
and, from equation (6) and Figure 1, can be evaluated to a
very good approximation as,

vc) ’ 1)
ffiffiffiffiffiffiffiffiffiffi
aj j=3

p
; ð11Þ

where in equation (6), tanh(b#) ’ 1 (see notation section)
and where the term b/b0 vanishes in the absence of topog-
raphy. We therefore choose Dv = vc+ − vc− to represent the

drop in velocity across the shear margin. To evaluate the
validity of equation (10) we let the numerical simulation
converge to a steady state ice stream for several sets of the
parameters n and A (Table 2), and measure the shear margin
width, defined as the interval

Dx * x v ¼ vcþ
! "

" x v ¼ vc"ð Þ
(( ((; ð12Þ

across which the drop in velocity is Dv (Figures 3a and 3b).
We then fit the simulation data to a function of the form,

Dx n;Að Þ ¼ c
n

1þn
1

c2
A

) * 1
1þn
; ð13Þ

and use least squares to solve for the unknown parameters,
c1,2,

c1 ’ 4:72
h½ (

#g h½ (2= L½ ( þ !b½ (

 !

;

c2 ’ 2:10Dv:

ð14Þ

Figure 3a shows that equation (13) predicts fairly well the
shear margin width for the specific model we consider here.
We can now use the functional relation (13) to evaluate the
shear margin width as function of the rheology parameters
n and A. Figure 4 shows that a particular shear margin
width, Dx, is consistent with a continuous range of values
for n and A. The choice of a specific value for n and A will
affect the magnitude of the effective viscosity and, as we
show below, the evolution and character of the flow. Other
physical mechanisms, not considered here explicitly, may
also be a factor in explaining the shear margin width (e.g.,
strain‐induced anisotropy) [Echelmeyer et al., 1994; Truffer
and Echelmeyer, 2003].

4.2. Analyzing the Stagnation of an Ice Stream
[24] The ice‐stream‐like pattern generated under the fric-

tion law (equation (6)) may be arbitrarily wide, limited
only by the availability of a mass source that can sustain it
(ST2009). As the mass accumulated in the source region
is exhausted, the driving stress due to the surface slope

Figure 3. Shear margin width from several different model runs, as a function of the ice rheology para-
meters, n (x axis) and log10 A (numbers beside markers). (a) The predicted values based on equation (13)
(crosses) and the results of the 2‐D simulation (circles). (b) A cross section of the downstream velocity, v,
at y = 0.5, for selected parameters n, A in Figure 3a (Table 2).

Table 3. Summary of the Results of the Two‐Gap Simulations
With Symmetric Initial Conditionsa

Run n log10 A
M0

(m/yr)
Dx(y = 0.7)

(km)
Period
(years)

Stream
(years)

2a 2 −20.2 10 11.5 65.27 30.65
2b 2 −19.9 10 10.5 56 27.3
2c 2 −19 10 5.38 steady steady
2d 3.15 −26.3 10 12 83.17 36.85
2e 4 −30.5 10 10.5 78.7 37.3

a“Period” refers to the period of the oscillation and “stream” is the
duration of the active phase of the rapid flow within the period. Velocity
and basal shear stress scales are [v] ’ 70 m/yr and [tb] ’ 63 KPa.
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diminishes and the stream narrows until it reaches a critical
width and stagnates. This behavior can occur periodically
under a time‐independent mass source as seen in the New-
tonian fluid simulations of ST2009. We observe a similar

behavior for the non‐Newtonian rheology and the partic-
ular bed structure in Figure 2a, yet the more general con-
figuration used here allows for several new and different
modes of rapid flow for a given mass source distribution, M
(Figure 5). One mode is a temporary fast flowing ice‐
stream‐like region, enclosed within a slower flowing region,
that does not grow all the way to the outflow boundary
before stagnation (Figure 5b). A second mode occurs when
the fast flowing region propagates to and breaks through the
downstream boundary to form an ice stream (Figure 5c). A
third mode occurs when the driving stress is sufficiently
large to drive the flow into the rapid regime throughout most
of the upstream region and all of the downstream region
(Figure 5d).
[25] These different modes all occur within the same

model run in a seemingly aperiodic manner. The behavior
seems chaotic in time, although the length of the time series,
limited by computational cost, does not allow us to verify this.
Some of these features are clearly not realistic and likely to
be due to the idealizations used in our model and friction
law. But these results do demonstrate the rich behavior
supported by this simple model and sliding law, and some of
these modes may be relevant to the observed behavior of the
Siple Coast ice streams.
[26] Once an ice stream is formed, its shear margins migrate

inward until it reaches a certain width, and then the ice
stream becomes stagnant abruptly (at ∼50 km in Figure 5c).

