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Abstract

We study individual manipulability of social choice rules under incomplete information mod-
eled with poll information functions (PIFs). Voters that have an incentive to manipulate under
PIF π are called π-manipulators. Since voters do not know preferences of others exactly,
there is an uncertainty about a situation they are in. In addition, we compare manipulability
for different assumptions about voters’ behavior which constitute a behavioral model. In the
first model incentives to manipulation do not depend on other voters’ incentives. In the sec-
ond model each π-manipulator takes into account that all other π-manipulators strategize,
and in the third model only a subset of them do so. In theoretical part, we study when
non-manipulability is inherited from one model to another and reveal conditions for non-
manipulability of scoring rules. With the help of computations we reveal how the type of
information and behavioral model influence the relative manipulability of 12 social choice
rules.

1 Introduction
When a group of individuals needs to make a collective decision, they can collect all individual
preferences and process them with some aggregating procedure. However, voters can achieve a
better voting result by misrepresenting their preferences, i.e. manipulate. It turned out that the class
of voting procedures that allow for manipulations is very broad. Gibbard [13] and Satterthwaite
[32] independently proved that in the presence of at least 3 candidates (or alternatives) any onto and
non-dictatorial voting rule is vulnerable to manipulation. Different rules may be manipulable to a
different extent. For this reason the most used approach to comparing the degree of manipulability
of rules is measuring the share of situations (preference profiles) that admit manipulation by voters.
This approach was first used by [24] and [17] and further applied to the analysis of a big variety of
rules in different models [1, 18, 30, 4, 2, 3, 29].

In the majority of publications considering the probability of manipulation there are two important
simplifying assumptions made: a) when deciding whether to manipulate or not voters do not take
into account possible actions of other voters (so-called ”naive” behavior) ; b) voters possess all in-
formation about preferences of each other. The aim of this research is to change both assumptions
and study manipulability of voting rules for different behavioral models and types of information.
To deal with the first one we use a version of ”safe” strategy used by Slinko and White [35]. A voter
having an incentive to manipulate individually with some strategy is called a Gibbard-Satterthwaite
manipulator, or GS-manipulator. Apart from the basic model with naive voters (Model 1) we con-
sider two non-naive models of voters’ beliefs. In Model 2 each GS-manipulator considers what the
result of manipulation will be if all other GS-manipulators act strategically. If it occurs that voting
sincerely is better than manipulation for a voter provided that all other GS-manipulators do manip-
ulate, then manipulation becomes risky and the voter looses an incentive to manipulate. In Model
3 voters believe that any subset of potential manipulators can actually act strategically, while others
vote sincerely. This creates a higher level of uncertainty. And again if there is a risk of getting
worse off by using a manipulation strategy instead of voting sincerely, a voter loses an incentive to
manipulate.
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Moreover, we add an assumption of incomplete information. Some models of manipulation under
incomplete information have already been considered. We use the one presented by Reijngoud and
Endriss [31]. It is assumed that all voters report their sincere preferences to an opinion poll held
before voting. Then results of the opinion poll are made public. Since they are represented in an
aggregated form (a result of a poll information function, PIF), voters do not know exactly each
others’ preferences. Thus, a voter has an incentive to manipulate under a given PIF if there is a
strategy such that a voter has a chance of getting better off and has no chance of getting worse off
with this strategy. We consider three types of PIF. The first one is the unique winner, the result of a
voting rule after tie-breaking. The second one is the set of winners according to a voting rule. And
the third is the ranking of alternatives (a weak order) produced by a voting rule.

Thus, combining the uncertainty from incomplete information with the uncertainty about other ma-
nipulators’ actions we get a serious obstacle for a potentially manipulating voter. However, if a voter
has an incentive to manipulate despite all these difficulties, this adds to manipulability of a voting
rule. In the literature there are not many papers studying the probability of manipulation with non-
naive voters and with incomplete information separately (see Section 2). This work is the first one
(to the best of our knowledge) considering both and their mutual influence. We conduct computa-
tional experiments calculating exact manipulability indexes for different combination of information
types and voters’ beliefs about others. Moreover, we prove that for any number of alternatives there
is a specific number of voters such that for any greater number of voters manipulability is impossible
for any scoring rule when voters have information about a unique winner of an election if voters take
into account other manipulators’ actions.

2 Related literature
In this section we aim to consider more thoroughly the body of research devoted to interaction of
voters, voting games, and informational aspects of voting for better understanding the place of our
work in the literature.

If there is only one GS-manipulator among voters, then she is a pivotal voter and has an opportunity
to influence a voting result on her own. If in a society there are several GS-manipulators, the voting
result is difficult to predict due to the problem of their interaction. If a voter knows that other GS-
manipulators may also decide to act strategically, can this affect her incentives to manipulation? This
question was first considered in [35] where each GS-manipulator considers the possibility that other
voters with the same preferences (and, consequently, also being GS-manipulators) may strategise.
These authors define a strategy to be ”safe” if regardless of what subset of other co-minded agents
manipulates there is no possibility for a voter to become worse off and for at least one subset she
becomes better off. This direction was followed by Hazon and Elkind [15] and Ianovski et al.
[16] who studied computational complexity of finding a safe manipulative vote. The asymptotic
probability of a safely manipulable profile for scoring rules was considered by Wilson and Reyhani
Shokat Abad [40].

