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Abstract

Many human communities are polarized to some degree, so it is important that
preference and knowledge aggregation methods are robust to the presence of po-
larization. Evaluating this robustness requires a good measure of polarization, but
existing metrics for quantifying the polarization of formal models of a population
often diverge from intuition. In particular, many existing metrics imply that polar-
ization is minimized only when there is perfect unanimity or homogeneity. Building
on work from opinion dynamics, political science, and conflict studies, we argue that
polarization is more accurately thought of as the degree of probabilistic dependence
between the attributes of individuals in a population. We define a measure of sort-
edness which captures this intuition based on the information-theoretic concept of
mutual information. We then show that this measure (i) allows for populations to
be simultaneously diverse and minimally polarized, and (ii) is in a formal sense or-
thogonal to public opinion, meaning that polarization can, in principle, be reduced
without disadvantaging existing political stakeholder groups.

1 Introduction

There is evidence of increasing political polarization in many societies [3], so it is important
to understand how social choice functions behave in polarized contexts and to be able to
design mechanisms that are robust to the presence of polarization. Valid measurement of
polarization is also important in political science and in the context of emerging proposals
to use algorithmic systems such as recommender systems on social media as a means of
reducing polarization in society and promoting social cohesion [43].

Polarization can be conceptualized and measured in many distinct ways. Conceptually,
polarization is often decomposed into issue polarization (disagreement over policy issues)
and affective polarization (emotional distance between individuals). Such conceptualizations
are usually measured with survey instruments such as feeling thermometers [21]. A parallel
body of work focuses on formal definitions of polarization intended to represent the degree
to which a formal model of affiliation or preference within a population is polarized [27, 5].

What is the opposite of polarization? It is presumably desirable for our measures of
polarization to remain valid as polarization decreases. Particularly in settings where we
are trying to “minimize polarization”, it is important that the configurations of human
relationships at which our measure of polarization is minimized are consistent with our values
and ideals of a healthy public sphere. However, to minimize polarization according to most
of the existing formal measures would correspond to complete uniformity, homogeneity, or
consensus among a population (Section 2.1). This is inconsistent with freedom of expression
and pluralism, and raises significant concerns about manipulation or influence [42].

An alternative understanding of polarization, common in literature on political science,
is that of partisan sorting. In this conceptualization, polarization is not a property of
individual people (a single person cannot be said to “be polarized”), nor is it a property of
the distribution of positions on a single issue (the debate over, say, climate change action
cannot in isolation be said to “be polarized”). Instead, polarization is a property of the
dependency structure between the positions taken by individuals, or more generally between
individual attributes that include opinions, preferences, identities, and demographics. The
more these attributes tend to go together—and in particular, the greater the extent to which
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similar individuals “sort” themselves into the two major parties—the greater the degree of
polarization. However, the measures used to quantify sorting are usually developed ad hoc
for use with a particular dataset, and often only apply in the bivariate case (party affiliation,
plus one additional attribute).

1.1 Contribution

In this paper, we formalize a measure of polarization called sortedness which characterizes
polarization as the degree of probabilistic dependence between the attributes of individuals
in a population. While political polarization as a type of sorting has been studied previously,
to our knowledge this is the first time that these insights have been distilled into a general
information-theoretic measure that is applicable regardless of the number of variables with
which individuals are modelled.

We show that the opposite of polarization implied by the sortedness measure is not
unanimity (as is the case with most existing measures), but perfect independence of the
attributes of each individual. We then define formally what it means for a measure of
polarization to be “orthogonal to public opinion”, and prove that the sortedness measure
satisfies this property. This is important because it means that, in principle, polarization
can be reduced without disadvantaging existing political stakeholder groups.

1.2 Outline

Section 2 contains a survey of existing polarization measures and related work, along with a
brief introduction to relevant concepts from information theory. Our sortedness measure of
polarization is defined in Section 3. In Section 4 we describe the extrema of the sortedness
measure, formalize the notion of orthogonality and prove that sortedness satisfies this prop-
erty. Section 5 contains a discussion of synergies with previous work, possible limitations of
the sortedness measure, and open questions.