Figure 4. A contour plot of the shear margin width, Dx
(kilometers), as a function of the ice rheology parameters,
n and log10 A, based on equation (13).

Figure 5. Different regimes of a single ice stream solution. (a) A time series of the integrated mass flux
across y = 0.5 (run 1d, Table 2). Three distinctive patterns of flow are apparent in the time series and
correspond to the different spatial patterns in Figures 5b–5d via the v = 1 contour which roughly marks
the shear margin position. (b) A locally confined fast flow pattern that does not penetrate all the way to the
downstream outflow boundary. Contoured snapshots correspond to the short‐time‐scale, small‐amplitude
oscillation denoted by full circle symbols in Figure 5a. Darker contours refer to earlier times. (c)
Snapshots of the ice‐stream‐like solution during the long‐time‐scale oscillations (squares in Figure 5a).
(d) Patterns of unconfined fast flowing region during the short‐time‐scale, large‐amplitude oscillations
denoted by triangles in Figure 5a.
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The migration rate inferred from Figures 5a and 5c is
∼250 m/yr, consistent with observations within an order of
magnitude. The critical state of a rapid flowing ice stream
just before stagnation, and in particular the maximum
velocity and width, can be characterized using the friction
law (equation (6) and Figure 1). Simulation results (Figure 6)
show that just before the stagnation, the minimum down-
stream velocity v at the downstream part of the ice stream, is
just above vc+. At that instant, the stream width is narrower
in model runs for which the shear margin width is narrower
(Figures 6c and 6d), providing insight into the stagnation
mechanism of the ice streams in this model: a stagnation
occurs when the ice stream width is about twice the shear
margin width, or, put more crudely, when the two shear
margins, as per our definition (equation (12)), first touch.
For example, Figure 6c shows that the shear margin width

before stagnation is 27 km while the ice stream width (also
per our definition) at that point is 53 km. This implies that
before stagnation the ice stream narrows to a width of the
order of tens of kilometers where it quickly becomes stag-
nant. This stagnation process of ice streams in our model
seems qualitatively consistent with that of Kamb Ice Stream
(originally ice stream C), which narrowed by 30% before a
rapid stagnation at a final width of ∼75 km (averaging along
the interval between the grounding line and ∼200 km upstream)
[Catania et al., 2006; Jacobel et al., 2000].

4.3. Transient and Asymmetric Behavior
of the Upstream Flow
[27] As expected, the flow from the mass source region to

the downstream area tends to concentrate in the gap through
the bottom topography ridge. Although the mass source is

Figure 6. Analysis of the critical state of an ice stream, just before stagnation. (a) A time series of the total
mass flux across y = 0.5 during a development and stagnation of an ice stream (run 1d, Table 2). The ice
stream width declines with its mass flux. (b) The downstream velocity, v(y), along the ice stream center, at
times marked by circles in Figure 6a. The value v also declines with the mass flux but remains stable as long
as v > vc+.When v ≈ vc+, (square in Figure 6a and dashed curve in Figure 6b) the ice stream becomes stagnant.
(c) A demonstration that the critical width of an ice stream just before stagnation is a function of the shear
margin width. Shown is the ice stream width just before stagnation, as a function of the shear margin width
Dx (equation (13)). Circles denote four stagnation events in run 1d, and squares denote two stagnation
events in run 1g (Table 2). These two runs differ in the values of n and A, showing that for a given value of
the rheology parameters the critical width of the ice stream is nearly constant. (d) A typical cross section of
the downstream velocity v at y = yc in Figure 6b, just before stagnation (runs 1d and 1g).
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uniformly spread along the upstream boundary, and the bed
topography and roughness are also symmetric with respect
to the gap center at x = 0.5, the transverse component of the
velocity u in the upstream region can become asymmetric
(Figure 7). As mass is accumulated in the source area,
transverse surface slopes build up (red regions in Figure 2b).
Over time, the transverse driving stress can reach a critical
value where u becomes larger than the friction law critical
velocity vc− and a region of rapid flow develops. Such a
flush event is active on one side of the gap for ∼1 year, and
then ceases for another half year, before a new flush event
initiates on the other side of the gap, creating a cycle with a
period of about 3 years (Figure 8a). This behavior is absent
for some rheological parameter combinations (e.g., n = 2,
log10 A = −21.1; run 1c, Table 2) that lead to a more viscous
flow in the upstream region and for which transverse surface
slopes in the upstream region do not build up sufficiently.
[28] The occurrence of an upstream flush slightly increases

