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Abstract
Gerrymandering is the process by which parties
manipulate boundaries of electoral districts in order
to maximize the number of districts they can win.
Demographic trends show an increasingly strong
correlation between residence and party affiliation;
some party’s supporters congregate in cities, while
others stay in more rural areas. We investigate both
theoretically and empirically the effect of this trend
on a party’s ability to gerrymander in a two-party
model (“urban party” and “rural party”). Along the
way, we propose a definition of the gerrymandering
power of a party, and an algorithmic approach for
near-optimal gerrymandering in large instances.
Our results suggest that beyond a fairly small con-
centration of urban party’s voters, the gerrymander-
ing power of a party depends almost entirely on the
level of concentration, and not on the party’s share
of the population. As partisan separation grows, the
gerrymandering power of both parties converge so
that each party can gerrymander to get only slightly
more than what its voting share warrants, bringing
about, ultimately, a more representative outcome.
Moreover, there seems to be an asymmetry between
the gerrymandering power of the parties, with the
rural party being more capable of gerrymandering.

1 Introduction
The question of how to aggregate various peoples’ prefer-
ences and choose a single option has existed for millennia
and is a fundamental issue in social choice theory and prac-
tice. Since the early days when humans institutionalized their
decision making, manipulation came along with it [Staveley,
1972], as people looked for ways to change the outcome more
to their liking, and leaders looked for ways to reduce their ri-
vals’ power [Kagan, 1961].

Jumping several centuries ahead, during the late mid-
dle ages various European kingdoms established assemblies
which included representatives from various areas of their
country: the English parliament, the French Estates General,
and others. In those assemblies which survived to become
significant policy bodies, the issue of which areas received

representation became crucial. In Britain, for example, the
parliamentary districts still reflected medieval population dis-
tribution until the Great Reform Bill of 1832. But just as
Britain was trying to solve its district allocation problem,
across the Atlantic, American politicians were realizing the
potential power that comes with the ability to divide a state
into its districts. In 1812, Massachusetts governor Elbridge
Gerry gave his name to the practice of gerrymandering – cre-
ating oddly shaped districts for political gain.

Dividing a geographic area (e.g., a state into electoral dis-
tricts; municipality lines for allocating taxes) into subareas
subject to constraints is a problem with many possible solu-
tions, and one of them needs be selected. Gerrymandering is
a control problem, in which the agent in charge of the divi-
sion optimizes it for their personal preferred outcome, even if
there is a more natural one. From here on we will use politi-
cal nomenclature, but note that all the results and observations
apply to dividing any geographic area with resources (parti-
san voters are only one example) between agents in a way that
can be fair, but can also be highly biased.

There has been much research concerning gerrymander-
ing in the United States, and since the 1965 Voting Rights
Act particular attention has been given to minority represen-
tation issues. This interest has accelerated in the past two
decades (and even more so in todays’ political atmosphere),
with much effort devoted to denunciations of gerrymander-
ing, and arguing that it is a danger to the US political well-
being [Klaas, 2017; New York Times Editorial Board, 2017].
However, despite substantial effort, it is still not clear what
constitutes a “good” or “fair” district map [Wang, 2016]. Is it
district compactness? Is it population homogeneity [Wasser-
man, 2018]? But the main criticism of gerrymandering seems
to be that it produces results that are unrepresentative of the
overall population’s desires and preferences [Nurmi, 1999].

In parallel a different dynamic is taking place in the US:
for a variety of reasons, individuals are residing near peo-
ple with similar party affiliation. In particular, supporters of
one party cluster in urban areas, while rural areas are becom-
ing the domain of their political opponents [Bishop, 2009].
Many commentators are mixing this with the negative effect
of gerrymandering [Enten, 2018; Rumi, 2017].

We examine the relation between gerrymandering and par-
tisanship distribution. We explore several theoretical insights,
and construct a simulation tool and an algorithm to find



highly gerrymandered district divisions. We propose a novel
metric, gerrymandering power, which measures how much
gerrymandering can make a party powerful beyond its vote
share in the population. We work with a synthetic grid map
in order to focus more on the effect of a party’s vote share and
the distribution of its voters on its gerrymandering power.

