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Abstract

Iterative voting is a social choice mechanism that
assumes all voters are strategic, and allows voters
to change their stated preferences as the vote pro-
gresses until an equilibrium is reached (at which
point no player wishes to change their vote). Previ-
ous research established that this process converges
to an equilibrium for the plurality and veto voting
methods and for no other scoring rule.

We consider iterative voting for non-scoring rules,
examining the major ones, and show that none of
them converge when assuming (as most research
has so far) that voters pursue a best response strat-
egy. We investigate other potential voter strate-
gies, with a more heuristic flavor (since for most of
these voting rules, calculating the best response is
NP-hard); we show that they also do not converge.
We then conduct an empirical analysis of the itera-
tive voting winners for these non-scoring rules, and
compare the winner quality of various strategies.

1

The topic of voting, that is, how to aggregate diverse individ-
ual preferences into a collective decision, is of great impor-
tance in many automated agent scenarios; it has thus been the
topic of much research in multiagent systems. One innova-
tive voting model that was proposed a few years ago is that
of iterative voting [Meir et al., 2010]. Whereas classic voting
rules usually consist of a single round of ballot submission
and announcement of the winner, in iterative voting there can
be many such rounds. After each iteration, voters reassess the
outcome, and if any voter wishes to change their vote they
may do so, and potentially a new winner replaces the previ-
ous one (when multiple such voters exist, an arbitrary voter is
chosen according to some tie-breaking procedure). The pro-
cess terminates when no voter wishes to change their vote.
Iterative voting thus embraces the inevitable manipulability
of voting shown in the Gibbard-Satterthwaite theorem [Sat-
terthwaite, 1975; Gibbard, 1973], and considers agents’ uni-
form ability to vote strategically as a collective opportunity.
Besides being an intriguing method for reaching consen-
sus, iterative voting has been proposed as a formal solution
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concept for voting settings. Standard Nash equilibria are of
limited usefulness in voting games, since they encompass sit-
uations that are unlikely to ever happen (e.g., all voters vote
for their least favorite candidate). The set of iterative vot-
ing equilibria, however, is a subset of Nash equilibria, and in
particular those iterative voting equilibria reachable from the
truthful profile could be considered a more natural (or mean-
ingful) solution concept.

The most salient questions regarding iterative voting thus
have two interpretations. Regarding iterative voting as a
method for reaching an outcome, we ask whether the process
terminates; if so, with what complexity; and does it arrive
at “good” outcomes. Regarding iterative voting as a solution
concept, we must explore the existence of solutions; the equi-
libria computation; and notions of price of stability/anarchy.

Most previous research on iterative voting has focused on
plurality, with several extensions to other scoring rules, focus-
ing on best-response dynamics in which each voter calculated
the optimal step to take at each stage. In this work, however,
we explore two different—but connected—issues that have
not received much attention so far:

Non-scoring Rules We look into iterative voting in previ-
ously less explored voting rules that are not scoring
rules—Maximin, Copeland, Bucklin, STV, Second Or-
der Copeland (SOC), and Ranked Pairs.

Dynamics Since many of the voting rules are NP-hard to ma-
nipulate, finding the best response is often a hard prob-
lem for players. Therefore we examine some heuristics
a candidate might use for the dynamics; while not neces-
sarily in P, they all define a much narrower search space
(rankings to consider) than best-response dynamics.

While the issue of convergence in each case is proven, in
order to examine the properties of the various dynamics and
their outcomes, and to assess their behavior, we turn to an em-
pirical approach. We show how some properties are heavily
dependent on the voting rule, while others are significantly
affected by the iterative dynamic used.

2 Related Literature

There has been extensive research on solution concepts of
voting games, and an overview of the research can be seen
in [Meir et al., 2014].
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Our model of iterative voting was initiated by [Meir et
al., 2010], who showed that plurality voting converges un-
der a natural restricted best-response dynamic and linear or-
dered tie-breaking (a dynamic refined in [Meir, 2015]). [Lev
and Rosenschein, 2012] (and in parallel [Reyhani and Wil-
son, 2012]) later showed that veto, with a similarly natu-
ral restricted best-response dynamic, also converges. How-
ever, in negative results for best-response dynamics, [Lev and
Rosenschein, 2016] showed that no other scoring rules con-
verge, [Obraztsova et al., 2015¢] showed that Maximin does
not converge, [Gourves et al., 2016] showed that STV! does
not converge (in parallel with the publication of this work
[Koolyk et al., 2016b]), and for Copeland, [Reijngoud and
Endriss, 2012] showed that best-response does not converge.’
More recently, [Obraztsova et al., 2015b] began exploring the
topic of non-myopic iterative voting, focusing on plurality
and veto.

