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Abstract

We study the election of sequences of committees, where in each of τ levels (e.g.
modeling points in time) a committee consisting of k candidates from a common set
of m candidates is selected. For each level, each of n agents (voters) may nominate
one candidate whose selection would satisfy her. We are interested in committees
which are good with respect to the satisfaction per day and per agent. More precisely,
we look for egalitarian or equitable committee sequences. While both guarantee
that at least x agents per day are satisfied, egalitarian committee sequences ensure
that each agent is satisfied in at least y levels while equitable committee sequences
ensure that each agent is satisfied in exactly y levels. We analyze the parameterized
complexity of finding such committees for the parameters n,m, k, τ, x, and y, as well
as combinations thereof.

1 Prologue
Consider the very basic committee selection scenario where every agent may nominate one
candidate for the committee. The only committee that gives certain satisfaction to each
agent, which we call egalitarian committee, consist of all nominated candidates. A committee
that gives each agent the same satisfaction, which we call equitable committee, would also
have to consist of all nominated candidates, or of no candidate at all. Either outcome appears
impractical. So, aiming for an equitable or egalitarian committee seems pointless in this
setting.

With a small twist, however, it becomes a meaningful yet unstudied case: what happens
when the agents can nominate candidates in different levels, or, to put differently, for different
points in time? Are there non-trivial egalitarian or equitable committee sequences? Can we
simultaneously guarantee a certain minimum number of nominations in each level? And if so,
what is the computational complexity we have to face when trying to find such a committee?

What probably appears abstract at first glace is indeed quite natural: when selecting
the menu for some event, each participant may nominate a food option (with levels being
courses), when organizing a panel, each organizer may nominate a session topic (with levels
being days with different topic frames), or when planning activities as sketched next.

Example 1. We want to bring together six agents at some weekend trip. Each one announces
what they want to do on each day of the weekend. They will only form a group if each of
them is happy with at least one of the chosen activities over all days. Possible activities are:
dancing (D), hiking (H), museum (M), restaurant (R), sightseeing (S), and theater (T). The
agents’ preferences are given in Fig. 11. Assume we can choose two activities per day. To get
an overall good satisfaction, we aim to ensure that a strict majority of agents is satisfied
each day (in addition to requiring each agent being satisfied at least once). To realize this,
we must select {D,S} for day one and {M,H} for day two. While this egalitarian committee
sequence indeed maximizes satisfaction per day, the agents might not find this fair, because
some are satisfied on two days while others are only satisfied once. We can fix this by aiming
to ensure that each agent is satisfied exactly once and only a weak majority of agents is
satisfied each day. To realize this, we select {D,M} for day one and {M,T} for day two,
which gives an equitable committee sequence.
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1 2
a1 D R
a2 S M
a3 D H
a4 S T
a5 M H
a6 R M

1 2
a1 D R
a2 S M
a3 D H
a4 S T
a5 M H
a6 R M

1 2
a1 D R
a2 S M
a3 D H
a4 S T
a5 M H
a6 R M

Figure 1: Illustration to Example 11. Left: Preferences indicating the favorite activity of
each agent for each day. Middle: An egalitarian committee sequence. Right: An equitable
committee sequence.

More formally, we study the following two problems and analyze their (parameterized)
complexity with respect to the following parameters and their combinations: number n
of agents, number m of candidates, number τ of levels (e.g., time points), size k of each
committee, number x of nominations the selected committee shall receive in each level, and
number y of successful nominations each agent makes in total.11

Egalitarian Committee Sequence Election (GCSE)
Input: A set A of n agents, a set C of m candidates, a sequence of nomination profiles U =

(u1, . . . , uτ) with ut∶A → C ∪ {∅}, and three integers k, x, y ∈ N0.
Question: Is there a sequence C1, . . . , Cτ of subsets of C each of size at most k such that

∀t ∈ {1, . . . , τ}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ x, (1)

and ∀a ∈ A: ∑τ

t=1
∣ut(a) ∩ Ct∣ ≥ y? (2)

We also refer to the left-hand side of (11) and of (22) as committee and agent score, respectively.
Equitable Committee Sequence Election (QCSE) denotes the variant where we
replace “≥” with “=” in (22).

Related Work. From the motivations perspective, our model aims to select committees,
which is a well-studied core topic of computational social choice. The three main goals of
selecting committees discussed in the literature are individual excellence, proportionality,
and diversity (cf. Elkind et al. [77]). The latter is usually reached by egalitarian approaches [11]
(on which we also focus), where the quality of a committee is defined by the least satisfied
voter.