The next step for a voter is to think not only about her allies, but also about other people who have
an incentive to manipulate. So, an extension of this model considers all GS-manipulators as players
in a voting game. Then a strategy chosen by a manipulating voter can be called ”safe” if it is at
least as good as sincere voting for any possible actions of other GS-manipulators. For simplicity
it is usually assumed that each manipulator chooses between truth-telling and one strategy chosen
according to some optimality principle. This kind of model was considered in [10] and [14]. In these
publications the existence of pure strategy Nash equilibria is studied for plurality and k-Approval
voting rule with k= 2,3,4. Thus, this model of voters’ behavior is the closest to Model 3 in our study.
We also consider only GS-manipulators who choose between sincere voting and one manipulation
strategy.
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However, the set of players may not be restricted to the set of GS-manipulators. Voters which do
not have an incentive to manipulate on their own may also be considered as players and pose a
counter-threat to manipulators’ actions. Pattanaik [27, 28] and Barberà [5] study how coalitions of
voters could counter-manipulate in response to individual manipulations and influence incentives
of GS-manipulator, and the game between manipulator and counter-manipulator was considered by
Grandi et al. [14].

And what if the set of players is the whole set of voters and the set of their strategies is not restricted?
This framework is the most general and was considered many times, for example, by Moulin [21]
and Myerson and Weber [22] among the first. Both papers used Nash equilibrium as a solution
concept, but faced the problem of a great multiplicity of equilibria. Since lots of these equilibria
are weird, there appeared many papers suggesting different ways to eliminate them (see surveys by
Meir [19] or Slinko [34]). For example, one way is to assume that voters prefer to abstain or to
vote sincerely when they are not pivotal [9, 25]. Another one is to refine the set of Nash equilibria
[8, 33, 9, 41, 26]. Moreover, it is possible to assume bounded rationality of voters, who may not
think of other voters being strategic - and we come again to the aforementioned works of Slinko and
White [35], Elkind et al. [10] and Grandi et al. [14].

A topic which follows directly from the previous one is modeling voter levels of rationality. In the
structural level-k models of Nagel [23] and Stahl and Wilson [37] voters of level k of rationality
believe that other voters are of level k−1. Thus, voters of level 0 do not strategize, voters of level 1
choose their best strategy in assumption that all other voters are of level 0, level 2 voters choose the
best response believing that other voters are of level 1. A cognitive hierarchy (CH) model of Camerer
et al. [6] has a difference that level-k voters believe that others can have any level from 0 to k−1. The
CH-model was used in the work by Elkind et al. [11] which focuses on computational complexity of
deciding whether a manipulation strategy weakly dominates a sincere vote for a level-2 voter. The
CH-model is also applicable in our work. As in the work by Elkind et al. [11], we consider only the
first three levels and assume that all voters not being GS-manipulators are of level 0.

A situation when voters do not know anything about actions of other voters, i.e. any voter can
potentially submit any preference order, is equivalent to the zero-information case. Can a voter
choose a strategy weakly dominating sincere voting in such a situation? Intuitively, no. Indeed,
Moulin [21] mentioned that for voters having no information about other voters’ preferences the
best strategy is to vote sincerely. For Condorcet-consistent rules and Borda rule it was formally
proved by Conitzer et al. [7], and for non-manipulability of scoring rules authors give the bound
which was strengthened in the work by [31]. Ho. However, this is an extreme case and it seems
more natural to assume that voters can predict actions of others to some extent (if they know their
true preferences, like in the models mentioned above) or know something about preferences of a
society (incomplete information).

Models of manipulation under incomplete information attract more attention in recent years. One of
the first formal models for strategic voting with partial information was introduced by Conitzer et al.
[7]. The main focus of the paper was complexity of manipulation. A similar model was introduced
by Reijngoud and Endriss [31], but instead of partial orders, authors consider results of preelection
opinion polls. This model was used for the analysis of manipulability of voting rules under various
public information types by Veselova [39]. However, the main application sphere of opinion polls
models is iterative voting, where they serve as a coordination device for voters [22, 31, 12, 20].
More complex models of information may include not only knowledge of other voters’ preferences,
but also knowledge about knowledge. For this purpose epistemic logic is used [38, 36].

Thus, the current work considers the model of individual manipulation by voters with bounded
rationality under incomplete information. Each possible preference profile creates a game with GS-
manipulators as players. As level 2 players in the work by Nagel [23] and Stahl and Wilson [37],
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in our behavioral Model 2 each manipulating agent thinks about others GS-manipulators as being
level 1. And in Model 3 they admit that other GS-manipulators may be level 1 or 0 as in CH-models
[6, 11]. In contrast to the mentioned works level 2 voters do not search for the best reply, but check
whether their strategy for GS-manipulation under uncertainty still works when we add uncertainty
about other voters’ actions.

3 The Framework

3.1 The Model
Let N = {1, ...,n} be a set of voters which have preferences over a set of alternatives X , |X | = m.
Pi ⊆ X ×X is a preference order of agent i and it is assumed to be a linear order, i.e. irreflexive,
weakly complete and transitive binary relation on X . A preference profile of all voters is denoted by
P = (P1, ...,Pi, ...,Pn) and a preference profile of all voters except i is P−i. The set of all preference
profiles is L(X)N and includes (m!)n elements. A mapping F : L(X)N → 2X \ /0 is called a voting rule.
If the result of the voting rule contains more than one alternative, then a tie-breaking rule (TBR) is
used, T : 2X \ /0 → X . We use alphabetic tie-breaking: let some linear order on X to be predefined,
for example, aPT bPT c..., and when alternatives are tied, we choose the one which dominates all
others by PT , i.e T (A) = {a ∈ A|∀x ∈ A,x ̸= a (a,x) ∈ PT}. The composition of functions F and
T , i.e. V (P) is denoted by V (P). Although a result of a voting rule is a set of alternatives which
are considered as the best ones, we could also define a ranking of alternatives based on this rule.
Let us denote this ranking by a weak order P (irreflexive, transitive, and negatively transitive binary
relation), an element of the set of all weak orders on X , W (X).