[Reijngoud and Endriss, 2012] added an epistemic ele-
ment by varying the amount of information revealed at each
stage, and also showed that any scoring rule converges un-
der the k-pragmatism dynamic. [Grandi et al., 2013] showed
that, for two additional restrictive dynamics, scoring rules (as
well as Copeland and Maximin), converge, and [Loreggia,
2012] added another very restrictive dynamic, showing that
Copeland and Maximin converge under it. [Obraztsova et
al., 2015c] abstracted these ideas and put forth two theoret-
ical properties that suffice to guarantee convergence. Not in
connection to iterative voting, [Obraztsova and Elkind, 2012]
proposed several dynamics, of which we adopt, for example,
the Kendall-Tau dynamic. [Brinzei et al., 2013] examined
the quality of iterative voting, via the notion of the dynamic
price of anarchy. They showed lower bounds for plurality,
veto, and Borda, and a tight upper bound for plurality.

In parallel, other extensions of iterative voting included
[Meir et al., 2014; Meir, 2015], which showed that a gen-
eralization of iterative voting, where voters act under uncer-
tainty, also converges for plurality. [Rabinovich et al., 2015;
Obraztsova et al., 2015a] considered questions of computa-
tional complexity related to iterative voting, with and without
assumptions about “truth bias” and “lazy bias” on the part of
voters. Recently, [Meir, 2016] generalized the various con-
cepts involved in iterative voting, but we shall use the ones
commonly used in iterative voting research.

Additional work on the quality of iterative voting includes
that of [Meir et al., 2014; Reijngoud and Endriss, 2012;
Grandi et al., 2013] who showed through simulations some
improvements in the outcome of elections, in their various
versions of iterative voting. However, the closest work in
its pattern of simulations and quality measures is [Thompson
et al., 2013], which analyzed truth-biased equilibria, without
any assumption regarding their dynamics.

Software-wise, we extend the iterative voting simulation
framework of [Meir et al., 2014],> to new voting rules and
dynamics, and will publish our code there.

!Their example works for SWAP and KT dynamics, too.

2Their example works for TOP, KT, and SWAP as well; TOP was
also shown by [Obraztsova et al., 2015c].

Shttp://www.preflib.org/tools/ivs.php
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3 Preliminaries

Our setting will be the standard voting model that includes a
set of voters V, |V| = n, and a set of candidates C, |C| = m.
Each voter 7 has a strict preference order »-; over C/, that is,
a complete, transitive, and antisymmetric binary relation over
C. Denote the set of all such preference orders as 7(C'). A
profile
S = (1,52, > n) € T(C)"

is a vector of n preference orders, one for each voter. We
denote by

) €m(C)T!

the profile of the voters excluding i and (< _;, ;) = =. We
shall denote the truthful preferences of voters as tr = (="
2000 >-£)T)'

We model a collective decision through one of two func-
tions. A social welfare function is a function f : #(C)" —
7(C)\{0} and a voting rule is a function F : w(C)" —
2€\{0}. So, given a (not necessarily truthful) vector of pref-
erences, a social welfare function chooses a preference order
and a voting rule chooses a set of candidates. When a voting
rule is irresolute, and we would like a unique winner, we use
a tie breaking rule, a function ¢ : 2¢ 5 C. A linear-ordered
tie breaking rule is a rule that breaks ties according to a fixed
linear order. It will be assumed without loss of generality
throughout this paper that the linear-ordered tie breaking rule
is the lexicographic tie breaking rule, where ties are broken
according to the lexicographic order of candidates’ names.

