
Ascending-Price Mechanism for General Multi-Sided
Markets

Dvir Gilor, Rica Gonen and Erel Segal-Halevi

Abstract

We present an ascending-price mechanism for a multi-sided market with a variety of partici-
pants, such as manufacturers, logistics agents, insurance providers, and assemblers. Each deal
in the market may consist of a combination of agents from separate categories, and differ-
ent such combinations are simultaneously allowed. This flexibility lets multiple intersecting
markets be resolved as a single global market. Our mechanism is obviously-truthful, strongly
budget-balanced, individually rational, and attains almost the optimal gain-from-trade when
the market for every allowed combination of categories is sufficiently large. We evaluate the
performance of the suggested mechanism with experiments on real stock market data and syn-
thetically produced data.

1 Introduction
The aim of this paper is to automatically arrange the trade in complex multi-lateral markets. As an
example, consider a market for a certain kind of laptop computer, and assume for simplicity that it
is made of only two types of components, e.g. four CPUs and two RAMs. Even in this simplified
market, there may be several different categories of traders: 1. Buyers, who are interested in a
laptop; 2. Laptop producers, who produce whole laptops; 3. CPU producers; 4. RAM producers; 5.
Constructors, who construct a laptop from its parts; 6. Transporters, who take a laptop and bring it
to an end consumer. A deal in this market can take one of two forms:

• A buyer buys a laptop from a laptop-producer, and asks a transporter to transport it to his/her
place. This involves traders of categories 1, 2 and 6.

• A buyer buys four CPUs, two RAMs and a construction service, and has the final product
transported. This involves traders of categories 1, 3, 4, 5 and 6.

In each category there may be many different traders, with potentially different utilities for par-
ticipating in a deal. Typically, the value of a buyer is positive and the value of a producer or service-
provider is negative. The main questions of interest for automatically arranging the trade is who will
trade and how much they will pay (or receive). The answers to these questions should satisfy several
natural requirements:

(1) Individual rationality (IR): no agent should lose from participating: the amount paid by a
trading agent should be at most as high as the agent’s value (in particular, if the value is negative
then the agent should receive money). A non-trading agent should pay nothing.

(2) Weak budget balance (WBB): the total amount paid by all agents together should be at least
0, so that the market manager does not lose money. WBB allows the market-manager to gain money,
and this surplus might consume most of the gain-from-trade, leaving little gain for the actual traders.
This might drive traders away from the market. Therefore, we consider a stronger requirement called
strong budget balance (SBB): the total amount paid by all agents should be exactly 0.1

1The following procedure can be used to convert any WBB mechanism to an SBB mechanism: Add an initial stage to the
mechanism in which a trader is chosen randomly and removed from the trade and market. After the mechanism allocation
and pricing is finished, give the chosen trader all the surplus (if any). This procedure might encourage the arrival of agents
who have nothing to do with the market (e.g. sellers with nothing to sell or buyers with no money), only because of the

(3) High gain-from-trade (GFT): the GFT is the sum of values of all agents actively participating
in the trade2 For example, suppose a certain buyer values a laptop at 2000, the laptop-producer values
it at -1500 (the cost of production is 1500), the CPU and RAM producers and constructor value their
efforts at -200 each, and the transporter values the deal at -50 (the cost of transportation is 50). Then,
the GFT from a deal involving categories 1, 2, 6 is 2000 − 1500 − 50 = 450, and the GFT from a
deal involving categories 1, 3, 4, 5, 6 is 2000− 200 · 4− 200 · 2− 200− 50 = 550. Maximizing the
GFT implies that the latter deal is preferred.

(4) Truthfulness: the agents’ values are their private information. We assume that the agents
act strategically to maximize their utility (assumed to be their value minus the price they pay).
Truthfulness means that such a utility-maximizing agent reports his/her true valuation. A stronger
requirement called obvious truthfulness [30] is that, for each agent, the lowest utility he may get by
acting truthfully is at least as high as the highest utility he may get by acting non-truthfully.

These concepts are formally defined in Section 2.

1.1 Related Work
The study of truthful market mechanisms started with [38]. He considered a market with only
one category of traders (buyers), where the famous second-price auction attains all four desirable
properties: IR, WBB, maximum GFT and truthfulness.

When there are two caterogies of traders (buyers and sellers), the natural generalization of Vick-
rey’s mechanism is no longer WBB — it may run a deficit. Moreover, [33] proved that any mecha-
nism that is IR, truthful and maximizes the GFT must run a deficit. The way out of this impossibility
paradox was found by [32]. In his seminal paper, he presents the first double auction (auction for a
two-category market) that is IR, WBB, truthful, and asymptotically maximizes the GFT. By asymp-
totically we mean that its GFT is at least (1 − 1/k) of the optimal GFT, where k is the number of
deals in the optimal trade. Thus, when k approaches infinity, the GFT approaches the optimum.

McAfee’s mechanism has been extended in various ways. Particularly relevant to our setting is
the extension by [1], with multiple categories of traders, arranged in a linear supply chain. Their
model contains a single producer category, a single consumer category, and several converter cat-
egories. Each deal must involve a single producer, a single consumer, and a single agent of each
converter category. In our laptop example, their model covers either a market with the chain 1,2,6 or
a market with the chain 1,3,4,5,6, but not a market where both chains are possible. For this model,
they present an auction mechanism that is IR, WBB, truthful, and attains asymptotically-optimal
GFT

Recently, [27], [24] considered a multiple-category market in which, like [1]’s market, all deals
must be of the same structure, which they call a “recipe”. Their recipes are more general than the
linear supply chains of [1], since they are not restricted to a producer-converters-consumer structure.
They present auctions that are IR, SBB, truthful and asymptotically-optimal, but only for a single-
recipe market.

Recently, [22] focus on a special case in which computing the optimal welfare is tractable. They
assume that the agent categories can be arranged in a forest (an acyclic undirected graph), and each
recipe is a path from a root to a leaf in that forest. Their recipes are more general than those of [27]
and [24], as they are not restricted to a single-recipe market structure. The authors present auctions
that are IR, SBB, truthful, and asymptotically-optimal, but only for binary recipe-forests.

Comparison to other supply-chain mechanisms is presented in Appendix A.1, and a survey of

chance to win all the surplus. We do not use this procedure in our proposed solutions. Much like [14], our solutions achieve
SBB from direct-trade mechanisms — mechanisms that give/take money only to/from agents who actually participate in the
trade.

2We note that, with non-additive GFT functions, even computing the optimal trade when all valuations are common
knowledge is NP-hard problem, known as the welfare-maximization problem. Furthermore, it is NP-hard even when the the
GFT functions are submodular; see, for example, [17].

1

6
2 3

4
5

(a)

N1

N2 N3

N4

(b)

N1

N2 N3 ∧N4

(c)

N1

N2 ∪ (N3 ∧N4)

(d)

Figure 1: Examples of trees in a recipe-forest.

more recent works on two-sided markets is presented in Appendix A.2. More about obviously-
truthful can be found in Appendix A.3.

1.2 Our Contribution
We study markets with multiple kinds of supply-chains which, following [27], [24], we call
“recipes”.

In a general multi-recipe market, computing the optimal trade — even without strategic consid-
erations — is MAX-SNP-hard (see Appendix E). This means that, unless P=NP, there is no polytime
algorithm that, given ϵ > 0, computes a trade that attains (1 − ϵ) of the optimal GFT. In particular,
it is unlikely that a mechanism that runs in polynomial time can be asymptotically-optimal.

Therefore, we focus on a special case in which computing the optimal welfare is tractable: We
assume that the agent categories can be arranged in a forest (acyclic undirected graph), and each
recipe is a path from a root to a leaf in that forest. Our laptop market corresponds to a forest with
tree in Figure 1(a).

In Section G.1 we discuss the challenges in extending our results to recipe-sets that are not
forests.

We present randomized ascending-prices mechanisms for markets based on recipe forests. Our
mechanisms are IR, SBB and obviously-truthful. Moreover, all these properties hold universally
— for every possible outcome of the randomization. The expected GFT of our mechanisms is
asymptotically-optimal — it approaches the optimum when the optimal number of deals in all
recipes approaches infinity (See Section 3.2 and Appendix B.2 for formal statements and proofs).

1.3 Paper Layout
Sections 2 presents the formal definitions. Section 3 and 4 in [22], which are also in Appendix B,
presents a mechanism for the special case in which each trade requires either zero or one agents from
each category, that is, the recipes are binary. Section 3 presents a mechanism for the more general
case, in which each trade may require any non-negative integer number of agents from each category.
The mechanism of [22], which is also in Appendix B, is a special case of the mechanism of Section
3; we present it in a separate section as the approximation guarantee of the binary mechanism,
and it is not a special case of the approximation guarantee of the general mechanism. The general
mechanism computation and proof techniques for reaching a GFT approximation bound are quite
different and are more involved.

Appendix D presents some simulation experiments evaluating the performance of our auctions.
Appendix G concludes by illustrating challenges in extending our current model and providing fu-
ture work directions.

An open-source implementation of our auctions, including example runs and experiments, is
available at https://github.com/dvirg/auctions.

2 Formal Definitions

2.1 Agents and Categories
A market is defined by a set of agents grouped into different categories. N is the set of agents, G
is the set of agent categories, and Ng is the set of agents in category g ∈ G. The categories are
pairwise-disjoint,3 so N = ⊔g∈GNg .

Each deal in the market requires a certain combination of traders. We call a subset of agents that
can accomplish a single deal a procurement-set (PS).

A recipe is a vector of size |G|, denoted by r := (rg)g∈G, where rg ∈ Z+ for all g ∈ G. It
describes the number of agents of each category that should be in each PS: each PS should contain
r1 agents of category 1, r2 agents of category 2, and so on. If rg ∈ {0, 1} for all g ∈ G, then r is
called a binary recipe. Otherwise, it is called an integer recipe. The set of recipes available in the
market is denoted by R.

In the market of [32] each deal requires one buyer and one seller, so there is a single binary
recipe and R = {(1, 1)}. In our initial laptop-market example there are two recipes and R =
{(1, 1, 0, 0, 0, 1); (1, 0, 4, 2, 1, 1)}. The first one is a binary recipe corresponding to deals with a
buyer, a producer and a transporter, and the second one in an integer recipe corresponding to deals
with a buyer, four CPU producers, two RAM producers, a constructor and a transporter.

Each agent i ∈ N has a value vi ∈ Z, which represents the material gain of an agent from
participating in the trade. It may be positive, negative or zero. In a two-sided market for a certain
good, the value of a buyer is typically positive, while the value of a seller is typically negative and
represents the cost of producing the good. However, our model is general and allows the values of
different agents in the same category to have different signs.

For simplicity, we assume that all the vi are integer numbers, e.g., all valuations may be given
in cents. We also assume that there are publicly known bounds on the possible valuations: for some
sufficiently large V , −V < vi < V for all i ∈ N .

The agents are quasi-linear in money: the utility of agent i participating in some PS and paying
pi is ui := vi − pi.

2.2 Recipe forests
Recall that a forest is an acyclic graph, composed of one or more trees; a rooted forest is a forest in
which, in each tree, one vertex is denoted as its root.

Definition 2.1. A recipe-set R is called a recipe-forest if there exists a rooted forest T in which the
set of nodes is G, and each recipe r ∈ R corresponds to a path P from the root of some tree in T to
a leaf of that tree (that is, rg ≥ 1 for each g ∈ P and rg = 0 for each g ̸∈ P).4

We use the same letter g to denote both the category index and the corresponding node in T .
We assume that every g ∈ G appears in all recipes with the same multiplicity, i.e., for every recipes
r, r′ ∈ R, if rg > 0 and r′g > 0 then r′g = rg .5

As an example, the set R = {(1, 2, 0, 0), (1, 0, 1, 2)} is a recipe-forest with a single tree shown
in Figure 1(b). The root category is N1. The recipe (1, 2, 0, 0) corresponds to a path from N1 to the
leaf N2. The recipe (1, 0, 1, 2) corresponds to a path from N1 through N3 to the leaf N4.

A market with a single recipe is a special case of a recipe-forest with a single tree that is a
path. Note that several different trees T may correspond to the same recipe-set R. For example, the

3In Section G.2 we discuss why removing this assumption is challenging.
4We can also assume, without loss of generality, that every path from a root to a leaf in T corresponds to a recipe in R.

The reason is that, if some path P in T does not correspond to a recipe in R, then the leaf category of P can be removed
from the market without affecting the trade, since it does not participate in any recipe. Removing leaves can be repeated until
all remaining root–leaf paths in T correspond to recipes in R.

5In Section G.3 we discuss why removing this assumption is challenging.

singleton recipe-set R = {(1, 1)} corresponds to the tree in which N1 is the root and N2 is the leaf,
and also to the tree in which N2 is the root and N1 is the leaf.

Given a fixed rooted forest T , we use the following notation:

• CHILDREN(g) := the child nodes of the node g in its tree.

• LVS(g) := the leaf descendants of the node g in its tree (if g is a leaf then LVS(g) = {g}).

• PATH(g1 → g2) := the nodes in the unique path from g1 to its descendant g2, inclusive.

• HEIGHT(g) := the largest distance between the node g and a leaf of its tree. The height of a
leaf is 0.

• DEPTH(g) := the unique distance between the node g and the root of its tree. The depth of a
root is 0.

• MAXDEPTH := maxg is a leaf in T DEPTH(g).

• WEIGHTD(g) :=
∑

g′∈PATH(g→root) rg′ = the distance between g and the root of its tree
(including the root), weighted by the integer quantities rg′ . The weighted depth of a root
category g0 is rg0 .

• MAXWD := maxg is a leaf in T WEIGHTD(g).

Tables summarizing the notations used in this paper can be found in Tables 5, 6 and 7 in Appendix.

2.3 Trades and Gains
The gain-from-trade of a procurement-set S, denoted GFT (S), is the sum of all agent values vi ∈ S:

GFT(S) :=
∑
i∈S

vi.

In a standard two-sided market, the GFT of a PS with a buyer b and a seller s is vb − vs, where vs is
the seller’s value for the sold item, since the seller’s value for participating in the trade is −vs.

Given a market (N,G,R), a trade is a collection of pairwise-disjoint procurement-sets. I.e,
it is a collection of agent subsets, S1, . . . , Sk ⊆ N , such that for each j ∈ [k], the composition
of agents in Sj corresponds to some recipe r ∈ R. The total GFT is the sum of the GFT of all
procurement-sets participating in the trade:

GFT(S1, . . . , Sk) :=

k∑
j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all trades.
The value of agent i given trade S = (S1, . . . , Sk), denoted vi(S), is either vi or 0: it is vi if

i ∈ Sj for some j ∈ [k], and 0 otherwise.

2.4 Mechanisms
The definitions below cover only the notions used in the present paper. For a more complete treat-
ment of mechanisms and their properties see [34].

A deterministic direct mechanism is a function that takes as input a vector b containing agent
bids, and returns as output a trade S(b) and a price-vector p(b). The utility of each agent i, given a
fixed deterministic mechanism and a bid vector b, is ui(b) := vi(S(b))− pi(b).

A deterministic direct mechanism is truthful if the utility of every agent i is maximized when
the agent bids vi, for any fixed bids of the other agents. Formally, for every vector b = (b1, . . . , bn),
denote by b|bi←x the vector (b1, . . . , bi−1, x, bi+1, . . . , bn). A mechanism is truthful if for every
agent i and vector b: ui(b|bi←vi) ≥ ui(b).

A deterministic direct mechanism is individually-rational (IR) if the utility of every agent i when
the agent bids vi is at least 0, regardless of the bids of the other agents: ui(b|bi←vi) ≥ 0.

A randomized direct mechanism is a lottery over deterministic direct mechanisms. In other
words, it is a mechanism in which the functions S and p may depend not only on the bids but also
on some random variables.

A randomized direct mechanism is called universally-truthful if it is a lottery over truthful de-
terministic direct mechanisms. In a universally-truthful randomized mechanism, the utility of agent
i is maximized when the agent bids vi, regardless of the bids of the other agents, and regardless of
the random variable values.6 Similarly, a randomized direct mechanism is universally-IR if it is a
lottery over IR deterministic direct mechanisms.

A direct mechanism is called obviously truthful if for every agent i and vectors b,b′:
ui(b|bi←vi) ≥ ui(b

′). In other words, the lowest utility the agent can get when reporting truth-
fully is at least as high as the highest utility the agent can get when reporting untruthfully, where
“lowest” and ”highest” are w.r.t. all possible reports of the other agents. This is a very strong
property that is not satisfied by non-trivial direct mechanisms. However, an analogous property is
satisfied by some sequential mechanisms, described next.

In a deterministic sequential mechanism, at each time, an agent has to choose a response from
a pre-specified set of responses. In order to give meaning to the notion of truthfulness, we assume
that the “response” is an answer to a query on the agent’s value: at time t, the designer presents a
function qt to some agent i, and the agent is expected to reveal qt(vi). Our mechanisms will only
use Boolean functions such as “is vi > 2?”. Based on the agents’ answers so far, the auctioneer
may decide to continue asking queries, or to end the mechanism. When the mechanism ends, the
auctioneer examines the vector of answers a, and determines the trade S(a) and the price-vector
p(a).