Contrary to common opinion [Wang, 2013], our results
suggest that as partisan separation grows and urban voters
cluster, the rural party’s ability to gerrymander drops. Once
a certain (fairly low) urban party concentration is exceeded,
a party’s gerrymandering power seems to depend almost en-
tirely on the density of the urban centre and not on its share
of the population. As partisan separation grows, the gerry-
mandering power of both parties converges so that the parties
are limited in their ability to gain much more than what their
share of the population warrants, bringing about a more repre-
sentative outcome. We also observe complex effects in close
elections with moderate concentration levels. Moreover, our
results suggest a basic asymmetry between the gerrymander-
ing power of the urban and rural parties, wherein the rural
party has a stronger gerrymandering ability.

2 Related Work
Research on gerrymandering has been done, throughout the
years, from sociological vantage points [Lublin, 1997], his-
torical ones [Engstrom, 2006; Butler, 1992], and, particularly
since the 1965 Voting Rights Act, legal ones [Schuck, 1987;
Issacharoff, 2002; Friedman and Holden, 2009]. Natu-
rally, however, it has been mainly explored in the politi-
cal science arena [Erikson, 1972], primarily based on anal-
ysis of past elections [Grofman et al., 1997; Tangian, 2010;
Felsenthal and Miller, 2015] – trying to figure out if it oc-
curred, and trying to calculate some measure of its effects. In
the past few years the computational social choice community
has also taken interest in this topic, on issues such as worst
case analysis of how districts effect voting rules [Bachrach
et al., 2016], and the computational complexity of gerryman-
dering [Lewenberg et al., 2017; van Bevern et al., 2015]. Re-
cently, [Pegden et al., 2017] suggested a “cut and choose”-
like mechanism to divide districts in practice.

The work of [Lewenberg et al., 2017] is closest to ours,
they also provide an algorithm for gerrymandering over a
graph. Unlike our algorithm, their greedy algorithm produces
districts which may differ in population by up to 6500%.
However, most US congressional districts must be within 1%
of each other, and that algorithm will fail with this constraint.

Finding an optimal gerrymandering division of a geograph-
ical area has long been viewed as a planar graph related prob-
lem, in which precincts (which are, practically, our undivis-
ible smallest unit) are nodes in the graph, and one looks for
cuts in the graph that will result in sub-graphs with particu-
lar properties (e.g., contiguity). [Dyer and Frieze, 1985] hy-
pothesized that even the complexity of finding a division of
the graph to equal-sized connected parts (akin to contiguous,
equal population districts) is NP-hard, and had several related
results which seem to indicate that this is, indeed, the case.
Further papers have further tried to attack this problem (e.g.,
[Yang, 2014]), but without significant breakthrough. [Apol-

lonio et al., 2009] limited themselves to the grid, as we do,
and found some bounds on gerrymandering there.

The discussion of algorithmically finding optimal districts
has been with us since it became feasible to consider such an
option in the ’60s (see summary in [Altman, 1997]), and work
on it has gone hand-in-hand with considering what are met-
rics to measure gerrymandering, and avoiding such settings
(see [Wang, 2016; Grofman and King, 2007] on the various
metrics that have been suggested). [Puppe and Tasnádi, 2008]
axiomatize a districting division that strives to optimize ger-
rymandering for one of the parties. More practically, [Fifield
et al., 2018], tried to produce a random sample of district
maps under some constraints, suggest a method that takes an
existing partition of the graph, and slowly changes it, as it
slowly “swaps” precincts bordering on the dividing line be-
tween districts. To achieve a similar goal, [Chen and Cottrell,
2016] take a more classic local search approach.

The observation that voter distribution is not uniform, and
instead follows a clustering of one party into dense cities, was
made prominent by the book “The Big Sort” [Bishop, 2009].
Following research has corroborated this observation [Chen
and Rodden, 2013; 2009].