3.1 Voting Rules

For each pair of candidates ¢y, ca let P(ci,c0) = [{z €
Vley =2 ca}]. We investigate the following voting rules:

s = (>1, N L P o B PR

Maximin For each candidate c, let sc(c)

in_P(c,c).
Al ()

The candidates with the maximum score, arg max sc(c),
ceC
win.

Copeland® For o € [—1,1], let sc(c) = |{c|P(e,c') >
n/2}| — [{¢|P(e,!) < nj2} + a - {|Ple. )
n/2}|, and the candidates with the maximum score,
arg max sc(c), win. (Generally o = 0 is assumed.)

ceC

Bucklin For each ¢ € C, let
sc(e) mingen, {x € V|3a # e #
sk St Ve € {c1, .. emok}C =5 ¢} > n/2
The winner is the candidate with the smallest score,
arg min sc(c).

ceC

STV Under Single Transferable Voting (STV), the election
proceeds in rounds. In each round, the candidate with
the lowest plurality score is eliminated and any voter
voting for them transfers their vote to their next ranked
candidate. The last remaining candidate is the winner.

SOC Second Order Copeland (SOC) chooses winners as in
Copeland, except that ties are broken according to the
score of defeated candidates. If sc(c) is the Copeland
score of c, then Second Order Copeland chooses ¢ €
argmaxsc(c) s.t. > sc(¢’)  is maximal.

ceC c¢:P(c,c’)>n/2
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Ranked Pairs (RP) Let

0= (P(Cil,uCi1,2)7P(Ci2,1aCi2,2)7~--7P(Ci

Ci

()2 (3"
be the sorted list of pairs of candidates’ P-score such that
P(Cij,lvcij,Q) > P(Ci_7‘+1,1acij+1,2)

If P(Cij,1 R Cij,z) = P(CZ‘J.Jrl,1 R Cl‘j+1,2>, then

P(CijJ s Cij,2) =0 P(Cij+1,1 3 Cij+1,2)
lff Z'jyl < .ij+.1’1 or Z'j’l .: Z'j+1’.1 and Z'jyg < i]:+1’2;
i.e., break ties in order lexicographically (first candidate,
second candidate). A ranking is constructed by the fol-
lowing algorithm. For j=0to (%)) fix ¢;,, > ¢, , unless
this contradicts a previous step (including by transitiv-

ity). The candidate at the top of the constructed ranking
is selected as the winner.

An interesting property of which we will make use regards
the Condorcet winner. A Condorcet winner is a candidate
who is preferred to each other candidate by more than half
of the voters; however, such a winner does not always ex-
ist. A voting rule is Condorcet consistent if whenever there is
such a Condorcet winner, it is the election’s outcome. Among
the voting rules we discuss, Maximin, Copeland, SOC and
Ranked Pairs are Condorcet consistent, while Bucklin and
STV are not. See [Brandt et al., 2016] for more information.

3.2 Dynamics

We will call a binary relation D C =w(C)" x ©(C)" a
dynamic. We call a (possibly finite) sequence of profiles
(51,%9,...) € ©(C)* a profile sequence and a (possibly fi-
nite) sequence of voters (v1,vs,...) € V* a voter sequence.
A profile sequence (=1, =2, ...) for which =1 are the truthful
preferences, is called an initially truthful profile sequence.

We will say a profile sequence is valid for a dynamic D
if Vi(=;,=i+1) € D. We will mainly be concerned with dy-
namics for which all elements differ in a single preference,
ie.,

V(ED 2P ep] JieV st =) =B
In such a case, a profile sequence induces a voter sequence
(v1, v, ...) where v; is the voter whose preference changed
at stage ¢. Likewise, a voter sequence defines a set of profile
sequences by which it is induced. A voter sequence will be
called valid if it is induced by some valid profile sequence.

The final element of a (finite) valid profile sequence
(51,49, ..., =) will be called an equilibrium if there is no
= such that (=, =x/) € D.

