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Abstract

Computing the nucleolus of a minimum cost spanning tree game has been known to
be NP-hard. In this paper, I therefore consider the computational complexity for a
subset of these games; minimum cost spanning tree games with an irreducible cost
matrix. I show that these games are a special case of connected balanced games and
thus the existing algorithm which efficiently computes the nucleolus for these games,
can be used here as well. Moreover, I show that the computational complexity of
this algorithm can be reduced from O(n4) to O(n3) when applied to minimum cost
spanning tree games with irreducible cost matrix, by reducing the size of the input
set.

1 Introduction

The nucleolus, introduced by Schmeidler [14], is one of the most well-known solution concepts
for allocating the cost of a joint project, as it suggests a single allocation satisfying some
natural properties of equality and fairness. A downside of the nucleolus is however, that in
many cases it cannot be computed efficiently.

It has been shown that for any n-player game, the value of the nucleolus is determined
by at most 2n− 2 coalitions ([4], [13]). However, it is unfortunately no less hard to identify
these coalitions than it is to compute the nucleolus itself. Some games though, due to
specific characteristics, allow for the identification of a specific subset of coalitions sufficient
for computing the nucleolus, which then allows us to compute the nucleolus in polynomial
time in the number of players. Some games which have been found to allow such restriction
are peer group games ([5]), standard tree games ([12]), assignment games ([16]), matching
games ([11]) and bankruptcy games ([1]).

Minimum cost spanning tree problems model situations where agents, located at dif-
ferent points, need to be connected to a source. The problem of finding a minimum cost
spanning tree (mcst) is a familiar combinatorial optimization problem, which can be solved
in quadratic time. It has been shown that computing the nucleolus of a mcst games is
however NP-hard ([7]).

In this paper we study a specific subclass of mcst games; mcst games with an irreducible
cost matrix. An irreducible cost matrix is such that lowering the cost of any edge would
lower the cost of the mcst. Bergantiños and Vidal-Puga [2] have shown that these games
are convex, unlike mcst games in general.

We study the computational complexity of the nucleolus for this subset of mcst games.
We find that mcst games with an irreducible cost matrix are a special case of connected
balanced games. An algorithm to compute the nucleolus of connected balanced games in
O(n4) has been introduced by Solymosi et al. [17]. We are able to show that in our setting, a
smaller set of coalitions is sufficient for computing the nucleolus than for connected balanced
games in general. This allows us to reduce the complexity of the algorithm to O(n3).

The rest of this paper is organised as follows. In section 2 we introduce mcst games
along with other relevant technical definitions. In section 3 we provide a new notation for
mcst games with an irreducible cost matrix, which recognizes the large number of mcsts
these games allow for. Finally, in section 4 we show the relation with connected balanced
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games and the fact that only 2n-2 coalitions need to be considered to compute the nucleolus
of mcst games with an irreducible cost matrix.

2 The model

Let N = {1, ..., n} be a finite set of agents. Let G = (V,E) denote a complete graph over
the nodes V of which E is the set of edges consisting of all unordered pairs {i, j}, i, j ∈ N .
In minimum cost spanning tree problems the node set V is N0 = N∪{0} where 0 is a special
node called the source. A non-negative, symmetric cost matrix C = (cij)i,j∈N0

represents
the cost associated with the edge between any pair of nodes, where cij = cji is the cost
associated with the undirected edge {i, j}. Furthermore cii = 0 for all i ∈ N0. Given a
subgraph G′ = (N0, E