By v j(a,P) we denote the number of voters having a on the j-th position in preferences (the most
preferred alternative gets the 1st position). A vector of positions for an alternative a is v(a,P) =
(v1(a,P), ...,vm(a,P)). By µ we denote majority relation: akµal if |{i ∈ N : akPial}| > |{i ∈ N :
alPiak}|. A matrix of a majority graph is MG(P), where MG(P)kl = 1 if akµal , MG(P)kl = −1 if
al µak,MG(P)kl = 0 otherwise.

Similar to Reijngoud and Endriss [31], Veselova [39], Endriss et al. [12], we use the poll information
function π(P) (PIF) that shows what kind of information is known by a voter about P. In this paper,
we consider 4 types of PIFs.

1. 1Winner. Information only about the unique winner after the TBR, π1Winner(P) =V (P)
2. Winner. Information only about the winner(s) before tie-breaking, πWinner(P) = F(P)
3. Rank. Information about the ranking of alternatives, πRank(P) = R.
4. Profile. Information about a full profile is known. It is the classic case of complete informa-

tion. πProfile(P) = P.

Let W π(P)
i be the information set of voter i, the set of all possible preference profiles of other voters

that are consistent with information π(P) of voter i.

W π(P)
i = {P′

−i ∈ L(X)N\{i} : π(Pi,P′
−i) = π(P)}. (1)

We say that π is at least as informative as π ′ if for all P ∈ L(X)N and for all i ∈ N we have W π(P)
i ⊆

W π ′(P)
i . In our list of PIFs, they go from the least informative (1Winners-PIF) to the most informative

(Profile-PIF).

Definition 1. We say that a voter has an incentive to π-manipulate in a preference profile P under
a rule F if there exists some preference P̃i such that i) either V (P̃i,P′

−i) =V (P) or V (P̃i,P′
−i)PiV (P)

for all P′
−i in W π(P)

i and ii) V (P̃i,P′
−i)PiV (P) for at least one P′ in W π(P)

i .
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In other words, a voter will manipulate if for every possible profile of her information set she gets
at least the same result and for at least one profile she gets a more preferable alternative, on the
condition that all others vote sincerely.1

If at least one voter has an incentive to π-manipulate in P under F , then preference profile P is π-
manipulable under F . A voter having an incentive to π-manipulate is called a π-manipulator. The
set of all π-manipulators in profile P is denoted by Π(P).

In the Definition 1 proposed by Reijngoud and Endriss [31] a voter does not think about possible
actions of others. We would like to consider other assumptions on voters’ behavior and formalize
this in the term ”behavioral model”. We consider three behavioral models: Model 1 suggests that
voters behavior is naive, they do not think about actions of others (definition of manipulation is the
same as the basic one); in Model 2 voters check whether their manipulation strategy still works
when all other π-manipulators manipulate as well; in Model 3 voters think that there could be some
other voters manipulating.

3.2 Voting rules
• Scoring rules. A scoring rule is defined by a scoring vector s = (s1, ...,sm), where s j de-

notes the score assigned to an alternative at the j-th position in individual preferences.
The total score of an alternative a is denoted by S(a,P) and calculated as a dot product
s · v(a j,P) = ∑

m
i=1 sivi(a j,P). Then a social ordering P is defined as follows: for all a,b ∈ X

i) aPb ⇔ S(a,P) > S(b,P). Alternatives with maximum score win, i.e. x ∈ F(P) ⇔ x ∈
argmaxa∈X S(a,P).

– Plurality: sPl = (1,0, ...,0).
– Veto (Antiplurality): sV = (1, ...,1,0).
– Borda: sB = (m−1,m−2, ...,1,0).

• Run-off procedure. It has two stages:
1) For each alternative x ∈ X the plurality score is calculated, S1(x,P) = sPl ·v(x,P). If ∃a ∈ X
such that S1(a,P)> n/2, then for all b ∈ X \{a}, aPb, and procedure terminates. Otherwise,
procedure moves on to the stage two.
2) Two alternatives with maximal number of scores are chosen. If there are ties, they are
broken according to the tie-breaking rule T .

a = T (argmaxx∈X S1(x,P)), (2)

b = T (argmaxx∈X\{a}S1(x,P)). (3)

The chosen alternatives dominate all other alternatives in ranking P: for all x ∈ X \ {a,b}
aPx,bPx. Finally, if aµb, then aPb and F(P) = {a} if bµa, then bPa and F(P) = {b}, and if
|{i ∈ N : aPib}|= |{i ∈ N : bPia}|, then F(P) = {a,b}.