3 Model
We use a graph-theoretic formulation of the districting prob-
lem. In our formulation, a state is represented by a graph
G, where the vertex set V (G) contains a vertex for every
precinct, and the edge set E(G) contains an edge between
every pair of precincts that share a physical boundary. Be-
cause the map of a state is two-dimensional, we assume that
G is planar. Let nv denote the number of voters in vertex
v. For simplicity, we assume that voters are divided between
two major political parties, P1 and P2. For P ∈ {P1, P2}, let
nPv denote the number of voters of party P in vertex v, and
let NP =

∑
v∈V (G) n

P
v denote the total number of voters of

party P . Let N = NP1 + NP2 denote the total number of
voters. We use αP1 = NP1/N and αP2 = NP2/N to denote
the proportional vote shares of the two parties.

Given a desired number of districts K ∈ N, the district-
ing problem is to partition the graph G into K vertex-disjoint
subgraphs G1, . . . , GK (districts) that satisfy a number of
constraints. We focus on two constraints that exist widely
in practice.

1. Contiguity. For each district k ∈ [K], Gk must be a
connected subgraph of G.

2. Equal Population. The total number of voters in each
district should be approximately equal. Formally, given
a tolerance level δ, we need that for each k ∈ [K],

1− δ ≤
∑

v∈V (Gk)
nv

N/K
≤ 1 + δ.

We say that a districting is valid if it satisfies both these con-
straints. Let R denote the set of valid districtings. There are
additional criteria that districting should satisfy such as com-
pactness of districts, preservation of existing political com-
munities, and racial fairness. However, we overlook these
criteria, as there is still work to be done on formulating a con-
sensus on their quantitative definitions. Given a districting



R ∈ R, we say that party P wins district k if it has a major-
ity in the district:

∑
v∈V (Gk)

nPv > (1/2) ·
∑

v∈V (Gk)
nv

1.
Let KP (R) denote the number of districts won by party P in
districting R, and let σP (R) = KP (R)/K.

There may be many solutions to the districting problem sat-
isfying the contiguity and equal population constraints. The
goal of gerrymandering is to find the districting that maxi-
mally favors one party. In this work, we focus on partisan
gerrymandering (henceforth, simply gerrymandering) where
the goal is to maximally favor a given party. Partisan fairness
would require choosing a districting R in which σP (R) is as
close to αP as possible. We define the gerrymandering power
of party P to be maxR∈R σ

P (R) − αP , i.e., the maximum
boost the party can get through gerrymandering above their
proportional share of the districts. Note that negative ger-
rymandering power implies that the voters are distributed in
such a way that the party falls short of its proportional share
of the districts even with maximum gerrymandering.

In this paper, we make some simplifying assumptions.
First, we assume that graph G is an n × n grid. Grids
are among the simplest planar graphs that still present non-
trivial challenges. Second, we assume that each vertex of the
grid has an equal number of voters: let nv = T for each
v ∈ V (G), for a sufficiently large constant T . Third, we man-
date that all districts be of equal size, i.e., we set δ = 0 in the
equal population constraint. Finally, we assume voter prefer-
ences to be fixed. While these assumptions drag our model
a bit farther from reality, they allow us to focus on the de-
pendence of a party’s gerrymandering power on its vote share
and the geographic distribution of its voters. As we discuss
in Section 7, we believe our observations would not change
qualitatively when moving to general graphs as the key in-
sights from Sections 4 and 6 are applicable to general graphs.

4 A Worst-Case Viewpoint
Our goal is to study the effect of voters’ geographic distribu-
tion on the gerrymandering power of the parties. In this sec-
tion, we take a worst-case point of view: How does the gerry-
mandering power of a party change with its vote share when
its voters are distributed in the worst possible way? Formally,
given a party P and its vote share αP , we want to analyze the
maximum fraction of districts the party can win in the worst
case choice of {nPv }v∈V (G) that satisfies 0 ≤ nPv ≤ T for
each v ∈ V (G) and

∑
v∈V (G) n

P
v = αP · N . For the grid

graph, N = n2 · T is the total number of voters.
We begin by making an observation in the large-graph

limit. Imagine the n×n grid embedded in a bounded convex
region. As n → ∞, one can treat the graph as a continuous
convex region in R2 endowed with two measures µP1 and µP2

that represent how the voters of the two parties are distributed
across the region. Here, we show there is a sharp transition
where a party can win every district or no district depending
on whether it has a majority or a minority vote share.