For a dynamic D and voting rule F' with tie breaking rule
t,let Z(D, F;) = {s|s is a valid profile sequence for D(F;)}.
We will say that iterative-F converges under D if every el-
ement of Z(D, F;) is finite. Otherwise, we will say that
iterative-F under D cycles or does not converge (or may not
converge). Notice that, as defined, the semantics of conver-
gence are asynchronous, so Z(D, F;) converges if every el-
ement is finite, and is not limited to, say, a “fair schedule
of play” (this is termed FDBRP in the terminology of [Meir,
2016]). Also, following the existing literature, we consider
only cases where the “scheduler” selects a single agent to
make a move at each point, and not several agents in parallel.
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The dynamics we shall consider will be influenced by the
truthful preferences, i.e., a dynamic in which a voter’s vote
changed must have increased the utility of that vote. Two
main dynamics have been investigated (e.g., in [Meir et al.,
2010]). An ordered pair of profiles is in the better response
dynamic if the preferences of all voters but one are identical
in the two profiles, and the voter whose preference changes
prefers the outcome of the second profile to that of the first
profile. In game-theoretic terms, any time a single player can

make a better response to a given state, such a move is in-

cluded in the dynamic. Formally, for two profiles >( ) (2)

and a voting rule F, (= (1), (2))

JieV st

€ BetterResponse iff:
D) B (=),
(2) ;

= =@ and (=

Such an ¢ is called the manipulator, -, is called the new

vote, and >-( ) is called the old vote. Notice that a stable state
under this dynamic is a Nash equilibrium.

Similarly, an ordered pair of profiles is in the best response
(BR) dynamic if the preferences of all voters but one are iden-
tical; the voter whose preference changes prefers the outcome
of the second profile to that of the first profile (so it is con-
tained in the better response dynamic); and of all possible
changes to his preferences, the outcome under the second pro-
file is preferred at least as much as the outcome under any

other possible profile. Formally, (;(1) ;(2)) € BRff:
)

eV st 2 =2 and F(ED) 1 B(ED)

and
v-"em(C) st (U= # 5P R(ED) 2 B ).

The above description clearly defines a game form. The
set of voters is the set of players, the set of preferences is the
set of strategies available to each player, and the voting rule
determines the outcome of a strategy profile. Ordinal utilities
are given by true preference orders. An equilibrium under
Best Response (or Better Response) is a Nash equilibrium.

4 Dynamics

The study of best response dynamics is prolific, but in the it-
erative voting context, particular forms of best response (as
BR is not necessarily unique) have been utilized in the con-
vergence proofs of both plurality [Meir et al., 2010] and veto
[Lev and Rosenschein, 2012]. For non-scoring rules, how-
ever, there is no immediately clear choice of best response
form (indeed, in some cases, like STV, it is NP-complete to
calculate what it is). We present here several dynamics that
may serve as natural heuristics for a potential voter. There
have been dynamics designed with the express purpose of en-
suring convergence, as in k-pragmatism, M1, and M2 [Reijn-
goud and Endriss, 2012; Grandi et al., 2013]. However, we
propose the following dynamics as more natural correspon-
dences to the strategic behavior of self-interested agents.
TOP: This dynamic assigns the candidate which the voter
wishes to make a winner the top spot in the new preference or-
der.*In many of the voting rules we consider (and any weakly-
monotone rule) this dynamic is a subset of the best-response

“The ordering of the remaining candidates can be arbitrary.
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dynamic (i.e., TOP(n(C)) € BR(w(C))), and, indeed, it
generalizes the dynamic used in [Meir et al., 2010].

TB: This dynamic requires the new winner to be at the
top of the new ballot, and the previous winner to be at the
bottom.* While in many scoring rules (e.g., plurality and
veto) this is a subset of best response moves (generalizing
those used in [Lev and Rosenschein, 2012]), this is not true
in general, and particularly in the voting rules we study in this
work.

KT: This dynamic restricts best response to those with
minimum Kendall-Tau distance from the previous vote. That
is, among all possible moves whose outcome will be the most
preferred possible candidate, one with the minimal Kendall-
Tau distance® from the current vote is chosen.

SWAP: This dynamic, inspired in part by notions from
the literature on bribery (see, e.g., [Elkind er al., 2009;
Bredereck et al., 2014]), is quite restrictive. It restricts ma-
nipulations to a single adjacent swap (called a ‘shift’ in the
bribery literature), that is, changing to a vote within Kendall-
Tau distance of one from the current vote (a ‘swap’ in the
bribery nomenclature).