2 Background

2.1 Related Work

There are many existing measures of polarization in formal models of preference or opinion
in a population. We maintain a living review of these at https://bridging.systems/

metrics/, which at the time of writing contains 25 different measures [2, 4, 5, 8, 10, 11, 16,
18, 20, 19, 25, 26, 27, 30, 31, 39, 41, 45, 46, 58, 59]. These measures have variously been
defined in the context of categorical, spacial, or graphical models; apply to individuals,
sub-populations, or entire populations; may or may not require additional structure (such
as clusters) to be known; and many are “unsafe” to optimize, in the sense that to minimize
polarization according to these measures would mean creating perfect unanimity within the
population.

Some works have proposed axioms that a polarization measure should satisfy, though
primarily in the context of economic “polarization” or inequality, rather than political po-
larization. Of these, a series of papers [14, 13, 17, 28, 37, 44, 55] centering on the axioms
proposed by Esteban and Ray [17] are the most prominent. However, for the most part these
axioms apply only to univariate distributions, and some of these axioms are not widely ac-
cepted [1]. There are some proposals for multivariate and information theoretic measures of
economic inequality [22, 33, 51, 52]. Most of these apply only to univariate distributions, or
to attributes that are strictly positive, or are tailored to be measures of inequality, rather
than polarization. The closest measure to ours is perhaps that of Gigliarano and Mosler
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(a) “extremism” (b) “polarization” (c) “sorting”

Figure 1: Visual intuition for a model of a population as a joint probability distribution of the
attributes of an individual selected uniformly at random. In this model, (a) “extremism” is
a property of individual samples, (b) “polarization” is a property of a marginal distribution,
and (c) “sorting” is a property of the dependency structure or copula.

[22], who propose an information-theoretic measure of multivariate polarization designed to
capture the idea that polarization is the “presence of groups which are internally homoge-
neous, externally heterogeneous, and of similar size”. Their class of polarization measures
thus consists of aggregations of three separate sub-measures that are intended to capture
the three separate aspects of (their concept of) polarization.

There is a considerable body of work which articulates the view that polarization is a
kind of population-level sorting, which is the version of polarization we formalize in this
paper. (We note that existing literature varies as to whether sorting is considered a kind
of polarization, as we treat it here, or a conceptually distinct concept, as illustrated in
Figure 1.) Studies on conflict prediction have shown that the greater the extent to which
ethnic identity in a population is cross-cut by religious identity, socioeconomic class or ge-
ographic region, the lower the probability of civil war onset [23, 47, 48]. These studies all
use inherently bivariate measures of cross-cuttingness, or aggregations of pairwise bivariate
measures. Studies on US politics have shown that partisan sorting—measured as the dif-
ference between the association of various political identities with support for each of the
major parties—is increasing and predictive of emotional responses to political messaging
[32, 34, 35]. Again in the US context, studies have shown increased sorting of beliefs into
correlated clusters [12], and high levels of geographic sorting along party lines [6]. Finally,
one simulation study has suggested that increasing exposure to a national or global news in
digital media environments may increase partisan sorting, where sorting is measured using
a formula that captures the proportion of attributes shared between agents [53].

2.2 Notation

This paper makes use of concepts from information theory (see Cover and Thomas [9] for a
standard introductory text). Here, we briefly define some core concepts used in Sections 3
and 4.

Definition 1 (entropy of discrete random variables). Let n ≥ 1 be an integer and
X1, . . . , Xn be real-valued, discrete random variables which respectively take values in
X1, . . . ,Xn and have joint probability mass function p(x1, . . . , xn) = P(X1 = x1, . . . , Xn =
xn). If

H(X1, . . . , Xn) = −
∑

x1∈X1

· · ·
∑

xn∈Xn

p(x1, . . . , xn) log p(x1, . . . , xn)

exists and is finite, it is called the joint entropy of X1, . . . , Xn. In the case n = 1, it is
simply the entropy.