• Single Transferable vote (STV). This is a multi-stage procedure, which we define in an iterative
form.
0) t := 1, X t := X , Pt := P.
1) For all a ∈ X t St(a,P) := sPl · v(a,Pt).
2) If there exists a∈X t such that St(a,P)> n/2, then F(P)= {a} and the procedure terminates
∀b ∈ X t \{a} aPb. Else A := argmina∈X t (St(a,P)).
3) If A = X t , then F(P) = X t and the procedure terminates. Otherwise, alternatives of A are
eliminated, t := t +1, X t := X t−1 \A, Pt := P/X t ; for all x ∈ X t and a ∈ A it holds xPa; go to
step 1.

1One can imagine an alternative definition of manipulation with only successful outcomes: a voter manipulates only if
her manipulation leads to a success for all preference profiles of her information set. However, in this case manipulation
becomes a very rare event and even impossible for some settings.
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• Copeland. A majority graph is computed. Then scores of alternatives are computed as follows

S(ak,P) =
m

∑
l=1

MG(P)kl . (4)

Ranking P is defined on the base of a scoring function: for all a,b ∈ X aPb ⇔ S(a,P) >
S(b,P). Alternatives with maximum score win, i.e. x ∈ F(P)⇔ x ∈ argmaxa∈X S(a,P).

• Maximin. For each alternative x ∈ X the number of scores is computed as follows S(x,P) =
mina∈X |{i ∈ N : xPia}|. Then alternatives are ranked according to the number of scores: for all
a,b ∈ X i) aPb ⇔ S(a,P)> S(b,P). Alternatives with maximum score win, i.e. x ∈ F(P)⇔
x ∈ argmaxa∈X S(a,P).

• Baldwin’s rule. Multistage procedure.
0) t := 1, X t := X , Pt := P.
1) For all a ∈ X t count Borda score St(a,Pt) := sB · v(a,Pt).
2) Find alternatives with minimum score A := argmina∈X t (St(a,P)).
3) If A = X t , then F(P) = X t and the procedure terminates. Otherwise, alternatives of A are
eliminated, t := t +1, X t := X t−1 \A, Pt := P/X t ; for all x ∈ X t and a ∈ A it holds xPa; go to
step 1.

• Nanson’s rule. For each alternative
0) t := 1, X t := X , Pt := P.
1) For all a ∈ X t St(a,Pt) := sB · v(a,Pt).
2) Compute the average score

r̄t = ∑
a∈X t

St(a,Pt)/|X t |. (5)

3) Find alternatives that have the score lower than r̄t : A := {a ∈ X t |St(a,P)< r̄t}.
4) If A is empty, then F(P) = X t and the procedure terminates. Otherwise, alternatives of A
are eliminated, t := t +1, X t := X t−1 \A, Pt := P/X t ; for all x ∈ X t and a ∈ A it holds xPa; go
to step 1.

• Black’ procedure. Procedure chooses a Condorcet winner CW (P) = [a|¬∃x ∈ X ,xµa] if it
exists, and then for all x ∈ X CW (P)Px. Otherwise, the Borda rule is applied.

• Kemeny’s rule. Let the distance between linear orders be a function d(Pi,Pj) = |(Pi \Pj)∪
(Pj \Pi)|. then P is an ordering such that P = argminR∈L(X) ∑i∈N d(R,Pi). The top alternative
of P is the winner.

• Threshold rule. Alternatives are ordered on the basis of their position vectors: aPb if
vm(a,P) < vm(b,P), or if there exist k ≤ m such that vi(a,P) = vi(a,P), i = k− 1, ...,m, and
vk(a,P) < vk(b,P). In words, we compare the number of worst positions of alternatives. If
they are equal, then we compare the number of second-worst positions, and so on. Undomi-
nated alternatives are winners: x ∈ F(P)⇔¬∃a ∈ X , such that aPx.

4 Model 1: naive manipulation
In this section we discuss the basic model of individual manipulation under incomplete information,
which assumes that a voter does not think about incentives of other voters. Let us define it formally.

Definition 2. A voter has an incentive to π-manipulate in Model 1 (M1) in P under F if and only if
she has an incentive to π-manipulate in P under F.

To compare the degree of manipulability of voting rules one needs some measure. Although in the
case of complete information there exist different manipulability measures [39], we will use the
simplest one, which is the proportion of preference profiles where manipulation is possible.

IM(m,n,π,F) – the share of preference profiles where at least one voter has an incentive to π-
manipulate in model M under a rule F .
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We computed the values of IM1(m,n,Pro f ile,F) in MATLAB for m= 3, and n from 3 to 20 changing
the rule and the type of PIF. First we provide computational results for for the simplest model,
individual naive manipulation with complete information, to compare them with further observations
(see Fig.1). The graphs for the first 6 rules are shown in Figure 1 and Figure 2, for other rules - in
Figure 3 and Figure 4 in Appendix A.
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Figure 1: The values of IM1(3,n,π,F)

As can be seen, all the computed values of IM1 are not greater than 0.4. For most rules the trend is
slowly decreasing and among the least manipulable rules are runoff procedure, STV and Baldwin
rule. Now change information type to Rank-PIF.
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Figure 2: The values of IM1(3,n,π,F)

Lets us consider IM1 for Rank-PIF, Fig.1b (and Fig.3b in Appendix A). The less information is avail-
able to voters, the larger are voters’ information sets. Profiles of the information set of voter i, W π(P)

i ,
all give the same ranking when voter i does not manipulate. However, for all rules under consider-
ation the result after manipulation is not always the same for all profiles of voter’s information set
W π(P)

i . In other words, information about ranks of alternatives does not allow a voter to compute
the result of manipulation for any strategy she chooses (using the term from [31], these rules are not
strongly computable from Rank-images).