′) with E′ ⊆ E, a path from i to j in G′ is a sequence of distinct edges
({is, is+1})ks=1 s.t. {is, is+1} ∈ E′ for all s ∈ {1, ..., k}, i1 = i and ik+1 = j. We say that i
and j are connected in G′ if there is a path from i to j in G′.
A minimum cost spanning tree (mcst) ΓN = (N0, EN ) is a graph without cycles that con-
nects all n agents with the source 0 and is such that Σ{i,j}∈EN

cij is minimal. Similarly,
ΓS = (S0, ES) is a mcst for S where S0 = S ∪ {0} and ES ⊂ S0 × S0 is such that it has the
smallest total cost over all edge sets in S0×S0 connecting all agents in S to the source. We
abuse notation and often use e ∈ ΓN instead of e ∈ EN .
We denote the unique path in ΓN between i and j with pΓN

ij and omit the superscript when-
ever there is no risk of confusion. Slightly abusing notation, we use {is, is+1} ∈ pij to denote
that {is, is+1} is an element of pij . We say that l is on pij , when there is an s ∈ {2, ..., k}
s.t. {is, is+1} ∈ pij and l = is.
Let ΓN be a mcst for (N,C). The irreducible cost matrix C∗ is defined as follows: for all
{i, j} ∈ E, c∗ij = max{k,l}∈pΓN

ij

{ckl}. C∗ has the property that lowering c∗ij any further for

any {i, j} ∈ E would lower the total cost of the mcst. We call (N,C∗) the irreducible form
of the mcst problem (N,C). Although there may be more than one mcst for (N,C), it has
been shown that C∗ does not depend on which mcst is chosen([2]).
Given a mcst problem (N,C), the associated cooperative mcst game is (N, c), where the
characteristic function c : 2n → R is now defined by:

c(S,C) = Σ{i,j}∈ES
cij for S ⊆ N .

Note that the agents in a coalition S, when building a mcst on their own, are not allowed
to use the nodes of agents outside of S.
In the current setting it will be more convenient to work with the dual of a mcst game:
v(S,C) = c(N,C)− c(N\S,C). The dual v(S,C) can be seen as a measure of the contribu-
tion of S ⊆ N to the total cost. Note that v(N,C) = c(N,C).
An allocation x ∈ Rn assigns a cost share to each agent s.t. Σi∈N xi = v(N,C). We
use x(S) = Σi∈S xi to denote the total amount allocated to coalition S. The satisfaction
f(S, x) = x(S) − v(S) of a coalition ∅ 6= S ⊂ N can be seen as the level of content of
coalition S with its total payoff. An allocation x is said to be a core allocation if f(S, x) ≥ 0
for all S ⊆ N . The set C(N,C) denotes the set of all core allocations. It has been shown
that the core of a mcst game is never empty ([8, 9]).
A collection ∅ 6∈ B ⊆ 2n is said to be balanced on N , if there exist positive numbers γs, S ∈ B
such that

ΣS∈B γS v(S) = eN

where eN denotes the indicator vector, i.e. eSi = 1 if i ∈ S and 0 otherwise. A cooperative
game (N, v) is called balanced if for every balanced collection B and every set of balancing
weights γS , S ∈ B

v(N) ≥ ΣS∈B γS v(S).
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It was shown by Bondareva [3] and Shapley [15] that the core of a cooperative game is
non-empty if and only if it is balanced.
Let θ(x) be the vector of the satisfactions of all ∅ 6= S ⊂ N arranged in non-decreasing
order. The nucleolus of a game (N, v) is the allocation that lexicographically maximizes the
vector θ(x):

Nu(N, v) = {x ∈ Rn| θ(x) ≥` θ(y),∀y s.t. y(N) = x(N)}

where ≥` denotes the lexicographic order in R2n

. Schmeidler [14] showed that the nucleolus
consists of a single point for every cooperative game. It follows from the definition that the
nucleolus is a core allocation whenever the core is non-empty.
We use N to denote the nucleolus of the irreducible form of a mcst problem i.e. N (N, v) =
Nu(N, v∗), where v∗(S,C) = v(S,C∗) for all S ⊆ N .
A coalition S is called inessential in game (N, v) if there is a proper partition of S =
{S1, ...St}, t ≥ 2 such that v(S) ≤ Σt

j=1v(Sj). For such S, f(S, x) ≥ Σt
j=1f(Sj , x) for

all x ∈ Rn. A coalition that is not inessential is called essential. We denote the set of
essential coalitions with E . Note that singleton coalitions are always essential. It was shown
by Huberman [10] that for games with a non-empty core, the nucleolus is independent of
inessential coalitions.