The high level idea is as follows: When αP < 1/2, P
wins no districts if its voters are uniformly spread, i.e., if it
has αP fraction of the voters in each individual vertex. When

1We break ties in favour of the gerrymandering party.

αP ≥ 1/2, we invoke a generalization of the popular Ham
Sandwich Theorem [Soberón, 2012; Karasev, 2010], which
states that given d measures in Rd, there exist K interior-
disjoint convex partitions that divide each measure equally.
Applying this to measures µP1 and µP2 in R2, we get a valid
districting in which party P has a majority in every district.

Theorem 1. Suppose an n × n grid is embedded into a
bounded convex region. As n → ∞, for every K ∈ N, party
P (which controls the districting) can guarantee winning ev-
ery district if its vote share is αP ≥ 1/2, and wins no districts
in the worst case if its vote share is αP < 1/2.

When n is finite and αP < 1/2, uniform voter distribution
still remains a worst case for party P regardless of the num-
ber of districts K, and prevents the party from winning any
district. However, the case of αP ≥ 1/2 becomes more fine-
grained. For a constant K, increasing the graph size (i.e., in-
creasing n) gives the party more gerrymandering power. We
illustrate this using the case of two districts (K = 2). For
n = 2 (i.e., in a 2 × 2 grid), it is easy to show that a party
needs 75% vote share to win both districts in the worst case.

Proposition 1. For n = K = 2, if party P controls the
districting, in the worst case for them the following hold.

1. If αP ≥ 3/4, the party wins both districts.

2. If 1/2 ≤ αP < 3/4, the party wins a single district.

3. If αP < 1/2, the party wins no districts.

However, as n increases, we can show that the required
vote share for winning both districts quickly converges to the
50% limit indicated by Theorem 1. In the next result, we only
consider even n because creating two districts of equal size is
impossible when n is odd.

Theorem 2. For even n and K = 2, if a party controls the
districting and their vote share is at least 1/2 + 1/n, then they
can win both districts.

Proof. Consider an n × n grid. Suppose party P has vote
share αP ≥ 1/2 + 1/n. We want to show that there exists a
valid districting in which the party wins both districts.

To take care of the contiguity and equal population con-
straints, let us impose a specific structure on the districting.
We assign the top row consisting of n vertices to district 1,
and the bottom row consisting of n vertices to district 2. This
leaves n columns of height n− 2 each, which we call strips.
Note that every solution in which n/2 strips are assigned to
each district gives a valid districting. We want to show that
one such assignment results in party P winning both districts.

Suppose this is not true. Consider the assignment that max-
imizes the minimum vote share of party P across the two
districts. Without loss of generality, suppose party P wins
district 1, but loses district 2. Let nP1 , nP2 , and nPt denote the
number of voters of party P in district 1, district 2, and a strip
t, respectively. Recall that the total number of voters is N .

Since party P loses in district 2, which has N/2 voters, we
have nP2 < N/4. Hence, there exists a strip t in district 2
such that nPt ≤ nP2 /(n/2) < (N/4)/(n/2) = N/(2n).



On the other hand, we have nP1 = αPN − nP2 > αPN −
N/4. Even after discounting the top row which has N/n vot-
ers, there must exist a strip t′ in district 1 such that

nP
t′ ≥

αP ·N −N/4−N/n

n/2
. (1)

Let us consider the (valid) districting obtained by exchanging
strips t and t′ between the two districts. We observe that party
P still wins district 1 because by losing strip t′, it loses at
most N/n of its own voters, and

nP
1 − N

n
> αP ·N − N

4
− N

n
≥ N

4
,

where the last inequality follows because αP ≥ 1/2 + 1/n.
On the other hand, district 2 now has strictly more voters of
party P because it loses at most nPt < N/(2n) such voters,
but gains at least nPt′ such voters. From Equation (1) and
the fact that αP ≥ 1/2 + 1/n, it readily follows that nPt′ ≥
N/(2n). This completes our proof.