According to the definition, using a manipulation strategy must lead to a better result in some profiles
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of W π(P)
i and must not lead to a worse in others. The voter cannot distinguish between different

profiles of her information set. So, if voter i has an incentive to manipulate in P, then all profiles of
W π(P)

i are manipulable, even those where voter i cannot really change anything. A reader can find a
more detailed explanation of this effect in [39].

For most cases the values of IM1 for Rank-PIF are greater that for Profile-PIF. And the general trend
for most rules changes to an increasing with near-1 values for STV, Baldwin, and Nanson rules and
m > 12.

For Winner-PIF (Fig.2a and Fig.4a) even more rules show graphs going to 1 with growing n. These
are the same as for Rank-PIF plus Black procedure, maximin, and runoff. Except for Copeland and
veto rule, all other rules demonstrate values of I(1) for Winner-PIF greater than for Rank-PIF for
almost all n. The graph for Copeland rule has a higher amplitude and manipulability of veto rule
decreased considerably for all n.

For the least informative PIF, 1Winner-PIF (Fig.2b and Fig.4b), all rules except for Copeland and
veto, merge near 1 for n > 6. Peaks of the graph for Copeland rule also approach 1, and veto rule
disappears from the figure due to the zero-manipulability for 1Winner-PIF [31].

5 Model 2: manipulation with respect to all other π-
manipulators

In this section we investigate what will change if a manipulating voter takes into account manipula-
tions of others. In general, each π-manipulator has a set of strategies with that she has an incentive
to π-manipulate. For simplicity, for each π-manipulator j in Π(P)\{i} we fix one strategy P̂j that
she may use or not, which we will refer to as π-manipulation strategy.2 In other words, voter i
thinks that another voter j can π-manipulate only with a strategy P̂j. A π-manipulation strategy
P̂j is chosen by the principle of the best winning alternative and in case of equality we choose it
alphabetically.

We denote by P̂ a preference profile obtained from P with the difference that all voters from Π(P)
use their π-manipulation strategy.

Definition 3. We say that a voter i has an incentive to π-manipulate in Model 2 (M2) in a preference
profile P under a rule F if there is a strategy P̃i such that:
i) voter i has an incentive to π-manipulate with P̃i in P under F;
ii) it is either V (P̃i, P̂

′
−i) =V (Pi, P̂

′
−i) or V (P̃i, P̂

′
−i)PiV (Pi, P̂

′
−i) for all P′

−i in W π(P)
i .

In words, condition ii) requires that a strategy P̃i is still not worse than truth-telling provided that all
other π-manipulators decide to manipulate. Thus, if some strategy P̃i for voter i fails to dominate
truth-telling, we need to check another strategy, and so on. If none of them is dominant, then voter i
does not have an incentive to π-manipulate in Model 2. So, although we fix manipulation strategies
for other π-manipulators, we still need to consider all manipulation strategies for voter i. However,
for the 3-alternatives case this occurs to be excessive, since different manipulation strategies do not
differ in terms of the result.

The first series of experiments refers to the complete information case. However, instead of values
IM2(3,n,Pro f ile,F) we show results for IM1(3,n,Pro f ile,F)− IM2(3,n,Pro f ile,F), which is more
illustrative. Particularly, it shows in which proportion of naively manipulable preference profiles

2Otherwise, we should have considered all combinations of strategies for π-manipulators. This is not only computa-
tionally hard, but also not very interesting. For the 3-alternatives case if there are several manipulation strategies, then most
likely they are equivalent (always give the same result).
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .06 .04 .03 .04 .03 .02 .03 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01
Veto .06 .07 .08 .09 .09 .08 .08 .08 .07 .07 .07 .06 .06 .06 .05 .05 .05 .04
Borda .00 .04 .03 .03 .02 .02 .01 .01 .01 .01 .01 .01 .01 .00 .00 .00 .00 .00

Table 1: IM1(3,n,Pro f ile,F)− IM2(3,n,Pro f ile,F)

(manipulable in M1) a threat of having something bad as the result in case of simultaneous ma-
nipulation destroys all incentives to manipulate. In this and the proceeding section computational
experiment results are shown for scoring rules only. The full tables can be seen in Appendix B. As
can be seen from Table 1 and Table 5 (Appendix B), this situation occurs most often under veto and
threshold rule. There is almost no difference between Model 1 and Model 2 for runoff procedure,
maximin, Baldwin and Kemeny rules under Profile-PIF. Except for veto and threshold rules, all other
values do not exceed 0.07 and most of them are very close to 0. This suggests that having a threat
to loose when all other manipulators do manipulate cannot be a serious obstacle to strategic voting,
simply because it is quite rare.

Then we change information type to less and less informative and two opposite effects start to work
together. On the one hand, the probability to meet a π-manipulable profile grows (see Fig.1-4) in
general for many rules. On the other hand, the risk to result with something worse than initially due
to simultaneous manipulation combined with uncertainty about preferences of others makes many
profiles non-manipulable.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality (Rank-PIF) .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto (Rank-PIF) .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (Rank-PIF) .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13

Plurality (Winner-PIF) .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto (Winner-PIF) .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (Winner-PIF) .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29

Plurality (1Winner-PIF) .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto (1Winner-PIF) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (1Winner-PIF) .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 2: IM2(3,n,PIF,F) for 3 rules and 3 PIFs

Let us list the most important observations from Table 2 and put them into groups.