Given an answer vector a and an agent i, denote by a|ai←x the vector in which the answer of
agent i to any query qt is qt(x) (and the answers of other agents remain as in a). A deterministic
sequential mechanism is called obviously truthful if, at any step during the execution, and for any two
vectors a and a′ consistent with the history of answers up to the current step: ui(a|ai←vi) ≥ ui(a

′).
In other words, the lowest utility the agent can get by answering truthfully, according to vi, is at
least as high as the highest utility he can get by answering untruthfully.

A deterministic direct mechanism is a special case of a deterministic sequential mechanism,
in which there is only one step of queries, and the queries are “what is your value?”. If such a
mechanism is obviously-truthful, then it is also truthful (set a = a′ = b in the definition of obvious-
truthfulness).

3 Integer Recipes
This section extends Sections 3 and 4 in [22] which also appears in Appendix B, by allowing the
recipes in the forest to be arbitrary vectors of non-negative integers, rather than binary vectors. For
each category g there is an integer rg ≥ 0, and every PS of r ∈ R such that g ∈ G must contain
exactly rg traders from this category. We assume that, for every category g, rg is the same for all
recipes r in which rg > 0. We call this number the multiplicity of category g.

The mechanism of Sections 3 and 4 in [22] is a special case of the mechanism of Section 3.
We split them into two different sections because in the binary case we could prove a stronger

6Universal truthfulness is stronger than other notions of truthfulness studied in the literature, such as truthfulness-in-
expectation. These weaker truthfulness notions are not covered in the present paper.

Algorithm 1 Finding the optimal GFT — integer recipes.
Input: A set of categories G, a set of traders Ng for all g ∈ G, and a recipe-forest R based on a forest T .

For each agent i ∈ ∪gNg , the value vi is public knowledge.
Output: Optimal trade in the market.
1. If T has a single vertex g:

Return {Vi ∈ Ng|sumvj∈Vi(vj) ≥ 0} — all subsets of Ng’s agents with non-negative value sums.
2. Else, if T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 1.
3. Else, if there is an arbitrary deepest leaf gl that is a single child of its parent gp:

Do a vertical contraction of gl into gp. Go back to step 1.
4. Else, there is a leaf gl with a sibling leaf gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

Table 1: An example market. Boldface is optimal trade
Category g Traders per deal rg Agents’ values

N1: buyers 1 19, 18, 17, 13, 6, 2
N2: sellers 2 -2, -2, -3, -4, -5, -8
N3: A-producers 1 -1, -3, -5, -7
N4: B-producers 2 -1, -2, -3, -4, -6, -8

approximation ratio. In Appendix F we present examples showing that the approximation guarantee
of the binary case is not true in the general case.

The concepts and notations introduced in the binary case should be adapted to the general case
by weighting the quantity related to each category g by its multiplicity rg . In particular:

• The sum of prices in each recipe is weighted: Prices-sum(r) :=
∑

g∈G pg · rg .

• The depth of a node g is WEIGHTD(g) :=
∑

g′∈PATH(g→root) rg′ . The notation MAXWD
(maximum weighted depth) is used to compute the initial price-sum for all paths.

• The quantity mg is now |Mg| divided by rg , so that it represents the number of deals that can
be done using the agents remaining in Mg . Note that mg is not necessarily an integer number,
so we round it down to the nearest integer.

• The notations ’cheap’ and ’expensive’ are determined based on sets of rg agents of each
category, rather than individual agents.

The notation differences between Sections 3 and 4 of [22] and Section 3 can be viewed in Tables
6 and 7 in Appendix.

3.1 Computing an Optimal Trade
We first present an algorithm for computing the optimal trade assuming all values are known. We
illustrate the algorithm on the market in Table 1.

Similarly to [22] (and Appendix B), The algorithm is based on contracting the recipe-forest
down to a single node. In addition to vertical and horizontal contractions, we need a third kind of
contraction: an internal contraction.

An internal contraction acts on an individual category node g ∈ G. It converts agent values
in the category to sets of size rg in the following way. Sort all agents’ values in descending order
such that v1 ≥ v2 ≥ . . . ≥ vmv

. Construct the sets (v1, . . . , vrg) ≥ (vrg+1, . . . , v2rg) ≥ . . . ≥
(. . . , vmv

). If the last set (. . . , vmv
) contains less than rg values, then remove it. For example, an

Algorithm 2 Ascending prices mechanism — integer recipes — main loop.
Input: A market N , a set of categories G and a recipe-forest R.
Output: Strongly-budget-balanced trade.
1. Initialization: Let Mg := Ng for each g ∈ G. Using Equation (1), set an initial price pg for each g ∈ G.
2. Using Algorithm 3, select a set G∗ ⊆ G of categories.
3. For each g∗ ∈ G∗, ask each agent in i ∈ Mg∗ whether vi > pg∗.

(a) If an agent i ∈ Mg∗ answers “no”, then remove i from Mg∗ and go back to step 1.
(b) If all agents in Mg∗ for all g∗ ∈ G∗ answer “yes”, then for all g∗ ∈ G∗, let pg∗ := pg∗ + 1/rg∗ .
(c) If after the increase

∑
g∈G pg · rg = 0 for some r ∈ R, then go on to step 4.

(d) else go back to step 3.
4. Determine final trade using Algorithm 4.

Algorithm 3 Finding a set of prices to increase — integer recipes.
Input: A set of categories G, a set of remaining traders Mg for

all g ∈ G, and a recipe-forest R based on a forest T .
Output: A subset of G denoting categories for price-increase.
0. Initialization: For each category g ∈ G, let mg := |Mg|/rg .
1. If T contains two or more trees,

Recursively run Algorithm 3 on each individual tree T ′; Denote the outcome by IT ′ .
Return

⋃
T ′∈T IT ′ .

2. Let g0 be the category at the root of the single tree. Let cg0 :=
∑

g′∈CHILDREN(g0)
⌊mg′⌋.

3. If mg0 > cg0 [or g0 has no children at all], then return the singleton {g0}.
4. Else (cg0 ≥ mg0), for each child g′ of g0:

Recursively run Algorithm 3 on the sub-tree rooted at g′; Denote the outcome by Ig′ .
Return

⋃
g′∈child(g0)

Ig′ .

internal contraction on N4 in Table 1 gives {(−1,−2), (−3,−4), (−6,−8)} since r4 = 2, and on
N3 it gives {(−1), (−3), (−5), (−7)} since r3 = 1.

The vertical and horizontal contraction work similarly to the binary case. In
the market described by Table 1, a vertical contraction of N3 and N4 yields N3 ∧
N4, which contains the values {((−1), (−1,−2)), ((−3), (−3,−4)), ((−5), (−6,−8))} =
{(−1,−1,−2), (−3,−3,−4), (−5,−6,−8)}. a horizontal contraction of N2 with N3 ∧
N4 yields N2 ∪ (N3 ∧ N4), which contains the values {(−1,−1,−2), (−2,−2), (−3,−4),
(−3,−3,−4), (−5,−8), (−5,−6,−8)}. A vertical contraction of the latter category with
N1 yields: {(19,−1,−1,−2), (18,−2,−2), (17,−3,−4), (13,−3,−3,−4), (6,−5,−8),
(2,−5,−6,−8)}. The optimal trade in that is the set of all deals with positive values, which in
this case contains four deals with values {15, 14, 10, 3}. This corresponds to an optimal trade with
k = 4 deals:

• Buyer 19, A-producer −1, B-producers −1,−2;

• Buyer 18, sellers −2,−2;

• Buyer 17, sellers −3,−4;

• Buyer 13, A-producer −3, B-producers −3,−4.

The process is summarized as Algorithm 1.

Algorithm 4 Determining a feasible trade — integer recipes.
Input: A set of categories G, a set of remaining traders Mg for

all g ∈ G, and a recipe-forest R based on a forest T .
Output: A set of PSs with remaining traders, each of which corresponds to a recipe in R.
1. Do a randomized internal contraction on all g ∈ G.
2. If T has a single vertex g, then return Mg — the set of traders remaining in category g.
3. If T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 2.
4. Otherwise, pick an arbitrary deepest leaf category gl ∈ T .
5. If gl is a single child of its parent gp ∈ T :

Perform a randomized vertical contraction of gl and gp. Go back to step 2.
6. Otherwise, gl has a sibling leaf gs ∈ T :

Perform a horizontal contraction of gl into gs. Go back to step 2.

3.2 Ascending Auction Mechanism
The ascending-price auction for integer recipes is presented as Algorithm 2. As in the binary case,
for each category g, the auctioneer maintains a price pg , and a subset Mg ⊆ Ng of all traders
whose value is higher than pg . At each iteration, the auctioneer chooses a subset of the categories
and increases their prices. In contrast to the binary case, the price-increase is not the same in all
categories: the price of category g is increased by 1/rg . The reason is that the price-sum of every
recipe r is a weighted sum of the category prices; increasing pg by 1/rg guarantees that the price-
sum of every recipe increases by 1, so that it does not skip any integer value.

After each increase, the auctioneer asks each agent in turn whether their value is still higher
than the price. An agent who answers “no” is permanently removed from the market. After each
increase, the auctioneer computes the weighted sum of prices of the categories in each recipe:
Prices-sum(r) :=

∑
g∈G pg · rg . When this sum equals 0, the auction ends and the remaining

agents trade in the final prices.
Similarly to the binary case, we explain (a) how the prices are initialized, (b) how the set of

prices to increase is selected, and (c) how the final trade is determined.
(a) The prices are initialized as follows:

pg :=

{
−V g is not a leaf
−V · (MAXWD − WEIGHTD(g) + rg)/rg g is a leaf

(1)

This guarantees that the weighted price-sum in any path from the root to a leaf is the same: −V ·
MAXWD.

(b) The set of prices to increase is selected by Algorithm 3. In contrast to the binary case,
the selection is based on the number of agents of each category g who are currently in the market,
divided by rg .7 We denote this number by mg := |MG|/rg .

Denote the root category of a tree by g0. The algorithm first compares mg0 to cg0 , defined as
the sum of the ⌊mg⌋ (mg rounded down to the nearest integer8) for all children g of g0. If mg0

is larger, then the price selected for increase is the price of g0; Otherwise (cg0 is larger or equal),
the prices to increase are the prices of some of its descendants’ categories: for each child category,
Algorithm 3 is used recursively to choose a subset of prices to increase, and all returned sets are
combined. It is easy to prove by induction that the resulting subset contains exactly one price for
each path from a root to a leaf. Therefore, if each price in a category g in the subset is increased

7Note that there is no division-by-zero issue, since when rg = 0 there is no node of such g in the recipe-forest.
8Instead of rounding mg downwards, we can keep mg not rounded, or round it upwards. In Appendix F, we show for

each of these three options, a market in which the approximation ratio depends on |R|, and all these approximation ratios are
asymptotically similar (when |R| is large).

simultaneously by 1/rg , then the weighted price-sum in all recipes increases simultaneously by one
unit, so the price-sum in all recipes remains equal. Eventually the weighted price-sum reaches 0,
and the auction stops.

(c) Once the auction ends, the final trade is computed using Algorithm 4.
The process is similar to the computation of the optimal trade, but the internal contraction op-

eration is replaced with a randomized internal contraction operation. For each g ∈ G, denote
mod g := |Mg| modulo rg . Choose mod g agents uniformly at random and remove them from
Mg . Then perform an internal contraction with the remaining agents. Note that after the internal
contraction, all values mg = |Mg|/rg are integers.

Similarly, the vertical contraction operation is replaced with a randomized vertical contraction.
A leaf that is a single child is combined with its parent in the following way. Denote the leaf
and parent category by l and p respectively, Let mmin := min(ml,mp) = the integer number of
procurement-sets that can be constructed from the agents in both categories. For each g ∈ {l, p} if
mg > mmin then choose mg − mmin sets of agents uniformly at random and remove them from
Mg . Then perform a vertical contraction with the remaining sets of agents.9.

Horizontal contractions can be performed deterministically, as no traders should be removed.
The process of determining the final trade is summarized as Algorithm 4.

3.3 Example Run
We illustrate Algorithm 2 using the example in Table 1, where the recipe set is R =
{(1, 2, 0, 0), (1, 0, 1, 2)} and the recipe-forest contains the single tree shown in Figure 1(b). The
execution is shown in Table 2.

Step 1 The weighted depths of the categories are 1, 3, 2, 4, so MAXWD = 4. The initial prices
determined by (1) are −V,−(3/2)V,−V,−V , and the weighted price-sum of each recipe is −4V .

Step 2 The categories whose price should be increased are determined using Algorithm 3. Initially,
the numbers of remaining traders are 6, 6, 4, 6. So m1 = 6,m2 = 6/2,m3 = 4,m4 = 6/2. Initially
the algorithm compares m1 to ⌊m2⌋ + ⌊m3⌋. Since 6/1 < ⌊6/2⌋ + ⌊4/1⌋, the price of the root
category (the buyers) is not increased, and the algorithm recursively checks the subtrees rooted at
g = 2 and g = 3. In the former, there is only one category so it is returned; in the latter, there is one
child g = 4. Since m3 > ⌊m4⌋, the parent g = 3 is selected. The final set of prices to increase is
{p2, p3}. If the counts were m1 = 6,m2 = 6/2,m3 = 2,m4 = 4/2 instead, then the set of prices
to increase would be {p1}. Note that in both cases, a single price is increased in each recipe.

Step 3 The auctioneer increases the prices of each category g∗ ∈ G∗ by 1/rg∗ , until one agent of
some category g∗ ∈ G∗ indicates that his value is not higher than the price, and leaves the trade.
In the example, the first agent who answers “no” is A-producer −7. While p3 has increased to −7,
p2 has increased to −V − (7/2) (it was incremented at steps of 1/r2 = 1/2), so the price-sum in
each recipe remains the same: −7 − 3V . After A-producer −7 is removed, we return to step 2 to
choose a new set of prices to increase. The algorithm keeps executing steps 2 and 3 as described in
Table 2. Finally, while the algorithm increases p1, and before buyer 13 exits the trade, the weighted
price-sum in all recipes becomes 0 and the algorithm proceeds to step 4.

Step 4 The final trade is determined by Algorithm 4. First, a randomized internal contraction is
done on all nodes, which uniformly at random removes surplus agents. In our example, there are
surplus agents in buyers, sellers and B-producers categories, so we remove one buyer, one seller, and

9Alternatively, we can select (mg −mmin) · rg agents uniformly at random and remove them. Then shift the remaining
agents to fill in the ’holes’ in sets. After the shift, the last mg −mmin sets should be empty, so we remove them

Table 2: Execution of Algorithm 2 on market from Table 1
|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−3V/2,−V,−V −4V
6, 6, 4, 6 6/1 ≤ ⌊6/2⌋+ ⌊4/1⌋ ; 4/1 > ⌊6/2⌋ 2, 3 A-producer −7 exits −V,−V − (7/2),−7,−V −7− 3V
6, 6, 3, 6 6/1 ≤ ⌊6/2⌋+ ⌊3/1⌋ ; 3/1 ≤ ⌊6/2⌋ 2, 4 B-producer −8 exits −V,−(23/2),−7,−8 −23− V
6, 6, 3, 5 6/1 ≤ ⌊6/2⌋+ ⌊3/1⌋ ; 3/1 > ⌊5/2⌋ 2, 3 A-producer −5 exits −V,−(21/2),−5,−8 −21− V
6, 6, 2, 5 6/1 > ⌊6/2⌋+ ⌊2/1⌋ 1 buyer 2 exits 2,−(21/2),−5,−8 −19
5, 6, 2, 5 5/1 ≤ ⌊6/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊5/2⌋ 2, 4 B-producer −6 exits 2,−(17/2),−5,−6 −15
5, 6, 2, 4 5/1 ≤ ⌊6/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊4/2⌋ 2, 4 seller −8 exits 2,−8,−5,−(11/2) −14
5, 5, 2, 4 5/1 > ⌊5/2⌋+ ⌊2/1⌋ 1 buyer 6 exits 6,−8,−5,−(11/2) −10
4, 5, 2, 4 4/1 ≤ ⌊5/2⌋+ ⌊2/1⌋ ; 2/1 ≤ ⌊4/2⌋ 2, 4 B-producer −4 exits 6,−(13/2),−5,−4 −7
4, 5, 2, 3 4/1 ≤ ⌊5/2⌋+ ⌊2/1⌋ ; 2/1 > ⌊3/2⌋ 2, 3 A-producer −3 exits 6,−(11/2),−3,−4 −5
4, 5, 1, 3 4/1 > ⌊5/2⌋+ ⌊1/1⌋ 1 price-sum crosses 0 11,−(11/2),−3,−4 0

one B-producer all at random. Then we convert the agents of each category into sets of agents. After
this, a randomized vertical contraction is done between the A-producers and B-producers. These
categories are combined into a single set of three agents, one A-producer agent and two B-producers
agents. Next, a horizontal contraction is done between the set of producers and the remaining two
sets of two sellers each. Finally, a randomized vertical contraction is done between this combined
category and the buyers’ category. Since there are 4 remaining buyers, but only 3 sets in the child
category, one of the buyers is chosen at random and removed. In conclusion, three deals are made:
two deals follow the recipe (1, 2, 0, 0) and involve a buyer and two sellers, and one deal follows the
recipe (1, 0, 1, 2) and involves a buyer, an A-producer and two B-producers.