While the party with a majority vote share can easily ger-
rymander large graphs when K is fixed, it is much more dif-
ficult to do so when K is large as well. At the extreme, when
K = n2, it is easy to show that party P wins max(0, 2αP−1)
fraction of the districts in the worst case. This fraction is
zero for αP ≤ 1/2, and linearly increases to 1 as αP goes
to 1. This is in sharp contrast to Theorem 2, where the
fraction jumps from 0 to 1 when going from αP = 1/2 to
αP = 1/2 + 1/n.

While our results are for the extreme cases (Theorem 1
holds as n goes to infinity and Theorem 2 holds for K = 2),
the worst-case viewpoint leads to a key insight: a party’s ger-
rymandering power significantly depends on the relationship
between n and K. While large graphs are easy to gerryman-
der, a large number of districts make it hard to gerrymander.

5 Simulating Optimal Gerrymandering
We now conduct an empirical study of the gerrymandering
power of political parties. Instead of the worst case partisan-
ship distribution we considered in the previous section, we
adopt a more realistic model based on the urban-rural divide
referenced in the introduction. We also use grid graphs with a
less extreme ratio of the graph size to the number of districts
(in fact, we use numbers that are similar some states within
the American Congressional system).

5.1 An Urban-Rural Model
To model an urban-rural divide on a graph G, we use two
parameters. The fraction of the urban party U ’s voters, αU ∈
[0, 1], and the strength of an urban-rural divide parameter φ ∈
R≥0 . Given G,φ and αU , we use the following process:

1. Set all voters in G to be for the rural party R.
2. Pick a set of urban centresC ⊂ V randomly. For v ∈ V ,

let d(v) be the minimum distance of v to any c ∈ C.
3. Pick a node v (with at least one R voter left) with prob-

ability proportional to 1
1+(d(v))φ

.

4. Convert one of its R voters into a U voter.

Figure 1: Partisanship distribution forαU = 0.45 and various values
of φ (φ = 0, 1, 4 in the top row from left to right, φ = 8 in the
bottom row). Blue/red represents a majority of U /R voters, and
colour intensity increases with the majority strength. The last two
figures show best districting for the urban party (left) and for the
rural party (right) on the graph with φ = 8, colour intensity within
a district increases with the strength of victory.

5. Repeat steps 3 and 4 until the fraction of U voters in G
is at least αU .

See Figure 1 for sample heat maps generated by this pro-
cess. Note that in step 3, we pick a node with a probability
that decays polynomially in d(v); we also conducted experi-
ments with exponentially decaying probabilities and did not
notice a qualitative difference in our results.

5.2 An Algorithm to Gerrymander
Our starting point for an algorithm for optimal gerrymander-
ing is to formulate a Mixed Integer Linear Program (MILP),
which uses network flow constraints to ensure connectedness
of the districts. Unfortunately, this program does not scale
well, and takes hours on grids with a hundred nodes. Let us
call the MILP approach algorithm A. We devise a bottom-up
algorithm B, which uses A as a subroutine to optimally solve
small sub-problems with at most β nodes. To divide G into
K components in favour of party P , algorithm B works as
follows:

1. Find an arbitrary division of G into K connected com-
ponents (G1 · · ·GK) of equal or near-equal size.

2. Randomly pick two adjacent components Gi and Gj .
3. Merge them into a new component GM = Gi ∪ Gj . If
|V (GM )| ≤ β, use algorithm A to optimally gerryman-
der GM into K ′ districts, where K ′ is the number of
districts in Gi and Gj . Otherwise, let the districting of
GM be dictated by the districtings of Gi and Gj .

4. Repeat steps 2 and 3 until there is one component left.

Finally, we chain B with itself by feeding the districting
found in one execution of B to step 1 in the next execution
of B, and repeating until there are no improvements. We call
this algorithm B+. While the algorithm is not guaranteed to
find an optimal gerrymandering, we see (see Section 5.4) that



it finds highly gerrymandered districting on large instances;
in contrast, algorithm A fails to work for large instances.

In order to find a districting for step 1 in the first execution
of algorithm B, we simply use our MILP but without an ob-
jective function, which is reasonably fast. Once we find one
valid districting, we can find more for different executions of
B+ using an iterative process I , where we take a pair of ad-
jacent districts Gi and Gj , find one node from each district
such that exchanging them gives another valid districting (if
possible), and repeat this for a number of steps.