Our model considers preferences with more than one level. Related, in the multistage
setting [66, 1111] one finds committee election problems with multiple preferences for each
agent [1313, 44]. While they also require a minimum satisfaction in each time step, they do
not require a minimum satisfaction of agents. Instead, they have explicit constraints on the
differences between two successive committees.

Also other aspects of selecting multiple (sub)committees have been studied before.
Bredereck et al. [22] augment classic multiwinner elections with a time dimension, also
selecting a sequence of committees. The crucial differences with our work is that they do not
allow agents (voters) to change their ballots over time. While Freeman et al. [99], Lackner
[1515], and Parkes and Procaccia [1717] allow this, they consider online scenarios in contrary to
our offline scenario. Moreover, they mostly focus on single-winner decisions and evaluate the
quality of solutions quite differently. ? ] also consider an offline setting but aim for justified
representation, a fairness notion for groups of individuals.

1In Example 11, we have n = m = 6, τ = k = 2, y = 1, as well as x = 4 in the egalitarian and x = 3 in the
equitable case.
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Figure 2: Overview of our results for GCSE and QCSE. Each box has three horizontal
layers, the top layer gives the parameter, the middle layer the result’s reference, and the
bottom layer gives additional information. If a box is vertically split, then the left and right
side corresponds to GCSE and QCSE, respectively; Otherwise, the information holds for
both. The boxes are arranged according to the corresponding parameter hierarchy: If two
boxes are connected by an edge, the upper one’s parameter upper bounds the lower one’s
parameter (by some function).

Our Contributions. Fig. 22 gives a results overview from our parameterized analysis. We
highlight the following: Each of GCSE and QCSE is solvable in uniform polynomial time

• for constantly many constant-size committees, but not for constantly many committees
where each must have a committee score of at least a given constant (unless P = NP);
or

• for a constant number of agents, but not for a constant number of candidates (unless P =

NP).

We discovered the following differences between the egalitarian and equitable case:

• For two stages, GCSE is NP-hard while QCSE is polynomial-time solvable (QCSE is
NP-hard for three stages);

• For parameter n + y, GCSE admits a polynomial problem kernel while QCSE pre-
sumably does not;

• When k = m, GCSE is polynomial-time solvable, while QCSE is still NP-hard in this
case. Notably, GCSE is NP-hard even if k = m − 1.

Due to the space constraints, many details, marked by ⭑, can be found in a full version of
this paper.
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2 Preliminaries and Basic Observations
We use standard notation from parameterized algorithmics [55]. A problem with parameter p
is fixed-parameter tractable (in the class FPT), if it can be solved in f(p) ⋅ sc, where s
denotes the input size, for some constant c and computational function f only depending
on p; i.e., it can be solved in uniform polynomial time O(sc) for every constant value
of p. A (decidable) parameterized problem is fixed-parameter tractable if and only if it
admits a problem kernel, that is, a polynomial-time algorithm that maps any instance with
parameter p to an equivalent instance of size at most g(p), where g is some function only
depending on p. We speak of a polynomial problem kernel if g is a polynomial.

Basic Observations. We first discuss two trivial cases for GCSE and QCSE regarding
the value of y and of k.

Observation 1. If y ∈ {0, τ}, then GCSE and QCSE are solvable in linear time.

Note that Observation 11 implies that for τ = 1, each of GCSE and QCSE is linear-time
solvable. Another trivial case for GCSE is the following.

Observation 2. GCSE is linear-time solvable if k ≥ m.

We will see that Observation 22 does not transfer to QCSE: QCSE remains NP-hard,
even if k ≥ m (Proposition 33).

The following allows us to assume throughout to have at most number of agents many
candidates.

Lemma 1 (⭑). Each instance (A,C,U, k, x, y) of GCSE (of QCSE) can be mapped in
linear time to an equivalent instance (A,C

′
, U

′
, k, x, y), ∣C ′∣ ≤ ∣A∣ of GCSE (of QCSE).

Corollary 1. (i) Each of GCSE and QCSE admits a problem kernel of size O(n2 ⋅ τ).
(ii) There are at most (n + 1)n pairwise different nomination profiles.

3 Intractability
We discuss the general intractability of our problems as well as several special cases where
they remain hard.

3.1 Dichotomies Regarding the Number of Levels
Both GCSE and QCSE are easy problems if there is only one level. Yet, already for two
levels, GCSE becomes NP-hard while QCSE stays efficiently solvable. For three levels,
however, also QCSE becomes NP-hard. We have the following.

