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Abstract

As an important form of collective decision-making, weighted voting games play a
pivotal role in allocating social benefits. From an egalitarian perspective, an im-
portant pursuit is a decision rule that benefits everyone equally. The debate on
egalitarian weighted voting games is primarily based on equality of opportunity.
However, equality of outcome, an equally essential ingredient of equality, has re-
ceived less attention. This paper investigates the problem of designing egalitarian
weighted voting games, with a particular focus on equality of outcome. In some
special circumstances, it is proved that a weighted majority rule can minimize out-
come inequality. In general, designing an egalitarian weighted voting game can be
transformed into an optimization problem. Heuristic algorithms for approximating
optimal solutions are proposed.

1 Introduction

A collective decision could affect the distribution of welfare in society. As an important
form of collective decision-making, weighted voting games have widespread applications.
A non-negligible issue regarding these applications is how the voting weights should be
distributed. From an egalitarian perspective, the weights should ensure that everyone will
benefit equally. The majority rule widely adopted in modern democracies is usually regarded
as egalitarian in that it guarantees everyone the same opportunity to win for the benefit, as
opposed to the others in history, such as the dictatorial rule which would always favor one
individual. In a more complex setting such as representative democracy, a rule is argued to
be egalitarian if the voting weight of a constituency is roughly proportional to the square
root of its population [5].

However, all the above arguments neglect another ingredient of equality, equality of out-
come. Rather than focusing on whether the expected benefits are the same for everyone,
equality of outcome is primarily concerned with whether everyone receives the same amount
of benefits. Indeed, no rule would always yield equal an outcome if the interests of voters
diverge. Therefore, the goal is to identify a rule such that the outcome inequality is mini-
mized. Bruner[7] argues that the majority rule ensures outcome equality in that it always
selects the alternative with the lower Gini coefficient. However, the conclusion is limited to
when the equal intensity assumption (EI) holds.

This paper investigates the question of designing egalitarian weighted voting games, with
a particular focus on outcome equality. Starting with an extension to Bruner’s argument, I
show that under a more general setting, the weighted majority rule rather than the major-
ity rule ensures outcome equality. Further analysis suggests the conclusion is still limited
as in general, it is not feasible to always select the more equal alternative. Therefore, a
new approach that minimizes inequality in an average sense is adopted. Designing an egal-
itarian weighted voting rule is therefore an optimization problem. Equality of opportunity
and equality of outcome are well coordinated in this framework. Iterative algorithms can
efficiently solve the general optimization problem.

The related literature is as follows. The optimal weighted voting games have been
discussed extensively from both theoretical and algorithmic aspects. Theoretical analysis
hinges on a distribution of voting weights or power indices that maximizes or minimizes
certain functions, e.g., sum of the utilities [4, 12, 2], majority deficit [11], similarly with this



work. Research from the algorithmic aspect focuses on the inverse power-index problem,
that is designing a weighted voting game from a desirable distribution of power indices.
For the inverse Banzhaf problem, iterative approximation algorithms [17, 1] and exact al-
gorithms based on linear programming [15] have been proposed. Recently, Diakonikolas
et al. [9] propose a general solution to the inverse power-index problem based on a variant
of stochastic gradient descent.

The paper is organized as follows. Section 2 introduces basic notations and definitions
regarding voting and inequality measurement. Section 3 first extends Bruner’s work and
then discusses the limitations in methodology. To overcome the limitations, Section 4 adopts
a new approach, where designing an egalitarian weighted voting game is transformed into a
general optimization problem. Section 5 discusses algorithms for solving the problem. Syn-
thetic examples are used to test the algorithms. Section 6 summarizes the main conclusions.

2 Basic notations and definitions

Let N = {1, 2, . . . , n} denote the set of voters and 2N denote the power set of N . Each
voter may cast either ‘yes’ or ‘no’ on a proposal. Let S denote the coalition of ‘yes’ voters,
then every voting profile can be represented by a subset S ⊆ N .

A voting rule or a game fully specifies the outcome of each voting profile. For simple
games, the outcome is either acceptance or rejection. S is called a winning coalition if the
proposal is accepted under S. A simple game is monotonic, that is a winning coalition still
wins if any other voter joins.