5.3 Simulation Setup
For all of our experiments we use a 16 × 16 grid graph
(i.e., 256 nodes) with 10 voters per node, and divide it
into 32 equal sized districts. This problem size is about
the same as Vermont’s state senate (270 precincts and 30
districts). For the urban party vote share, we use αU ∈
{0.40, 0.45, 0.48, 0.5, 0.52, 0.55, 0.6}, and for the strength of
the urban-rural divide, we use φ ∈ {0, 1, . . . , 10}. Using our
urban-rural model, we generate 20 graphs G for each combi-
nation of αU and φ, each with a randomly chosen urban cen-
tre (more centres would be too crammed with n = 16). For
each G, we run B+ 20 times to find the best gerrymander-
ing for each party2. To generate the 20 sufficiently different
starting points, we use process I with 100,000 swaps. We
use IBM CPLEX for solving the MILP in algorithm A, and
use β = 16, i.e., we solve instances with at most 16 nodes
optimally using algorithm A. Overall, when provided with
a starting point, algorithm B+ was able to solve any of our
instances within 2 minutes. Finding a starting point did take
significantly longer, but since all of our experiments were on
the same graph structure, this point could be reused for gen-
erating starting points for all our problem instances.

5.4 Some Basic Results
In Section 4, we show that for K = 2, a party needs at least
50% vote share to guarantee winning at least one district in
the worst case. In our simulations with a moderate urban-
rural divide (φ = 5), we observe that just 26% vote share
allows a party to win one district with n as low as 8.

For most combinations of αU and φ, our approach was able
to secure more districts for the gerrymandering party than its
proportional vote share, resulting in a positive gerrymander-
ing power. We also tested our algorithm on several examples
(located on the grid), where we knew the optimal gerryman-
dering outcomes. Our algorithm was always able to get at
least 60% of the optimal. We note that these examples had a
unique optimal outcome, so discovering it was difficult.

6 Simulation Results
We now describe the results of our simulations, and explain
several important trends based on three key figures. Figure 2
shows the gerrymandering power of the two parties for differ-
ent vote shares as a function of the urban-rural divide. Fig-
ure 3 focuses on the particular trends in a highly unbalanced
election (αU = 0.4) and a balanced election (αU = 0.5).

2For fixed values of φ and αU the standard deviation over the 20
maps was always under 1.4 (over 32 districts).

Figure 2: The average gerrymandering power of the parties versus φ.
The urban/rural party is in blue/red, and a darker colour represents a
higher vote share of the gerrymandering party.

6.1 Highly Unbalanced Elections
In highly unbalanced elections with vote share difference of
at least 20% (e.g., see Figure 3), we see an expected trend.
At φ = 0, when the voters are spread uniformly at random,
the party with a majority vote share holds a majority in most
precincts despite the randomness in our generation process.
This makes it trivial for the majority party to gerrymander to
win almost all districts, but difficult for the minority party to
gerrymander well. In fact, the minority party has a negative
gerrymandering power, i.e., it wins less fraction of districts
than its vote share despite gerrymandering.

However, as the voters of the minority party concentrate,
this disparity reduces. The majority party sees a reduction in
its gerrymandering power as it can no longer avoid forming
districts where the minority party wins due to its concentrated
voters. Similarly, the minority party finds it easy to gerryman-
der to win a larger number of districts. At the extreme, with
φ = 10, it is able to win almost half the districts despite being
at a 20% vote share disadvantage.

6.2 Close Elections
Arguably, the more interesting elections in practice are the
close elections with vote share difference of less than 20%.
The trend is very different in these elections. For instance,
consider Figure 3 with αU = 0.5. At φ = 0, the voters
are spread uniformly at random, which makes it easy for the
gerrymandering party to put precincts with a slight majority
together with precincts with a slight minority to form many
districts with a slight majority, leading to a high gerrymander-
ing power. Further, this holds for each party due to symmetry.

As the divide strengthens, the rural party witnesses a di-
minishing gerrymandering power as in the case of unbalanced
elections. However, an interesting pattern emerges in the ger-
rymandering power of the urban party. As φ increases, we see
that the gerrymandering power decreases suddenly till φ = 2,
then increases slowly, and finally levels out, forming a trough.