Definition 2 (entropy of continuous random variables). Let n ≥ 1 be an integer and
X1, . . . , Xn be real-valued, continuous random variables which respectively take values in
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X1, . . . ,Xn and have joint density function f(x1, . . . , xn). If

H(X1, . . . , Xn) = −
∫
x1∈X1

· · ·
∫
xn∈Xn

f(x1, . . . , xn) log f(x1, . . . , xn) dx1 . . . dxn

exists and is finite, it is called the joint entropy of X1, . . . , Xn. In the case n = 1, it is
simply the entropy.

Intuitively, entropy can be thought of as a measure of the uncertainty, information or surprise
associated with a set of random variables. The two definitions above, for the discrete and
continuous cases, are analogous. However, because they must be defined separately, we will
throughout this paper often define, discuss or prove results separately in the discrete and
continuous cases.

Definition 3 (Kullback-Leibler divergence). Let p and q be probability mass functions (in
the discrete case) or two density functions (in the continuous case), characterizing distribu-
tions over a common sample space. Further, let X ∼ p. If

DKL(p∥q) = Ep

[
log

p(X)

q(X)

]
exists and is finite, it is called the Kullback-Leibler (KL) divergence between p and q.

Kullback-Leibler divergence is a measure of the distance between two distributions,
though it is not symmetric so is not a true metric. The expectation in the definition
above can be expanded as either a sum or integral in the discrete and continuous cases,
respectively. In general, the two distributions being compared can be multivariate.

3 A Measure of Multivariate Sortedness

We begin with an example to build intuition. Consider a stylized world in which people have
only two attributes, politics and wealth. Each of these attributes can take only two values.
People are politically either LEFT or RIGHT, and either RICH or POOR. For an individual
chosen uniformly at random, let the random variable X denote their politics and Y denote
their wealth.

Let p ∈ [0, 1] be the proportion of people that are politically LEFT, and q ∈ [0, 1] be
the proportion of people who are RICH. Figure 2 depicts three possible contingency tables,
corresponding to three possible populations and three dependency structures between X
and Y . Speaking intuitively, populations (a) and (b) are maximally polarized, according to
the sorting view of polarization. Any two individuals will either be identical, or maximally
different. In contrast, population (c) is maximally unpolarized. The random variables X
and Y are independent: knowing someone’s politics provides no information about their
wealth, and vice versa.

RICH POOR

LEFT p = q 0 p

RIGHT 0
1− p
= 1− q

1− p

q 1− q 1

(a)

RICH POOR

LEFT 0
p =

1− q
p

RIGHT
1− p
= q

0 1− p

q 1− q 1

(b)

RICH POOR

LEFT pq
p ·

(1− q)
p

RIGHT
(1− p)

· q
(1− p)·
(1− q)

1− p

q 1− q 1

(c)

Figure 2: Dependency structures between politics and wealth in three example populations.
Populations (a) and (b) are maximally polarized, population (c) is maximally unpolarized.

4



3.1 Definition

To capture this intuition quantitatively we use mutual information, an information-theoretic
measure of the degree of dependence between two random variables [9, Ch. 2 and 8].

Definition 4 (mutual information). Let X and Y be real-valued random variables (both
discrete or both continuous), PX,Y be their joint distribution, PX , PY their marginal distri-
butions, and PX ⊗PY the product of their marginal distributions. If H(X), H(Y ), H(X,Y )
all exist and are finite, then

I(X;Y ) = DKL(PX,Y ∥PX ⊗ PY )

= H(X) +H(Y )−H(X,Y )

is called the mutual information between X and Y .

There are a few ways to interpret this value. The mutual information I(X;Y ) can be thought
of as the amount of information that X and Y share, or the degree to which knowing one of
these variables reduces uncertainty about the other. Equivalently, the formulation in terms
of Kullback-Leibler divergence suggests that I(X;Y ) is the additional cost of encoding X
and Y using an encoding scheme optimized for independent random variables, when in
reality they are at least partially dependent.