Definition 1. A simple game G is denoted by a pair (N,W ), where W is the set of the
winning coalitions satisfying if S ∈ W and S ⊆ T , then T ∈ W . Alternatively, it can be
denoted by a pair (N, v), where v is the characteristic function satisfying v(S) = 1 if S ∈W ;
v(S) = 0 if S /∈ W ; if S ⊆ T , then v(S) ≤ v(T ). The set of all simple games is denoted by
G.

The weighted voting game is a common type of simple game. In a weighted voting
game, every voter is assigned a voting weight, and a proposal is accepted if and only if the
proportion of the weights in S to the total weights is larger than the quota. For monotonicity,
the weights should be non-negative.

Definition 2. A weighted voting game is denoted by G = [q;w1, w2, . . . , wn] where wi ≥ 0
is the voting weight of voter i and q is the quota. A voting profile S ∈ W if and only if∑
i∈S wi ≥ q

∑n
i=1 wi. The set of all weighted voting games is denoted by Gw.

Success is an important aspect in evaluating the role of a voter in a game. A voter is
successful if and only if her vote coincides with the collective outcome. Let x record the
success or failure of these voters, where xi = 1 if i wins and xi = −1 if the opposite.

Definition 3. Voter i is successful and only if the group decision coincides with voter i’s
vote, i.e., (i ∈ S ∈W ) or (i /∈ S /∈W ).

Voters receive different levels of satisfaction from the two alternatives. Suppose they vote
sincerely, the satisfaction level would be higher if they win. Satisfaction may also vary across
voters, depending on how the two alternatives are specified in the ballot. To denote the
distribution of voter satisfaction, the utility vector is defined as below. It is assumed to have
full interpersonal comparability. Under EI, everyone receives the same level of satisfaction
from both the preferred option and the less preferred one, or ui the same for all.

Definition 4. The utility vector u = (u1(x1), . . . , un(xn))>, where ui : {−1, 1} → R and
satisfies ui(1) ≥ ui(−1) for all i.



An inequality index measures how equal a distribution is across population sizes. Let
Dn ⊆ Rn denote the set of all possible distributions given n. Then D =

⋃+∞
n=2D

n 1 is the
set of all possible distributions for varying populations. For normalization, the inequality is
zero if everyone is equal.

Definition 5. An inequality index is a function I : D → R+ which satisfies I(u) = 0 if and
only if u = c1 2 for some c ∈ R.

3 Further analysis of Bruner’s conclusion

3.1 An extension to Bruner’s proposition

This subsection first introduces Bruner’s argument in favor of the majority rule in that it
ensures outcome equality. Following that, I provide an extension to his proposition. It
suggests that the weighted majority rule, rather than the majority rule ensures outcome
equality under more general assumptions.

Bruner’s argument is based on Proposition 1. It suggests that if under EI, then the
majority rule always selects the alternative with the lower Gini coefficient and the relative
standard deviation. Hence, the majority rule outperforms the others in terms of minimizing
outcome inequality.

Proposition 1. When EI holds, the majority rule minimizes the Gini coefficient3 and the
relative standard deviation4 for every S ⊆ N .

However, as Bruner himself acknowledges, the conclusion is limited to when EI is valid,
a condition that rarely holds in practice. For generality, I relax the assumptions in two
aspects: the utilities of voters and the inequality measurement.

Following Definition 4, let ki = (ui(1) − ui(−1))/2 and bi = (ui(1) + ui(−1))/2, the
utility of voter i can be expressed as

ui = kixi + bi. (1)

The coefficient ki, or the sensitivity of voter i, could reflect how intensely voter i would
be affected by the proposal. Voter i is indifferent towards the two alternatives if ki = 0.
The coefficient bi is equal to the arithmetic mean of the utility of winning and the utility
of losing for voter i. For simplicity, I will refer to bi as the average satisfaction of voter i.
Differences in average satisfaction may originate from the fact that the two alternatives are
not designed to be fair. For instance, some voters may at least benefit while others will at
most not be harmed in a vote. Alternatively, if u measures the current welfare instead of
the benefits from the vote, then differences in original status may also contribute. Without
further notice, I will refer to u as the utilities from a single vote. A vote is unbiased (UB)

1The concept of inequality is void for a single voter.
21 denotes a vector with all elements being 1.
3The Gini coefficient is given by

I(u) =
∑

1≤i,j≤n

|ui − uj |
2n2ū

,

where ū =
∑n

i=1 ui/n.
4The relative standard deviation is given by

I(u) =
1

ū

(
1

n

n∑
i=1

(ui − ū)2

) 1
2

.



if bi = bj for all i, j ∈ N . To cope with the domain restrictions of the inequality index, I
assume ui > 0 for all.