3 Mcst games as cluster notation
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Figure 1: Example of 3 mcst’s with the same irreducible cost matrix

The irreducible matrix allows for many different mcst’s related with the same cost matrix.
Consider the mcst’s in Figure 1, where the circled numbers represent agents and the numbers
on the edges represent the cost of the respective edge. It can be checked that, although the
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structure of these trees is quite different, they are all related to the irreducible cost matrix
in Figure 2.

For this reason we propose an alternative representation in the form of clusters that

0 1 2 3 4 5 6
0 0 9 9 9 9 9 9
1 0 6 6 6 6 6
2 0 2 6 6 6
3 0 6 6 6
4 0 2 5
5 0 5

Figure 2: Irreducible cost matrix for Figure 1

abstracts away from a specific mcst. Before doing so, it is useful to note that in any mcst
game with irreducible cost matrix and n ≥ 2 there is at least one pair of symmetric agents.
We say that two agents i, j ∈ N are symmetric if for all k ∈ N\{i, j}, cik = cjk. Let
c−S := minj∈N\S, i∈S c

∗
ij denote the cost of the cheapest edge connecting coalition S to any

agent not in S.

Lemma 1. Two agents i and j are symmetric under C∗ iff c−j = c∗ij = c−i .

Proof. Let i, j ∈ N be symmetric and let q ∈ N0\{j} be such that c∗jq = mink∈N\{i,j} c
∗
jk.

As c∗jq = c∗iq by assumption, we now get that:

maxe∈pjq
{ce} = c∗jq = c∗iq = maxe∈piq

{ce}

From which it follows that
c∗ij = maxe∈pij

{ce} ≤ c∗jq
As we chose q such that c∗jq = mink∈N\{i,j} c

∗
jk, it follows that c∗ij = c−j . By the same

reasoning we get that c∗ij = c−i .

Next, assume that c−j = c∗ij = c−i . Bergantiños and Vidal-Puga [2] have shown that for any
{i, j} there exists a mcst Γ′N for (N,C∗) s.t. {i, j} ∈ Γ′N . As C∗ does not depend on the
exact tree chosen, c∗kl = maxe∈p′kl

{c∗e} for all k, l ∈ N0, where p′kl denotes the unique path
between k and l on Γ′N .
Now take any q ∈ N0\{i, j}. W.l.g. assume i is on p′jq. Combining that c∗jq = maxe∈p′jq{ce}
and that c∗ij ≤ c∗iq by assumption, it follows that c∗iq = c∗jq. As we chose q ∈ N0\{i, j}
arbitrarily, it follows that i and j are symmetric.

From Lemma 1 it easily follows that if cij = mine∈ΓN
{ce}, i and j are symmetric agents.

We are now ready to introduce the cluster representation for mcst problems with irreducible
cost matrix.

We can recursively construct a cluster representation from a mcst ΓN as follows, where
we denote the clusters in with Ie for e ∈ E := {1, ..., l}, l ≤ n.
Step 1 Select the edge with the lowest cost, i.e. e = {i, j} = argmine∈ΓN

{ce}. Define
Ie := {k ∈ N0|c∗ik = ce} ∪ {i} for e := 1 and set ce := cij . By choice of e, we know that
all i, j ∈ Ie are symmetric. Ie is our first cluster. In figure 3 this corresponds to the circle
containing agents 2 and 3 and the orange number on the circle corresponds to ce. Note that
more than one e ∈ E may be related to the same e ∈ E. These are the edges that can be
replaced by each other without changing the total cost of the mcst.
Step m+1 Pick the cheapest edge e = {i, j} that is not yet related to any e′ < m+1. Define
Ie := {k ∈ N0|c∗ik = ce} ∪ {i} for e = m + 1 and set ce := cij . Note that for all i, j ∈ Ie
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Figure 3: Cluster representation for the irreducible cost matrix in Figure 2

