Heuristic Voting as Ordinal Dominance Strategies

Omer Lev, Reshef Meir, Svetlana Obraztsova, Maria Polukarov

> AAAI 2019 Honolulu, Hawaii

Voting

A set of voters – V

A set of options (candidates) – C

A voting function **f** to take in voters preferences, and output an outcome

Voting manipulation Gibbard-Satterthwaite

Other than in a dictatorship, when agents **know how others are voting**, they may be better off voting differently than they believe.

Voting manipulation Uncertainty?

What do you do when you do not know what all others are voting for?

Voting manipulation Uncertainty?

What do you do when you Notkprobability! are voting for?

Heuristics Not probability!

A function that takes a certain state and outputs what should the voter vote for:

An arbitrary candidate that isn't the least favorite.

Truth bias

Lazy bias

T-pragmatist

Leader rule

Previously... Local dominance

A binary model – probable/improbable states, calculated by a metric from a base data point (e.g., poll). Among the probably states, choose a dominant strategy.

Multiple **information sets**, denoting which is more probable than another

Ordinal domination

Action a dominates action b if there is an information set where a dominates b.

Arbitrarily voting for anyone that isn't least favorite:

A graph where all candidates are tied with each other.

Local dominance:

A graph where candidates of a certain distance from the winner are tied.

Truth-bias / Lazy-bias:

Level 1: as in local dominace.

Level 2: Truthful vote connected

to all nodes in level 1.

Leader rule

Level 1: top two candidates

Level 2: "star" connecting winner

to all other candidates.

Iterative voting & local dominance

Regular metric distances induce pivot graphs that are upward closed (if tied with a candidate, also tied with candidates with higher scores).

When using candidate-wise rules, such as ℓ_{∞} , the pivot graph is a clique at every level

Iterative voting & local dominance

If voters' model is a cliqued one, the will converge using ordinal dominance when using plurality or veto.

If voters' model is a cliqued one, the will converge using ordinal dominance when using plurality or **veto**.

Known from previous result, Meir, **Plurality voting under uncertainty**, *AAAI 2015*

Future directions

More matchings between heuristics and graphs

Creation of novel heuristics using graphs

Convergence results using graph topology

Graph topology meaning?

More uncertainty representations using graphs

Thanks for listening!