The inequality indices can be generalized with a few properties. There are two important
types of inequality index, the relative index and the absolute index. The discrepancy lies in
different notions of inequality equivalence. The absolute index is invariant with respect to
equal absolute changes, that is

I(u + c1) = I(u). (2)

whereas the relative index is invariant under the equal proportional changes to the utility
vector, or

I(λu) = I(u), λ > 0. (3)

For relative indices, the domain Dn ⊆ Rn++
5.

An absolute could be reflective (R), or the inequality remains unchanged under negation,
i.e.,

I(−u) = I(u). (4)

If an index is R, then the inequalities are the same for opposing things, such as happiness
and unhappiness. If absolute inequality changes proportionally under proportional changes
in distribution, or

I(λu) = λI(u), λ > 0, (5)

then it is homogeneous (H). If an absolute index Ia satisfies H, its relative form could be
obtained through

Ir =
nIa∑n
i=1 ui

. (6)

Reversely, if the absolute form of a relative index Ia = ūIr exists, then it is H. Indices
with the two properties are not uncommon, for instance, the absolute Gini index and the
standard deviation.

Proposition 2 attempts a more general argument based on the above assumptions. It
asserts that if the inequality is measured by a relative index whose absolute form is R
and UB holds, then the weighted majority rule with weights proportional to sensitivities
would always select the alternative with lower inequality. Proposition 1 is thus a special
circumstance when EI holds and the inequality index is Gini or relative standard deviation.

Proposition 2. When UB holds, the weighted majority rule G = [0.5; k1, k2, . . . , kn], where
ki is the sensitivity of voter i, would minimize the inequality for every S ⊆ N if the relative
index Ir = Ia/ū with Ia be R.

Proof. For every voting profile S, let x denote the success vector under G and let x′ denote
the success vector if the other alternative is chosen. Let u and u′ denote the corresponding
utility vectors.

I first show that for every S, Ia(u) = Ia(u′). If UB holds, then u = k � x + b1 6. By
reflectivity,

I(u) = I(k� x + b1) = I(k� x) = I(−k� x) = I(k� x′) = I(u′).

I now show that ū ≥ ū′. Note that under G,∑
i:xi=1

ki ≥
∑

j:xj=−1
kj ,

5Rn
++ = {x ∈ Rn|xi > 0 for all i} and Rn

+ = {x ∈ Rn|xi ≥ 0 for all i}.
6a� b denotes the element-wise multiplication of a and b, i.e., a� b = (a1b1, . . . , anbn).



which is equivalent to
∑n
i=1 kixi ≥ 0. Therefore,

ū− ū′ =
2

n

n∑
i=1

kixi ≥ 0.

Because Ir = Ia/ū, it easily follows that Ir(u) ≤ Ir(u
′) for every S ⊆ N , which concludes

the proof.

The proof of Proposition 2 relies on two facts. First, if an absolute index is R, then
the inequality depends on the voting profile rather than the voting rule. Second, the rel-
ative index is obtained through Ir = Ia/ū. Thus, minimizing the outcome inequality is
reduced to maximizing the sum of the utilities. In other words, because absolute inequal-
ity does not depend on which alternative is chosen, the rule should then be utilitarian to
minimize the relative inequality. Several previous studies have already demonstrated that
G = [0.5; k1, k2, . . . , kn] is optimal [4, 12]. Azrieli and Kim [2] also proved a similar conclu-
sion among all incentive compatible decision rules. Thus, Bruner’s argument is akin to that
of utilitarianism, but the latter does not require UB.

3.2 Limitations

From the previous subsection, it appears that the weighted majority rule with weights
proportional to sensitivities would best satisfy the egalitarian ideal. This subsection shows
the claim is flawed in several ways.

A first and the most apparent objection is that the conclusion may not hold for other
inequality indices. If the generalized entropy index [8] is adopted instead, then a counterex-
ample is as follows. The reason is that when p < 0, the generalized entropy is more sensitive
to the disadvantaged, unlike the reflective indices. Therefore, when the alternative with
lower ū is selected, the gap between the worse off and the average is narrowed, contributing
to a reduction in inequality.