Rank-PIF:

• Veto rule is non-manipulable for n ≥ 4 and Nanson’s is non-manipulable for n ≥ 11;
• Borda and Maximin rules are the least manipulable;
• Plurality, Kemeny, and threshold rules are the most manipulable.

Winner-PIF:

• STV rule is non-manipulable for n ≥ 13;
• For Copeland, maximin, Baldwin, Black and Kemeny rules there is an alternation of zero and

non-zero values of manipulability index;
• Plurality, Borda, and threshold rules are the most manipulable.

1Winner-PIF:

• For all rules except for Copeland rule there is a value n′ such that all values of IM2(m,n,F,π)
are zeros for all n ≥ n′.
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We also need to mention that the computed values for Kemeny and maximin rules coincide for all
PIFs except Rank-PIF. The coincidence is explained by the same results these rules give for the 3-
alternative case. And the difference for Rank-PIF is caused by the different ways the Rank-PIF is
constructed for these rules.

From the tables it can be seen that if we get zero manipulability in some case and increase the level
of uncertainty, then zero manipulability is preserved. For example, we fix a PIF and go from Model
1 to Model 2.

Proposition 1. For any PIF π , for any rule F, the number of voters n, and the number of alternatives
m if IM1(m,n,F,π ′) = 0, then IM2(m,n,F,π ′′) = 0.

The main observation for Model 2 and 1Winner-PIF is that for all rules except Copeland manipu-
lability indexes become 0 when the number of voters exceeds a certain value. It turns out that the
same holds for any given number of alternatives for any scoring rule. First we prove Lemma 1 and
then use it in Theorem 1 stating this.

For a scoring vector s, a jump is a non-zero difference between two adjacent scoring values. If s
has r jumps, then this means that there are distinct k1, . . . ,kr ∈ {1, . . . ,m−1} such that sk1 − sk1+1 >
0, . . . ,skr −skr+1 > 0, while all other differences are zero. Let ∆ j = sk j −sk j+1 for j = 1, . . . ,r denote
the j-th jump.

Lemma 1. For any scoring rule F, any number of alternatives m, any voter i, any jump ∆ j, and any
two distinct alternatives ah and al there is a number of voters n∗, such that for all n > n∗ there exists
P ∈ L(X)N such that
1) Pi = (a1,a2, ...,am);
2) for all ag ∈ X \{ah,al} S(ah,P)> S(ag,P);
3) S(ah,P)−S(al ,P) = ∆ j (S(ah,P)−S(al ,P) = 0).

Theorem 1. For any scoring rule F and any number of alternatives m there is a finite number of
voters n∗, such that for all n > n∗ it holds IM2(m,n,F,1Winner) = 0.

The proofs of Lemma 1 and Theorem 1 can be found in Appendix C.

6 Model 3: manipulating subsets of GS-manipulators
In this model, a voter assumes that each of the other π-manipulators may manipulate or not. Thus, it
is necessary to consider all possible subsets K of Π(P)\{i}. Then voter i compares the result with
using strategy P̃i and voting sincerely provided that voters from K manipulate and others do not.

It is quite natural to assume that not all potential manipulators will actually manipulate. The problem
is that for a voter it is computationally hard to think about actions of all possible subsets of π-
manipulators. We show, however, that Model 3 does not differ very much from the previous one.
Results are certainly strengthened, but not essentially different. Let us give a formal definition of
manipulation in Model 3.

Definition 4. We say that a voter i has an incentive to π-manipulate in Model 3 (M3) in a preference
profile P under a rule F if there is a strategy P̃i such that:
i) voter i has an incentive to π-manipulate with P̃i in P under F;
ii) it is either V (P̃i,(P̂

′
K ,P′

−K−i)) =V (Pi,(P̂
′
K ,P′

−K−i)) or
V (P̃i,(P̂

′
K ,P′

−K−i))PiV (Pi,(P̂
′
K ,P′

−K−i)) for all P′
−i in W π

i and for all K ⊆ Π(P′)\{i}.

Analogously, condition ii) requires that a strategy P̃i is still not worse truth-telling if some of π-
manipulators also decide to manipulate.
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .00 .02 .03 .02 .03 .04 .03 .04 .04 .03 .04 .04 .03 .03 .03 .03 .03
Veto .00 .01 .02 .03 .03 .05 .06 .07 .08 .09 .09 .10 .11 .11 .12 .12 .13 .13
Borda .00 .00 .01 .03 .03 .05 .05 .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08

Table 3: IM2(3,n,Pro f ile,F)− IM3(3,n,Pro f ile,F)

Again, let us first consider the difference of manipulability indexes in Model 2 and Model 3 for the
complete information case (Table 3 and Table 9 in Appendix B). On average, this difference has
higher values than the difference between Model 1 and Model 2. This shows that the number of
profiles where a subset of manipulators can spoil the result by their strategic actions is larger than
the number of profiles where this can be done by all manipulators.

High values are more likely for bigger numbers of voters, since the number of GS-manipulators
is greater in this case. The highest values of difference correspond to veto, Borda, Nanson’s and
threshold rules. And the least difference show maximin, Kemeny (which are the same again), and
Baldwin rules. Since Model 3 assumes even higher level of uncertainty for voters than Model 2,
zero-manipulability obtained for Model 2 is inherited by Model 3. Let us formulate this inheritance
in the following two propositions.

Proposition 2. For any PIF π , for any rule F, the number of voters n, and the number of alternatives
m if IM1(m,n,π,F) = 0, then IM3(m,n,π,F) = 0.