3.4 Ascending Auction Properties
Due to space constraints, most proofs are in Appendix C.

Analogously to the binary case, we first ensure that the weighted price-sum along each path from
the same node to a leaf is constant. We also ensure that it is an integer.

Lemma 3.1. Throughout Algorithm 2, for any category g ∈ G, the weighted price-sum along any
path from g to a leaf is an integer, and it is the same for all these paths.

The strategic and economic properties of the auction are summarized in the following theorem.

Theorem 3.2. Algorithm 2 is universally strongly-budget-balanced, individually-rational and obvi-
ously truthful.

The proof is identical to Theorem B.2 and we omit it.

Lemma 3.3. For all non-leaf categories g ∈ G, cg ≤ mg ≤ cg + 1.

We now adapt the definitions and lemmas regarding cheap and expensive paths from binary to
general recipes.

Definition 3.4. Given a price-vector p, a subset G′ ⊆ G is :
(a) Cheap — if pg ≤ minvi∈Vg,kg+1

(vi) for all g ∈ G′;
(b) Expensive — if pg ≥ maxvi∈Vg,kg

(vi) for all g ∈ G′;

Similarly to the binary case, in a cheap path, the prices are sufficiently low to allow the partici-
pation of agents not from the optimal trade (those in Vg,kg+1), while in an expensive path, the prices
are sufficiently high to allow the participation of agents only from the optimal trade (not including
those in Vg,kg

).

Lemma 3.5. Let g1, g2 be two children of the same node gp ∈ T . There cannot be simultaneously a
cheap path from g1 to a leaf and an expensive path from g2 to a leaf.

The proof is identical to that of Lemma B.7 so we omit it.
Recall that LVS(g) is the set of leaf nodes that are g’s descendants.
Lemmas 3.6 - 3.9 show some cases when Cheap and Expensive paths can and cannot exist in

certain forest-trees. These lemmas are then used to prove Lemma 3.10, which is then used to prove
our main theorem. Proofs of Lemmas 3.6 - 3.9 appear in Appendix C.

Lemma 3.6. If mg < kg − |LVS(g)| for some category g ∈ G, then there is an expensive path from
g to a leaf.

Lemma 3.7. If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from g to a leaf.

Lemma 3.8. If mg ≤ kg − 1 for some g ∈ G, and there is an expensive path from g to a leaf, and
Algorithm 3 decides to increase the price of g or a descendant of g, then, even before the increase,
there is an expensive path from the root to g.

Lemma 3.9. If mg ≥ kg + |R| − |LVS(g)|+ 1 for some g ∈ G, then there is a cheap path from the
root to a leaf (through g).

Lemma 3.10. When Algorithm 2 ends, kg − |LVS(g)| ≤ mg ≤ kg + |R| for all g ∈ G.

Proof. The proof is by contradiction.
First, suppose that mg > kg + |R| for some g ∈ G. Then mg > kg + |R| − LVS(g) + 1. By

Lemma 3.9, there is a cheap path from the root to a leaf; denote the set of categories along this path
by G′. By definition of a cheap path, pg ≤ minvi∈Vg,kg+1

(vi) for all g ∈ G′. So the sum of prices
of categories g ∈ G′ is at most the GFT of a non-optimal PS, which is negative. As long as the
price-sum is negative, the algorithm does not terminate.

Second, suppose that mg < kg − |LVS(g)| for some g ∈ G. Since at most a single agent is
removed in each iteration, this means that the algorithm decided to increase the price of g while mg

was equal to kg − |LVS(g)|. By Lemma 3.6 and Lemma 3.8, at that point there existed an expensive
path from the root to a leaf; denote the set of categories along this path by G′. By definition of
expensive path, pg ≥ maxvi∈Vg,kg

(vi) for each g ∈ G’, so the sum of prices of categories g ∈ G′ is
at least the GFT of an optimal PS, which is positive. However, the price-sum increases by a single
unit each round, and the algorithm terminates when the price-sum hits zero, so the price-sum can
never be positive.

We can finally prove our main theorem.

Theorem 3.11. For every recipe r ∈ R, The expected GFTr of Algorithm 2 is at least max(0, (kr−
|R|)/(kr + |R|)) of the optimal GFTr. As a corollary, The GFT of Algorithm 2 is at least
max(0, (kmin − |R|)/(kmin + |R|)) of the optimal GFT .

Proof. By Theorem 3.2 due to the property of Individually Rational no agent loses money by par-
ticipating in the trade, so we never get a negative GFT. So in the case of kr < |R| the lower bound
is zero. For each recipe r ∈ R and for each category g with rg > 0, by Lemma 3.10, the number of
remaining agents satisfies: rg ·(kg−|R|) ≤ |Mg| ≤ rg ·(kg+ |R|), So there are at least kg−|R| and
at most kg+ |R| sets of rg traders. Therefore, in the random selection of the final traders (Algorithm
4), at least kr − |R| deals are done, and the participants are from the at most kr + |R| highest sets of
traders in each category g. Hence, the approximation ratio of the GFT coming from recipe r alone
is at least (kr − |R|)/(kr + |R|) of the optimum10

Taking the minimum over all recipes which participate in the optimal trade (i.e., with kr > 0),
yields the ratio claimed in the corollary.

When there is a single recipe, kmin = k and |R| = 1, so Theorem 3.11 provides the same
guarantee (k − 1)/(k + 1) as the guarantee of [24] for recipes with positive integer quantities.

10In Appendix F we show that this approximation ratio cannot be substantially improved.

References
[1] Moshe Babaioff and Noam Nisan. Concurrent Auctions Across the Supply Chain. Journal of Artificial

Intelligence Research (JAIR), 21:595–629, 2004. doi: 10.1613/jair.1316.

[2] Moshe Babaioff and William E. Walsh. Incentive-compatible, budget-balanced, yet highly efficient
auctions for supply chain formation. Decision Support Systems, 39(1):123–149, March 2005. ISSN
01679236. doi: 10.1016/j.dss.2004.08.008.

[3] Moshe Babaioff and WilliamE Walsh. Incentive Compatible Supply Chain Auctions. In Multiagent based
Supply Chain Management, volume 28, pages 315–350. Springer Berlin Heidelberg, 2006.

[4] Moshe Babaioff, Yang Cai, Yannai A Gonczarowski, and Mingfei Zhao. The best of both worlds: Asymp-
totically efficient mechanisms with a guarantee on the expected gains-from-trade. In Proceedings of the
2018 ACM Conference on Economics and Computation, pages 373–373. ACM, 2018. arXiv preprint
1802.08023.

[5] Moshe Babaioff, Kira Goldner, and Yannai A Gonczarowski. Bulow-klemperer-style results for welfare
maximization in two-sided markets. In Proceedings of SODA’20, pages 2452–2471, 2020. arXiv preprint
arXiv:1903.06696.

[6] L. Blumrosen and Y. Mizrahi. Approximating gains-from-trade in bilateral trading. In WINE, pages
400–413, 2016.

[7] Liad Blumrosen and Shahar Dobzinski. Reallocation mechanisms. In EC, pages 617–640, 2014.

[8] Liad Blumrosen and Shahar Dobzinski. (almost) efficient mechanisms for bilateral trading. In Working
paper, 2018.

[9] Johannes Brustle, Yang Cai, Fa Wu, and Mingfei Zhao. Approximating Gains from Trade in Two-sided
Markets via Simple Mechanisms, June 2017. URL http://arxiv.org/abs/1706.04637.

[10] Brahim Chaib-Draa and Jörg Müller. Multiagent based supply chain management, volume 28. Springer
Science & Business Media, 2006.

[11] Rachel R Chen, Robin O Roundy, Rachel Q Zhang, and Ganesh Janakiraman. Efficient auction mecha-
nisms for supply chain procurement. Management Science, 51(3):467–482, 2005.

[12] Leon Y. Chu and Zuo-Jun M. Shen. Agent Competition Double-Auction Mechanism. Management
Science, 52(8):1215–1222, August 2006. ISSN 0025-1909. doi: 10.1287/mnsc.1060.0528. URL http:
//dx.doi.org/10.1287/mnsc.1060.0528. Online appendix available at https://pubsonline.informs.org/doi/
suppl/10.1287/mnsc.1060.0528/suppl file/mnsc.1060.0528-sm-chu shen 8 06 ec1.pdf.

[13] Riccardo Colini-Baldeschi, Bart de Keijzer, Stefano Leonardi, and Stefano Turchetta. Approximately
efficient double auctions with strong budget balance. In SODA, pages 1424–1443, 2016.

[14] Riccardo Colini-Baldeschi, Paul W Goldberg, Bart de Keijzer, Stefano Leonardi, Tim Roughgarden, and
Stefano Turchetta. Approximately efficient two-sided combinatorial auctions. In Proceedings of the 2017
ACM Conference on Economics and Computation, pages 591–608. ACM, 2017.

[15] Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local search.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 509–518. IEEE, 2013.

[16] P. Dütting, T. Roughgarden, and I. Talgam-Cohen. Modularity and greed in double auctions. Games and
Economic Behavior, 105(C):59–83, 2017.

[17] Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries. Theory of Comput-
ing, 6(1):247–290, 2010.

[18] Moran Feldman and Rica Gonen. Removal and threshold pricing: Truthful two-sided markets with multi-
dimensional participants. In SAGT, pages 163–175, 2018.

[19] Moran Feldman, Gonen Frim, and Rica Gonen. Multi-sided advertising markets: Dynamic mechanisms
and incremental user compensations. In GameSec, pages 227–247, 2018.

[20] Diodato Ferraioli, Paolo Penna, and Carmine Ventre. Two-way greedy: Algorithms for imperfect ratio-
nality. In International Conference on Web and Internet Economics, pages 3–21. Springer, 2021.

[21] Matthias Gerstgrasser, Paul W Goldberg, Bart de Keijzer, Philip Lazos, and Alexander Skopalik. Multi-
unit bilateral trade. In Proceedings of the AAAI’19, volume 33, pages 1973–1980, 2019. arXiv preprint
1811.05130.

[22] Dvir Gilor, Rica Gonen, and Erel Segal-Halevi. Ascending-price mechanism for general multi-sided
markets. In Multi-Agent Systems: 18th European Conference, EUMAS 2021, Virtual Event, June 28–29,
2021, Revised Selected Papers 18, pages 1–18. Springer, 2021.

[23] Dvir Gilor, Rica Gonen, and Erel Segal-Halevi. Ascending-price mechanism for general multi-sided
markets. In Multi-Agent Systems, pages 1–18. Springer Berlin Heidelberg, 2021.

[24] Dvir Gilor, Rica Gonen, and Erel Segal-Halevi. Strongly budget balanced auctions for multi-sided mar-
kets. Artificial Intelligence, 300:103548, 2021.

[25] Mira Gonen, Rica Gonen, and Pavlov Elan. Generalized trade reduction mechanisms. In Proceedings of
EC’07, pages 20–29, 2007.

[26] Rica Gonen and Ozi Egri. Combima: Truthful, budget maintaining, dynamic combinatorial market.
Auton. Agents Multi Agent Syst., 34(1):14, 2020.

[27] Rica Gonen and Erel Segal-Halevi. Strongly budget balanced auctions for multi-sided markets. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 1998–2005, 2020.

[28] Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information Processing
Letters, 37(1):27–35, 1991.

[29] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[30] Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):3257–87,
2017.

[31] R. P. McAfee. The gains from trade under fixed price mechanisms. Applied Economics Research Bulletin,
1, 2008.

[32] R. Preston McAfee. A dominant strategy double auction. Journal of Economic Theory, 56(2):434–450,
April 1992. ISSN 00220531.

[33] Roger B. Myerson and Mark A. Satterthwaite. Efficient mechanisms for bilateral trading. Journal of
Economic Theory, 29(2):265–281, April 1983. ISSN 00220531.

[34] Noam Nisan. Introduction to Mechanism Design (For Computer Scientists). In Noam Nisan, Tim Rough-
garden, Eva Tardos, and Vijay Vazirani, editors, Algorithmic Game Theory, pages 209–241. Cambridge
University Press, 2007. ISBN 978-0521872829.

[35] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. SBBA: A Strongly-Budget-Balanced
Double-Auction Mechanism. In Martin Gairing and Rahul Savani, editors, Algorithmic Game Theory,
volume 9928 of Lecture Notes in Computer Science, pages 260–272. Springer Berlin Heidelberg, 2016.
doi: 10.1007/978-3-662-53354-3\ 21.

[36] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. MUDA: A Truthful Multi-Unit Double-
Auction Mechanism. In Proceedings of AAAI’18. AAAI Press, February 2018a. arXiv preprint
1712.06848.

[37] Erel Segal-Halevi, Avinatan Hassidim, and Yonatan Aumann. Double Auctions in Markets for Multiple
Kinds of Goods. In Proceedings of IJCAI’18. AAAI Press, July 2018b. Previous name: ”MIDA: A Multi
Item-type Double-Auction Mechanism”. arXiv preprint: 1604.06210.

[38] William Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. Journal of Finance, 16
(No. 1 (Mar., 1961)):8–37, 1961.

APPENDIX

A More Related Work

A.1 Supply chain management
[10] provide a comprehensive survey of multiagent methods related to supply-chain management.
The most general supply-chain auction we are aware of is the trade-reduction mechanism of [2, 3].
They allow procurement sets of multiple recipes. Their model differs from ours in several respects:

(a) They distinguish between “producer markets” and “consumer markets”, with “goods” mov-
ing between markets, and impose constraints on the demand and supply of agents in each market.
In contrast, our model is abstract and considers only the general notion of a “category”, with no
specific distinction between producers and consumers, and does not require the notion of a “good”.

(b) Their “Unique Manufacturing Technology” requirement forbids some markets that are cov-
ered by our model, such as a market with one consumer-category and two producer-categories with
the two recipes (1, 1, 0) and (1, 0, 1); see [3] Section 6.

(c) Their auction is WBB and truthful, while ours is SBB and obviously-truthful.

A.2 Two-sided markets
Two-sided markets have been extensively studied since the seminal work of [32]. Recently, [35]
present a SBB variant of McAfee’s mechanism, with similar GFT guarantees. Their mechanism
may remove up to one buyer from the optimal trade, and it is the buyer with the lowest value among
the buyers in the optimal trade. [9] present two simple mechanisms that are IR, truthful, and WBB,
and obtain, in expectation, at least half of the expected GFT of the second-best efficiency benchmark.

[4] present approximation results for the double-auction setting and for double-auction with
some added constraints on the pairs of agents who can trade with each other. [16] study similar
double-sided setting to that of [4] however, their constraints are applied on each side of the market
separately. [5] show a strong analogue to the result of Bulow-Klemperer for welfare in two-sided
markets rather than revenue in auctions.

[11] consider a supply-chain auction with a sole buyer and single item-kind, but there are dif-
ferent producers in different supply-locations. The buyer needs a different quantity of the item in
different demand-locations. The buyer conducts a reverse auction and has to pay, in addition to the
cost of production, also the cost of transportation from the supply-locations to the demand-locations.
They do not guarantee SBB. [25] generalize the above settings to a unified trade reduction procedure.

[31] designs a fixed-price SBB double auction under some assumptions of buyers’ and sellers’
bid distributions. Our result does not assume knowledge of the distribution of participating cate-
gories. Additionally, we also allow for any number of categories in each recipe, as opposed to two,
as well as for multiple recipes to simultaneously trade.

[13, 8, 14] also present SBB auctions. [13, 8] auctions target double-sided and [14] target com-
binatorial markets. [26] present WBB ascending auction for combinatorial market. However, their
goal is to maximize social welfare as opposed to our goal which is maximizing gain from trade11.
Thus their mechanisms are not asymptotically-optimal for gain from trade. They also require a prior
knowledge on the agents’ valuations. Similarly to [14], [7] present a two-sided combinatorial market
solution. [7]’s solution is WBB unlike our SBB solution and maximizes social welfare as opposed
to our goal which is maximizing gain from trade.

11When optimizing GFT we optimize the difference between the total value of the sold items for the buyers and the total
value of these items for the sellers. When optimizing social welfare in a market we optimize the sum of the buying agents’
valuations plus the sum of the unsold items’ value held by selling agents at the end of trade. Despite their conceptual
similarity, the two objectives are rather different in approximation. In many cases the social welfare approximation is close
to the optimal social welfare solution; however, the gain from trade approximation may not be within any constant factor of
the optimal gain from trade.

Table 3: An example of a market with a recipe-tree as in Figure 1(b). Boldface values denote values
of agents participating in the optimal trade.

Category Agents’ values

N1: buyers 17, 14, 13, 9, 6, 2
N2: sellers -4, -5, -8, -10
N3: A-producers -1, -3, -5
N4: B-producers -1, -4, -6

[6] present a mechanism that obtains in expectation at least 1/e of the first-best GFT. However,
they assume the buyer’s valuation is drawn from a distribution satisfying the monotone hazard rate
condition. In contrast our result does not assume knowledge of the distribution of participating
categories, let alone a specific distribution.

The present work handles multiple categories of agents, but each agent is single-parametric.
An orthogonal line of work ([21, 36, 37]) remains with two agent categories (buyers and sellers),
but aims to handle multi-parametric agents. Another orthogonal line of work that also aims to
handle multi-parametric agents ([19, 18]) remains with three agent categories (buyers, mediators
and sellers). Moreover, their trade matches are conducted in two stages: first the mediator trade
with the buyers on behalf of his sellers and then the mediator transfers payments to his matched
sellers. Our auction unites all three categories of buyer, seller and mediator actions into a single
simultaneous trade step.