Example 1. Suppose ui(1) = 2 and ui(−1) = 1 for all voters. The generalized entropy
index7 is used to measure inequality. If p = −2, then the majority rule always selects the
alternative with higher inequality.

Proof. Let n1 denote the percentage of voters who vote for ‘yes’, without loss of generality,
n1 ≥ 0.5. Let u and u′ denote the utility vectors when the proposal is accepted and
rejected, respectively. Then f(u)− f(u′) = −0.125n1(2n21 − 3n1 + 1) ≥ 0, which concludes
the proof.

Even if the above only applies to a small portion of indices, there is a second objection
that such a rule is inconsistent with equality of opportunity. Suppose UB holds, the expected
payoff is

ki(2Ωi − 1) + b, (7)

where Ωi denotes the probability for voter i to be successful. Equality of opportunity involves
equalizing the expected payoff, which entails that Ωi should decrease as ki increases. Note
that for monotonic games, Ωi should be non-decreasing as the weight wi increases. Hence,
equalizing the expected payoff makes it possible for wi to be negatively correlated with ki,

7The generalized entropy index is given by,

f0(u) =
1

n

n∑
i=1

ln
ū

ui
; f1(u) =

1

n

n∑
i=1

ui

ū
ln
ui

ū
; fp(u) =

1

np(p− 1)

n∑
i=1

(
upi
ūp
− 1

)
, p 6= 0, 1.



contradicting the outcome egalitarian rule. Only under EI can the majority rule ensure
equality at both the opportunity and the outcome levels.

The approach to identifying an egalitarian rule is also limited. The above discussion has
not taken into account the cases when UB does not hold. The following counterexample
shows that in the absence of UB, there may not exist a simple game that can always choose
the less unequal alternative. It is then not feasible to minimize the inequality for every
voting profile.

Example 2. Let b = [2, 2, 2, 2, 10], k = [1, 1, 1, 1, 10]. The inequality is measured by the
Gini index. If S = {2, 3, 4}, then if S ∈ W , f(u) = 0.32 and if S /∈ W , f(u) = 0.615. It
should be S ∈ W to minimize the inequality. Similarly if S′ = {2, 3, 4, 5}, then if S′ ∈ W ,
f(u) = 0.507 and if S′ /∈W , f(u) = 0.4. It implies S′ /∈W , which contradicts monotonicity.

4 A new approach

This section discusses an alternative approach to searching for egalitarian weighted voting
games. The inequality is minimized in an average sense, instead of for every voting profile.
Equality of opportunity and equality of outcome can also be well integrated. Besides, it can
be applied to an arbitrary inequality index.

Before proceeding, I first discuss the trade-off between different voting profiles introduced
by minimizing in an average sense. A general solution is to equip the voting profiles with a
voting behavior [16], which fully specifies how likely a voting profile is to occur.

Definition 6. A voting behavior is a function p : 2N → [0, 1] that satisfies
∑
S⊆N p(S) = 1.

The voting behavior is impartial (IP) if and only if pi = 0.5 for all voters, where pi
denotes the probability for i to vote ‘yes’, i.e.,

pi =
∑
S:i∈S

p(S). (8)

The voting behavior is independent (IND) if everyone votes independently from the remain-
ing voters. Under independence,

p(S) =
∏
i∈S

pi
∏
j /∈S

(1− pj). (9)

If everyone is impartial and independent, then ∀S ⊆ N , p(S) = 1/2n.
The expectation of a random variable y is given by

E[y] =
∑
S

p(S)y(S). (10)

Under IND and IP, it can be shown that [10, 18]

E[x] = β′, (11)

where β′ = (β′1, . . . , β
′
n)> is the distribution of Banzhaf power indices [3] 8. Also, under

8The Banzhaf power index of voter i is given by

β′i =
∑

S:i∈S∈W
S\i/∈W

1

2n−1
(v(S)− v(S − {i})) ,

which can be interpreted as the probability for a voter to be decisive. A voter is decisive if she casts the
pivotal vote, i.e.,

(i ∈ S ∈W and S\i /∈W ) or (i /∈ S /∈W and S ∪ i ∈W ).