Proposition 3. For any PIF π , for any rule F, the number of voters n, and the number of alternatives
m if IM2(m,n,π,F) = 0, then IM3(m,n,π,F) = 0.

Finally, if we fix the behavioral model and go from a more informative PIF π ′ to a less informative
PIF π ′′, then 0-manipulability obtained for π ′ is preserved for π ′′.

Proposition 4. Suppose, π ′ is at least as informative as π ′′. Then for any M ∈ {M1,M2,M3},
for any rule F, number of voters n, and number of alternatives m if IM(m,n,π ′,F) = 0, then
IM(m,n,π ′′,F) = 0.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality (Rank-PIF) .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto (Rank-PIF) .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (Rank-PIF) .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13

Plurality (Winner-PIF) .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto (Winner-PIF) .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (Winner-PIF) .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29

Plurality (1Winner-PIF) .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto (1Winner-PIF) .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda (1Winner-PIF) .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 4: IM3(3,n,PIF,F) for 3 rules and 3 PIFs

In Table 4 (and Tables 10-12 in Appendix B) zero values obtained for Model 2 are highlighted with
a darker grey, and those for Model 3 with a lighter grey. First, let us look at the top part of Table
4, which shows the manipulability index for Rank-PIF and behavioral Model 3. It can be seen that
only veto and Nanson’s rule demonstrate clear zero-tending dynamics of IM3(m,n,F,π), and values
for maximin rule and Black procedure are quite low. Zero-manipulability occurs in some cases for
runoff, STV, and maximin. However, most of zero values are inherited from Model 2. Plurality,
Kemeny, and threshold rules are the most manipulable.
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Now let us move on to the middle part of Table 4 (and Table 11 in Appendix B), corresponding
to Winner-PIF. For plurality, Borda, and threshold rules if voters know information about winners
before tie-breaking, they still can manipulate, even when they think that others may also manipulate.
We view this as an important observation, since it puts these rules in contrast with the remaining
ones, which give non-manipulability or zero manipulability alternating with non-zero manipulability
from certain number of voters.

A slight difference in the quality of public information, i.e. voters do not know which alternatives
were tied (in case there is a tie) and know only a final winner – this difference makes almost all
rules impossible to manipulate from a certain value of n. Periodicity is preserved for Copeland
rule, and the amplitude seems to be growing. It means that Copeland rules provides an opportunity
to manipulate even under uncertainty of preferences and intentions of others when the number of
voters is even. However, other rules give us a hope that manipulation actually does not make much
sense when you know little.

7 Conclusion
We have reviewed many works devoted to the problem of manipulability of voting rules. They
considered the problem from probabilistic, computational, informational points of view. These as-
pects were considered separately and results are often unfavorable: rules turn out to be manipulable
(Gibbard-Satterthwaite theorem type), and, moreover, highly manipulable (computed probabilities)
or efficiently manipulable. The current study is the first one combining informational and behavioral
aspect of manipulation and applying a probabilistic approach to it.

One may argue that computing all possible situations consistent with public information and pre-
dicting other manipulators’ actions is too hard for a voter. Of course, it is, and this adds to the
immunity of rules to manipulation in reality. However, the goal of this research was not to show that
manipulation is hard, but to demonstrate that it does not make much sense.

Another possible objection is that there are still many cases when manipulation is probable. The
answer here is following: we considered only the probability of that a voter will have an incentive to
manipulate, but did not compute the probability of a successful manipulation. As shown by Veselova
[39], this probability turns out to be rather small.

The deeper analysis of the manipulation models from this study may also include computation and
comparison of the probability of success and failure for each voter. This could help to understand
whether a voter is assumed to be too risk-averse when she does not manipulate in a view of one
unfavorable situation. However, considering only strategies that do not spoil the result whatever
other voters do seems quite natural for modeling voters behavior. It guarantees that a voter will not
loose. The fact revealed by this study that under very natural conditions it is impossible to find such
strategy in a vast number of cases is definitely good news.
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B Appendix

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .06 .04 .03 .04 .03 .02 .03 .02 .02 .02 .02 .01 .01 .01 .01 .01 .01 .01
Veto .06 .07 .08 .09 .09 .08 .08 .08 .07 .07 .07 .06 .06 .06 .05 .05 .05 .04
Borda .00 .04 .03 .03 .02 .02 .01 .01 .01 .01 .01 .01 .01 .00 .00 .00 .00 .00
Run-off .00 .00 .00 .00 .00 .01 .01 .00 .00 .00 .01 .00 .00 .00 .00 .00 .00 .00
STV .06 .04 .00 .01 .01 .00 .03 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00
Copeland .00 .04 .00 .03 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Maximin .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Baldwin .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Nanson .00 .00 .07 .01 .06 .03 .04 .03 .03 .02 .02 .02 .01 .01 .01 .01 .01 .01
Black .00 .00 .02 .00 .03 .01 .03 .01 .04 .01 .03 .01 .03 .01 .03 .01 .02 .01
Kemeny .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
Threshold .17 .04 .02 .12 .05 .05 .04 .05 .07 .04 .05 .06 .04 .04 .05 .04 .03 .04