the mass flux in the downstream regions (Figure 8a). As a
result, the ice stream width (measured for this purpose as the
width of the downstream velocity contour v = 1 in dimen-
sionless units) varies with a small amplitude between 37.8
and 38.9 km and the maximum downstream speed varies
approximately between 124.7 and 125.8 m/yr.
[29] The transverse velocity flushes also transport mass

from one half of the domain (e.g., x < 0.5) to the other half
(e.g., x > 0.5) (Figure 9). The transverse mass flux across the
interface x = 0.5 occurs mostly in the mass source area, for
0 < y ⪅ 0.3. Further downstream, there is hardly any mass
flux exchange between the two domain halves.
[30] We observe the transverse flushes described above in

higher‐resolution simulations (grid spacing 1.25 km) as
well, which indicates that their presence is due to the model
dynamics rather some numerical artifacts. In particular the
asymmetric behavior of the upstream flow could be a result
of a spontaneous symmetry breaking due to the nonlinear
nature of the system (as is typical for example in simpler
dynamical systems undergoing a pitchfork bifurcation)
[Strogatz, 2001]. That is, the symmetric solution becomes

linearly unstable to small perturbations and the system
switches to an asymmetric state. However we do not feel
these flushes are necessarily relevant to the onset area of
observed ice streams as our representation of the upstream
area is less adequate than in other parts in the flow domain.
Specifically, our model neglects vertical shear and the
complex topography in observed onset areas, and the mass
source distribution is not realistic. Nevertheless, we still find
it interesting that the model dynamics allows for the rich
dynamics of intermittency, asymmetry and “flushing” behav-
ior, even if this tells us more about what the physics
included in the model is capable of, than about the specific
dynamics of the Siple Coast ice stream onset area.

5. Interaction of Two Streams

[31] To study the interaction between two adjacent streams
we introduce two gaps into the prescribed bottom topogra-
phy ridge separating the source region from the downstream
region (Figure 10a and Table 1 with j = 3). Again, the flow
from the mass source area is concentrated in the gaps in the
basal topography, driven by transverse surface gradients
(Figure 10b). We analyze the flow pattern over this topog-
raphy in a set of simulations with the rheological parameters
shown in Table 3. We focus on describing several inter-
esting features and issues that arise in the numerical solu-
tions: (1) the different flow patterns that form, (2) factors
leading to independent versus merging streams, (3) the
destabilization of spatially symmetric solutions, and (4) the
role of non‐Newtonian rheology.

5.1. Flow Patterns in the Presence of Two Adjacent
Streams
[32] The flow pattern in the presence of two gaps in the

bed topography and with a constant mass source intensity
strongly depends on the rheological parameters that deter-
mine the shear margin width (section 4.1 and Figure 4) and
on the critical velocities associated with the basal friction
law (equation (11)). Depending on these parameters, the

Figure 7. The transverse flow pattern at the upstream part of the domain (run 1f, Table 2). (a) The
transverse velocity, u at y = 0.04 as a function of time and x, showing an upstream flow that is asymmetric
with respect to x = 0.5, with flushes of rapid transverse flow alternating from side to side. (b) A snapshot
of the transverse flow (u) at the upstream region and contours of the bottom topography. Color bar refers
to both Figures 7a and 7b.
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Figure 8. The effect of the upstream flushes on the downstream flux pattern of an ice stream (run 1b,
Table 2, which converges to a statistically steady state). (a) The mass flux across y = 0.5 versus time
(years) (pattern continuous indefinitely). (b–d) Snapshots of the upstream velocity field corresponding to
times marked by the three full circles in Figure 8a (color values in meters per year).