IND and IP,
E
[
xx>

]
= I, (12)

where I is the identity matrix, because for i 6= j, xixj = 1 if they vote for the same
alternative, and xixj = −1 if they vote oppositely.

With the above definitions, two functionals that are closely related to two notions
of equality are introduced below. The major difference lies in when the expectation is
taken [19].

Definition 7. Let f be an inequality index and u = (u1, . . . , un)> be a random vector. The
ex-ante inequality is defined as f(E[u]) and the ex-post inequality is defined as E[f(u)].

The ex-ante inequality measures the inequality in expected utilities and is related to
equality of opportunity. Equality of opportunity is achieved if E[u] = c1, or equivalently,
f(E[u]) = 0. In this voting scenario, equality of opportunity is primarily concerned with
whether the expected payoff from the vote is the same for everyone. Alternatively, if u mea-
sures the current welfare, then equality of opportunity probes if a voting rule can compensate
for the pre-existing inequalities to ensure everyone has the same expected welfare level after
this vote. Equality of opportunity may or may not be possible, subject to assumptions on
voter satisfaction. For instance, if under IND, IP, and UB, then equality of opportunity is
achieved if β′i ∝ 1/ki following Eq. (7) and (11). However, if bi varies significantly across
voters, then equality of opportunity is unattainable as suggested in Proposition 3. A viable
alternate approach is to minimize f(E[u]).

Proposition 3. If Var[b] ≥ k2max/n > 0, where kmax = max{k1, . . . , kn}, then ∀G ∈ G,
f(E[u]) > 0 under IND and IP.

Proof. Suppose f(E[u]) = 0, then there exists m > 0 such that kiβ
′
i + bi = m for all i. This

leads to
n∑
i=1

(m− bi)2 =

n∑
i=1

(kiβ
′
i)

2. (13)

For the right-hand side, it has been demonstrated that the Banzhaf power index is l2-
bounded [14], i.e.,

n∑
i=1

(β′i)
2 ≤ 1. ∀G ∈ G,

Then let c =
∑n
i=1(kiβ

′
i)

2, we have c ≤ k2max. Note that

nc− n
n∑
i=1

b2i +

(
n∑
i=1

bi

)2

= nc− n2Var[b] ≤ 0,

the only possible solution for Eq. (13) is m = b̄. However, because for all i, kiβ
′
i ≥ 0, it

entails bi = m for all i, which contradicts. Therefore f(E[u]) > 0.

The ex-post inequality measures the expected inequality of all possible voting profiles and
is related to equality of outcome. Equality of outcome is reached if E[f(u)] = 0. This would
require u = c1 for all voting profiles with non-zero probability, which also entails equality of
opportunity. In this voting situation, equality of outcome requires the payoffs from the vote
are always the same for everyone. Evidently, equality of outcome is hardly attainable as
there are at most two voting profiles that can satisfy u = c1 simultaneously. Similarly, the
ideal of equality of outcome requires minimizing E[f(u)] instead, where minimizing f(u)
for every voting profile is a special circumstance.



The ex-ante and ex-post inequality can be further generalized [6]. The ex-ante inequality
is an instance of the functional I = In ◦ Ip, i.e.,

I(u) = In(Ip(u1), . . . , Ip(un)), (14)

where In operates on voters and Ip operates on voting profiles. Similarly, the ex-post
inequality is an instance of the functional I = Ip ◦ In, or

I(u) = Ip(In(u(S1)), . . . , In(u(S2n))). (15)

For weighted voting games, the utility vector u depends on the weights w and the
quota q. Therefore, designing an egalitarian weighted voting game can be translated into
the following problem in general,

minimize
w∈Rn

+, q∈[0,1]
I(u(w, q)), (16)

where I could be E ◦ f , f ◦ E, or functionals that balance equality of opportunity and
equality of outcome 9, for instance, αE ◦ f + (1− α)f ◦E.

It is worth mentioning that the approach can have extensive applications other than
designing egalitarian weighted voting games. In fact, f can be an arbitrary social welfare
function. For instance, let f be the utilitarian social welfare function and I = E ◦ f or
I = f ◦ E, i.e., I(u) =

∑n
i=1 E[ui], a utilitarian voting rule can be designed via maximiz-

ing I. Following Eq. (11), the inverse Banzhaf problem can also be solved via minimiz-
ing f(E[x],β′0), where β′0 is the target distribution of power indices and f(y, z) measures
the difference between y and z, e.g., f(y, z) =

∑n
i=1(yi − zi)2.