Theorem 1. We have the following dichotomies for GCSE and QCSE regarding τ :
(i) If τ = 1, then each of GCSE and QCSE is polynomial-time solvable.
(ii) If τ = 2, then (a) GCSE is NP-hard and, unless NP ⊆ coNP/poly, admits no problem

kernel of size O(m2−ε) for any ε > 0, and (b) QCSE is polynomial-time solvable.
(iii) If τ ≥ 3, then each of QCSE with k ≥ m and GCSE is NP-hard and, unless the ETH

breaks, admits no 2
o(n+m) ⋅ poly(n +m)-time algorithm.

We first discuss (iiaiia), then (iibiib), and finally (iiiiii).
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3.1.1 Two Levels Make GCSE Intractable

Proposition 1 (⭑). Even for two levels and x = 0, GCSE is NP-hard and, unless
NP ⊆ coNP/poly, admits no problem kernel of size O(m2−ε) for any ε > 0.

The following problem is NP-hard [1414].
Constraint Bipartite Vertex Cover (CBVC)
Input: An undirected bipartite graph G = (V,E) with V = V1 ⊎ V2 and k1, k2 ∈ N.
Question: Is there a set X ⊆ V with ∣X ∩ Vi∣ ≤ ki for each i ∈ {1, 2} such that G − X

contains no edge?

Note that we can assume that k1 = k2. CBVC is in FPT when parameterized by k1+k2 [88]
but, unless NP ⊆ coNP/poly, admits no problem kernel of size O(∣V ∣2−ε) for any ε > 0 [1212].
The construction behind the proof of Proposition 11 is the following (the correctness proof is
deferred to the full version of the paper).

Construction 1. Let I = (G = (V = V1 ⊎ V2, E), k, k) be an instance of CBVC. We
construct an instance I

′
≔ (A,C, (u1, u2), k, x, y) with x = 0 and y = 1 as follows. For

each vertex vi,j with i ∈ {1, 2} and j ∈ {1, . . . , ∣Vi∣}, add a candidate ci,j to C. For each
edge {v1,j , v2,j ′}, add agent aj,j ′ to A which nominates c1,j in level 1 and c2,j ′ in level 2. This
finishes the construction. ⋄

3.1.2 Two Levels Leave QCSE Tractable

Interestingly, in contrast to GCSE, just one additional level does not change the tractability
of QCSE.

Proposition 2. QCSE is polynomial-time solvable if τ = 2.

We provide reduction rules for a generalization of QCSE on two levels, and then reduce
it to a special variant of CBVC. The generalization of QCSE with τ = 2 is the following.
X2 Equitable Committee Sequence Election (X2QCSE)
Input: A set A of agents, a set C of candidates, a two nomination profiles U = (u1, u2)

with ut∶A → C ∪ {∅}, and five integers k1, k2, x1, x2, y ∈ N0.
Question: Is there C1 ⊆ C with ∣C1∣ ≤ k1 and C2 ⊆ C with ∣C2∣ ≤ k2 such that

∀t ∈ {1, 2}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ xt,

and ∀a ∈ A: ∑2

t=1
∣ut(a) ∩ Ct∣ = y?

We know that y ∈ {0, 2} are trivial cases. Thus, we assume that y = 1 is the remainder. Our
goal is to reduce X2QCSE to the following problem, which, as we will show subsequently, is
polynomial-time solvable.
Constraint Bipartite Independent VC w/ Score (CBIVCS)
Input: An undirected bipartite graph G = (V,E) with V = V1 ⊎ V2 and k1, k2, x1, x2 ∈ N.
Question: Is there an independent set X ⊆ V with ∣X ∩ Vi∣ ≤ ki and ∑v∈X∩Vi

deg(v) ≥ xi

for each i ∈ {1, 2} such that G −X contains no edge?

Lemma 2 (⭑). CBIVCS is polynomial-time solvable.

To reduce X2QCSE to CBIVCS we have to deal with agents nominating none or only
one candidate. The first case is immediate.

Data Reduction Rule 1. If there is an agent nominating no candidate, then return no.
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1 2 3

⋮ ⋮ ⋮ ⋮
ai,1: ci ∅ ci
ai,2: ci ci ∅
ai,3: ∅ ci ci
ai,1: ci ∅ ci
ai,2: ci ci ∅
ai,3: ∅ ci ci

⋮ ⋮ ⋮ ⋮

Ai

ar: ci cq cp
⋮ ⋮ ⋮ ⋮

Figure 3: Illustration to Construction 22 with Kr = (xi ∨ xq ∨ xp).