A.3 Obviously-Truthful
A randomized sequential mechanism is a lottery over deterministic sequential mechanisms. [30]
defined a randomized sequential mechanism as universally obviously-truthful if it is a lottery over
obviously-truthful deterministic sequential mechanisms.

[20] characterize obviously-truthful mechanisms for binary allocation problems. They show that
every obviously-truthful mechanism must use a greedy algorithm. Indeed, an ascending auction
works similarly to a greedy algorithm, as we explain in Section G.3.

B Binary Recipes
In this section we assume that all recipes are binary, that is, rg ∈ {0, 1} for all g ∈ G, for all r ∈ R.

We start by presenting an algorithm for computing an optimal trade, assuming all values are
known (Section B.1). Then, we describe our ascending-prices mechanism for multi-sided markets
with binary recipes (Section B.2). We continue by providing a detailed example of the mechanism
execution (Section B.3). Finally, we prove the mechanism properties (Section B.4).

B.1 Computing an Optimal Trade
An algorithm for computing the optimal trade, assuming all values are known, is presented as Algo-
rithm 5. We illustrate the algorithm on the market in Table 3.

The algorithm is based on contracting the recipe-forest down to a single node. Two types of
contraction operations are used.

In a vertical contraction, a leaf that is a single child is combined with its parent in the following
way. Suppose the sets of agent values in the child category are v1 ≥ v2 ≥ . . . ≥ vmv and the agent
values in the parent category are u1 ≥ u2 ≥ . . . ≥ umu . Replace the parent category by a new
category with m := min(mv,mu) values: u1 + v1, u2 + v2, . . . , um + vm. For example, a vertical
contraction on the tree of Figure 1(b) results in the tree of Figure 1(c), where N3 ∧N4 denotes the

Algorithm 5 Finding the optimal GFT — binary recipes.
Input: A set of categories G, a set of traders Ng for all g ∈ G,

and a recipe-forest R based on a forest T .
For each agent i ∈ ∪gNg , the value vi is public knowledge.

Output: Optimal trade in the market.
1. If T has a single vertex g:

Return all agents in Ng with a non-negative value: {i ∈ Ng|vi > 0}
2. Else, if T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 1.
3. Else, if there is a leaf gl that is a single child of its parent gp:

Do a vertical contraction of gl into gp. Go back to step 1.
4. Else, there is a leaf gl with a sibling leaf gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

elementwise combination of N3 and N4. In the market in Table 3, N3 ∧ N4 contains the values
{−1− 1,−3− 4,−5− 6} = {−2,−7,−11}.

The rationale is that the unique root-leaf path that passes through the parent passes through its
child too, and vice-versa. Therefore, any PS that contains an agent of the parent category must
contain an agent of the child category, and vice-versa. In economic terms, these two categories
are complements. Hence, elementwise combination of the two categories leads to a market with
identical optimal GFT.

In a horizontal contraction, two sibling leaves are combined by taking the union of their cate-
gories. For example, a horizontal contraction on the tree of Figure 1(c) results in the tree of Figure
1(d). In the market in Table 3, N2∪(N3∧N4) contains the values {−2,−4,−5,−7,−8,−10,−11}.

The rationale is that, for every path from the root to one leaf there exists a path from the root
to the other leaf, and vice-versa. Therefore, in any PS that contains an agent of one leaf-category,
this agent can be replaced with an agent from the other leaf-category. In economic terms, these
categories are substitutes. Therefore, uniting them leads to a market with the same optimal GFT.

Given a tree with two or more vertices, we consider a leaf with a maximum depth (that is, a leaf
farthest from the root). If this leaf is a single child, we apply vertical contraction. If it has a sibling,
the sibling must also be a leaf, so we apply horizontal contraction. By repeating this process, we can
contract any tree to a single node. For example, a vertical contraction on the tree of Figure 1(d), in
the market of Table 3, yields: {17 − 2, 14 − 4, 13 − 5, 9 − 7, 6 − 8, 2 − 10}. The optimal trade in
such a market is just the set of all deals with positive values, which in this case contains four deals
with values {15, 10, 8, 2}. This corresponds to an optimal trade with k = 4 deals:

• Buyer 17, A-producer −1, B-producer −1;

• Buyer 14, seller −4;

• Buyer 13, seller −5;

• Buyer 9, A-producer −3, B-producer −4.

If the forest has two or more trees, all contracted trees can be further combined using a horizontal
contraction to a single node. The process is summarized as Algorithm 5.

B.2 Ascending Auction Mechanism
The ascending-price auction is a randomized sequential mechanism. The general scheme is pre-
sented as Algorithm 6. For each category g, the auctioneer maintains a price pg , and a subset
Mg ⊆ Ng of all agents that are “in the market” (that is, their value is higher than the current price

Algorithm 6 Ascending prices mechanism for binary recipes — main loop.
Input: A market N , a set of categories G and a recipe-forest R.
Output: Strongly-budget-balanced trade.
1. Initialization: Let Mg := Ng for each g ∈ G.

Using Equation (2), set an initial price pg for each category g ∈ G.
2. Using Algorithm 7, select a set G∗ ⊆ G of categories.
3. For each g∗ ∈ G∗, ask each agent in i ∈ Mg∗ whether vi > pg∗.

(a) If an agent i ∈ Mg∗ answers “no”, then
Remove i from Mg∗ and go back to step 1.

(b) If all agents in Mg∗ for all g∗ ∈ G∗ answer “yes”, then
for all g∗ ∈ G∗, let pg∗ := pg∗ + 1.

(c) If after the increase
∑

g∈G pg · rg = 0 for some r ∈ R, then
go on to step 4.

(d) else go back to step 3.
4. Determine final trade using Algorithm 8.

Algorithm 7 Finding a set of prices to increase — binary recipes.
Input: A set of categories G, a set of remaining traders Mg for

all g ∈ G, and a recipe-forest R based on a forest T .
Output: A subset of G denoting categories for price-increase.
0. Initialization: For each category g ∈ G, let mg := |Mg|.
1. If T contains two or more trees,

Recursively run Algorithm 7 on each individual tree T ′;
Denote the outcome by IT ′ .

Return
⋃

T ′∈T IT ′ .
2. Let g0 be the category at the root of the single tree.

Let cg0 :=
∑

g′∈CHILDREN(g0)
mg′ .

3. If mg0 > cg0 [or g0 has no children at all],
then return the singleton {g0}.

4. Else (cg0 ≥ mg0), for each child g′ of g0:
Recursively run Algorithm 7 on the sub-tree rooted at g′;

Denote the outcome by Ig′ .
Return

⋃
g′∈child(g0) Ig′ .

of their category). At each iteration, the auctioneer chooses a subset of the prices, and increases
each price pg in this subset by 1. After each increase, the auctioneer asks each agent in turn, in a
pre-specified order (e.g. by their index), whether their value is still higher than the price. An agent
who answers “no” is permanently removed from the market. After each increase, the auctioneer
computes the sum of prices of the categories in each recipe, defined as: Prices-sum(r) :=

∑
g∈G pg .

When this sum equals 0, the auction ends and the remaining agents trade in the final prices. Through-
out the execution, we ensure that the sum of prices is the same for all recipes r ∈ R, so that the
price-sum crosses 0 for all recipes simultaneously, and all deals are simultaneously SBB.

To flesh out this scheme, we need to explain (a) how the prices are initialized, (b) how the set of
prices to increase is selected, and (c) how the final trade is determined.

(a) The prices are initialized as follows:

pg :=

{
−V g is not a leaf
−V · (MAXDEPTH − DEPTH(g) + 1) g is a leaf

(2)

Algorithm 8 Determining a feasible trade — binary recipes.
Input: A set of categories G,

a set of remaining traders Mg for all g ∈ G,
and a recipe-forest R based on a forest T .

Output: A set of PSs with remaining traders,
each of which corresponds to a recipe in R.

1. If T has a single vertex g:
Return Mg — the set of traders remaining in category g.

2. If T has two roots without children gl and gs:
Do a horizontal contraction of gl into gs. Go back to step 1.

3. Otherwise, pick an arbitrary deepest leaf category gl ∈ T .
4. If gl is a single child of its parent gp ∈ T :

Perform a randomized vertical contraction of gl and gp.
Go back to step 1.

5. Otherwise, gl has a sibling gs ∈ T :
Perform a horizontal contraction of gl and gs.
Go back to step 1.

This guarantees that the initial price-sum in any path from the root to a leaf is the same: −V ·
(MAXDEPTH + 1). Additionally, the price in each category is lower than the lowest possible value
of an agent in this category, which we denoted by −V .

(b) The set of prices to increase is selected by Algorithm 7. It is a recursive algorithm: if the
forest contains only a single category (a root with no children), then this category is necessarily
selected. Otherwise, in each tree, either its root category or some of its descendants are selected for
increase. The selection is based on the number of agents of each category g who are currently in the
market. We denote this number by mg := |MG|.

We denote the root category of a tree by g0. The algorithm first compares mg0 to the sum of
the mg′ over all g′ that are children of g0 (this sum is denoted by cg0). If mg0 is larger, then the
price selected for increase is the price of g0; Otherwise (cg0 is larger or equal), the prices to increase
are the prices of some of its descendants’ categories: for each child category, Algorithm 7 is used
recursively to choose a subset of prices to increase, and all returned sets are combined. It is easy
to prove by induction that the resulting subset contains exactly one price for each path from a root
to a leaf. Therefore, if all prices in the subset are increased simultaneously by one unit, then the
price-sum in all recipes remains equal.

Algorithm 7 always selects exactly one price to increase in every recipe in R. This guarantees
that the equality of price-sums is preserved by the price-increases. The price never skips any agent’s
integer value, because the initial category price was a big negative integer number (−V) and the
increment is done always by 1 so the category price visits every integer from −V to the current
category price. at some point the price-sum is exactly 0, and the auction stops.

(c) Once the auction ends, the final trade is computed using Algorithm 8. At this stage, it is
possible that in some recipes, the numbers of traders remaining in the market are not balanced.
In order to construct an integer number of procurement-sets of each recipe, some agents must be
removed from the trade. The traders to remove must be selected at random and not by their value,
since selecting traders by value would make the mechanism non-truthful.

The computation of the final trade is similar to that of the optimal trade, except that the verti-
cal contraction is replaced with a randomized vertical contraction. A leaf that is a single child is
combined with its parent in the following way. Denote the leaf and parent category by l and p re-
spectively, and let Mi be the set of traders remaining in category i. Let mmin := min(|Ml|, |Mp|) =
the number of procurement-sets that can be constructed from the agents in both categories. For each

g ∈ {l, p} if |Mg| > mmin then choose |Mg| − mmin agents uniformly at random and remove
them from Mg . Then perform a vertical contraction with the remaining agents. The horizontal
contractions can be performed deterministically, as no traders should be removed.

B.3 Example Run
We illustrate Algorithm 6 using the example in Table 3, where the recipe set is R =
{(1, 1, 0, 0), (1, 0, 1, 1)} and the recipe-forest contains the single tree shown in Figure 1(b). The
execution is shown in Table 4.

Step 1 Since MAXDEPTH = 2, the initial prices determined by (2) are −V,−2V,−V,−V . The
price-sum in each recipe is −3V .

Step 2 The categories whose price should be increased are determined using Algorithm 7. Initially,
the numbers of remaining traders in the four categories are 6, 4, 3, 3. The algorithm compares m1 =
6 to m2+m3 = 4+3. Since 6 < 4+3, category 1 (buyers) is not selected, the algorithm recursively
checks the subtrees rooted at categories 2 and 3. In the former, there is only one category (sellers),
so it is selected. In the latter, there is one child category 4. The algorithm compares m3 = 3 with
m4 = 3. Since 3 ≥ 3, the algorithm selects the child category (B-producers). Therefore, the chosen
set G∗ is {2, 4} = {seller, B-producer}.

Step 3 The auctioneer increases the prices of each category g∗ ∈ G∗ by 1, until one agent of some
category g∗ ∈ G∗ indicates that his value is not higher than the price, and leaves the trade. The
first agent who answers “no” is B-producer −6. While p4 has increased to −6, p2 has increased
to −V − 6, so the price-sum in all recipes remains the same: −2V − 6. After B-producer −6 is
removed, we return to step 2 to choose a new set of prices to increase. The algorithm keeps executing
steps 2 and 3 as described in Table 4. Finally, while the algorithm increases p1, and before buyer 9
exits the trade, the price-sum in all recipes becomes 0 and the loop ends.

Step 4 The final trade is determined by Algorithm 8. First, a randomized vertical contraction is
first done between the A-producers and B-producers. Since there is one A-producer −1 and one
B-producer −1, none of them has to be removed, and the combined category now has a single
element. Next, a horizontal contraction is done between the pair of producers and the remaining two
sellers. This results in a combined category of size 3. Finally, a randomized vertical contraction is
done between this combined category and the buyers’ category. Since there are 4 remaining buyers,
but only 3 sets in the child category, one of the buyers is chosen at random and removed from trade.
Finally, three deals are made: two deals follow the recipe (1, 1, 0, 0) and involve a buyer and a seller,
and one deal follows the recipe (1, 0, 1, 1) and involves a buyer, an A-producer and a B-producer.

B.4 Proof of Algorithm Properties
A crucial feature of our mechanism is that the price-sum along each path from the same node to a
leaf is constant.

Lemma B.1. Throughout Algorithm 6, for any category g ∈ G, the price-sum along any path from
g to a leaf is the same for all paths.

Proof. After the initialization step, the price-sum in all paths from g to a leaf is equal: −V ·
(MAXDEPTH − DEPTH(g) + 1). The selection of prices to increase (Algorithm 7) guarantees
that, for any g ∈ G, one of the following holds: either (a) no descendant of g is selected, or (b)
exactly one node is selected in any path from g to a leaf. Algorithm 6 increases all selected prices
simultaneously by the same amount of one unit; therefore the price-sum remains equal.

Table 4: Execution of Algorithm 6 on market from Table 3

Category counts G∗ Price-increase stops when New prices Price-sum

6, 4, 3, 3 2, 4 B-producer −6 exits −V,−V − 6,−V,−6 −2V − 6
6, 4, 3, 2 2, 3 A-producer −5 exits −V,−11,−5,−6 −V − 11
6, 4, 2, 2 2, 4 seller −10 exits −V,−10,−5,−5 −V − 10
6, 3, 2, 2 1 buyer 2 exits 2,−10,−5,−5 −8
5, 3, 2, 2 2, 4 B-producer −4 exits 2,−9,−5,−4 −7
5, 3, 2, 1 2, 3 seller −8 exits 2,−8,−4,−4 −6
5, 2, 2, 1 1 buyer 6 exits 6,−8,−4,−4 −2
4, 2, 2, 1 2, 3 A-producer −3 exits 6,−7,−3,−4 −1
4, 2, 1, 1 1 price-sum crosses zero 7,−7,−3,−4 0

The strategic and economic properties of the auction are summarized in the following theorems.

Theorem B.2. Algorithm 6 is universally strongly-budget-balanced, individually-rational and ob-
viously truthful.

Proof. Given a fixed priority-ordering on the agents, consider the deterministic variant of the algo-
rithm in which, in step 4 of Algorithm 8, instead of the randomized vertical contraction, the removed
agents in each category are selected deterministically by the fixed agent ordering. Algorithm 6 is a
lottery on such deterministic mechanisms, where the agent ordering is selected uniformly at random.
Therefore, to prove that the randomized mechanism satisfies a property universally, it is sufficient to
prove that each such deterministic variant satisfies this property.

Strong budget balance holds since by Lemma B.1 (applied to the root category), the price-sum
for all recipes remains the same throughout the execution, and the algorithm stops whenever this
sum becomes 0.

Individual rationality holds since an agent i ∈ Ng may remain in the market only if vi ≥ pg . 12

To prove obvious-truthfulness, we consider an agent i ∈ Ng who is asked whether vi > pg , and
check the two possible cases:

• Case 1: vi > pg . If the agent answers truthfully “yes”, then his lowest possible utility is 0,
since the mechanism is IR. If the agent answers untruthfully “no”, then his highest possible
utility is 0 since he is immediately removed from trade and cannot return.

• Case 2: vi ≤ pg . If the agent answers truthfully “no”, then his lowest possible utility is 0,
since he is removed from trade immediately. If the agent answers untruthfully “yes”, then his
highest possible utility is 0, since the utility is vi − pg and the price can only increase.

In both cases, the lowest possible utility of a truthful agent is at least the highest possible utility of a
non-truthful agent.

We now show that the ascending auction attains an asymptotically optimal GFT. The analysis as-
sumes that the valuations are generic — the sum of valuations in every subset of agents is unique. In
particular, the optimal trade is unique. This is a relatively mild assumption, since every instance can
be modified to have generic valuations with negligible impact on the gains from trade, as explained
by [2].

First, choose a sufficiently large constant W ≥ n+1 and replace each value vi by 2W · vi. This
scaling obviously has no effect on the optimal or the actual trade. Then, arbitrarily assign a unique
integer index i ∈ {1, . . . , n} to every agent, and set v′i := 2W · vi + 2i.

12If there are no two agents with the same value, then agent i remains only if vi > pg ; in case of ties, agent i may remain
also when vi = pg , since only one agent is removed in each iteration.