and k ∈ N\Ie, c∗ik = c∗jk, as by choice of e, c∗ij < c∗ik. We say that the agents in Ie are
symmetric with respect to N\Ie. From this observation it follows that if Ie ∩ Ie′ 6= ∅ for
some e′ < m+ 1, then Ie′ ⊂ Ie.
We repeat this until all e ∈ ΓN are associated with an e ∈ E.
Figure 3 shows the cluster representation we get from any of the trees in Figure 1. The black

numbers denote the nodes, while the orange numbers on the circles denote the associated
cost. For any two nodes, the cost of connecting them directly to each other is the cost of
the smallest circle encapsulating them both. For example, c46 = 5 and c26 = 6.
Let g : E → E denote a function mapping each edge e to its corresponding cluster edge e.
Let Ie := Ie\(

⋃
e′<e Ie′) denote the set of i ∈ N for which ce = c−i .

The following observation follows easily from lemma 1 our recursive construction of the
cluster representation.

Corollary 1. For any e ∈ E, all i, j ∈ Ie are symmetric.

Lemma 2. For every irreducible cost matrix C∗, there exists a mcst ΓN s.t. for all pi0 =
(e1, ..., et) with t ≥ 2, ces ≤ cer for every 1 ≤ s < r ≤ t.

Proof. Let ΓN be a mcst related to C∗ in which the edge costs are not monotonically
decreasing as we move away from the source. We will show that we can recursively build a
mcst from ΓN that does satisfy this condition.
Let i be such that for ij, jk ∈ ΓN , k is on pi0 and c∗ij > c∗jk. By definition of C∗, c∗ik = c∗ij
and so by replacing ij with ik in ΓN , we do not change the total cost of the tree, but we do
have one less pair of edges e and e′ s.t. e′ is closer to the source than e and c∗e > c∗e′ .
We repeat this process until we’ve established a tree Γ′N in which for all pi0 = (e1, ..., et)
with t ≥ 2, s < r implies ces < cer .

Granot and Huberman [8] have shown that the nucleolus of mcst games satisfies the
following property:

Separability
For all mcst problems (N,C) and S ⊂ N s.t. v(N,C) = v(S,C) + v(N\S,C) it holds that:

Ni(N, v) =

{
Ni(S, v) if i ∈ S
Ni(N\S, v) otherwise

Let Ti denote the set of agents in the subtree of ΓN rooted at i. Clearly, if there are two
distinct agents connected directly to the source in ΓN , i.e. {i, 0}, {j, 0} ∈ ΓN for i 6= j, then
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Ti and Tj are such that v(Ti ∪ Tj , C) = v(Ti, C) + v(Tj , C). We can therefore assume that
there is a unique edge connecting to the source in ΓN and we denote it with e0. Moreover,
due to lemma 2 we can assume this edge to be strictly more expensive than all other edges
in ΓN and hence e = l is the cluster edge corresponding to edge e0 and cl denotes the related
cost.

4 The nucleolus of the irreducible form of a mcst game

We start by showing that in a mcst game with irreducible cost matrix, coalitions that do
not consist of a single, entire cluster are inessential.

Lemma 3. A coalition S, |S| ≥ 2, such that S 6= Ie for any e ∈ E, is inessential.

Proof. Bergantiños and Vidal-Puga [2] have shown for mcst with irreducible cost matrix that
c∗(N\{i}) = c∗(N) − c−i . From this it follows that c∗(N\(S ∪ {i})) = c∗(N\S) − c−i,ΓN\S

where c−i,ΓN\S
= minj∈N\(S∪{i})c

∗
ij . Moreover, by definition of v∗, we get that v∗({i}) = c−i ,

for all i ∈ N .
First note that for any e such that Ie 6= Ie, we have that |{e ∈ ΓN |g(e) = e} = |Ie|

and for e such that Ie = Ie, |{e ∈ ΓN |g(e) = e} = |Ie| − 1
Let S be such that S 6= Ie for any e ∈ E. First, suppose there is no Ie = Ie, Ie ⊆ S.
By our previous observation, it follows that v∗(S) = Σi∈S c