Figure 9. Contour plot of the transverse velocity u as a function of time and x, at several upstream posi-
tions, y, showing that there is a flow crossing from one half of the domain (e.g., x < 0.5) to the other half
for 0.08 < y < 0.3. The y position is noted at the top of each frame. Note that the direction of the flow
across the center of the domain alternates in time. Color values are in meters per year, and the black con-
tour is u = 0.
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flow may arrange to form a single stream fed by both
openings in the topography (Figures 10c, 12a, and 12b), two
separate steady streams (Figure 11a), or asymmetric streams
that alternate active phases with seemingly chaotic behavior
in time (Figures 12c, 12d, and 13).
[33] Consider first the issue of two separate streams versus

the merging of two streams into a single wide stream. When
the shear margins are sufficiently narrow (e.g., run 2c in
Table 3), the flow can reach a steady state with two separate
streams emanating from the two bed topography gaps
(Figure 11a). As the rheological parameters are changed and
the shear margins widen, the margins of the two streams
approach each other (Figure 11b). Model simulations reveal
a simple picture: as the margins of the two streams approach,
the slow flow in between them speeds up due to horizontal
shear stresses with the relatively faster flow to either side.
When the flow velocity in the interstream region reaches the
critical velocity vc−, it is in the unstable range shown in
Figure 1, and its speed increases to over vc+ before it sta-
bilizes again, leading to merging of the two streams to a
single wide one. It is clear that the minimum stable width of
the inter stream between two initially isolated and adjacent
streams, decreases as the shear margin width decreases.

[34] Once the two streams merge into a single wider stream
(Figure 10c), the downstream mass flux increases substan-
tially. The upstream mass source cannot sustain this large
mass flux in a steady state and, as a result, the streams
eventually separate again. This can result in an oscillatory
behavior where two streams combine and then separate
repeatedly (Figure 12a). The separation of the streams
occurs via the downstream movement of the point at which
the two streams merge downstream of the topographic gaps
((x, y) = (0.5, 0.55) in Figure 10c).
[35] This merging of two streams and the splitting of a

wider stream demonstrate that there is no inherent width
scale for ice stream solutions due to the triple‐valued sliding
law (ST2009). The sliding law allows the two regimes of
fast and slow flow to coexist, and the only limit on the
maximum width of the fast flow domain is the availability of
a mass source that can sustain it.

5.2. Spontaneous Symmetry Breaking
of the Interaction Pattern
[36] If the model is initialized with initial conditions that

are symmetric with respect to the two gaps in the topogra-
phy, the solution remains symmetric for long periods of time

Figure 10. Simulation results for a bottom topography with two openings (run 2d, Table 3). (a) Geometry.
The ice flows over a plane through two openings in an upstream ridge. The mass source is distributed
uniformly in x farther upstream of the ridge (color contours, red is higher than blue). (b) Ice thickness
(nondimensional). Thickness gradients of the ice are maximal upstream, around the region of the bottom
topography ridge. (c) Color contours of the velocity magnitude (meters per year) and velocity arrows of an
ice stream solution, showing the region of fast flowing ice (red). Arrows are plotted every ten grid points.
(d) Effective viscosity (log10m), showing values that are ∼3 orders of magnitude smaller in the shear margins
than in the interstream regions.
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even with time‐dependent, oscillatory solutions of merging
and separating ice streams (as described above and shown in
Figures 12a and 12b). It turns out, however, that for a fairly
wide range of rheological parameters, this initially symmetric
solution is unstable and can undergo spontaneous symmetry
breaking: applying a small asymmetric ice thickness pertur-
bation to an initially symmetric model simulation leads to
a complex, seemingly chaotic, asymmetric flow pattern
(Figures 12c, 12d, and 13). The perturbation introduces a
temporal phase difference between the two ice streams which
is then sustained by the dynamics.
[37] Specifically, the upstream driving stresses in the