Mutual information (i) is always non-negative, (ii) equals zero if and only if X and Y are
independent, and (iii) is bounded above by H(X)+H(Y )−max{H(X), H(Y )}. Interpreted
as a measure of polarization, I(X;Y ) = 0 indicates no polarization, and

I(X;Y ) = H(X) +H(Y )−max{H(X), H(Y )}

indicates maximal polarization.
Mutual information appears to capture intuition for the sorting view of polarization in

this simple model where people have only two attributes, but in reality people are much more
high-dimensional. There are a number of proposed generalizations of mutual information to
more than two random variables, including interaction information [36, 49], total correlation
[56], and dual total correlation [24]. Of these, we believe total correlation is the easiest to
interpret in the context of polarization, and the most computationally simple.

Definition 5 (total correlation). Let n be a positive integer, and X1, . . . , Xn be real valued
random variables (all discrete, or all continuous). If the entropies H(X1), . . . ,H(Xn) and
H(X1, . . . ,H(Xn) all exist and are finite, then

C(X1; . . . ;Xn) = DKL(PX1,...,Xn
∥PX1

⊗ · · · ⊗ PXn
)

=

[
n∑

i=1

H(Xi)

]
−H(X1, . . . , Xn)

is called the total correlation of the variables X1, . . . , Xn.

Despite its name, total correlation is a measure of probabilistic dependence in general, not
only linear correlation. Many of the properties for two-variable mutual correlation transfer
analogously to the multivariate case. In particular, total correlation (i) is always non-
negative, (ii) equals zero if and only if X1, . . . , Xn are completely independent, and (iii) is
bounded above by [

∑n
i=1 H(Xi)]−max{H(X1), . . . ,H(Xn)}. As a measure of polarization,

C(X1, . . . , Xn) = 0 indicates no polarization, and

C(X1, . . . , Xn) =

[
n∑

i=1

H(Xi)

]
−max{H(X1), . . . ,H(Xn)}
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indicates maximal polarization.
Thus defined, the lower bound of total correlation is always zero, but the upper bound

depends on the marginal distributions of X1, . . . , Xn. To measure polarization on the same
interval regardless of the particular marginal distributions, we can revise the formula to give
a value between 0 and 1.

Definition 6 (sortedness). Let n be a positive integer, and X1, . . . , Xn be real valued ran-
dom variables (all discrete, or all continuous). If the entropies H(X1), . . . ,H(Xn) and
H(X1, . . . , Xn) all exist and are finite, then

S(X1; . . . ;Xn) = 1− H(X1, . . . , Xn)−max{H(X1), . . . ,H(Xn)}
[
∑n

i=1 H(Xi)]−max{H(X1), . . . ,H(Xn)}

we call the sortedness of the variables X1, . . . , Xn.

We propose the term sortedness for this specific measure to distinguish it from the qualitative
notion of polarization and other formal measures. Sortedness equals 0 if and only if the
variables are independent (that is, no sorting or polarization), and equals 1 if the variables
are maximally dependent given the constraints imposed by the marginal distributions (that
is, maximal sorting or polarization).

3.2 Application

We now briefly describe how sortedness can be calculated in the context of three common
models of preferences, affinities, or affiliations in a population.

Categorical models In categorical or set-based models of a population, individuals are
represented by the groups they are a part of. For example, these groups might include ethnic
communities, political parties, religions, geographic neighbourhoods, friendship cliques, or
employers. These groups can all overlap to varying degrees.

For the purposes of estimating sortedness, membership of these groups can be modelled
as n Bernoulli random variables, where n is the total number of groups (of any variety).
These discrete random variables are indicators for the event that an individual selected
uniformly at random from the population belongs to each group. Intuitively, the sortedness
of these indicator variables is an measure of the overall degree of overlap or redundancy
among the set of groups considered, defined for an arbitrary number of groups.

Spacial models In spacial models of a population, individuals are represented as points
in a metric space, representing a latent “opinion space” or “preference space”. Alternatives
over which individuals have preferences may also be represented as points in the same space,
in which case the distance between an individual and each of the alternatives determines
their ordinal preferences over the alternatives [15].

For the purposes of estimating sortedness, each of n dimensions in a spatial model
can be interpreted as specifying an attribute of the individuals, and the coordinates of
an individual chosen uniformly at random modelled as random variables (X1, . . . , Xn). In
empirical contexts or simulations, these distributions may be modelled as discrete (e.g., via
binning) or continuous (e.g., via kernel density estimation).