5 An algorithmic solution

5.1 Algorithms

This subsection presents heuristic algorithms to solve the optimization problem. As the
inverse Banzhaf problem is a special instance, an exact but polynomial-time algorithm may
not be viable. Difficulty first arises in that the evaluation of I(u(w, q)) takes O(n2n).
Besides, the parameter space also grows exponentially with n.

To evaluate I(u(w, q)), a computationally feasible approach is to randomly sample sev-
eral voting profiles for approximation. With m samples, the evaluation of I(u(w, q)) takes
O(nm). With a huge parameter space, the optimal parameter can be approximated itera-
tively with a hill climbing approach, analogous to the inverse Banzhaf problem. Algorithm 1
is presented below. It is primarily based on stochastic gradient descent.

A few technical issues are discussed. The gradient can be approximated with a forward
finite difference, i.e.,

∇wi
I(w, q) =

I(w1, . . . , wi + h, . . . , wn, q)− I(w1, . . . , wi, . . . , wn, q)

h
, (17)

where h > 0 is the step size. Errors in gradient calculation could arise from both finite dif-
ference approximation and random sampling. To mitigate the random errors from sampling,
the voting profiles are only sampled once at each iteration. The voting weights w and the
quota q are updated separately, where w is updated with stochastic gradient descent and q
is searched globally. The main reason is that searching for q globally is more accurate. Also,
searching for q globally is not computationally expensive. Gradient calculation with respect

9For axiomatic characterizations of these functionals, see [6, 13, 20].



Algorithm 1: A general algorithm searching for optimal weights and quota to
minimize I(u(w, q)).

Input: Initial weights w0, initial quota q0, maximum iteration K, step sizes αk at
each iteration.

Output: Approximate optimal weights wK , approximate optimal quota qK .
for k = 0, 1, 2, . . . ,K − 1 do

gk ← ∇wI(wk, qk)
wk+1 ← wk − αkgk
qk+1 ← minimize

q∈[0,1]
I(wk+1, q)

end

to w takes O(n2m) and searching for q takes O(nm/∆q) globally, where ∆q is the search
interval. The initial step size can be trialed by a backtrack line search. The subsequent step
sizes decay according to an exponential law.

Under IND and IP, some functionals can be simplified as I = I(β′1, . . . , β
′
n), e.g., I is

the ex-ante inequality. As the Banzhaf power index of integer weights can be computed
in O(nQ) via dynamic programming [21], where Q = q

∑n
i=1 wi, I can also be computed

efficiently. Based on this, a more efficient Algorithm 2 is designed as below.

Algorithm 2: An algorithm searching for optimal weights and quota to minimize
I(u(w, q)) = I(β′(w, q)).

Input: Initial weights w0, initial quota q0 = 0.5, maximum iteration K, threshold
for rounding error ε.

Output: Approximate optimal weights wK , approximate optimal quota qK .
for k = 0, 1, 2, . . . ,K − 1 do

gk ← ∇wI(wk, qk)
αk ← minimize

α≥0
I(β′), where β′ = β′(R(wk − αgk, ε), qk) with R denoting the

rounding operation.
wk+1 ← R(wk − αkgk, ε)
qk+1 ← minimize

q∈[0.5,1]
I(wk+1, q)

end

There are three major differences from Algorithm 1. The first is that input weights w
for I should be rounded off to integers. The rounding error is given by

r(w) =

∑n
i=1(wi −R0(wi))

2∑n
i=1 w

2
i

, (18)

where R0 rounds a number to the nearest integer. Note that naive rounding could introduce
large errors. To reduce the error, the weights can be multiplied by a coefficient λ > 1 before
rounding as two weighted voting games G′ = [q;λw] and G = [q; w] are equivalent. A
proper λ is selected when r(λw) ≤ ε, the threshold for rounding error.

The second difference is that algorithm 2 uses steepest descent instead to update w.
The optimal step size at each iteration αk can be determined via a backtrack line search
algorithm. The last is that in Algorithm 2, the parameter space for q is [0.5, 1] instead of
[0, 1]. The reason is that a weighted voting game and its dual game10 can have identical

10The dual of G = (N, v) is defined as G′ = (N, v′), where v′(S) = v(N)− v(N −S). For weighted voting
games, G′ = [1− q;w].



inequalities as Proposition 4 suggests, as it is not hard to check the expectation operator E
is symmetric and ∀S ⊆ N , p(S) = p(N − S) = 1/2n.