If an agent nominates only one candidate in one level and none in the other, we have to
pick this nominated candidates.

Data Reduction Rule 2 (⭑). If there is an agent a
∗ nominating one candidate c

∗ in one
level t ∈ {1, 2}, and none in the other level t′, then do the following: Decrease kt by one, xt

by ∣{a ∈ A ∣ ut(a) = c
∗}∣, replace each candidate in {c′ ∈ C ∣ ∃a ∈ A ∶ ut(a) = c

∗∧ut′(a) =
c
′} with ∅, and delete all agents from {a ∈ A ∣ ut(a) = c

∗}.

Using Data Reduction Rule 11 and 22 exhaustively, we can finally reduce X2QCSE to
CBIVCS, proving Proposition 22.

Observation 3 (⭑). There is a polynomial-time many-one reduction from X2QCSE to
CBIVCS.

3.1.3 Three Levels Make QCSE Intractable

We have seen that QCSE is polynomial-time solvable if τ ≤ 2. This changes for τ ≥ 3.

Proposition 3. For at least three levels and x = 0, each of QCSE with k ≥ m and GCSE
is NP-hard and, unless the ETH breaks, admits no 2

o(n+m) ⋅ poly(n +m)-time algorithm.

For GCSE, the proof is via a polynomial-time many-one reduction from the famous
NP-complete problem 3-Satisfiability (3-SAT), which transfers the well-known ETH
lower bound [? ] as well as NP-hardness [1010]. Given a set X of N variables and a 3-CNF
formula ϕ = ⋀M

i=1 Ki over X, 3-SAT asks whether there is a truth assignment f ∶X → {⊥,⊤}
satisfying ϕ.

Construction 2. Let I = (X,ϕ) be an instance of 3-SAT with N variables and M clauses.
We construct an instance I

′
≔ (A,C,U, k, x, y) of GCSE as follows (see Fig. 33 for an

illustration). Let C ≔ {ci, ci ∣ xi ∈ X}. Let Ai ≔ ⋃3
j=1{ai,j , ai,j} for each i ∈ {1, . . . , N}.

and A ≔ A1 ∪ ⋅ ⋅ ⋅ ∪AN ∪ {a1, . . . , aM}. See Fig. 33 for the nominations. Let k ≔ N , x ≔ 0,
and y ≔ 1. ⋄

The construction provides the following key property when I
′ is a yes-instance: for every

variable, exactly one of the two corresponding candidates must be in the committee.

Lemma 3 (⭑). If I ′ is a yes-instance, then for every solution (C1, C2, C3) it holds true
that ∣Cj∩{ci, ci}∣ = 1 and Cj∩{ci, ci} = Cj ′∩{ci, ci} for all j, j ′ ∈ {1, 2, 3} and i ∈ {1, . . . , N}.
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Proof of Proposition 33 (GCSE). (⇒) Let f be a satisfying truth assignment. We claim
that (C ′

, C
′
, C

′) with C
′
= {ci ∈ C ∣ f(xi) = ⊤} ∪ {ci ∈ C ∣ f(xi) = ⊥} is a solution to I

′.
Clearly, ∣C ′∣ = N . Moreover, if f(xi) = ⊤, then ai,j is satisfied in level j, and ai,1 is satisfied
in level 3 and ai,j with j ∈ {2, 3} is satisfied in level j − 1. If f(xi) = ⊥, then ai,j is satisfied
in level j, and ai,1 is satisfied in level 3 and ai,j with j ∈ {2, 3} is satisfied in level j − 1.
Since f is satisfying, there is exactly one level t with ar being satisfied.

(⇐) Let (C1, C2, C3) be a solution to I
′. From Lemma 33 we know that C

′
= C1 =

C2 = C3 and that C
′ ∩ {ci, ci} = 1 for all i ∈ {1, . . . , N}. Let f(xi) = ⊤ if ci ∈ C

′,
and f(xi) = ⊥ otherwise. Clearly, f is a truth assignment. Suppose it is not satisfying, i.e.,
there is a clause Kr with no literal evaluated to true. Then, agent ar is satisfied in no level,
contradicting that (C1, C2, C3) is a solution to I

′.