domain half where a thickness perturbation is introduced
(e.g., x > 0.5) reaches the critical value leading to ice stream
formation earlier than the other half (Figure 13b). That
initial ice stream consumes part of the mass source in the x <
0.5 half of the domain, and hence delays the formation of an
ice stream there (Figure 12d). However, the mass source is
insufficient to sustain a steady ice stream and is continu-
ously being exhausted, resulting in the ice stream getting
narrower. As it narrows, the volume of ice it draws from the
other half of the domain x < 0.5 diminishes (Figure 12d) and
hence the driving stress there can build up to the critical
value. Eventually, a stream emerges at x < 0.5 and coexists
for a while with the initial stream (Figure 13c), but at the
same time draws ice away from the initial stream and hasten
its stagnation (Figures 13d and 13e). At times, another
pattern may occur when the emerging new stream and the
initial stream combine into a single, asymmetric wide stream
(Figure 13g). This competition over the upstream mass
source [e.g., Anandakrishnan and Alley, 1997; Payne and
Dongelmans, 1997; Payne, 1999; Joughin et al., 1999] is
not present in time‐dependent simulations with symmetric
initial conditions (compare Figure 12b with Figure 12d).
[38] We find that larger values of the effective viscosity

lead to stable, two stream, symmetric solutions. The insta-
bility of the symmetric solutions as the shear margin width
is increased, in both this section and in section 4.3, is

reminiscent of a pitchfork bifurcation which typically occurs
in spatially symmetric systems [Strogatz, 2001]. However,
the unstable symmetric solution as well as the emerging
stable asymmetric solutions are all time‐dependent here,
as opposed to the fixed point (steady state) solutions in the
normal form of the pitchfork bifurcation.

5.3. The Role of Ice Rheology Versus Basal Sliding
Law
[39] Finally, consider the role of the non‐Newtonian

rheology versus that of the triple‐valued sliding law in
causing the observed rich spatiotemporal behavior shown
above.We repeated run 1b (Table 2) for several constant (i.e.,
Newtonian) viscosity values of m0, (1.25m0, 1.78m0 and
10m0), where m0 is the minimum effective viscosity from the
shear margins of the reference, non‐Newtonian simulation
(run 1b). The results indicate that, for sufficiently low
Newtonian viscosity, the spatial variability patterns in the
constant viscosity simulations are essentially the same as in
the non‐Newtonian case. However, the time scales of the
periodicity depend on the effective viscosity used. The three
lower‐viscosity values listed above resulted in time oscil-
latory solutions similar to the non‐Newtonian run, but with
an order of magnitude shorter time scale than the non‐
Newtonian reference simulation. This period increases with
the effective viscosity, but so does the shear margin width.
When the Newtonian viscosity is increased in these simu-
lations in an attempt to lengthen the period of the oscilla-
tions to its non‐Newtonian value, the flow becomes too
viscous and the spatiotemporal variability obtains a different
character. In the simulation with a constant viscosity of
1.78m0 the flow was sufficiently viscous that the transverse
flushes in the upstream region were eliminated, while the
simulation with 10m0 led to a slow, steady flow with no
ice‐stream‐like patterns. We conclude that the spatial pat-
terns of variability seen, for example, in Figures 5, 7, 8,
12, and 13 are mostly due to the triple‐valued sliding law
and not the non‐Newtonian ice rheology. However, the

Figure 11. Different patterns of interaction of spatially symmetric ice streams. Shown are the magnitude
of the ice flow speed (colors, meters per year) and the flow directions (vectors, plotted every 10 grid
points). (a) A model simulation for which Dx = 5.4 km, showing that the streams can remain separated
(simulation 2c, Table 3). (b) A model simulation where Dx = 10.5 km, showing the streams approaching
each other to within a critical distance (run 2d, Table 3) that can lead to their merging (Figure 10c).
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shear thinning due to the non‐Newtonian rheology allows
the model to develop more realistically narrow shear mar-
gins and seemingly more relevant temporal variability.
Therefore, both the basal sliding law and the non‐Newtonian
effects play a significant role in the model variability ana-
lyzed here.

6. Conclusions

[40] We analyzed ice‐stream‐like flows due to a triple‐
valued sliding law and power law ice rheology, using the
shelf‐stream approximation. The flow was driven by an
upstream mass source, specified to be uniform transversely
to the ice stream flow. The basal topography was specified
to have an upstream ridge with one or two gaps directing the
streamflow (Figures 2a and 10a).