Proposition 4 can be related to some existing results. For instance, let I = E ◦ Pi,11
then it entails E[ui] = E[u′i], Proposition 1 in Beisbart and Bovens [5]. If further under EI,
IND, and IP, then β′(G) = β′(G′), Theorem 5 in Dubey and Shapley [10].

Proposition 4. Let G = [q; w] and G′ = [1 − q; w]. Suppose Ip is symmetric, i.e.,
Ip(πu;πp) = Ip(u; p) and ∀S ⊆ N , p(N − S) = p(S). Let u and u′ denote the utility
vectors under G and G′, respectively. Then I(u) = I(u′) if I = Ip ◦ In or I = In ◦ Ip.

Proof. Let y denote the vote vector, where yi = 1 if i vote ‘yes’ and yi = −1 if i vote ‘no’.
Then for all S, y(S) = −y(N − S).

Suppose v(S) = 1. Then
∑
i∈S wi ≥ q

∑n
i=1 wi and

∑
i∈N−S wi < (1 − q)

∑n
i=1 wi.

Therefore, v′(N − S) = 0. Similarly if v(S) = 0, then v′(N − S) = 1. To sum, for all S,
v(S) = 1− v′(N − S).

Let x and x′ denote the success vectors under G and G′. For every voting profile S, we
have x(S) = (2v(S)− 1)y(S) = (1− 2v′(N −S))(−y(N −S)) = x′(N −S). This also leads
to u(S) = u′(N − S) for all S.

I first show that I(u) = I(u′) for I = In ◦ Ip. Let π(S) = N − S, then for all i,

Ip(ui; p) = Ip(πui;πp) = I(ui(π(S1)), . . . , ui(π(S2n)); p(π(S1)), . . . , p(π(S2n)))

= Ip(ui(N − S1), . . . , ui(N − S2n); p(N − S1), . . . , p(N − S2n))

= Ip(u
′
i(S1), . . . , u′i(S2n); p(S1), . . . , p(S2n)) = Ip(u

′
i; p).

(19)

Consequently, I(u) = In(Ip(u1), . . . , Ip(un)) = In(Ip(u
′
1), . . . , Ip(u

′
n)) = I(u′).

For I = Ip ◦ In, first for all S, z(S) = In(u(S)) = In(u′(N − S)) = z′(N − S). In light
of Eq. (19), I(u) = Ip(z) = Ip(z

′) = I(u′) immediately.

5.2 Application to synthetic models

This subsection uses synthetic models to test the validity of the algorithms. The approximate
optimal rules agree well with the optimal one in theory.

A simple model where ki = 0.1i+ 0.9 and bi = 0.2i+ 9.8 (1 ≤ i ≤ 30) is first employed
to test the validity of the algorithms. Voters are independent and impartial. The initial
weights are uniform. The approximate optimal weights are displayed in Figure 1(a). The
optimal quota is 0.5.

Two phenomena are noteworthy. First, for 1 ≤ i ≤ 15, the weights can be fitted nicely
with a quadratic curve. Second, the rest voters are dummy players. As the sensitivities and
the average satisfaction are distributed linearly, it may be hypothesized that the optimal
weights may either be bi(k̄ − ki) or ki(b̄ − bi), with negative weights being 0. In fact, only
ki(b̄ − bi) is possible because if UB holds, then wi should not rely on ki as Proposition 2
suggests.

Proposition 5. Let f be the variance. Under IND and IP, the weighted majority rule with
wi = max{ki(b̄− bi), 0} minimizes E[f(u)].

11Pi denotes the projection, i.e., Pi(x) = xi.
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Figure 1: (a) Approximate optimal voting weights and expected voting weights for the
linear model. (b) Approximate optimal voting weights and expected voting weights for the
stochastic model. The weights are normalized by the sum.