For QCSE, yet using again Construction 22, we instead reduce from the NP-hard problem
Exactly 1-in-3 SAT (X1-3SAT) [? ], where, given a boolean 3-CNF formula ϕ over a
set X of variables, the question is whether there is a truth assignment f ∶X → {⊥,⊤} such
that for every clause, there is exactly one literal evaluated to true?
Notably, Lemma 33 also holds true here. In fact, we can even allow k = 2N , since for each
variable only one candidate is chosen, as otherwise there is an agent scoring more than once.

3.2 Few Candidates Are of No Help
One could conjecture that it should be possible to guess the committees, and hence get some,
possibly non-uniformly polynomial running time when the number of candidates is constant.
In this section, we will show that this conjecture is wrong unless P = NP: each of GCSE
and QCSE are NP-hard even for two candidates.

Theorem 2 (⭑). Even for x = 0, k = 1, and y = 1, each of GCSE with two candidates and
QCSE with one candidate is NP-hard. Moreover, unless the SETH breaks, GCSE admits
no (2 − ε)τ ⋅ poly(τ + n)-algorithm.

For GCSE, we reduce from the well-known NP-complete problem Satisfiability (SAT),
which transfers the well-known SETH lower bound [? ] as well as NP-hardness [1010]. Given a
set X of N variables and a CNF formula ϕ = ⋀M

i=1 Ki over X, SAT asks whether there is a
truth assignment f ∶X → {⊥,⊤} satisfying ϕ.

The construction is quite intuitive: Each level corresponds to a variable, and each agent
corresponds to a clause. In each level, if the corresponding variable appears as a literal in
the agent’s corresponding clause, then the agent nominates a candidate regarding whether it
appears negated or unnegated.

Construction 3. Let I = (X,ϕ) be an instance of SAT. Construct an instance I
′
≔

(A,C,U, k, x, y) as follows. Let A ≔ {a1, . . . , aM}, C ≔ {c⊤, c⊥}, τ ≔ N , x ≔ 0, k ≔ 1,
and y ≔ 1. In level i, agent aj nominates

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c⊤, if xi appears unnegated in Kj ,
c⊥, if xi appears negated in Kj , and
∅, otherwise.

This finishes the construction. ⋄

Remark 1. For QCSE, we reduce from X1-3SAT (see previous section) where no variable
appears negated [? ], where the construction is very similar to Construction 33 (yet c⊥ can be
dropped). Hence, a lower bound based on the SETH as for GCSE remains open for QCSE.
◁
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4 Tractability
In this section, we discuss non-trivial tractable cases of GCSE and QCSE. It turns out that
fixed-parameter tractability starts with the number n of agents or the solution size k ⋅ τ ,
i.e., with the combination of the size k of each committee and the number τ of levels. As to
the latter, recall that each of GCSE and QCSE is NP-hard if either k is constant or τ is
constant. Finally, we discuss efficient and effective data reduction regarding n and n + y.

4.1 Few Small Committees May be Tractable
We show that each of GCSE and QCSE when parameterized by the solution size k ⋅ τ is
in FPT. That is, we can deal with many agents and candidates, as long as we are asked to
elect few small committees. We also show that GCSE admits presumably no problem kernel
of size polynomial in m ⋅ τ .

Theorem 3. Each of GCSE and QCSE is solvable in 2
k⋅τ2

⋅ poly(n +m + τ) time, and
hence fixed-parameter tractable when parameterized by k + τ .

We introduce generalized versions of GCSE and QCSE. Intuitively, they allow to fix certain
parts of the solution. Moreover, one may request level-individual committee sizes, level-
individual numbers of nomination the committees shall receive, and agent-individual numbers
of successful nominations the agents still have to make.

Pre-Elected GCSE (PE-GCSE)
Input: A set A of agents, a set C of candidates, a sequence of nomination profiles U =

(u1, . . . , uτ) with ut∶A → C ∪ {∅}, integers xt, kt ∈ N0 for each t ∈ {1, . . . , τ} and
integers ya ∈ N0 for each a ∈ A.

Question: Is there a sequence C1, . . . , Cτ ⊆ C with ∣Ct∣ ≤ kt for every t ∈ {1, . . . , τ} such
that

∀t ∈ {1, . . . , τ}: ∣{a ∈ A ∣ ut(a) ∈ Ct}∣ ≥ xt,

and ∀a ∈ A: ∑τ

t=1
∣ut(a) ∩ Ct∣ ≥ ya. (3)

Pre-Elected QCSE (PE-QCSE) denotes the variant when replacing “≥” with “=” in (33).
Each of PE-GCSE and PE-QCSE use slightly different approaches. However, the core

idea is the same: in any solution, each agent has a fingerprint over all levels regarding
whether or not her candidate is elected into the respective committee. Note that there are
at most 2

τ fingerprints. Hence, we can guess such a fingerprint for any unsatisfied agent and
branch. Together with the fact that the sum of the committee sizes in the sequence is at
most k ⋅ τ , the result follows.