Now the sum of valuations in every agent subset is unique, since the n least significant bits in its
binary representation are unique. Moreover, for every subset I ⊆ N ,

∑
i∈I v

′
i ≈ 2W

∑
i∈I vi plus

some “noise” smaller than 2n+1 ≤ 2W .
Therefore, the optimal trade in the new instance corresponds to one of the optimal trades in the

original instance, with the GFT multiplied by 2W . If the constant W is sufficiently large, the “noise”
has a negligible effect on the GFT.

Definition B.3. (a) The number of deals in the optimal trade is denoted by k.
(b) For each recipe r ∈ R, the number of deals in the optimal trade corresponding to r is denoted

by kr (so k =
∑

r∈R kr).
(c) The smallest positive number of deals of a single recipe in the optimal trade is denoted by

kmin := minr∈R,kr>0 kr.
(d) For each recipe r ∈ R, The GFT of all deals corresponding to r is denoted by GFTr (so

GFT =
∑

r∈R GFTr).

Theorem B.4. For every r ∈ R the expected GFTr of the ascending-price auction of Section B.2
is at least 1− 1/kr of the optimal GFTr.

As a corollary, The GFT of the ascending-price auction of Section B.2 is at least 1− 1/kmin of
the optimal GFT .

Before proving the theorem, we remark on the dependence on kmin. This dependence may
appear weak, but it is the best possible. Consider a recipe-tree with 5 categories and 2 recipes:
(dummy, buyer1, seller1) and (dummy, buyer2, seller2). The dummy category contains infinitely-
many agents with value 0; the (buyer1, seller1) categories contain kmax pairs with a GFT of 1; the
(buyer2, seller2) categories contain kmin pairs with a GFT of kmax

2. Here, OPT = kmax + kmin ·
kmax

2. It is clearly equivalent to two independent two-sided markets: the (buyer1, seller1) market
with OPT = kmax and the (buyer2, seller2) market with OPT ≫ kmax. The approximation ratio
of any mechanism is dominated by the ratio on the (buyer2, seller2) market, which by Myerson-
Satterthwaite theorem is at most 1 − 1/kmin. When there is only one optimal deal, kmin = 1, the
only way to satisfy the truthfulness requirement of the mechanism is to remove that only deal, so the
approximation ratio is zero. Theorem 2 of [3] provides a similar guarantee for their WBB auction,
and they too present an example showing that the ratio must depend on the recipe with the least
number of PSs.

When there is a single recipe, kmin = k, so Theorem B.4 provides the same guarantee as [32].
The proof of Theorem B.4 uses several definitions. For every category g ∈ G:

(*) kg := the number of deals in the optimal trade containing an agent from Ng (equivalently:
the number of deals whose recipe-path passes through g). If g is the root category then kg = k. If g
is any non-leaf category then

kg =
∑

g′ is a child of g

kg′ . (3)

In the market in Table 4, kg for categories 1,2,3,4 equals 4, 2, 2, 2 respectively.
(*) vg,kg

:= the value of the kg-th highest trader in Ng — the lowest value of a trader who partic-
ipates in the optimal trade. In the market in Table 4, vg,kg

for categories 1,2,3,4 equals 9,−5,−3,−4
respectively. In any path from the root to a leaf, the sum of vg,kg is positive — otherwise we could
remove the PS composed of the agents corresponding to this path, and get a trade with a higher GFT.

(*) vg,kg+1 := the highest value of a trader who does not participate in the optimal trade (or −V
if no such trader exists). In the market in Table 4, vg,kg+1 for categories 1,2,3,4 equals 6,−8,−5,−6
respectively. In any path from the root to a leaf, the sum of vg,kg+1 is at most 0 — otherwise we
could add the corresponding PS and get a trade with a higher GFT.

Recall that, during the auction, mg := |Mg| = the number of agents of category g currently in
the market (whose value is larger than pg), and

cg :=
∑

g′ is a child of g

mg′ . (4)

When the algorithm starts, mg ≥ kg for all g ∈ G, since all participants of the optimal trade are in
the market. Similarly, cg ≥ kg . In contrast to equation (3), mg and cg need not be equal. By adding
dummy agents with value −V + 1 to some categories, we can guarantee that, when the algorithm
starts, mg = cg for all non-leaf categories g ∈ G. For example, in the market in Table 4 it is
sufficient to add a buyer with value −V + 1. This addition does not affect the optimal trade, since
no PS in the optimal trade would contain agents with such low values. It does not affect the actual
trade either, since the price-sum is negative as long as there are dummy agents in the market. Once
mg = cg , we show that these values remain close to each other throughout the algorithm:

Lemma B.5. For all non-leaf categories g ∈ G,

cg ≤ mg ≤ cg + 1.

Proof. The proof is by induction on the algorithm rounds. Before the first round, mg = cg by the
addition of dummy agents, so the claim holds.

In each round, if mg = cg then Algorithm 7 never selects pg for increase. Hence, Algorithm 6
never removes agents from Mg , so cg ≤ mg still holds. It may remove an agent from a child of g,
but since at most one agent is removed in each round, mg ≤ cg + 1 still holds after the removal.

If mg = cg+1, then the algorithm never increases prices and never removes agents from children
of g, so mg ≤ cg + 1 still holds; it may remove at most one agent from Mg , so cg ≤ mg holds.

Definition B.6. Given a price-vector p, a subset G′ ⊆ G is called:
(a) Cheap — if pg ≤ vg,kg+1 for all g ∈ G′;
(b) Expensive — if pg ≥ vg,kg for all g ∈ G′.

We apply Definition B.6 to paths in trees in the recipe-forest T . Intuitively, in a cheap path,
the prices are sufficiently low to allow the participation of agents not from the optimal trade. In an
expensive path, the prices are sufficiently high to allow the participation of agents only from the
optimal trade.

Lemma B.7. Let g1, g2 be two children of the same parent node gp ∈ T . There cannot be simulta-
neously a cheap path from g1 to a leaf and an expensive path from g2 to a leaf.

Proof. Let q1 be the price-sum along the cheap path from g1 to a leaf, and q2 the price-sum along
the expensive path from g2 to a leaf. By definition of cheap and expensive paths, q1 is the GFT of a
part of non-optimal PS, and q2 is the GFT of a part of an optimal PS; therefore q1 < q2. But both
paths are children of the same node g, contradicting Lemma B.1.

Lemma B.8. If mg ≤ kg − 1 for some g ∈ G, then there is an expensive path from g to a leaf.

Proof. The fact that mg ≤ kg − 1 means that pg ≥ vg,kg , so the condition for an expensive path
holds for g itself. To show that it holds for a path from g to a leaf, we apply induction on HEIGHT(g).
If HEIGHT(g) = 0 (i.e., g itself is a leaf), then the claim is obvious. Otherwise, by Lemma B.5,

∑
g′ is a child of g

mg′ = cg ≤ mg ≤ kg − 1 =

 ∑
g′ is a child of g

kg′

− 1

Therefore, there is at least one child g′ of g for which mg′ ≤ kg′ − 1. Since HEIGHT(g′) <
HEIGHT(g), by the induction assumption there is an expensive path from g′ to a leaf. Prepending g
to this path yields an expensive path from g to a leaf.

Lemma B.9. If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from g to a leaf.

Proof. The fact that mg ≥ kg + 1 means that pg ≤ vg,kg+1, so the condition for a cheap path holds
for g itself. To show that it holds for a path from g to a leaf, we apply induction on HEIGHT(g). If
HEIGHT(g) = 0 then the claim is obvious. Otherwise, there are two cases.

Case #1: g has a child g′ for which mg′ ≥ kg′ + 1. Then by the induction assumption there is a
cheap path from g′ to a leaf; prepending g to this path yields a cheap path from g to a leaf.

Case #2: mg′ ≤ kg′ for all children g′ of g. Then,

cg =
∑

g′ is a child of g

mg′ ≤
∑

g′ is a child of g

kg′ = kg ≤ mg − 1.

Lemma B.5 implies that mg − 1 ≤ cg , so all these inequalities are in fact equalities. In particular,∑
g′ mg′ =

∑
g′ kg′ , where the sums are on all children g′ of g. Together with mg′ ≤ kg′ , this

implies mg′ = kg′ for all children g′ of g. Now, let us look back at the history of price-increases
made by the algorithm, and identify the most recent price-increase in a descendant of g (a category
in the subtree below g). Before this price-increase, cg = mg had necessarily held, since otherwise
Algorithm 7 would have chosen g rather than a descendant of g. After the price-increase, we have
cg = mg − 1. This means that the price-increase must have been in a child g′ of g, and it caused
mg′ to decrease by one. So before this increase, this child had mg′ = kg′ +1. Since HEIGHT(g′) <
HEIGHT(g), by the induction assumption there was a cheap path from g′ to a leaf. The price-
increase of g′ stopped at the moment when agent kg′ + 1 was removed from Mg′ , i.e., it stopped at
pg′ = vg′,kg′+1; therefore, the same path from g′ to a leaf is still cheap. Prepending g yields a cheap
path from g to a leaf.

Lemma B.10. If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from the root to a leaf
(through g).

Proof. By Lemma B.9 there is a cheap path from g to a leaf. Therefore, it is sufficient to prove that
there is a cheap path from the root to g. The proof is by induction on DEPTH(g). If DEPTH(g) = 0
(i.e., g itself is the root), then the claim is obvious. Otherwise, let gp be the parent of g.

By Lemma B.7, since there is a cheap path from g to a leaf, there cannot be an expensive path
from any other child of gp to a leaf. So by Lemma B.8, mg′ ≥ kg′ for any child g′ of gp. Summing
over all children of gp (and adding 1 for the child g) gives:

cgp =
∑

g′ is a child of gp

mg′ ≥ 1 +
∑

g′ is a child of gp

kg′ = kgp + 1.

Since mgp ≥ cgp by Lemma B.5, this implies mgp ≥ kgp + 1. Since DEPTH(gp) < DEPTH(g), by
the induction assumption there is a cheap path from the root to gp; appending g to this path yields a
cheap path from the root to g.

Lemma B.11. If mg ≤ kg − 1 for some g ∈ G, and Algorithm 7 decides to increase the price of g
or a descendant of it, then there is an expensive path from the root to a leaf (through g).

Proof. By Lemma B.8, mg ≤ kg − 1 implies that there is an expensive path from g to a leaf.
Therefore, it is sufficient to prove that there is an expensive path from the root to g. The proof is
by induction on DEPTH(g). If DEPTH(g) = 0 (i.e., g itself is the root), then the claim is obvious.
Otherwise, let gp be the parent of g.

By Lemma B.7, since there is an expensive path from g to a leaf, there cannot be a cheap path
from any other child of gp to a leaf. So by Lemma B.9, mg′ ≤ kg′ for any child g′ of gp. Summing
over all children of gp (and subtracting 1 for child g) gives:

cgp =
∑

g′ is a child of gp

mg′ ≤ −1 +
∑

g′ is a child of gp

kg′ = kgp − 1.

The fact that Algorithm 7 decides to increase the price of g or a descendant of it implies that mgp ≤
cgp . Therefore, mgp ≤ kgp − 1. Since DEPTH(gp) < DEPTH(g), by the induction assumption there
is an expensive path from root to gp; appending g to this path yields an expensive path from root to
g.

Lemma B.12. When Algorithm 6 ends, mg ∈ {kg, kg − 1} for all g ∈ G.

Proof. The proof is by contradiction.
First, suppose that mg ≥ kg + 1 for some g ∈ G. By Lemma B.10, there is a cheap path from

the root to a leaf; denote the set of categories along this path by G′. The sum of prices of categories
g ∈ G′ is the GFT of a non-optimal PS, which is negative. As long as the price-sum is negative, the
algorithm does not terminate.

Second, suppose that mg ≤ kg − 2 for some g ∈ G. Since at most a single agent is removed in
each iteration, this means that the algorithm decided to increase the price of g while mg was equal to
kg − 1. By Lemma B.11, at that point there existed an expensive path from the root to a leaf; denote
the set of categories along this path by G′. The sum of prices of categories g ∈ G′ is the GFT of
an optimal PS, which is positive. However, the price-sum increases by a single unit each round, and
the algorithm terminates when the price-sum hits zero, so the price-sum can never be positive.

Proof of Theorem B.4. By Lemma B.12, each recipe r ∈ R with kr = 0 does not participate in the
trade at all, since the leaf category gl of r has kgl = 0 and therefore mgl = 0. For each recipe
r ∈ R with kr > 0, for each category g in r, all kg optimal traders of g, except maybe the lowest-
valued one, participate in the final trade. Therefore, in the random selection of the final traders
(Algorithm 8), for each path with a corresponding recipe r ∈ R, at least kr − 1 random deals out of
the kr optimal deals are executed. Hence, the expected GFT coming from recipe r alone is at least
(1− 1/kr) times the optimum.

Taking the minimum over all recipes yields the ratio claimed in the corollary.

C Proof of Algorithm Properties of Integer Recipes
Analogously to the binary case, we first ensure that the weighted price-sum along each path from
the same node to a leaf is constant. We also ensure that it is an integer.

C.1 Lemma 3.1
Lemma 1. Throughout Algorithm 2, for any category g ∈ G, the weighted price-sum along any
path from g to a leaf is an integer, and it is the same for all these paths.

Proof. We first show that the lemma holds for the initial prices (1). Consider a path from g to some
leaf gl. The price for all non-leaf categories in this path is −V , so∑

g′∈PATH(g→gl),g′ ̸=gl

pg′ · rg′ = −V ·
∑

g′∈PATH(g→gl),g′ ̸=gl

rg′ .

The price of gl is determined such that

pgl · rgl = −V · (MAXWD − WEIGHTD(gl) + rgl).

The total weighted price-sum is the sum of the above two expressions, which is

− V ·

MAXWD − WEIGHTD(gl) +
∑

g′∈PATH(g→gl)

rg′

= −V ·

MAXWD −
∑

g′∈PATH(root→gl)

rg′ +
∑

g′∈PATH(g→gl)

rg′

= −V ·

MAXWD −
∑

g′∈PATH(root→PARENT(g))

rg′

= −V · (MAXWD − WEIGHTD(g) + rg),

which is an integer and is independent of the selection of gl.
The selection of prices to increase (Algorithm 3) guarantees that, for any g ∈ G, one of the

following holds: either (a) no descendant of g is selected, or (b) exactly one node is selected in any
path from g to a leaf. Algorithm 2 simultaneously increases the price of each selected category g∗

by 1/rg∗. Therefore, all the terms pg∗ · rg∗ increase simultaneously by 1. Therefore, the weighted
price-sum in all paths from g to a leaf either does not change, or increases by 1. So the sum remains
an integer, and remains equal.

The strategic and economic properties of the auction are summarized in the following theorem.

C.2 Theorem 3.2
Theorem. Algorithm 2 is universally strongly-budget-balanced, individually-rational and obviously
truthful.

The proof is identical to Theorem B.2 and we omit it.
To Analyze the gain-from-trade, we again assume that the valuations are generic — the sum of

valuations in every subset of agents is unique. In particular, the optimal trade is unique. This is
a relatively mild assumption, since every instance can be modified to have generic valuations, as
explained in Section B.

To analyze the gain-from-trade, we define for every category g ∈ G:
(*) kg := the number of deals in the optimal trade containing agents from Ng (equivalently: the

number of deals whose recipe-path passes through g). If g is the root category then kg = k. If g is
any non-leaf category then

kg =
∑

g′∈CHILDREN(g)

kg′ . (5)

In the market of Table 1, kg for categories 1,2,3,4 equals 4, 2, 2, 2 respectively.
(*) Vg,kg := the set of values of the kg-th highest set of traders in Ng after performing the internal

contraction, i.e. the lowest set of values of traders that participate in the optimal trade. In the market
in Table 1, Vg,kg

for categories 1,2,3,4 equals (13), (−3,−4), (−3), (−3,−4) respectively. Note
that, in any path from the root to a leaf, the sum of all vi ∈ Vg,kg

is at least 0 — otherwise we could
remove the PS composed of the agents corresponding to this path, and get a trade with a higher GFT.

(*) Vg,kg+1 := the set of values of the kg+1-th highest set of traders in Ng after performing the
internal contraction, i.e. the highest set of values of traders that do not participate in the optimal
trade. In the market in Table 1, Vg,kg+1 for categories 1,2,3,4 equals (6), (−5,−8), (−5), (−6,−8)
respectively. Note that, in any path from the root to a leaf, the sum of all vi ∈ Vg,kg+1 is negative —
otherwise we could add the corresponding PS and get a trade with a higher GFT.

Recall that, during the auction, mg := |Mg|/rg and

cg :=
∑

g′∈CHILDREN(g)

⌊mg′⌋ . (6)

When the algorithm starts, mg ≥ kg for all g ∈ G, since all participants of the optimal trade are
in the market. Similarly, cg ≥ kg . Similarly to the binary case, we add dummy agents with value
−V +1 to some categories, such that, when the algorithm starts, mg = cg for all non-leaf categories
g ∈ G. For example, in the market of Table 1 it is sufficient to add a buyer and two B-producers with
values −V + 1. Once mg = cg , we show that these values remain close to each other throughout
the algorithm:

C.3 Lemma 3.3
Lemma 2. For all non-leaf categories g ∈ G,

cg ≤ mg ≤ cg + 1.