−
i = Σi∈S v

∗({i}). Hence S is
inessential.
Now suppose there is a Ie = Ie, Ie ⊂ S, . We distinguish two cases:
1. For all i ∈ S and j ∈ N , if c−i = c∗ij then j ∈ S.
In other words, S consists of the union of several clusters. Let S1, ..., Sk be the partition of S
into its disjoint clusters; i.e. for all 1 ≤ j ≤ k, Sj = Ie for some e ∈ E. Let ΓN be a mcst for
(N, c) where the edge cost monotonically decreases as we move away from the source. Each
Sj is then a separate subtree Tk in ΓN and therefore c∗(N\S) = c∗(N)−v∗(S1)−....−v∗(Sk).
It then follows that, v∗(S) = v∗(S1) + ...+ v∗(Sk) and S is thus inessential.
2. There is an i ∈ S and some j ∈ N\S s.t. cij = c−i .
Let S−i := S\{i}. We know that c∗(N\S) = c∗(N\S−i)− c−i,ΓN\S−i

. As there is a j ∈ N\S
s.t. c∗ij = c−i , it follows that c−i,ΓN\S−i

= c−i . Thus c∗(N\S) = c∗(N\S−i)− c−i . We get that

c∗(N)− c∗(N\S) = (c∗(N)− c∗(N\S−i)) + c−i , which means that v∗(S) = v∗(S−i) +v∗({i})
and thus S is inessential.

If S = Ie for some e ∈ E, then for all i ∈ S, c−i,ΓN\(S\{i})
> ce and thus S is essential.

Hence E consists of all S = Ie together with all singleton coalitions. A game is called
connected if we can arrange agents in a linear order and the essential coalitions are only
those that are connected with respect to this order. It turns out that mcst games with
irreducible cost matrix are connected games.

Lemma 4. A mcst game with irreducible cost matrix is a connected game.

Proof. To see that there always exists a mcst that is a chain, consider the following proce-
dure.
Step 1 Pick an Ie = Ie. Connect all i ∈ Ie in a chain. As cij = cik for all i, j, k ∈ Ie,
i 6= j 6= k the order does not matter.
Step i+1 Pick an Ie such that all Ie′ ⊂ Ie were already chosen in previous steps. Connect
any Ie′ , Ie′′ ⊂ Ie, Ie′ ∩ Ie′′ = ∅ with each other in a chain and connect all i ∈ Ie to the end
of this chain. As cij = cik = ckl for all i, j ∈ Ie, k ∈ Ie′ , l ∈ Ie′′ all newly added edges have
the same cost and the order does not matter.
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We repeat this until all Ie are covered.
Clearly, by construction, all S ∈ E are connected in the mcst we just built.

In fact, all S ∈ E are connected in any mcst that is a chain.
Derks and Kuipers [6] have presented an algorithm for computing the nucleolus of a
connected balanced game and showed that it runs within O(n5) time. Solymosi et al.
[17] improved on this result and presented an algorithm that computes the nucleolus of
a connected balanced game in O(n4). By lemma 4 and the fact that mcst games are
balanced, we can thus compute N in O(n4) with the help of the algorithm of Solymosi
et al. [17]. However, as mcst games with an irreducible cost matrix are a special case of
connected balanced games, we can in fact compute the nucleolus even faster.
In any mcst game with irreducible cost matrix there are at most n distinct clusters.
However, as we can assume there to be a unique edge connecting to the source, we know
that Ie = 0 for some e ∈ E. Moreover there is an e′ 6= e such that Ie′ = N . Although
N is not inessential according to definition, as f(N, x) = 0 always holds, we can ignore
it nonetheless. We thus have at most n − 2 essential cluster coalitions and n singleton
coalitions, so |E| = 2(n− 1).
As the amount of essential coalitions in mcst games with irreducible cost matrix is 2(n− 1)
instead of the n(n + 1)/2 required in the case of general balanced connected games, the
algorithm presented by Solymosi et al. [17] can run in O(n3) in our case.

Corollary 2. The nucleolus of a mcst game with irreducible cost matrix can be computed
in O(n3).
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