[41] The triple‐valued sliding law was previously shown
to support a bistable flow pattern, where regions of rapid
flow coexist with much slower ones [Fowler and Johnson,
1996; ST2009]. The present work extends these findings by
(1) allowing for a non‐Newtonian rheology and (2) investi-
gating the spatiotemporal consequences of the interaction of
two adjacent model ice streams.
[42] Considering the flow of a steady ice stream, we first

derived and numerically verified a scaling relation between
the width of model ice stream shear margins and the ice
rheology parameters representing the ice stiffness and the
power law exponent. It should be emphasized that we define
the shear margin width with relation to the critical velocities,
vc±, in the sliding law (equation (12)), whereas observational
data may relate to a different measure related to morphology
and surface features. We also showed that the width of the
shear margins affects the minimum sustainable width of a

Figure 12. The destabilization of a flow pattern that is symmetric with respect to x = 0.5. (a) Values v(x, t)
at y = 0.7 and (b) u(x, t) at y = 0.07, both for a simulation with symmetric initial conditions. (c and d) The
same diagnostics and parameters as Figures 12a and 12b but for a simulation with asymmetric initial con-
ditions (color values in meters per year). Figure 12d shows that an active stream on one half of the domain
(e.g., x < 0.5) drains mass from the upstream part of the other half (x > 0.5). Black contours in Figures 12b
and 12d mark u = 0. Simulation parameters are M0 = 15 m/yr, n = 3, log10 A = −24.7, log10 R = −20, qj =
20, sxj = (22, 12, 22), sy = 10, y0 = 0.3, [v] = 125 m/yr, and [tb] ’ 45 KPa.
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stable model ice stream, as well as the minimum width of
an area between two ice streams. The stagnation of an ice
stream in our simulations occurs quickly compared with the
time the ice streams are active. An ice stream tends to
narrow before stagnation and can be tens of kilometers wide
immediately before becoming stagnant. These character-
istics appear to be roughly consistent with observations (e.g.,
of Kamb Ice Stream).
[43] Introducing two gaps in the bottom topography led to

the formation of two ice streams fed by the same source. We
showed that the two streams can remain separated if their
shear margins are sufficiently narrow, or may combine into
a single wider stream. We explained that the implication is
that under a multivalued sliding law there is no intrinsic
width to the ice streams, and their maximum width is only
limited by the availability of a mass source that can sustain
the mass flux carried by a wide stream. Finally, we dem-
onstrated the existence of two‐stream solutions that are
symmetric with respect to the domain center, have a com-
plex, seemingly aperiodic time behavior, and are unstable.
Introducing an asymmetric perturbation to such a symmetric
solution resulted in a transition to an asymmetric time‐
dependent solution where two streams compete over their
common source.

[44] Our results indicate that the qualitative spatial pat-
terns of variability we find are a consequence of the triple‐
valued sliding law. The same patterns are seen with a low
constant viscosity (Newtonian rheology), but their time
scale is much shorter. Increasing the Newtonian viscosity
leads to longer time scales, but the model then loses the
ability to simulate the spatiotemporal ice‐stream‐like vari-
ability, and the shear margins become too wide. The non‐
Newtonian rheology is therefore important for the simulation
of spatiotemporal variability at seemingly relevant temporal
and spatial scales.
[45] The many two stream solution regimes shown in

section 5 display complex time‐dependent patterns remi-
niscent of the spatiotemporal variability of the Siple Coast
ice streams. Specifically, we see ice streams that become
stagnant at times while others become active, competi-
tion for a common mass source, seemingly chaotic behavior
in time, shear thinning effects allowing for the existence of
narrow shear margins, and merging streams (as observed,
for example, by Joughin et al. [2002]), all occurring on time
scales relevant to those inferred for real ice streams.
[46] The minimal shear margin width in this model is

about 5 km, which may be larger than that of some observed
margins (Echelmeyer et al. [1994] observe a 4–5 kmmargin).