Proof. The proof is by induction on the algorithm rounds. Before the first round mg = cg (thanks
to the addition of dummy agents), so the claim holds.

In each round, if mg = cg then Algorithm 3 never selects pg for increase. Hence, Algorithm 2
never removes agents from Mg , so cg ≤ mg still holds. It may remove an agent from a child of g,
but since at most one agent is removed in each round, mg ≤ cg + 1 still holds after the removal.

if mg > cg then the algorithm never increases prices and never removes agents from children of
g, so mg ≤ cg +1 still holds. It may remove at most one agent from Mg , which decreases the value
of mg by 1/rg . Since cg, rg,−V are integers, and mg is an integer multiple of 1/rg , the value of
mg does not go below cg , so cg ≤ mg still holds.

The illustrations below show some possible states of a tree subset during the execution. The
top node is g and it has two child nodes. The numbers in the nodes are in the following format:
|Mg|/rg = mg .

Initially, mg = 11 and cg = ⌊4.33⌋ + ⌊7⌋ = 11 too. Then, an agent from the left child is
removed, and we still have mg = cg = 11:

22/2=11

13/3 = 4.33 7/1 = 7

22/2=11

12/3 = 4 7/1 = 7

Then, another agent from the left child is removed, and mg = cg + 1; Then an agent from g is
removed, and cg < mg < cg + 1:

22/2=11

11/3 = 3.66 7/1 = 7

21/2=10.5

11/3 = 3.66 7/1 = 7

The next agent will be removed from g again (since mg > cg), and at that point we will have
mg = cg = 10.

Similarly to the binary case, in a cheap path, the prices are sufficiently low to allow the partici-
pation of agents not from the optimal trade (those in Vg,kg+1), while in an expensive path, the prices
are sufficiently high to allow the participation of agents only from the optimal trade (not including
those in Vg,kg

).

C.4 Lemma 3.5
Lemma 3. Let g1, g2 be two children of the same node gp ∈ T . There cannot be simultaneously a
cheap path from g1 to a leaf and an expensive path from g2 to a leaf.

The proof is identical to that of Lemma B.7 so we omit it.
Recall that LVS(g) is the set of leaf nodes that are descendants of g.

C.5 Lemma 3.6
Lemma 4. If mg < kg − |LVS(g)| for some category g ∈ G, then there is an expensive path from g
to a leaf.

Proof. The proof is by induction on HEIGHT(g).
The base is HEIGHT(g) = 0, i.e., g is a leaf. The fact that mg < kg − |LVS(g)| = kg − 1

implies that |Mg| < kgrg − rg . This means that at least rg agents from category g, who participate
in the optimal trade, have already left the market due to price-increase. This means that pg ≥
maxvi∈Vg,kg

(vi), so the condition for an expensive path holds for g.
Suppose now that HEIGHT(g) > 0, i.e., g is not a leaf. By Lemma 3.3, mg ≥ cg , so∑

g′∈CHILDREN(g)

⌊mg′⌋ = cg ≤ mg < kg − |LVS(g)| =

=
∑

g′∈CHILDREN(g)

(kg′ − |LVS(g′)|)

Since the sigmas on both sides are integers, it follows that:

∑
g′∈CHILDREN(g)

⌊mg′⌋ ≤
∑

g′∈CHILDREN(g)

(kg′ − |LVS(g′)|)− 1

Therefore, there is at least one child g′ of g for which ⌊mg′⌋ ≤ kg′ − |LVS(g′)| − 1. Since
kg′ ∈ Z+, it follows that mg′ < kg′ − |LVS(g′)|. Since HEIGHT(g′) < HEIGHT(g), by the
induction assumption there is an expensive path from g′ to a leaf. Prepending g to this path yields
an expensive path from g to a leaf.

Two possible subtrees are illustrated below. The top node is g and it has two child leaf nodes.
The numbers in the nodes are in the format mg ; kg . The nodes in the expensive path are denoted
by *.

10.5 ; 13 *

4.5 ; 5 6.5 ; 8 *

10.5 ; 13 *

3.5 ; 5 * 7.5 ; 8∑
g′∈CHILDREN(g)

⌊mg′⌋ = 10 ≤ 13− 2− 1 =
∑

g′∈CHILDREN(g)

(kg′ − |LVS(g′)|)− 1

For the top node we have |LVS(g)| = 2, so mg < kg − |LVS(g)|, and the lemma indicates that
there should be an expensive path from g to a leaf. To identify this path, we should find a child of
g in which the same inequality holds. For the leaf nodes, we have |LVS(g′)| = 1. The inequality
mg′ < kg′ − |LVS(g′)| holds for the rightmost leaf in the leftmost tree, and for the leftmost leaf in
the rightmost subtree, so these are the leaves in the expensive path.

C.6 Lemma 3.7
Lemma 5. If mg ≥ kg + 1 for some g ∈ G, then there is a cheap path from g to a leaf.

Proof. The fact that mg ≥ kg + 1 implies that |Mg| ≥ kg · rg + rg . This means that at least one set
of rg agents from category g, who do not participate in the optimal trade, is still in the market. This
means that pg ≤ minvi∈Vg,kg+1

(vi), so the condition for a cheap path holds for g itself. To show
that it holds for a path from g to a leaf, we apply induction on HEIGHT(g). If HEIGHT(g) = 0 then
the claim is obvious. Otherwise, there are two cases.

Case #1: g has a child g′ for which mg′ ≥ kg′ + 1. Then by the induction assumption there is a
cheap path from g′ to a leaf; prepending g to this path yields a cheap path from g to a leaf.

Case #2: mg′ < kg′ + 1 for all children g′ of g. Since ⌊mg′⌋ , kg′ are integers, it follows that
⌊mg′⌋ ≤ kg′ for all children g′ of g, therefore:∑

g′∈CHILDREN(g)

kg′ ≥
∑

g′∈CHILDREN(g)

⌊mg′⌋ = cg

By Lemma 3.3 we have cg + 1 ≥ mg , so

cg ≥ mg − 1 ≥ kg =
∑

g′∈CHILDREN(g)

kg′ ≥ cg

Therefore, in the expression above, all inequalities collapse to equalities. In particular, mg =
kg + 1 and cg = mg − 1 (which implies that mg is an integer).

Now, let us look back at the history of price-increases made by the algorithm, and identify the
most recent price-increase in a descendant of g (a category in the subtree below g). Before this
price-increase, cg ≥ mg had necessarily held, since otherwise Algorithm 3 would not have chosen
a descendant of g for increase. After the price-increase, cg = mg − 1 holds. This means that the
price-increase must have been in some child g∗ of g, and it caused ⌊mg∗⌋ and cg to decrease by one.
Before the increase, we had

∑
g′∈CHILDREN(g)

⌊mg′⌋ = cg ≥ mg = kg + 1 =

 ∑
g′∈CHILDREN(g)

kg′

+ 1.

Since for all other children g′ of g except for g∗, ⌊mg′⌋ ≤ kg′ is still true, therefore before the
increase, ⌊mg∗⌋ ≥ kg∗ + 1 held.

Since HEIGHT(g∗) < HEIGHT(g), by the induction assumption there was a cheap path from
g∗ to a leaf. The price-increase of g∗ stopped at the moment when an agent from set kg∗ + 1 was
removed from Mg∗ , i.e., it stopped at pg∗ ≤ minvi∈Vg∗,kg∗+1

(vi); therefore, the same path from g∗

to a leaf is still cheap. Prepending g to this path yields a cheap path from g to a leaf.

This is illustrated below, where the left subtree is before and the right subtree is after the price-
increase mentioned in the proof. The nodes in the cheap path are denoted by @.

15 ; 14 @

6 ; 6 9 ; 8 @
cg = 15 = mg

15 ; 14 @

6 ; 6 8.5 ; 8 @
cg = 14 = mg − 1∑

g′∈CHILDREN(g) ⌊mg′⌋ = 15 ≥ 14 + 1 =
∑

g′∈CHILDREN(g) (kg′) + 1

For the top node mg ≥ kg + 1, so the lemma indicates that there should be a cheap path from g to a
leaf. The leftmost subtree illustrates Case #1: mg′ ≥ kg′ + 1 holds for the rightmost leaf g′, so it is
the leaf in the cheap path. The rightmost subtree illustrates Case #2: mg′ < kg′ + 1 for all children
of g. We have cg = 14 = mg − 1, and indeed the previous price-increase was in a child of g (the
rightmost leaf).

C.7 Lemma 3.8
Lemma 6. If mg ≤ kg − 1 for some g ∈ G, and there is an expensive path from g to a leaf, and
Algorithm 3 decides to increase the price of g or a descendant of g, then, even before the increase,
there is an expensive path from the root to g.

Proof. The proof is by induction on DEPTH(g). If DEPTH(g) = 0 (i.e., g itself is a root), then the
claim is obvious. Otherwise, let gp be the parent of g. We will show that mgp ≤ kgp − 1. Then,
by the induction assumption there is an expensive path from the root to gp; appending g to this path
yields an expensive path from the root to g.

Aassume for contradiction that mgp > kgp − 1. The fact that Algorithm 3 decides to increase
the price of g or a descendant of g, implies that cgp ≥ mgp . Hence,∑
g′∈CHILDREN(gp)

⌊mg′⌋ = cgp ≥ mgp > kgp − 1 =
∑

g′∈CHILDREN(gp)

kg′ − 1

Since ⌊mg⌋ ≤ mg and mg ≤ kg − 1, we have ⌊mg⌋ ≤ kg − 1. Removing from both sides the term
corresponding to g (which is a child of gp) yields:

 ∑
g ̸=g′∈CHILDREN(gp)

⌊mg′⌋

 >

 ∑
g ̸=g′∈CHILDREN(gp)

kg′

 .

Since both sides are integers, it follows that:

 ∑
g ̸=g′∈CHILDREN(gp)

⌊mg′⌋

 ≥

 ∑
g ̸=g′∈CHILDREN(gp)

kg′

+ 1.

Therefore, there is at least one child g′ of gp for which ⌊mg′⌋ ≥ kg′ +1. Since mg′ ≥ ⌊mg′⌋, we
have mg′ ≥ kg′ + 1. By Lemma 3.7, there is a cheap path from g′ to a leaf. But by the assumption
of the present Lemma, there is an expensive path from g — which is a sibling of g′ — to a leaf. By
Lemma 3.5, these two paths cannot exist simultaneously.

An example of such an impossible subtree is illustrated below. The top node is gp, the left child
is g′, and the right child is g.

12 ; 13

6.6 ; 5 @ 6.8 ; 8 * ∑
g′∈CHILDREN(g) ⌊mg′⌋ = 12 ≤ 13− 1 =

∑
g′∈CHILDREN(g) (kg′)− 1

For the right child g, we have mg ≤ kg − 1, and we assume there is an expensive path from g to
a leaf, and Algorithm 3 decides to increase the price of g or a descendant of g (since mgp = 12 ≤
12 = cgp), then, even before the increase, there is an expensive path from the root to g. And it is not
possible to have a cheap path on the left child g′.

C.8 Lemma 3.9
Lemma 7. If mg ≥ kg + |R| − |LVS(g)| + 1 for some g ∈ G, then there is a cheap path from the
root to a leaf (through g).

Proof. Since |R| = LVS(root) ≥ |LVS(g)| for all g ∈ G, the lemma assumption mg ≥ kg + |R| −
|LVS(g)|+1 implies mg ≥ kg +1. By Lemma 3.7 there is a cheap path from g to a leaf. Therefore,
it is sufficient to prove that there is a cheap path from the root to g. The proof is by induction on
DEPTH(g). If DEPTH(g) = 0 (i.e., g itself is a root), then the claim is obvious.

Otherwise, let gp be the parent of g. We will show that mgp ≥ kgp + |R|− |LVS(gp)|+1. Then,
by the induction assumption there is a cheap path from the root to gp; appending g to this path yields
a cheap path from the root to g.

By Lemma 3.3, mgp ≥ cgp . By the present lemma assumption, ⌊mg⌋ ≥ kg+ |R|−|LVS(g)|+1,
since kg, |R|, |LVS(g)| are integers.

As there is a cheap path from g to a leaf, by Lemma 3.5 there cannot exist an expensive path
from any sibling of g to a leaf. By Lemma 3.6, all siblings g′ of g must have mg′ ≥ kg′ −|LVS(g′)|,
and since the right-hand side is an integer, ⌊mg′⌋ ≥ kg′ − |LVS(g′)| must hold too. Therefore:

mgp ≥ cgp

= ⌊mg⌋+
∑

g ̸=g′∈CHILDREN(gp)

⌊mg′⌋

≥ (kg + |R| − |LVS(g)|+ 1) +
∑

g ̸=g′∈CHILDREN(gp)

(kg′ − |LVS(g′)|)

= (kg + |R| − |LVS(g)|+ 1) + (kgp − kg)− (|LVS(gp)| − |LVS(g)|)
= kgp + |R| − |LVS(gp)|+ 1,

which concludes the proof by induction.

C.9 Lemma 3.10
Lemma 8. When Algorithm 2 ends,

kg − |LVS(g)| ≤ mg ≤ kg + |R|

for all g ∈ G.

Proof. The proof is by contradiction.
First, suppose that mg > kg + |R| for some g ∈ G. Then mg > kg + |R| − LVS(g) + 1. By

Lemma 3.9, there is a cheap path from the root to a leaf; denote the set of categories along this path
by G′. By definition of a cheap path, pg ≤ minvi∈Vg,kg+1

(vi) for all g ∈ G′. So the sum of prices
of categories g ∈ G′ is at most the GFT of a non-optimal PS, which is negative. As long as the
price-sum is negative, the algorithm does not terminate.

Second, suppose that mg < kg − |LVS(g)| for some g ∈ G. Since at most a single agent is
removed in each iteration, this means that the algorithm decided to increase the price of g while mg

was equal to kg − |LVS(g)|. By Lemma 3.6 and Lemma 3.8, at that point there existed an expensive
path from the root to a leaf; denote the set of categories along this path by G′. By definition of
expensive path, pg ≥ maxvi∈Vg,kg

(vi) for each g ∈ G’, so the sum of prices of categories g ∈ G′ is
at least the GFT of an optimal PS, which is positive. However, the price-sum increases by a single
unit each round, and the algorithm terminates when the price-sum hits zero, so the price-sum can
never be positive.

Table 5: Notations
Variable Description Equation

N Set of agents
G Set of agent categories
Ng Set of agents in category g ∈ G ⊔g∈GNg

PS Procurement-set: a subset of agents that can perform a single deal
rg number of agents of category g that should be in each PS
r Vector of number of agents of each category that should be in each PS (rg)g∈G

vi ∈ Z Represents the material gain of an agent i from participating in a PS
V Publicly known bounds on the possible valuations ∀i ∈ N : −V < vi < V
T A forest in which, in each tree, one vertex is denoted as its root
R Recipe-forest: a rooted forest T in which the set of nodes is G
P Path in some tree T

CHILDREN(g) Child nodes of the node g in its tree
LVS(g) Leaf descendants of the node g in its tree (if g is a leaf then LVS(g) = {g})

PATH(g1 → g2) Nodes in the unique path from g1 to g2, inclusive
HEIGHT(g) Largest distance between the node g and a leaf of its tree. The height of a leaf is 0
DEPTH(g) Unique distance between the node g and the root of its tree. The depth of a root is 0

MAXDEPTH Maximum depth of forest T maxg is a leaf in T DEPTH(g)
GFT (S) Gain-from-trade of a procurement-set S

∑
i∈S vi

kr Number of deals in the optimal trade corresponding to r
k The number of deals in the optimal trade

∑
r∈R kr

kmin The smallest positive number of deals of a single recipe in the optimal trade minr∈R,kr>0 kr
GFT(S1, . . . , Sk) Sum of the GFT of all procurement-sets participating in the trade

∑k
j=1 GFT(Sj)

Prices-sum(r) The sum of prices of the categories in each recipe
∑

g∈r pg
Mg Agents of category g who are currently in the market Mg ⊆ Ng

Table 6: Notations for binary recipes
Variable Description Equation

mg Number of agents of category g who are currently in the market |Mg|
cg Sum of m′

g of children g′ of g
∑

g′∈CHILDREN(g) mg′

vg,kg+1 The highest value of a trader that does not participate in the optimal trade
Cheap The prices are sufficiently low to allow the participation of agents not from the optimal trade if pg ≤ vg,kg+1, ∀g ∈ G′

vg,kg The lowest value of a trader that participates in the optimal trade
Expensive The prices are sufficiently high to allow the participation of agents only from the optimal trade if pg ≥ vg,kg ,∀g ∈ G′

D Experiments
We evaluated the performance of our ascending auction using simulation experiments. 13

For these experiments, we used the recipe-forests R = {(1, 1, 0, 0), (1, 0, 1, 1)} and R =
{(1, 2, 0, 0), (1, 0, 1, 2)}, each of which each contains a single tree with two paths (N1 −→ N2

and N1 −→ N3 −→ N4).
For several values of n ≤ 2000, we constructed a market with n · rg agents of each category g,

such that the potential number of procurement-sets is n. We chose n to be a number divisible by
|CHILDREN(groot)| (= number of children of the root category), and at most 2000. The value of
each trader was selected randomly as described in Section D.1 below. For each n, we made 10,000
runs and averaged the results. We split the values among the categories uniformly at random, so
each category has n values.