5 Convergence

In this section we consider the convergence of iterative vot-
ing for several voting rules. We distinguish between the
first three, for which there exists a polynomial time algo-
rithm for a single voter to compute a best response manip-
ulation, and the last three for which such a computation is
NP-Complete [Bartholdi IIT ez al., 1989; Bartholdi III and
Orlin, 1991; Xia et al., 2009]. In reversal of the common
situation in computational social choice, for iterative voting
polynomial manipulation is actually quite felicitous.

A note on reading the examples that follow: each column
represents a profile of submitted ballots (beginning with the
truthful one). The final row in the column indicates the win-
ner of the profile (after ties are broken). The i-th row in a
column represents voter i’s submitted preferences, where, for
example, ABC is to be read A ; B >, C. Arrows highlight
the changed preference between two profiles at a given stage.
The profile sequence formed by continual repetition of the
indicated profiles thus forms an infinite element of Z(D, F})
and proves non-convergence. Due to space constraints, we
omit several proofs (see [Koolyk erf al., 2016al).

5.1

Similar to plurality and veto, Maximin changes gradually.
That is the difference in score between the previous winner
and the new one, when a single voter manipulates, can go up
or down by at most one point. One might thus expect there
to be an argument for convergence, similar to plurality/veto.
But in fact, convergence with Maximin turns out to be elusive
even after major restrictions on the admissible moves.

Maximin

Theorem 1. Maximin with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT, and SWAP.

°For a,b € m(C), the Kendall-Tau distance between them is de-
fined as dist(a, b) = |{i,5} € CxC|(i =q jand j >4 i) or (j >a
tand i = j)}.
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Proof. We only include the example for BR:
CAB —— ABC ABC —— CAB
CAB CAB CAB CAB
BCA BCA BCA BCA
B A B C

Although the changes to the winner’s score are as gradual
in Maximin as in plurality and veto, the exponential blowup
in strategy space seems to make convergence harder. Whereas
in plurality and veto, a voter’s ballot reduces to a single can-
didate, in Maximin a ballot depends on the entire ranking.

5.2 Copeland

Theorem 2. Copeland with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT, and SWAP.
This holds for Copeland® for any o.

Proof. Since the number of voters in all our examples is odd,
they hold for Copeland® for any . We will only show the
example for the TOP dynamic:

T

DABC DABC —— ACBD ACBD O
BDAC —— BACD BACD —— BDAC
CDBA CDBA CDBA CDBA

D B A B

5.3 Bucklin

Theorem 3. Bucklin with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT, and SWAP.

54 STV

Theorem 4. STV with linear order tie-breaking does not con-
verge for the dynamics BR, TOP, TB, KT, and SWAP.

Proof. We will only show the example for the KT dynamic.

T

DBAC DBAC —— BDAC BDAC O
ACBD —— CABD CABD —— ACBD
CDBA CDBA CDBA CDBA
DABC DABC DABC DABC
D C B A

5.5 Second Order Copeland

Theorem 5. SOC with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT, and SWAP.

5.6 Ranked Pairs

In Ranked Pairs, as in other rules that output a complete rank-
ing, a stronger convergence property could be defined for the
entire ranking, but convergence is elusive even for the top el-
ement of the ranking (the winner of Ranked Pairs).

Theorem 6. Ranked pairs with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT, and SWAP.
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6 Empirical Analysis

In order to analyze the qualitative effects on outcome of iter-
ative voting, we turn to empirical simulations. What makes
one outcome better than another is a subtle question as there
is no agreed-upon measure of quality. Furthermore, voting
rules are defined with different goals in mind. For example,
Maximin ensures that the core number of supporters a can-
didate has, against any other, is maximal (an objective not
shared by other rules).

As we wish to see general properties of the interaction of
voting rules and dynamics, we focused on a particular setting:
10 voters and 4 candidates. Profiles are generated by either
sampling from a uniform distribution or a single-peaked one.
For each voting rule, response dynamic, and distribution we
sample 1000 different games, and because of the nondeter-
ministic nature of iterative voting each of these games is re-
peated 100 times, each time with a different order of voter
responses. Thus for each pair of game and dynamic we have
up to 200,000 different executions. Iterative voting is exe-
cuted until an equilibrium is reached, a cycle is detected, or
some maximum number of iterations have elapsed. Though
many sampled profiles start in equilibrium, we are interested
in the effects of the iterative process, and focus on profiles
where iterative voting occurred.