Proof. From Eq. (11) and (12), E[f(u)] can be simplified as,

E[f(u)] = E

[
1

n

n∑
i=1

(ui − ū)
2

]
=

1

n
E

[
n∑
i=1

(
kixi + bi − kx− b̄

)2]

=
1

n
E

[
n∑
i=1

(
kixi − kx

)2
+ 2

n∑
i=1

(
kixi − kx

) (
bi − b̄

)
+

n∑
i=1

(
bi − b̄

)2]

=
1

n

[(
1− 1

n

) n∑
i=1

k2i + 2

n∑
i=1

(
kiβ
′
i − kβ′

)
(bi − b̄) +

n∑
i=1

(
bi − b̄

)2]

=
1

n

[
2

n∑
i=1

ki
(
bi − b̄

)
β′i +

(
1− 1

n

) n∑
i=1

k2i +

n∑
i=1

(
bi − b̄

)2]
.

Minimizing E[f(u)] is then equivalent to maximizing
∑n
i=1 ki(b̄ − bi)β

′
i. Therefore, the

optimal weight wi = max{ki(b̄− bi), 0} as a consequence of Lemma 6.

Lemma 6. Let f(β′1, . . . , β
′
n) =

∑s
i=1 ziβ

′
i −
∑n
i=s+1 ziβ

′
i, where zi ≥ 0 for all i ∈ N , then

G = [0.5; z1, . . . , zk, 0, . . . , 0] maximizes f .

Proof. First G = [0.5; z1, . . . , zk, 0, . . . , 0] minimize
∑n
i=s+1 ziβ

′
i as β′i ≥ 0.



I now show that it also maximizes
∑s
i=1 ziβ

′
i. Note that

∑s
i=1 ziβ

′
i = E[

∑s
i=1 zixi] under

IND and IP. Similar to Proposition 2, G maximizes
∑s
i=1 zixi for every profile S. Hence G

maximizes E[
∑s
i=1 zixi], which concludes the proof.

Theoretical analysis from Proposition 5 validates the hypothesis. The theoretical optimal
is also plotted in Figure 1(a). The optimal voting weights under algorithm 2 fit perfectly
with the theoretical optimal. The optimal voting weights under algorithm 1 in general fit
well, but the weight for voter i = 15 has some errors. A possible reason is that I is less
sensitive to w15. Figure 1(b) shows that the algorithms also work well on a stochastic model
where utilities and sensitivities are generated stochastically.

The main difference between the optimal rule in Proposition 5 and Proposition 2 is
that the former takes average satisfaction into account. The optimal weights are negatively
correlated with average satisfaction, while still proportional to sensitivities. It implies that
to better ensures outcome equality, those who are likely to benefit more from the proposal
should have less power. If u measures current welfare, it then entails the disadvantaged
should be compensated with additional voting weights. A controversial point is then the
advantaged would get zero weight. However, such controversy might be mitigated by social
welfare functions that combine utilitarianism and egalitarianism.

6 Conclusion

This paper analyses egalitarian weighted voting games from both theoretical and algorithmic
aspects. An extension of Bruner’s work suggests that the weighted majority rule with
weights proportional to sensitivities would always minimize outcome inequality under two
conditions. First, inequality is measured by a relative index whose absolute form is reflective,
and second, the arithmetic mean of the utility of winning and the utility of losing is the
same for all. However, it is not uncommon for one of these conditions to be unmet.

Hence, a more general approach is adopted. Designing an egalitarian weighted voting
game is then transformed into an optimization problem. A rule that minimizes ex-ante
inequality best satisfies the ideal of equality of opportunity and the ideal of equality of
outcome is best served by a rule that minimizes ex-post inequality. Two efficient heuristic
algorithms are therefore proposed. The first is a general algorithm based on stochastic
gradient descent. The second applies to cases when the objective function has a simplified
form. A synthetic experiment suggests both algorithms can approach the theoretically
optimal weights, and the second performs better.

I conclude with a few unanswered questions. First, the theoretical results and algorithms
can be further applied to practical voting scenarios. But a practical difficulty is how to
quantify the satisfaction of voters. The sensitivity can be determined by the square root
law in a two-tier voting system, whereas the average satisfaction remains unknown. Second,
the theoretical guarantees regarding convergence rate and errors remain unexplored. There
also remains a question of whether the algorithm can be further improved. Diakonikolas
et al. [9] show a variant of stochastic gradient descent algorithm performs better for the
inverse power-index problem. It is worth exploring whether it works in this case as well.
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