D.1 Agents’ Values
We conducted two sets of experiments. In the first experiment set, the value of each buyer (root
category) was selected uniformly at random from [1, 1000], and the value of each trader from the
other three categories was selected uniformly at random from [−1,−1000].

13The code used for the experiments and the experiment results are available at https://github.com/dvirg/auctions.

Table 7: Notations for integer recipes
Variable Description Equation

WEIGHTD(g) Distance between g and the root of its tree (including the root), weighted by the rg′
∑

g′∈PATH(g→root) rg′

MAXWD Maximum weighted depth of forest T maxg is a leaf in T WEIGHTD(g)
mg Number of agents of category g who are currently in the market divided by category size rg |Mg|/rg
cg Sum of rounded down of m′

g of children g′ of g
∑

g′∈CHILDREN(g) ⌊mg′⌋
Vg,kg+1 The highest set of values of traders that do not participate in the optimal trade
Cheap The prices are sufficiently low to allow the participation of agents not from the optimal trade if pg ≤ minvi∈Vg,kg+1(vi),∀g ∈ G′

Vg,kg The lowest set of values of traders that participate in the optimal trade
Expensive The prices are sufficiently high to allow the participation of agents only from the optimal trade if pg ≥ maxvi∈Vg,kg

(vi),∀g ∈ G′

Table 8: Results of experiment with stock-market prices and the recipe-forest R =
{(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 1.11 1.00 1.00 0.496 903.2 0.47 0.47 0.47 37.183 483.8 43.393
4 2.28 1.54 1.82 35.401 2003.9 1.50 1.34 1.37 64.908 1667.6 80.315
6 3.47 1.85 2.66 46.183 3092.3 2.60 1.90 2.22 74.594 2855.7 90.595

10 5.84 2.40 4.29 58.373 5163.3 4.89 2.52 3.87 83.634 5025.1 96.321
16 9.39 3.35 6.75 70.174 8415.4 8.42 3.32 6.34 89.593 8333.2 98.502
26 15.31 5.11 10.85 80.449 13683.2 14.34 4.89 10.45 93.603 13633.3 99.426
50 29.53 9.63 20.70 89.621 26223.9 28.55 9.24 20.31 96.655 26195.7 99.834

100 59.16 19.18 41.20 94.787 53135.7 58.18 18.79 40.81 98.340 53121.7 99.957
500 296.00 92.89 205.20 98.923 266371.5 295.00 94.80 204.78 99.661 266368.4 99.997
1000 592.02 182.49 410.16 99.452 532833.8 591.03 184.66 409.72 99.832 532832.4 99.999
2000 1184.19 364.14 820.05 99.725 1065649.7 1183.18 363.88 819.55 99.914 1065649.1 99.999

In the second experiment set, the values were selected based on real stocks prices on Yahoo’s
stock market site using 33 stocks. For each stock, we collected the prices from every day from the
inception of the stock until September 2020. Every day the stock has 4 values: Open, Close, High
and Low. All price values are multiplied by 1000, so they can be represented as integers, to avoid
floating-point rounding errors. On each stock, we collected all the price values and used those price
values as agents’ values at random. For the non-root categories, the values were multiplied by −1.
There were more than 5000 values for each category.

D.2 Number of Deals and Gain From Trade
In each run, we calculated k (the number of deals in the optimal trade), kmin, kmax (recipe minimum
and maximum number of deals in the optimal trade), LB (the theoretical lower bound ratio kmin−1

kmin

or kmin−|R|
kmin+|R|) and OGFT (the optimal gain-from-trade). For the ascending-price mechanism, we

calculated k′ (the actual number of deals achieved by the mechanism), kmin
′, kmax

′ (the actual
recipe minimum and maximum number of deals achieved by the mechanism) and the GFT (the
actual gain-from-trade of deals achieved by the mechanism).

D.3 Results and Conclusions
The results from the stock-prices experiment are presented in Tables 8 and 10 and in Figures 2 and
4. The results from the uniform-random experiment are presented in Tables 9 and 11 and in Figures
3 and 5.

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

1− 1/kmin Ratio

Figure 2: Graph of results from Table 8. GFT Ratio is the actual gain-from-trade of deals achieved
by the mechanism divided by the optimal gain-from-trade. k′ Ratio is the actual number of deals
achieved by the mechanism divided by the number of deals in the optimal trade. 1 − 1/kmin Ratio
is the theoretical lower bound ratio (LB).

The highlights of both sets of experiments are similar. Below are some of the highlights:

• The actual number of trades (k′) is very close to k − 1. Note that, theoretically, the mecha-
nism might lose up to one optimal deal in the recipe-forest R = {(1, 1, 0, 0), (1, 0, 1, 1)} and
up to two optimal deals in the recipe-forest R = {(1, 2, 0, 0), (1, 0, 1, 2)} (see the proof of
Theorems B.4 and 3.11). But in practice, it loses about one optimal deal on average.

• The actual number of minimum and maximum trades (kmin
′ and kmax

′) is very near op-
timal kmin − 0.5 and kmax − 0.5. Note that, theoretically in the recipe-forest R =
{(1, 1, 0, 0), (1, 0, 1, 1)} and R = {(1, 2, 0, 0), (1, 0, 1, 2)}, the mechanism might lose up
to one and two optimal deals respectively for each recipe (see the proof of Theorems B.4 and
3.11). But in practice, it loses about half an optimal deal on average.14

• The actual GFT of the ascending auction is much higher than the theoretical lower
bound (LB) of the optimum. For example, in the experiments with recipe-tree R =
{(1, 1, 0, 0), (1, 0, 1, 1)} when n = 10 (and kmin ≤ 3), the theoretical lower bound is ap-
proximately 50%, but the ascending-price auction attains more than 95%. It surpasses 99.9%
already for n ≥ 100. In the experiments with recipe-tree R = {(1, 2, 0, 0), (1, 0, 1, 2)} when

14Since in our experiments |R| = 2 we may think that in one leaf there are kmin optimal deals and in the other leaf there
are kmax optimal deals, which means by definition k = kmin + kmax. But for small values of n, sometimes there are
optimal deals only in one path of the tree. In such cases kmin = kmax = k. Therefore, for small n the average of kmin plus
the average of kmax may be larger than the average of k. For the same reason, kmin

′ may be greater than kmin for some
values of n.

Table 9: Results of experiment with values chosen uniformly at random, and recipe-forest R =
{(1, 1, 0, 0), (1, 0, 1, 1)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 1.13 1.00 1.00 0.279 457.2 0.47 0.47 0.47 41.743 258.2 56.490
4 2.32 1.44 1.77 30.963 1027.8 1.46 1.29 1.32 63.136 823.1 80.079
6 3.51 1.59 2.54 37.158 1616.0 2.57 1.72 2.10 73.105 1427.8 88.354

10 5.91 1.98 4.13 49.604 2803.3 4.92 1.98 3.71 83.209 2665.2 95.073
16 9.53 3.03 6.52 67.029 4615.1 8.53 2.58 6.11 89.500 4522.6 97.994
26 15.55 5.02 10.52 80.097 7604.2 14.55 4.43 10.11 93.576 7546.7 99.244
50 29.89 9.85 20.04 89.847 14782.6 28.91 9.26 19.64 96.695 14752.3 99.795

100 59.92 19.83 40.08 94.958 29754.2 58.92 19.26 39.65 98.330 29739.3 99.949
500 300.01 99.71 200.30 98.997 149526.3 299.01 99.21 199.80 99.666 149523.7 99.998
1000 600.13 199.45 400.68 99.498 299474.3 599.12 199.04 400.08 99.832 299473.2 99.999
2000 1200.40 399.33 801.06 99.749 598969.0 1199.40 399.13 800.26 99.917 598968.6 99.999

Table 10: Results of experiment with stock-market prices and the recipe-forest R =
{(1, 2, 0, 0), (1, 0, 1, 2)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 0.41 0.40 0.40 0.000 511.0 0.05 0.05 0.05 5.258 113.1 5.601
4 1.15 0.85 0.87 0.000 1414.5 0.50 0.45 0.45 33.520 879.6 39.463
6 1.82 1.04 1.24 0.000 2284.3 1.10 0.81 0.86 53.199 1864.5 64.838

10 3.14 1.40 2.02 0.000 4012.6 2.38 1.23 1.64 70.782 3728.2 84.945
16 5.11 2.11 3.16 2.754 6501.7 4.33 1.88 2.79 81.226 6302.7 93.121
26 8.35 3.42 5.04 26.227 10630.7 7.56 3.12 4.65 88.208 10501.3 96.838
50 16.14 6.75 9.47 54.304 20675.6 15.34 6.38 9.09 93.824 20600.8 98.990

100 32.41 13.80 18.70 74.693 41537.5 31.60 13.42 18.31 96.905 41498.5 99.793
500 162.54 70.75 91.88 94.502 208332.9 161.72 70.47 91.50 99.338 208323.6 99.978
1000 325.07 141.99 183.10 97.222 417308.0 324.25 141.63 182.73 99.672 417303.1 99.993
2000 650.50 285.05 365.44 98.606 834387.5 649.70 284.65 365.06 99.837 834384.9 99.998

n = 26 (and kmin ≤ 4), the theoretical lower bound is lower than 30%, but the ascending-
price auction attains more than 98%. It surpasses 99.9% already for n ≥ 500.

• We performed an experiment to compare the performance of our mechanism on binary
versus non-binary recipe-trees, by duplicating the values from the binary market to the
non-binary market. The recipe-trees were: R = {(1, 1, 0, 0), (1, 0, 1, 1)} and R =
{(2, 2, 0, 0), (2, 0, 2, 2)}. We got the exact same results as described in Tables 8 and 9, even
though the lower bound in the non-binary algorithm is lower than the binary algorithm lower
bound.

• We performed an experiment to compare the optimal deals (k) and the actual deals (k′) that
our algorithm finds and how it is dependant on |R| of non-binary “wide” recipe-trees (with
many children). We used a market with a root that has 20 children, each with an agent count
(rg) of 20. The results are shown in Table 12 and Figure 6.

Note that theoretically, the mechanism might lose up to |R| optimal deals (the difference
between k and k′). In our experiment, for low values of n, the mechanism loses approximately
|R|/2 optimal deals on average. For higher values of n, the number of optimal deals lost on
average, goes down to 0.5. The actual GFT of the algorithm is much higher than the theoretical
lower bound (LB) of the optimum. It surpasses 99% already for n ≥ 500.

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

1− 1/kmin Ratio

Figure 3: Graph of results from Table 11.

E Hardness of General Recipe Sets
To illustrate the difficulty of handling general recipe-sets, we prove that calculating the optimal
trade, even without strategic considerations, is MAX-SNP-hard. This is means not only that it is
NP-hard, but also that it does not have a PTAS unless P=NP. In other words, the best approximation
algorithm that can be hoped for this problem is a constant-factor approximation. The theorem was
already proven in [23] and we repeat it here for completeness.

Theorem E.1. The following problem is MAX-SNP-hard. Given a set N of agents with known
integer valuations, a set G of categories, a set R of recipes, and an integer C, decide whether there
exists a feasible trade in which the GFT is at least C.

Proof. The proof is by reduction from 3-dimensional matching, which is the following decision
problem: given a 3-uniform hypergraph H = (V,E) (a hypergraph in which each edge in E contains
3 vertices of V) and a positive integer C, decide whether H has a matching that contains at least C
edges. This problem is known to be NP-hard [29] and MAX-SNP-hard [28].

Given an instance H = (V,E) of 3-D matching, construct an instance of the GFT problem as
follows.

• There is a category for each vertex: G = V .

• Each category contains a single agent.

• The value of every agent is 1/3.

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 4: Graph of results from Table 10.

• There is a recipe re for each edge e ∈ E, defined as follows:

rei :=

{
1 i ∈ e,

0 otherwise.

Since H is 3-uniform, each recipe contains exactly 3 ones and the other elements are zero. Therefore,
the GFT of every PS is 3·1/3 = 1, and the GFT of every trade equals the number of trading PS. Since
each category contains a single agent, each category must appear in at most one PS. Therefore, every
feasible trade corresponds to a matching in H and vice-versa, so the problems are equivalent.

Note that the best known polytime algorithm for 3-D matching attains 3/4 of the optimum [15];
this illustrates the kind of approximation to the GFT that we can hope to obtain for general recipe-
sets. Developing truthful mechanisms that attain such constant-factor approximations is another
interesting future work direction.

F Limitations of our approach
The approximation ratio of our algorithm for general recipes (Theorem 3.11) depends on |R|. The
reason is that Lemma 3.10, which bounds the difference between the optimal and the actual number
of traders in each category, depends on |R|. In this section we show the tightness of Lemma 3.10.
Specifically, we show examples in which the algorithm stops and the remaining agents in g are
mg ≥ kg + |R| − 1 or mg ≤ kg − |R|+ 1, which depends on the number of recipes.

We consider three variants of our approach, using three different ways of comparing cg to mg in
Algorithm 3 step 2. Specifically, mg can be rounded down (as in the original variant), or rounded

Table 11: Results of experiment with values chosen uniformly at random, and recipe-forest R =
{(1, 2, 0, 0), (1, 0, 1, 2)}.

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 0.32 0.31 0.31 0.000 83.1 0.04 0.04 0.04 13.001 20.9 25.190
4 1.08 0.86 0.87 0.000 385.6 0.42 0.40 0.40 39.032 225.1 58.374
6 1.74 1.06 1.17 0.000 711.7 0.98 0.81 0.82 56.138 537.7 75.547

10 2.99 1.24 1.90 0.000 1344.2 2.21 1.19 1.53 73.794 1213.1 90.244
16 4.84 1.90 2.96 0.000 2280.6 4.06 1.60 2.60 83.764 2193.3 96.172
26 7.96 3.24 4.72 23.685 3841.1 7.18 2.83 4.35 90.246 3787.2 98.595
50 15.40 6.55 8.84 53.249 7552.2 14.61 6.13 8.48 94.886 7524.0 99.627

100 30.90 13.49 17.41 74.185 15280.4 30.10 13.04 17.05 97.409 15265.6 99.902
500 154.89 68.72 86.16 94.344 77078.1 154.10 68.30 85.80 99.492 77075.5 99.996
1000 309.97 137.53 172.44 97.133 154394.8 309.18 137.11 172.07 99.744 154393.6 99.999
2000 620.14 275.38 344.76 98.557 309003.4 619.35 275.00 344.35 99.871 309002.9 99.999

Table 12: Results of experiment with values chosen uniformly at random, and wide recipe-tree (20
children, agent count of 20 each).

Optimal Ascending Price

n k kmin kmax LB OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

20 0.0 0.0 0.0 0.00 3 0.0 0.0 0.0 0.00 0 0.00
50 3.7 0.9 0.9 0.00 768 0.0 0.0 0.0 2.42 49 6.50

100 9.6 1.0 1.1 0.00 3949 4.6 1.0 1.0 48.34 2572 65.13
500 45.1 3.6 5.5 28.82 22369 41.1 3.0 5.1 91.16 22165 99.08
1000 90.3 7.7 10.3 58.84 44523 86.1 7.2 9.9 95.29 44420 99.76
2000 180.2 16.0 19.9 77.83 89245 175.9 15.5 19.5 97.61 89189 99.93
5000 451.5 42.1 48.1 90.93 223104 447.1 41.7 47.7 99.04 223082 99.99

10000 901.8 85.7 94.5 95.44 446385 897.7 85.3 94.1 99.55 446371 99.99
20000 1802.9 174.3 186.2 97.73 892285 1799.6 174.0 186.0 99.81 892273 99.99
50000 4512.8 441.1 461.2 99.09 2230206 4510.3 441.0 461.0 99.94 2230193 99.99

100000 9024.3 888.6 916.9 99.55 4456886 9022.9 888.4 917.1 99.98 4456876 99.99
200000 18072.0 1786.2 1828.3 99.77 8919549 18070.8 1785.7 1828.2 99.99 8919540 99.99
500000 45203.4 4483.9 4555.0 99.91 22294888 45202.8 4483.9 4554.6 99.99 22294881 99.99
1000000 90551.1 9007.5 9099.6 99.95 44590364 90550.7 9008.9 9095.6 99.99 44590363 99.99
2000000 180953.1 17996.1 18175.9 99.97 89176913 180952.6 17980.1 18180.1 99.99 89176909 99.99

up, or not rounded at all. We show that the dependence on |R| exists in all variants. Removing this
dependence (if at all possible) probably requires a different approach.

F.1 Rounding down
Consider a recipe-forest R with one tree, consisting of a root and |R| children (leaves). All recipes
require one agent from the root (rroot = 1) and two agents from a child (rg = 2). The market
contains the following agents:

• The root contains |R| agents, each with the value 101.

• |R| − 1 children g′ contain two agents, with values −1,−90.

• One child g contains 2 · |R| agents, all with value −50.

The optimal trade has |R| deals, with one deal per child. But Algorithm 3 removes all −90
agents in the first |R| − 1 rounds. Then the algorithm increases the price of child g until it reaches
−50 and removes one agent from g. Now, mroot = |R| and croot = ⌊mg/2⌋ = |R| − 1, so the

101 102 103

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 5: Graph of results from Table 11.