For both our voting rules and response dynamics, ties are
broken in a deterministic fashion. In the case of a tie in a
voting rule, out of all the potential winning candidates the
lexicographical first is selected. For response dynamics that
encounter ties, the first profile that was discovered is chosen.

One may ask why bother with iterative voting simulations,
considering we have just shown they are not guaranteed to
converge. However, despite these proofs, we did not en-
counter a single cycle in our millions of simulations (fewer
than 6000 runs were stopped after reaching the cut-off num-
ber of 10,000 steps, and may have turned out to be cycles,
but that still is a very low share). This indicates the relevance
of examining iterative voting properties, even for voting rules
that are not guaranteed to converge.

6.1 The Truthful Winner

While there is no guarantee that the truthful winners will
emerge as the overall winners from iterative voting, it is of-
ten the case that they do (albeit in a non-truthful profile). As
truthful winners are, in a sense, what the mechanism design-
ers wanted the voting method to achieve, it is desirable that
using iterative voting, they will be the rule’s outcome.
Approximately 78% of all sampled truthful profiles were
an equilibrium (with single-peaked profiles almost 20% more
likely to be an equilibrium than uniform profiles). Unsurpris-
ingly, the more restrictive response dynamics had a higher ra-
tio of truthful profile equilibrium. Hence, best response and
Kendall-Tau had fewer truthful equilibria than SWAP. A sim-
ilar disparity in the fraction of truthful profile equilibria is
seen when examining the voting rules: the Condorcet consis-
tent rules, Maximin, Copeland, etc., were more often initially
in equilibrium than the non-Condorcet consistent rules, STV
and Bucklin. Since the initial profiles are truthful, the Con-
dorcet consistent rules will initially pick the Condorcet win-
ner, if one exists. Moreover, as will be noted below, because
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Figure 1: The average number of equilibrium states reached in 100
runs of each profile. KT can be obviously seen to be above most
other dynamics (apart from in Bucklin), while TB is below them (U
indicates uniform distribution; P indicates single-peaked one).

of the Condorcet winner’s appeal over each of the other can-
didates, it is less likely that iterative voting would lead to a
“better” winner (for some metrics detailed below).

When iterative voting does occur, there does not appear to
be a relation between how often the truthful winner emerges
and the response dynamic. Instead the voting rule seems to be
the more significant factor in determining how likely it is for
the truthful winner to be chosen. For any dynamic and prefer-
ence type none of the non-Condorcet consistent rules selected
the truthful winner more than 45% of the time (all but one
selected the truthful winner less than 40% of the time). How-
ever we will show they are likely to improve, in some regard,
on their truthful winner, due to the iterative dynamic. On
the other hand, Copeland, under any dynamic and preference
type, selected it at least 55% of the time. More generally, ex-
cept for Maximin with single-peaked preferences, Condorcet
consistent rules select the truthful winner over 50% of the
time under any combination of dynamic and profile type.

6.2 Convergence to Equilibrium

In games in which iterative voting did take place, most dy-
namic and voting rule combinations converged, on average,
within 10 steps, and except for SOC, reached fewer than 15
overall equilibria states. In general, while each voting rule is
different, we mainly noticed significant differences between
the dynamics. When using the KT dynamic, the pace to con-
vergence was significantly longer than other dynamics in all
voting rules except Bucklin (and for SOC, with uniform dis-
tribution, KT along with BR took far longer to converge than
the rest). With KT for all rules, except Bucklin, the number of
different equilibrium states reached was significantly higher.
See Figure 1. For example, Copeland with KT averaged more
than 25 steps to convergence with single-peaked preferences
(and over 10 steps with uniform). Almost all cases of runs
that had to be cut-off after 10,000 steps were the KT dynamic
(for Copeland, just under 800 runs).