Throughout, we use the following. Fix any agent a ∈ A. We define for A
′
≔ A \ {a} the

utility function

ut − ut(a)∶A′
→ C ∪ {∅}, (ut − ut(a))(a′) ↦ ut(a′) \ ut(a).

We first show the following Turing-reduction for PE-GCSE. The idea of this reduction
is then used to obtain fixed-parameter tractability through Algorithm 11.

Lemma 4 (⭑). Let I ≔ (A,C,U, (kt)t, (xt)t, (ya)a∈A) be an instance with at least one
agent a ∈ A with ya > 0 and at least one fingerprint with at least ya non-empty entries.
Then, I is a yes-instance of PE-GCSE if and only if for any agent a ∈ A with ya > 0 and at
least one fingerprint with at least ya non-empty entries, one of the instances I

1
, . . . , I

p is a
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Algorithm 1: FPT-algorithm for PE-GCSE parameterized by k + τ on in-
put (A,C,U, (kt)t, (xt)t, (ya)a).
1 main((A,C,U, (kt)t, (xt)t, (ya)a));
2 return no;
3 function main((A,C,U, (kt)t, (xt)t, (ya)a)):
4 if kt < 0 for some t ∈ {1, . . . , τ} then break
5 if ∀a ∈ A ∶ ya ≤ 0 then
6 foreach t ∈ {1, . . . , τ} do
7 if xt > 0 then
8 if any level-t committee of kt most nominated candidates in C

w. r. t. ut scores less than xt then break

9 return yes

10 if ∃a ∈ A with ya > 0 but no fingerpint with at least ya non-empty entries then
break

11 Let a ∈ A be such that ya > 0 with at least one fingerpint with at least ya
non-empty entries

12 foreach X ∈ {u1(a),∅}× ⋅ ⋅ ⋅ × {uτ(a),∅} with at least ya non-empty entries do
// ≤ 2

τ many
13 foreach t ∈ {1, . . . , τ} do
14 Set x

′
t ← xt − ∣{a′ ∈ A ∣ ut(a′) = Xt ∧Xt ≠ ∅}∣, u′

t ← ut − ut(a), and
k
′
t ← kt − ∣Xt∣

15 foreach a
′
∈ A

′
← A \ {a} do

16 Set y
′
a′ ← ya′ −∑t ∣ut(a′) ∩Xt∣

17 main((A′
, C, U

′
, (k′t)t, (x′

t)t, (y′a)a))

yes-instance, where X
1
, . . . , X

p
∈ {u1(a),∅} × ⋅ ⋅ ⋅ × {uτ(a),∅} are the fingerprints with at

least ya non-empty entries and for each q ∈ {1, . . . , p}, Iq = (A′
, C, U

′
, (kqt )t, (x

q
t )t, (yqa)a∈A′),

where A
′
≔ A \ {a}, and

• for each t ∈ {1, . . . , τ}, x′
t ≔ xt − ∣{a′ ∈ A ∣ ut(a′) = X

q
t ∧X

q
t ≠ ∅}∣, u′

t ≔ ut − ut(a),
k
′
t ≔ kt − ∣Xq

t ∣, and
• for each a

′
∈ A

′, y′a′ ≔ ya′ −∑τ
t=1 ∣ut(a′) ∩X

q
t ∣.

Proposition 4 (⭑). Algorithm 11 is correct and runs in FPT-time regarding k + τ .

The proof for PE-QCSE works very similarly and is hence deferred to the full version of the
paper.

In terms of kernelization, we cannot improve much further: Presumably, there is no
problem kernel of size polynomial in k + τ . In fact, we have the following stronger result.

Theorem 4 (⭑). Unless NP ⊆ coNP/poly, GCSE admits no problem kernel of size polyno-
mial in τ , even if m = 2 and x = 0.

Remark 2. We leave open whether the composition can be adapted for QCSE. For this, the
last q levels forming the selection gadget must be changed or extended such that each agent
gets the same score over the selection. ◁
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4.2 Tractability Borders Regarding n

We first show that both problems become fixed-parameter tractable when parameterized by
the number n of agents.