Graphical models In graphical models of a population, individuals are represented as
vertices in an (abstract, mathematical) graph. There may also be vertices that represent
other entities, such as groups or alternatives with which individuals connect or interact.
Optionally, these edges may be weighted.
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For the purposes of estimating sortedness, the graph can be represented as an adjacency
matrix, with one row per individual and one column for every vertex in the graph. The
elements of the matrix represent the weight of the edge between the corresponding row and
column vertices in the graph (which may be zero, if the edge doesn’t exist). Depending
on whether the edge weights are continuous or binary, the row vectors of this matrix can
be interpreted as samples from a spatial or categorical model, as described above, and
sortedness calculated in the same way.

4 Properties

In this section, we discuss two properties of sortedness as defined in Definition 6. These are
(i) the joint distributions for which it is maximized and minimized, and (ii) the extent to
which it can be said, as a measure of polarization, to be “orthogonal to public opinion”.

4.1 Extrema

4.1.1 Minima

In part, we motivated sortedness as a measure of polarization with the fact that most ex-
isting formal measures of polarization are minimized only when the underlying population
of individuals is completely unanimous or homogeneous. This significantly limits their va-
lidity: if minimizing polarization according to a given measure means removing all diversity
from a population, we believe that measure cannot be capturing the structures of human
relationships that we collectively care about. Most people would find the idea of eliminating
all variation to “reduce polarization” deeply unethical.

To avoid this pitfall, we need a measure that implies an acceptable “opposite of polariza-
tion”. In this respect, sortedness appears promising. The extreme opposite of polarization—
as implied by the sortedness measure—is a world in which people’s preferences or beliefs are
probabilistically independent of one another.

Lemma 1 (minimizing sortedness). S(X1, . . . , Xn) = 0 if and only if X1, . . . , Xn are inde-
pendent.

Proof. By definition, S(X1, . . . , Xn) = 0 if and only if

H(X1, . . . , Xn) =

n∑
i=1

H(Xi).

It is a standard result of information theory that this occurs if and only if X1, . . . , Xn are
completely independent. See [9, Theorem 2.6.6] for the discrete case and [9, Theorem 8.6.2]
for the continuous case.

For any given marginal distributions of X1, . . . , Xn, there is thus a unique joint distribution
for which sortedness is minimized, corresponding to complete independence.

There are reasons why we would not want to advocate for such an extreme reality. The
abstract ideal of perfectly independent beliefs would mean we have little in common with
those in our families and communities, and perhaps formalizes a parochially Western value
of individualism. Nonetheless, we think that as a goal it is considerably more acceptable
than complete uniformity, and it is plausible that partially increasing the independence of
beliefs would be a beneficial change in many conflict scenarios. The goal of independence
is also consistent with formal results on epistemic democracy and wisdom of the crowds
(which often work best under the ideal of independent voters [54]), and with emerging work
on the benefits of correlational discounting in quadratic voting and related aggregation rules
[57, 38].
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4.1.2 Maxima

All happy families resemble one another, but each unhappy family is unhappy
in its own way. [50]

In contrast to the minimum point, which is unique for a specified set of marginal distribu-
tions, there are in general multiple joint distributions with the same marginals for which
sortedness is maximized. All correspond to there being a high degree of dependency between
the random variables X1, . . . , Xn, but the particular structure of this dependency may vary.

In the continuous case, one way in which sortedness can be maximized is for the random
variables X1, . . . , Xn to be comonotonic.

Lemma 2 (maximizing sortedness in the continuous case). Let X1, . . . , Xn be continuous,
real-valued random variables. If X1, . . . , Xn are comonotonic, then S(X1, . . . , Xn) = 1.

Proof. By definition, S(X1, . . . , Xn) = 1 if and only if

H(X1, . . . , Xn) = max{H(X1), . . . ,H(Xn)}.