Figure 13. The patterns of flow with asymmetric initial perturbation (simulation parameters identical to
those in Figure 12). (a) A time series of the mass flux (cubic kilometers per year) across y = 0.5. (b–g)
Snapshots of the velocity field (meters per year) corresponding to the filled circles in Figure 13a.
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As emphasized above, we have no pretense of realistically
simulating observed ice streams in this work. Instead, we
wish to study the effects of the triple‐valued sliding law in
detail, and this necessarily implies some idealizations. It
is still important, of course, that the simulation resolves the
model shear margins to ensure numerical consistency. Our
numerical resolution is sufficient to resolve the shear
margin width that is specified through the non‐Newtonian
ice rheology, and we have confirmed the robustness of
some of the key results (e.g., those of Figure 13) by
comparison with higher‐resolution (1.25 km grid spacing)
simulations.
[47] Our model neglects several elements important to

the understanding of real ice streams. First, vertical shear is
neglected here. This assumption may be valid in regions
where bed lubrication is effective and where sliding dom-
inates the velocity field, such as the Siple Coast ice streams;
however, vertical shear may become important near ice
stream onset areas and between ice streams, which implies
that three‐dimensional modeling may be necessary to
model ice streams properly. The ice stream onset areas are
typically steeper, have rougher basal topography, and are
probably not as well lubricated as the ice streams. In the
presence of vertical deformation, pressure gradients will
disperse more efficiently, which may lead to the following
outcomes: (1) the basal shear stress may take longer to
reach the critical value, making the period in an oscillatory
solution longer, and (2) critical basal stress may not be
reached at all, preventing flushes in onset regions. Away
from the source regions, our model is more likely to be
capturing the observed dynamics although one cannot rule
out downstream effects due to vertical deformation in the
source areas. The interstreams formed in the present model
are about 100 times slower than the model ice streams.
This implies that the triple‐valued sliding law reasonably
reproduces interstream ridges although vertical shear is not
explicitly included. Nevertheless, it would be interesting
to include explicit vertical deformation in order to model
the migration time scales of shear margins and the flow in
those regions more realistically.
[48] Second, we neglected thermal effects on the viscos-

ity. While the triple‐valued sliding law implicitly includes
thermal effects at the base of the ice (ST2009), the depen-
dence of ice viscosity on temperature, through the rate
factor, A, was neglected. Jacobson and Raymond [1998]
suggested that such processes may effect the dynamics
and stability of the shear margins. Based on our analysis, a
temperature‐dependent viscosity may result in a distribution
of shear margin widths rather than the unique one (calcu-
lated here for a given value of A), which may lead to more
complex behavior. For example, decreasing the ice tem-
perature from −6°C to −14°C would result in changing
log10 A from −24.4 to −24.9, which corresponds to an
increase in the shear margin width from ∼11 km to ∼15 km
for n = 3.15.
[49] In spite of neglecting these important elements of

ice stream dynamics, our simplified description is capable
of producing complex spatiotemporal patterns that resem-
ble some of the observed Siple Coast ice stream behaviors.
This suggests that it is worthwhile to continue exploring
the role of a triple‐valued sliding law in ice stream dynamics.

Notation

a Friction law parameter (−0.9).
A Ice stiffness (value varies, see

Tables 2 and 3 and Figure 12)
(Pa−n s−1).

b Subglacial bed elevation (m).
b0 Maximum amplitude of bottom

topography (1200 m).
g Gravitational acceleration (9.81 m

s−2).
h Ice thickness (m).
s Surface elevation (m).

[L] Horizontal length scale (250 km).
[h] Vertical length scales (1800 m).
M Mass source distribution (m s−1).
M0 Mass source intensity (m s−1).
n Ice flow law exponent (value varies,

see Tables 2 and 3 and Figure 12).
q1, q2, q3, sxj, sy, xj, y0 Bottom topography parameters

(see Table 1).
t Time (s).

[T] Time scale (s).
v = (u, v), # Velocity field and magnitude (m

s−1).
[v] Horizontal velocity scale (value

varies, see Tables 2 and 3 and
Figure 12) (m s−1).

vc± Friction law critical velocities (m
s−1).

x, y Horizontal coordinates (m).
b Sliding law (equation (6)) param-

eter (50).
m Ice effective dynamical viscosity

(Pa s).
r Ice density (900 kg m−3).

sm Mass source distribution parameter
(0.05 m).

tb = (tbx, tby) Basal shear stresses (Pa).
[tb] Basal shear stress scale (value

varies, see Tables 2 and 3 and
Figure 12) (Pa).

tc± Friction law critical stresses (Pa).
F,x ∂F/∂x.
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