KT’s behavior might be a bit surprising, since it is, fun-
damentally, a best response dynamic with a different tie-
breaking rule—favoring votes close to one another (instead
of lexicographic, pre-determined ordering). It would seem
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Figure 2: The ratio of winners in select voting rules, dynamics, and
distributions, that had the same Borda score as the truthful winner, a
higher Borda score, or a lower one.

that for most voting rules, bias towards smaller, more local,
changes when manipulating has a significant adverse effect
on the convergence properties of the iterative game.®

A somewhat connected issue is the difference between
SOC and Copeland, which differ in their tie-breaking rules.
Unlike Copeland (which only had this with KT), all SOC
dynamics had cases that did not converge after 10,000 steps
(single-peaked struggled more than uniform ones).

This subtlety with tie breaking can be hard to pinpoint.
With many voting rules, especially non-scoring ones, how a
profile is set up in the short term can have a substantial impact
in the long term. What may seem like an optimal move now
may make certain candidates currently ranked lower more vi-
able down the line. With more complex tie breaking rules,
in addition to optimizing for the current winner, there is now
a secondary tie breaking condition that may not be explic-
itly optimized against, but that can come into play in the long
term. Candidates that would be vanquished under a predeter-
mined tie breaking procedure could be lifted up by these more
fluid rules and continue to compete in the long run, greatly af-
fecting the convergence properties.

6.3 Voter Utility

While the social welfare of the voters would be a compelling
measure of the quality of an outcome, we, naturally, do not
have access to the voters’ utility functions. However, as has
been suggested in previous research [Thompson ef al., 2013;
Meir et al., 2014], we can use the Borda score on the truthful
preferences as a proxy for utility. Here the utility for each
voter of a chosen candidate ¢ € C' which the voter ranks in
place ¢ is m — <. The Borda score for a set of voters is the sum
of the individual utilities. We study how iterative voting af-
fects the Borda score of the winning candidate (see Figure 2).

Generally, the effect of dynamics on the Borda score of
winners seems minimal. STV consistently showed significant
improvements to the Borda scores under iterative voting (with
single-peaked preferences doubling this effect).” This effect
was much less pronounced with Bucklin, although single-
peaked again had a larger improvement. But with Maximin,

SConversely, TB influences most voting rules towards a faster
and more focused, fewer equilibrium states, convergence.
"It has a very high rate of selecting the Condorcet winner.
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winners’ Borda scores went down more often than not, and
again the effect was more pronounced under single-peaked
preferences. Since Copeland frequently had the truthful win-
ner emerge, its Borda scores were largely unchanged (espe-
cially under single-peaked preferences). It seems that when a
Condorcet winner exists, Condorcet-consistent rules are less
likely to find with iterative voting a candidate with higher
Borda scores. Intuitively, this is because Condorcet winners
commonly have a high Borda score, so it is harder to improve
on the Borda score of the winner in these rules.

7 Conclusion and Discussion

In this work we have continued the exploration of iterative
voting. We have done so in two dimensions. In the first,
we expanded the set of dynamics to include some that reflect
strategic behavior, but restrict best response in a natural way
(to a certain extent)—whether by constraining the placement
of affected candidates, or by prioritizing small ballot changes.
In the second dimension, we have ventured beyond scoring
rules, and have shown that for a variety of common non-
scoring rules, iterative voting under best response dynamics
does not always converge. Even after restricting the dynam-
ics to allow voters only limited changes to their ballots, they
still do not always converge.

On the other hand, we have shown empirically that cycles
seem to occur infrequently with all of these rules. Further-
more, we observed the effects that iterative voting has on the
election outcome, and seen how in many voting rules (e.g.,
STV) winners are mostly candidates with desirable proper-
ties (truthful, Condorcet, or high Borda score). We are also
able to better elucidate the effect of dynamics on the outcome,
and while their effect on the eventual winner is not extremely
significant, it is highly impactful on the convergence speed,
and how many equilibrium states are encountered.

Continuation of this line of work would include analysis of
convergence conditions for more voting rules and dynamics,
finding either convergence dynamics or broader impossibility
results. The empirical aspect of this work would benefit from
expanding the analysis, for example by analyzing more dis-
tributions (e.g., the Mallows model). Moreover, exploring the
heuristic dynamics people use in the real world may help us
to understand the eventual outcomes in iterative voting, and
the properties of the equilibria, reached in realistic settings.
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