Assume X1, . . . , Xn are comonotonic. This means that every variable Xi is a monotonic
transformation of each of the others, and knowing the value of any Xi absolutely determines
the values of the others. Thus, each variable Xi contains the same amount of information
(and hence has the same entropy), so max{H(X1), . . . ,H(Xn)} = max{H(X1)} = H(X1).

It remains to show that H(X1, . . . , Xn) = H(X1). Using the chain rule for differential
entropy [9, Theorem 8.6.2], we see that

H(X1, . . . , Xn) =

n∑
i=1

H(Xi | X1, . . . , Xi−1)

= H(X1) +

n∑
i=2

H(Xi | X1, . . . , Xi−1)︸ ︷︷ ︸
=0, because once you know
the value of X1you gain
no more information from
observing the other Xi

= H(X1)

The discrete case is more complicated. For discrete random variables X1, . . . , Xn

with fixed marginal distributions, there may in general not exist a joint distribution such
that S(X1; . . . ;Xn) = 1. To see this, consider S(X;Y ) where X ∼ Bernoulli(p) and
Y ∼ Bernoulli(q) for some p, q ∈ (0, 1) and p > q. Even in the case where X and Y are
comonotonic, there will be three potential outcomes for the random vector (X,Y ) (namely
(0, 0), (1, 0), or (1, 1)), but only two potential outcomes for each of the marginal variables
X and Y . Thus H(X,Y ) > max{H(X), H(Y )}, and S(X;Y ) < 1.

A tight upper bound for sortedness S(X1; . . . , Xn) in terms of the marginal distributions
of discrete random variables X1, . . . , Xn is beyond the scope of this paper. But the main
takeaway is this: according to the sortedness measure, all perfectly unpolarized societies
resemble one another, but each highly polarized society is polarized in its own way.

4.2 Orthogonality

Increasingly there are proposals for large-scale interventions to reduce political polarization,
such as by modifying recommender systems in large news and social media platforms [43].
Because of ethical concerns regarding manipulation [42], it would ideally be possible reduce
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polarization without influencing people. It may also be easier to garner a mandate for
such large-scale interventions if it could be guaranteed that the intervention would not
disadvantage existing political stakeholder groups.

The idea of reducing polarization without influencing people as individuals is perhaps
a non sequitur. However, we show below that there is a sense in which it is possible to
reduce polarization without influencing people collectively. More precisely, if polarization is
a property of the dependency structure between attributes of individuals—as in the case of
sortedness—it is theoretically possible to reduce polarization without changing the marginal
distribution of those attributes. If those attributes represent opinions, a measure of polar-
ization could thus be said to be “orthogonal to public opinion”.

This notion of orthogonality can be defined formally as follows.

Definition 7 (orthogonality). Let n be a positive integer, X1, . . . , Xn be real-valued random
variables with joint distribution P ∈ P and corresponding marginal distributions P1, . . . , Pn

(all discrete, or all continuous). The set P is the set of all possible joint distributions on n
variables. Let f : P → [0, 1] be a function, and s = f(P ) (the current value of the function).
The function f satisfies the orthogonality axiom if, for any target value s′ ∈ [0, 1], there
exists P ′ ∈ P such that (i) f(P ′) = s′ and (ii) P ′ has the same marginal distributions as P .

The sortedness measure of polarization satisfies the orthogonality axiom in the continuous
case, and a one-sided version of orthogonality in the discrete case. We prove these results
below.

Theorem 1. When applied to continuous random variables, the measure S satisfies the
orthogonality axiom.

Proof. Assume X1, . . . , Xn are continuous random variables with specified (but arbitrary)
marginal distributions, and s ∈ [0, 1]. We must show that there exists a joint distribution for
X1, . . . , Xn such that S(X1; . . . ;Xn) = s. For brevity, we will write S(P ) := S(X1; . . . ;Xn),
where P is a joint distribution for X1, . . . , Xn.

The general approach is as follows. We will define a continuous family of distributions
functions Pt for t ∈ [0, 1] such that S(P0) = 0 and S(P1) = 1. In other words Pt is a
joint distribution over X1, . . . , Xn and, as a function of t, is able to continuously interpolate
between maximally and minimally sorted distributions. By applying the intermediate value
theorem, it then follows immediately that there exists some value of t ∈ [0, 1] such that the
joint distribution Pt satisfies S(Pt) = s.