We do not believe this trough to be an artifact of our algo-
rithm B+. On a smaller number of instances, we ran the iter-
ative algorithm I for several hours to come up with hundreds
of thousands of districting plans, and chose the most gerry-



Figure 3: The number of districts won compared to vote share and the gerrymandering power for αU = 0.4 (left) and αU = 0.5 (right).

mandered of them. A similar pattern again emerges, though
this approach returns less gerrymandered solutions than B+,
making the pattern a bit less emphasized.

We hypothesize that with a moderate φ, there are still many
urban voters in deeply rural regions, which constitutes a lot
of wasted votes for the urban party as it is unable to put them
together with other urban voters and form a district it can win.
However, as the concentration further increases, these voters
are brought closer to the urban center, allowing the party to
utilize their votes to win a few additional districts.

Due to a similar reason, when the rural party has a minority
vote share (say αR = 0.45), we see an inverse pattern with its
gerrymandering power initially increasing, and then slightly
decreasing, thus forming a peak. Again, this is because with
a moderate φ, the urban party has a lot of wasted votes within
rural regions, which helps the rural party gerrymander well.

6.3 Concentration Leads to Fairer Districting
Interestingly, Figure 2 shows that across all vote shares, the
gerrymandering power of both parties converges to 1/16 (i.e.,
2 more districts compared to the vote share with K = 32)
as φ goes to 10. In fact, the convergence seems to begin at
a fairly low concentration level (around φ = 2.5). That is,
at an extreme level of concentration, both parties are able to
gerrymander and win about two more districts than their pro-
portional share (dictated by their share of the votes).

Intuitively, at extreme concentration levels, there is a
densely packed region of urban voters near the urban centre,
a densely packed region of rural voters surrounding it, and a
much sharper boundary in between (Figure 1). Irrespective of
which party gerrymanders, districts near the urban centre are
won by the urban party, and districts densely packed with ru-
ral voters are won by the rural party. This ensures each party
approximately its proportional share of the districts. The only
control that the gerrymandering party has is near the bound-
ary, where it can merge its own voters with voters of the op-
ponent, creating districts with a slight majority. This is re-
flected in the urban-gerrymandered and rural-gerrymandered
districting shown in Figure 1. Since both parties control the
same boundary region when they gerrymander, their gerry-
mandering power becomes identical with such extreme con-
centration. Further, because the number of vertices on the
boundary is a small fraction of the total number of vertices,
this gerrymandering power is relatively small.

6.4 A Rural Advantage

Finally, we observe that the gerrymandering power is not
symmetric between the urban and rural parties. The rural
party almost always has a higher gerrymandering power than
the urban party, even in the case of proportional vote split
(Figure 3). This asymmetry is not surprising. As Figure 1
shows, the distribution of voters is also not symmetric; the
urban party’s voters congregate together in a tight area, while
the rural party’s voters surround them on all sides.

7 Discussion
Our definition of the gerrymandering power of a political
party, the theoretical model for a worst-case analysis, and our
empirical observations raise many interesting open questions.

On the theoretical level, our results consider extreme cases
of an infinite graph or just two districts. Solving the case of a
finite graph with more than two districts is an immediate open
question. We also note that while we use convex districts in
Theorem 1, our proof of Theorem 2 uses districts that are far
from convex. An interesting direction is to incorporate a for-
mal requirement of district compactness into our framework.

Extending our techniques to large real-world planar graphs
is clearly the most interesting future direction. For instance,
in Theorem 2, how does the vote share needed to win both
districts change in non-grid graphs? Insights from our simu-
lations lead us to believe that in close elections on real graphs,
the gerrymandering power of both parties will eventually de-
crease with voter concentration, simply because extreme con-
centration limits the gerrymandering possibilities to a sharper
boundary between voters of the two parties. Note that while
our model does not explicitly postulate suburban areas, our
party affiliation dispersion model does provide an implicit
sense of the more mixed affiliation nature of suburban areas.

We believe that our model is just a starting point to devel-
oping a more precise understanding of the gerrymandering
power so as to address gerrymandering in the real world.
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