Table 13: Execution of Algorithm 2 on the market described in the first paragraph of subsection F.1
with |R| = 3

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
3, 2, 2, 6 3/1 ≤ ⌊2/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180− V
3, 1, 2, 6 3/1 ≤ ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180− V
3, 1, 1, 6 3/1 ≤ ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 5 3/1 > ⌊1/2⌋+ ⌊1/2⌋+ ⌊5/2⌋ 1 price-sum crosses 0 100,−50,−50,−50 0

algorithm starts incrementing the price of the root category. It stops when proot reaches 100. Now
there are |R| − 1 deals in the whole tree, each deal contains one agent from the root and two agents
of value −50 from child g. We have kg = 1 optimal deal in this child, but the algorithm stops when
there are |Mg| = 2 · |R| − 1 agents which is mg = kg + |R| − 1 − 1/rg = |R| − 1/rg deals, so
mg ≥ kg + |R| − 1. An example run is shown in Table 13 with |R| = 3.

Consider now the same recipe-forest but the root category has 2 · |R| − 1 agents, each with the
value 101. Each iteration removes one −90 agent from a child g′ and the next iteration removes one
agent from the root 101. The Algorithm loops until all −90 agents are removed from g′ and |R| − 1
agents of 101 are removed from the root category. The algorithm then stops when the price reaches
−50.5 in all children categories. In this case, the root has kroot = 2 · |R| − 1 optimal deals, but the
algorithm removes |R| − 1 agents from the root category. Now we have only |R| agents left, which
is mroot = kroot − |R|+1 = |R| deals instead of 2 · |R| − 1 optimal deals. So mg ≤ kg − |R|+1.
An example run is shown in Table 14 with |R| = 3.

101 102 103 104 105 106

0

20

40

60

80

100

Agents (n)

Pe
rc

en
ta

ge
(%

)

GFT Ratio
k’ Ratio

kmin−|R|
kmin+|R| Ratio

Figure 6: Graph of results from Table 12.

Table 14: Execution of Algorithm 2 on the market described in the second paragraph of subsection
F.1 with |R| = 3
|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
5, 2, 2, 6 5/1 ≤ ⌊2/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180− V
5, 1, 2, 6 5/1 > ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 1 Agent 101 exits from root category 1 101,−90,−90,−90 −79
4, 1, 2, 6 4/1 ≤ ⌊1/2⌋+ ⌊2/2⌋+ ⌊6/2⌋ 2, 3, 4 Agent −90 exits from category 3 101,−90,−90,−90 −79
4, 1, 1, 6 4/1 > ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 1 Agent 101 exits from root category 1 101,−90,−90,−90 −79
3, 1, 1, 6 3/1 ≤ ⌊1/2⌋+ ⌊1/2⌋+ ⌊6/2⌋ 2, 3, 4 price-sum crosses 0 100,−50.5,−50.5,−50.5 0

F.2 Rounding up
Let us see what happens if in Algorithm 3 step 2 instead of rounding the mg′ down, we round it up.
Consider the same recipe-forest as the first one in subsection F.1. The root category has |R| agents,
each with the value 101. But each child g′ has two agents with values (−20,−90), The optimal
trade has |R| deals, all of them use the single category g. Algorithm 3 removes all −90 agents in
the first |R| − 1 iterations. Then, the algorithm removes 2 · |R| agents −50 from g. And then the
algorithm stops when the price reaches 100 in the root category. For g we have kg = |R| optimal
deals, but the algorithm stops when there are no agents left, |Mg| = 0 which is mg = kg − |R| = 0
deals. So mg ≤ kg − |R|+ 1. An example run is shown in Table 15 with |R| = 3.

If we consider the same recipe-forest as before, but the root category has 2 · |R| − 1 agents, each
with the value 101. Algorithm 3 removes all −90 agents in the first |R| − 1 iterations. Then, the
algorithm removes two agents −50 from g. And then the algorithm stops when the price reaches
100 in the root category. In this case, the root has kroot = |R| optimal deals, but the algorithm did
not remove any agents from the root category. So we have |Mroot| = 2 · |R| − 1 agents left, which

Table 15: Execution of Algorithm 2 on the market described in the first paragraph of subsection F.2
with |R| = 3

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
3, 2, 2, 6 3/1 ≤ ⌈2/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180− V
3, 1, 2, 6 3/1 ≤ ⌈1/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180− V
3, 1, 1, 6 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 5 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈5/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 4 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈4/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 3 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈3/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 2 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈2/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 1 3/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈1/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
3, 1, 1, 0 3/1 > ⌈1/2⌉+ ⌈1/2⌉+ ⌈0/2⌉ 1 price-sum crosses 0 100,−50,−50,−50 0

Table 16: Execution of Algorithm 2 on the market described in the second paragraph of subsection
F.2 with |R| = 3

|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V −3V
5, 2, 2, 6 5/1 ≤ ⌈2/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 2 −V,−90,−90,−90 −180− V
5, 1, 2, 6 5/1 ≤ ⌈1/2⌉+ ⌈2/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −90 exits from category 3 −V,−90,−90,−90 −180− V
5, 1, 1, 6 5/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈6/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
5, 1, 1, 5 5/1 ≤ ⌈1/2⌉+ ⌈1/2⌉+ ⌈5/2⌉ 2, 3, 4 Agent −50 exits from category 4 −V,−50,−50,−50 −100− V
5, 1, 1, 4 5/1 > ⌈1/2⌉+ ⌈1/2⌉+ ⌈4/2⌉ 1 price-sum crosses 0 100,−50,−50,−50 0

is mroot = kroot + |R| − 1 = 2 · |R| − 1 deals instead of |R| optimal deals. So mg ≥ kg + |R| − 1.
An example run is shown in Table 16 with |R| = 3.

F.3 No rounding
Let us see what happens if in Algorithm 3 step 2 instead of rounding the mg′ to any direction, we
do not round it. Consider a recipe-forest R with one tree, consisting of a root and |R| children as
leaves (assuming |R| ≥ 2). Each deal contains one root agent rroot = 1, and |R| agents from a child
rg = rg′ = |R|. The agents’ values are:

• The root contains |R| agents, each with the value |R|3.

• |R| − 1 children g′ contain |R| agents each, |R| − 1 agents with the values −|R|2 and one
agent with the value −1. (each g′ has a total value of −|R|3 + |R|2 − 1)

Table 17: Execution of Algorithm 2 on the market described in the first paragraph of subsection F.3
with |R| = 4
|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V,−V −5V
4, 4, 4, 4, 13 4/1 ≤ 4/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64− V
4, 3, 4, 4, 13 4/1 ≤ 3/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64− V
4, 2, 4, 4, 13 4/1 ≤ 2/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 2 −V,−16,−16,−16,−16 −64− V
4, 1, 4, 4, 13 4/1 ≤ 1/4 + 4/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64− V
4, 1, 3, 4, 13 4/1 ≤ 1/4 + 3/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64− V
4, 1, 2, 4, 13 4/1 ≤ 1/4 + 2/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 3 −V,−16,−16,−16,−16 −64− V
4, 1, 1, 4, 13 4/1 ≤ 1/4 + 1/4 + 4/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64− V
4, 1, 1, 3, 13 4/1 ≤ 1/4 + 1/4 + 3/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64− V
4, 1, 1, 2, 13 4/1 ≤ 1/4 + 1/4 + 2/4 + 13/4 2, 3, 4, 5 Agent −16 exits from category 4 −V,−16,−16,−16,−16 −64− V
4, 1, 1, 1, 13 4/1 ≤ 1/4 + 1/4 + 1/4 + 13/4 2, 3, 4, 5 Agent −15 exits from category 5 −V,−15,−15,−15,−15 −60− V
4, 1, 1, 1, 12 4/1 > 1/4 + 1/4 + 1/4 + 12/4 1 price-sum crosses 0 60,−15,−15,−15,−15 0

Table 18: Execution of Algorithm 2 on the market described in the second paragraph of subsection
F.3 with |R| = 4
|Mi| Compare G∗ Price-increase stops when — Updated prices Price-sum

Initial prices: −V,−V,−V,−V,−V −5V
7, 4, 4, 4, 16 7/1 ≤ 4/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 −V,−4,−4,−4,−4 −16− V
7, 3, 4, 4, 16 7/1 > 3/4 + 4/4 + 4/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
6, 3, 4, 4, 16 6/1 ≤ 3/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 14,−4,−4,−4,−4 −9
6, 2, 4, 4, 16 6/1 ≤ 2/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 2 14,−4,−4,−4,−4 −9
6, 1, 4, 4, 16 6/1 ≤ 1/4 + 4/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
6, 1, 3, 4, 16 6/1 ≤ 1/4 + 3/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
6, 1, 2, 4, 16 6/1 > 1/4 + 2/4 + 4/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
5, 1, 2, 4, 16 5/1 ≤ 1/4 + 2/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 3 14,−4,−4,−4,−4 −9
5, 1, 1, 4, 16 5/1 ≤ 1/4 + 1/4 + 4/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 3, 16 5/1 ≤ 1/4 + 1/4 + 3/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 2, 16 5/1 ≤ 1/4 + 1/4 + 2/4 + 16/4 2, 3, 4, 5 Agent −4 exits from category 4 14,−4,−4,−4,−4 −9
5, 1, 1, 1, 16 5/1 > 1/4 + 1/4 + 1/4 + 16/4 1 Agent 14 exits from category 1 14,−4,−4,−4,−4 −9
4, 1, 1, 1, 16 4/1 ≤ 1/4 + 1/4 + 1/4 + 16/4 2, 3, 4, 5 price-sum crosses 0 14,−3.5,−3.5,−3.5,−3.5 0

• One child g has |R|2 − |R| + 1 agents with the values −|R|2 + 1. (each deal in g has a total
value of −|R|3 + |R|)

The optimal trade has |R| − 1 deals with the children g′. and one deal with the child g
The first |R|2−|R| iterations remove all agents with values −|R|2 from all children g′. Then the

algorithm removes one agent from g when the price reaches −|R|2 + 1. Then the algorithm stops
when the price reaches |R|3 − |R| in the root’s category. Now we have |R| − 1 deals in the whole
tree. Each deal contains one agent from the root and random |R|2 − |R| agents from child g. For
g we have kg = 1 optimal deal, but the algorithm stops when there are |Mg| = |R|2 − |R| agents
which is mg = kg + (|R|2 − |R|)/rg − 1 = |R| − 1 deals instead of one optimal deal in g. So
mg ≥ kg + |R| − 1. An example run is shown in Table 17 with |R| = 4.

Consider now the same recipe-forest as before, but with the following values (assuming |R| > 2
and is even):

• The root contains 2 · |R| − 1 agents with value |R|2 − |R|+ 2.

• |R|−1 children g′ contain |R| agents each, |R|−1 agents with the values −|R| and one agent
with the value −1. (each g′ has a total value of −|R|2 + |R| − 1)

• One child g has |R|2 agents with the values −|R|/2. (each deal in g has a total value of
−|R|2/2)

The first iteration removes an agent with the value −|R| from any child g′ and the next iteration
removes one agent from the root. Afterwards, the algorithm does the following until all g′ categories
have only one agent left: it removes |R| agents with the values −|R| from any child g′ and then
removes one agent from the root. The algorithm does this until all agents with values −|R| are
removed from all g′ and |R| − 1 agents are removed from the root category. Then the algorithm
stops when the price reaches −|R|+ |R|−2|R| in the children categories before removing agent −|R|/2
from category g. In this case, the root has kroot = 2 · |R| − 1 optimal deals, but the algorithm
removes |R| − 1 agents from the root category. So only |Mroot| = |R| agents are left, which is
mroot = kroot − |R|+ 1 = |R| deals instead of 2 · |R| − 1 optimal deals. So mg ≤ kg − |R|+ 1.
An example run is shown in Table 18 with |R| = 4.

G Discussion and Future Work
Future research should explore the GFT approximation bounds and the gap with our current approx-
imation if any.

Designing obviously-truthful, strongly-budget-balanced and approximately-efficient auctions is
a challenging task even in a single-recipe market. This paper generalizes this difficult task to
multiple-recipe markets. Nevertheless, our model does not capture all multiple-recipe market sce-
narios. We discuss next the challenges of extending our model further.

G.1 Beyond Recipe-Forests
Our mechanisms assume that the set of recipes can be arranged as a forest. In particular, it means
that the structure is acyclic.15 With cyclic recipe sets, the main challenge is maintaining budget
balance. Our current approach attains budget balance in all recipes simultaneously. But in the cyclic
recipe-set (1, 1, 0), (0, 1, 1), (1, 0, 1),16 to attain budget balance in all recipes simultaneously, we
need p1+p2 = p2+p3 = p3+p1 = 0 (where pg is the price in category g), and the only solution is
p1 = p2 = p3 = 0. Clearly, no good approximation of the GFT is possible when all prices are fixed
in advance. As another example, consider the cyclic recipe-set (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 1).
To ensure that the price-sum in all recipes is the same throughout the algorithm, we would need to
increment either p2, p4 or p1, p2, p3 — these are the only sets of categories that contain the same
number of categories in each recipe. This means that p2 is always incremented, so all agents from
this category might leave the market before the algorithm completes.

Moreover, our recipe forests do not capture all acyclic structures. For example, the recipe-sets
(1, 1, 0), (1, 1, 1) and (1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1) are acyclic, but not a recipe-forest by our
definition, since they cannot be arranged such that every recipe corresponds to a root-leaf path.

Developing efficient auctions for more complex markets would probably require new techniques.

G.2 Beyond Disjoint Categories
Our mechanisms assume that each agent belongs to a single category. Extending our approach to
handle the setting where an agent can belong to several categories is challenging, as the market will
not maintain the truthfulness property. We illustrate the challenge with the following example: the
recipes are (1, 1, 0) and (1, 0, 1). Category 1 contains four buyers with a value of +20; category 2
contains sellers s1 and s2, while category 3 contains sellers s1 and s3, so that s1 belongs to both
seller categories. In each iteration, our algorithm increments either p1 (the root category price) or
p2, p3 (the leaf categories prices). Initially, since cg0 = 4 ≥ mg0 , the algorithm increments p2, p3.
The seller s1 can lie and exit category 2 when both prices arrive at −15, for example, but remain in
category 3. Then, since cg0 = 3 < mg0 , the algorithm will increment p1 until it arrives at +15, as
the price-sum equals 0. Then, s1 sells a single unit at a price of 15 instead of selling two units for a
price of 10, so his utility increases from 0 to +5 due to the manipulation.

G.3 Beyond Identical Multiplicities
Our ascending auction requires that every category g ∈ G appears in all recipes with the same
multiplicity (see Section 2.2). This assumption is used in our proofs in Section 3.

The main challenge in extending our ascending-prices auction to different multiplicities is at-
taining a high GFT. To illustrate, consider first a special case of our market, where there are m

15One could object to cyclic recipe-sets based on economic arguments. Consider a recipe-tree with one parent node and
two child nodes. The tree represents two different recipes, each with a parent node category that complements a child node
category. The two recipes have mutually substitutable child nodes. Introducing a cycle, i.e., connecting the two child nodes in
the graph to form a recipe, would create categories that simultaneously complement and substitute each other. Economically,
such a recipe model is unavailing.

16

Note that with this recipe-set, the optimal trade can be computed efficiently as follows. Construct a graph in which each
node is an agent, and there is an edge between every two agents in different categories, where the edge weight is the sum of
the values of the two agents. The optimal trade corresponds to a maximum-weight matching in this graph.

sellers with value 0, and n > m categories of buyers, where category g has a single buyer with
value vg > 0. There are n recipes, where recipe g contains one seller and one buyer of category
g. The ascending price mechanism finds the optimal trade in a greedy way: it increases the prices,
each time eliminating a low-value buyer until only the m high-value buyers remain. Now, suppose
that in each recipe g, the sellers have a different multiplicity, rg . Then, computing the optimal trade
is equivalent to a knapsack problem: each recipe g is an item with weight rg and value vg , and the
knapsack capacity is m. It is known that greedy algorithms do not attain a good approximation for
the knapsack problem. Since an ascending-price auction selects buyers in a greedy way, we believe
that such an auction will not attain a good approximation of the GFT.17

G.4 Transaction Costs
In general, each procurement set may have a different cost-of-transaction, depending on the geo-
graphic locations of the agents in the PS and other factors. Such transaction costs make the computa-
tion of the optimal trade difficult, even before strategic considerations and even when all transaction
costs are common knowledge.

Given the above, it is likely that without any restrictions on the transaction costs, there might be
no mechanism that satisfies all the desirable properties of Theorem 3.2. It would be interesting to
see whether a mechanism with transaction costs can be found even under some natural restrictions
on the transaction costs, such as those described by [12].

Acknowledgments
A preliminary version was presented in the EUMAS 2021 conference. We are grateful to three
referees of EUMAS 2021 for their helpful comments.
The second author would like to thank the Ministry of Science, Technology and Space Binational
Israel-Taiwan grant, number 3-16542.

Dvir Gilor
The Open University of Israel
Raanana, Israel
Email: dvir@gilor.com

Rica Gonen
The Open University of Israel
Raanana, Israel
Email: ricagonen@gmail.com

Erel Segal-Halevi
Ariel University
Ariel, Israel
Email: erelsgl@gmail.com

17Interestingly, [20] show that, for binary allocation problems, every obviously-truthful mechanism must use a greedy
algorithm.