It remains to construct this function Pt. To do so, we will use the notion of a copula
from probability theory. Intuitively, copulas are a tool by which to decouple the depen-
dency structure of a set of random variables from their marginal distributions. Concretely,
a copula C is a multivariate cumulative distribution function for which all the marginal
distributions are uniform on the interval [0, 1]. If (U1, . . . , Un) ∼ C, and F1, . . . , Fn are
arbitrary continuous, univariate distribution functions, then

(X1, . . . , Xn) =
(
F−1
1 (U1), . . . , F

−1
n (Un)

)
is a random vector that has the marginal distributions F1, . . . , Fn and the dependency
structure specified by C. The uniform random variables U1, . . . , Un can be interpreted as
the quantiles ofX1, . . . , Xn. See Nelsen [40] for a more comprehensive introduction to copula
theory.

Using the results from Lemmas 1 and 2, we construct Pt as follows. Let

Pt(x1, . . . , xn) =


C⊥(F1(x1), . . . , Fn(xn)), t = 0 (independent)[
(1− t)C⊥ + tC⧸]

(F1(x1), . . . , Fn(xn)), t ∈ (0, 1) (mixture)

C⧸(F1(x1), . . . , Fn(xn)), t = 1 (comonotonic),
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where C⊥(u1, . . . , un) =
∏n

i=1 ui is the independence copula and C⧸(u1, . . . , un) =
min{u1, . . . , un} is the comonotonicity copula. For t ∈ (0, 1), the dependence structure
of Pt is thus defined using a mixture of the independence and comonotonicity copulas (mix-
tures of copulas are still copulas). Finally, use Pt together with the intermediate value
theorem, as described in the second paragraph of this proof, to see that there must be a
value of t such that S(Pt) = s.

As described in Section 4.1.2, if X1, . . . , Xn are all discrete there may be some values
of s ∈ [0, 1] for which the marginal distributions F1, . . . , Fn do not admit a dependency
structure consistent with S(X1; . . . ;Xn) = s. For this reason, sortedness does not (in
general) fulfil the orthogonality axiom when applied to discrete random variables. However,
it does satisfy a weaker notion of one-sided orthogonality.

Definition 8 (one-sided orthogonality). Let n be a positive integer, X1, . . . , Xn be real-
valued random variables with joint distribution P ∈ P and corresponding marginal distri-
butions P1, . . . , Pn (all discrete, or all continuous). Let f : P → [0, 1] be a function, and
s = f(P ) (the current value of the function). The function f satisfies the one-sided orthog-
onality axiom if, for any target value s′ ∈ [0, s], there exists P ′ ∈ P such that (i) f(P ′) = s′

and (ii) P ′ has the same marginal distributions as P .

We note that one-sided orthogonality, rather than (full) orthogonality, may be “enough” in
many cases. As with orthogonality, if a polarization measure is one-sided orthogonal, then we
can in principle reduce polarization without influencing public opinion. The one-sidedness
simply means it may not be possible to increase polarization with the same guarantee.

Theorem 2. When applied to discrete random variables, the measure S satisfies the one-
sided orthogonality axiom.

Proof. The proof is very similar to that of Theorem 1. Assume X1, . . . , Xn are discrete
random variables with initial joint distribution P . Consider the marginal distributions
to be fixed. Let s = S(X1, . . . , Xn), the initial sortedness of the random variables, and
s′ ∈ [1, s]. Further, for t ∈ [0, 1], define a family of distribution functions

Pt(x1, . . . , xn) =


C⊥(F1(x1), . . . , Fn(xn)), t = 0 (independent)[
(1− t)C⊥ + tC0

]
(F1(x1), . . . , Fn(xn)), t ∈ (0, 1) (mixture)

C0(F1(x1), . . . , Fn(xn)), t = 1 (initial),

where C⊥(u1, . . . , un) =
∏n

i=1 ui is the independence copula and

C0(u1, . . . , un) = F
(
F

(−1)
1 (u1), . . . , F

(−1)
n (un)

)
,

where F
(−1)
i denotes the generalized inverse of Fi such that C0 is a copula consistent with

the initial joint distribution P . For t ∈ (0, 1), the dependence structure of Pt is thus defined
using a mixture of the independence copula and a copula consistent with the initial joint
distribution (in the discrete case, there may be multiple such copulas). Finally, use Pt

together with the intermediate value theorem to see that there must be a value of t such
that S(Pt) = s′.