Theorem 5. Each of GCSE and QCSE is fixed-parameter tractable when parameterized
by n.

Proof. Due to Lemma 11, we know that there are at most n candidates, and at most ν ≔

(n+1)n pairwise different nomination profiles. That is, we have at most ν types, each having
at most (n

k
) committees of size k and score of at least x (we call such a committee valid

subsequently; note that we can check whether a committee is valid in linear time).
Let xt,ϕ denote the variable for type t and valid committee ϕ. Let nt denote the

number of type-t profiles. For an agent a ∈ A, let Xa denote the set of tuples (t, ϕ) where
valid committee ϕ respects a’s nomination in level t. We then have the following integer
programming constraints for GCSE:

∀a ∈ A∶ ∑(t,ϕ)∈Xa

xt,ϕ ≥ y (4)

∀t∶ ∑
valid ϕ

xt,ϕ = nt

∀t, valid ϕ∶ 0 ≤ xt,ϕ ≤ nt

As to Lenstra Jr. [1616], having 2
O(n log(n)) variables and constraints, and numbers upper

bounded by τ , the result follows. For QCSE, we replace “≥” with “=” in (44).

Theorem 55 is in fact tight in the following sense: decreasing n by x gives a useless parameter
(presumably).

Theorem 6 (⭑). GCSE is NP-hard even if n − x = 2 and m = 3, and QCSE is NP-hard
even if n − x = 3 and m = 2.

The construction behind the proof of Theorem 66 is very similar to Construction 33 but with
no empty nominations (we hence defer also the construction to the full version of the paper).

The FPT-algorithm behind Theorem 55 is not running in single-exponential time. Com-
bining n with y gives single-exponential running time.

Theorem 7. Each of GCSE and QCSE is solvable in O((y + 1)n ⋅ 2n ⋅ n ⋅ τ) time.

Proof. We give the proof for QCSE, and it is not hard to adapt it for GCSE. We use
dynamic programming, where table

D[t,y] is true if and only if there are committees C1, . . . , Ct each with committee size at
most k and a score of at least x such that the score of each agent ai at time t sums up
to exactly yi, where y = (y1, . . . , yn).

Set D[t,y], where t > 1 and each entry of y is at most y, to true if and only if there is a
set-to-true D[t − 1,y

′] and a size-at-most k score-at-least x committee C
′
⊆ C with respect

to ut such that y′ + c⃗ = y, where c⃗ = (c1, . . . , cn) ∈ {0, 1}n with ci = 0 ⟺ ut(ai)∩C
′
= ∅

is called the fingerprint of C ′ regarding level t. Set

D[1, c⃗ ] ≔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⊤, if there is a size-at-most k

score-at-least x committee C
′
⊆ C

with fingerprint c⃗ regarding level 1, and
⊥, otherwise.

10



Return yes if the entry D[τ, (y1, . . . , yn)] is set to true, where y1 = y2 = ⋅ ⋅ ⋅ = yn = y, and no
otherwise.

The running time of filling the table is clear: We have at most τ ⋅ (y + 1)n entries and at
most 2

n different committees per level. We defer the correctness proof to the full version of
paper.

4.3 Efficient and Effective Data Reduction Regarding n and y

While GCSE admits a problem kernel of size polynomial in n+y, QCSE does not presumably.
Moreover, for GCSE, dropping y also leads to kernelization lower bounds. We have the
following.

Theorem 8 (⭑). Unless NP ⊆ coNP/poly, (i) GCSE admits no problem kernel of size
polynomial in n, even if m = 2 and k = 1, and (ii) QCSE admits no problem kernel of size
polynomial in n, even if m = 2, k = 1, and y = 1. (iii) GCSE admits a problem kernel of
size polynomial in n + y.

We only discuss (iii) briefly (refer to the full version of the paper for the remaining
details).

Proposition 5. GCSE admits a problem kernel of size polynomial in n + y.

In the following, we (again) call a committee valid if its size is at most k and its score
is at least x. For an agent a, we denote by Z(a) the set of all levels where there is a
valid committee containing a’s nominated candidate. We call an agent a non-critical if
∣Z(a)∣ > n ⋅ y, and critical otherwise. We have the followings.

Data Reduction Rule 3 (⭑). If every agent a is non-critical, then return a trivial
yes-instance.

Thus, if we have a non-trivial instance, then there must be a critical agent. We will see
that the number of critical agents can upper bound the number of levels. To this end, we
first delete levels which are irrelevant to critical agents as follows.