5 Conclusions and Future Work

To design aggregation methods that are robust to the presence of polarization, it is important
that we are able to measure it well. Distilling recent literature on polarization, we argue
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that viewing polarization as probabilistic dependence between the attributes of individuals
would be consistent with many empirical results and capture most of the key intuitions
about polarization emerging from political science and conflict studies.

We gave a specific information-theoretic formalization of this type of polarization, called
sortedness, which is general enough to apply to several types of formal model and is able to
capture polarization across an arbitrary number of individual attributes. The sorting view
of polarization is compatible with several ideas about the nature of polarization. These
include the claims that polarization is

• a kind of fracturing or clustering (one way in which variables can become more
dependent is for their joint distribution to resemble a mixture of distributions with
disjoint supports);

• a reduction in the dimensionality of individual differences [29] (one way
in which variables can become more dependent is for them to become increasingly
comonotonic or countermonotonic);

• a bifurcation in the expected degree of agreement (the greater the dependence
between issue positions, the greater the extent to which you will be able to predict
someone’s position on every issue given their position on just one);

• the politicization of previously non-political issues [53] (one way for variables
to become more dependent is for them to depend increasingly on party affiliation);

We showed that the “opposite of polarization” implied by sortedness is a situation in which
all attributes are completely independent. We also defined what it means for a functional
on a joint probability distribution to be orthogonal to the marginal distributions, and this is
used to show that the sortedness measure is “orthogonal to public opinion”—meaning that
polarization can in principle be reduced without disadvantaging existing political stakeholder
groups.

For clarity, we emphasize that we are not advocating that the marginal distributions
should stay fixed: both forced stasis and manipulated change are likely unethical. But we
may want to design algorithmic systems (e.g. recommender systems [43]) that aim to reduce
polarization without manipulating public opinion—or at least without having an incentive
to manipulate [7]—and to do this we may need a way of measuring polarization that is
orthogonal to public opinion.

We also note that sortedness, as with any measure, only measures polarization among
the variables used to compute it. This makes it contingent on the variables included in the
joint distribution, and studies that use sortedness to quantify “overall societal polarization”
would need to justify this by including a sufficiently comprehensive set of variables.

Future Work There are many open questions which merit further study, the first of which
are theoretical. For example, we would like a measure of polarization that is comparable
across contexts. To what extent is this true of sortedness? Is it (or can it be modified to
be) comparable across joint distributions with different marginal distributions, or different
numbers of variables? Is it invariant to linear or, more generally, monotonic transformations
of the marginal distributions? (E.g., we don’t want our measure of polarization to depend
on whether we encode left-right political affiliation from [−1, 1] or [1,−1].) It may also be
useful to generalize the definition to all sets of random variables (not just those that are
homogeneously continuous or discrete) using the most general definition of mutual infor-
mation [9, Equation 8.54], and to characterize a general class of measures that satisfy our
definition of orthogonality.

11



The second set of questions are more practical, relating to the use of this measure.
How computationally complex is it to compute? How can we estimate it from incomplete
or inferred models of a population? While conceptually appealing, to what extent is it
psychologically and empirically valid? For example, the orthogonality result is valid if people
“generate their attributes on the fly”. This might effectively be true of some opinions, or
if the population is large enough for this model to be a good approximation. But if the
attributes or opinions of each individual are fixed, this introduces some discreteness to the
problem, which may limit the degree to which orthogonality-like properties can be proven.
Finally, while orthogonality holds in theory, to what extent is this achievable in practice?
This paper has focused on the ontological question of how polarization should be defined,
not the mechanics of how it evolves or can be influenced over time.
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