Data Reduction Rule 4 (⭑). If there is a level t∗ such that there is at least one valid
committee and every valid committee only includes candidates nominated by non-critical
agents, then delete this level.

It follows that in every level, there must be a valid committee for any of the at most n
critical agents, each of which has at most n ⋅ y levels of this kind. This leads to the following.

Lemma 5 (⭑). If each of Data Reduction Rule 33 and 44 is inapplicable, then there are at
most n2 ⋅ y levels.

To conclude, GCSE admits presumably no problem kernel of size polynomial in n, but one
of size polynomial in n + y. Interestingly, for QCSE the latter is presumably impossible.

Proposition 6 (⭑). Unless NP ⊆ coNP/poly, QCSE admits no problem kernel of size
polynomial in n, even if m = 2, k = 1, and y = 1.

5 Epilogue
We settled the parameterized complexity for both GCSE and QCSE for several natural
parameters and their combinations. We found that both problems become tractable only if
either the number of agents or the solution size is lower bounding the parameter. Hence,
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short trips with few per-day activities like in our introductory example can be tractable even
if many agents participate and if there are many activities available. Also the practically
relevant setting where few agents have to select from many options, where egalitarian or
even equitable solutions appear particularly relevant, can be solved efficiently.

Our two problems have a very similar complexity fingerprint, yet, they distinguish through
the lens of efficient and effective data reduction: While GCSE admits a problem kernel of
size polynomial in n + y, QCSE presumably does not. In other words, it appears unlikely
that we can efficiently and effectively shrink the number of levels for QCSE.

Other Variants. Looking at the constraints in GCSE and QCSE, one quickly arrives
at the following general problem. Herein, we generalize to preference functions, where each
agent assigns some utility value to each candidate. Moreover, we use generalized OWA-based
aggregation, e.g., allowing max(⋅) and thus modeling rules such as Chamberlin-Courant.
Let ∼∈ {≤,=,≥}, Λ = {Λk ∈ R

k ∣ k ∈ N} be a family of (OWA) vectors, and U be a class
of preference functions. We write u⃗(C ′) for the vector of utilities that u assigns to the
candidates from C

′ sorted in nonincreasing order. See Bredereck et al. [33] for details.
(∼k ∣∼x,∼y)-BiCMCE[Λ,U]
Input: A set A of agents, a set C of candidates, a sequential profile of preference functions U =

(ua,t ∶ C → N0 ∣ a ∈ A, t ∈ {1, . . . , τ}) each from U , and three integers k, x, y ∈ N0.
Question: Is there a sequence C1, . . . , Cτ ⊆ C such that

∀t ∈ {1, . . . , τ}: ∣Ct∣ ∼k k, (5)

∀t ∈ {1, . . . , τ}: ∑
a∈A

⟨Λ∣Ct∣, u⃗a,t(Ct)⟩ ∼x x, (6)

and ∀a ∈ A: ∑τ

t=1
⟨Λ∣Ct∣, u⃗a,t(Ct)⟩ ∼y y? (7)

Let SUM denote the family of OWA-vectors containing only 1-entries, and NOM be the class
of preference functions that contain only 0-entries except for at most one 1-entry. We have that
GCSE is (≤ ∣≥,≥)-BiCMCE[SUM,NOM] and QCSE is (≤ ∣≥,=)-BiCMCE[SUM,NOM].
It turns out that all variants except for (≤ ∣≤,≤)-BiCMCE[SUM,NOM] and (≥ ∣
≥,≥)-BiCMCE[SUM,NOM] are NP-hard. In fact, most of the variants (including GCSE
and QCSE) are NP-hard even if every voter does not change their vote over the levels. We
defer the details to the full version of the paper.

Outlook. Since our model is novel, also several future research directions come to mind.
A parameterized analysis of the variants of (∼k ∣∼x,∼y)-BiCMCE[Λ,U] next to GCSE
and QCSE could reveal where these variants differ from each other. One could consider a
global budget instead of a budget for each level, that is, variants where ∣⋃τ

t=1 Ct∣ ≤ k or
∑τ

t=1 ∣Ct∣ ≤ k. Speaking of variants, another modification could be where the score of any
two agents must not differ by more than some given γ Finally, as a concrete question: does
GCSE or QCSE admit a problem kernel of size polynomial in k if τ is constant? (Recall
that due to Theorem 44, we know that there is presumably no problem kernel for GCSE of
size polynomial in τ if k is constant.)
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