Table 5: IM1(3,n,Pro f ile,F)− IM2(3,n,Pro f ile,F)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13
Run-off .11 .35 .28 .52 .29 .42 .36 .54 .27 .42 .24 .26 .10 .21 .00 .09 .00 .00
STV .00 .07 .52 .24 .00 .72 .23 .36 .74 .37 .00 .58 .27 .00 .00 .21 .00 .00
Copeland .19 .25 .21 .21 .25 .22 .27 .22 .29 .23 .29 .23 .30 .23 .30 .23 .30 .24
Maximin .06 .21 .02 .16 .17 .15 .08 .09 .08 .00 .08 .00 .08 .00 .08 .00 .08 .00
Baldwin .19 .19 .30 .32 .19 .40 .31 .27 .30 .32 .29 .33 .28 .34 .29 .32 .29 .32
Nanson .28 .17 .23 .30 .00 .28 .29 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .02 .13 .03 .32 .04 .31 .03 .41 .04 .41 .04 .41 .04 .33 .04 .33
Kemeny .19 .16 .15 .21 .37 .32 .42 .29 .45 .31 .48 .33 .49 .34 .50 .35 .51 .36
Threshold .06 .17 .11 .19 .24 .23 .30 .34 .33 .37 .40 .39 .42 .44 .43 .45 .46 .45

Table 6: IM2(3,n,Rank,F)
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29
Run-off .22 .38 .71 .70 .65 .59 .55 .59 .25 .50 .35 .20 .30 .26 .00 .24 .00 .00
STV .00 .10 .71 .29 .00 .60 .28 .14 .00 .38 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .06 .37 .00 .29 .00 .32 .00 .35 .00 .36 .00 .38 .00 .38 .00 .39 .00 .39
Maximin .06 .22 .02 .13 .44 .12 .21 .09 .24 .00 .27 .00 .28 .00 .30 .00 .31 .00
Baldwin .06 .22 .64 .13 .17 .42 .00 .09 .00 .08 .00 .08 .00 .08 .00 .07 .00 .07
Nanson .22 .22 .25 .25 .00 .21 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .64 .13 .00 .32 .00 .45 .00 .17 .00 .16 .00 .15 .00 .07 .00 .07
Kemeny .06 .22 .02 .13 .44 .12 .21 .09 .24 .00 .27 .00 .28 .00 .30 .00 .31 .00
Threshold .06 .22 .32 .14 .19 .18 .23 .25 .24 .27 .29 .28 .30 .31 .30 .32 .32 .31

Table 7: IM2(3,n,Winner,F)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Run-off .22 .52 .71 .71 .65 .32 .55 .45 .25 .26 .35 .00 .30 .00 .00 .00 .00 .00
STV .00 .15 .71 .29 .00 .62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .17 .21 .00 .15 .00 .20 .00 .23 .00 .26 .00 .28 .00 .29 .00 .30 .00 .31
Maximin .17 .18 .21 .57 .26 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Baldwin .17 .18 .43 .57 .17 .50 .00 .24 .00 .26 .00 .28 .00 .00 .00 .00 .00 .00
Nanson .31 .18 .00 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .17 .18 .43 .57 .00 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .17 .18 .21 .57 .26 .63 .00 .24 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Threshold .11 .44 .62 .13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 8: IM2(3,n,1Winner,F)
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3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .00 .02 .03 .02 .03 .04 .03 .04 .04 .03 .04 .04 .03 .03 .03 .03 .03
Veto .00 .01 .02 .03 .03 .05 .06 .07 .08 .09 .09 .10 .11 .11 .12 .12 .13 .13
Borda .00 .00 .01 .03 .03 .05 .05 .06 .06 .07 .07 .07 .07 .07 .08 .08 .08 .08
Run-off .00 .00 .00 .00 .01 .03 .02 .01 .01 .02 .02 .03 .02 .02 .02 .02 .03 .04
STV .00 .00 .00 .00 .01 .00 .04 .07 .00 .02 .05 .02 .04 .07 .01 .03 .05 .03
Copeland .00 .00 .00 .03 .00 .04 .00 .04 .00 .04 .01 .03 .01 .03 .01 .03 .01 .03
Maximin .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01
Baldwin .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .01 .01 .02 .01 .02 .01 .02 .02
Nanson .00 .00 .01 .01 .08 .02 .12 .04 .14 .06 .16 .08 .16 .09 .17 .09 .17 .10
Black .00 .00 .01 .00 .02 .00 .03 .01 .04 .01 .04 .02 .05 .02 .05 .03 .06 .03
Kemeny .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01 .01 .01
Threshold .00 .02 .00 .06 .05 .03 .11 .07 .05 .11 .09 .08 .12 .11 .10 .13 .12 .12

Table 9: IM2(3,n,Pro f ile,F)− IM3(3,n,Pro f ile,F)

Rank 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .07 .12 .12 .18 .23 .25 .36 .31 .33 .43 .37 .39 .47 .40 .42 .50 .42
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .28 .19 .08 .08 .07 .06 .07 .08 .09 .10 .10 .11 .11 .12 .12 .12 .13 .13
Run-off .11 .35 .28 .52 .29 .42 .36 .54 .27 .42 .24 .26 .10 .21 .00 .09 .00 .00
STV .00 .07 .52 .24 .00 .72 .23 .22 .74 .37 .00 .58 .27 .00 .00 .21 .00 .00
Copeland .19 .25 .21 .21 .25 .22 .27 .22 .29 .23 .29 .23 .30 .23 .30 .23 .30 .24
Maximin .06 .21 .02 .16 .17 .11 .07 .00 .07 .00 .07 .00 .07 .00 .07 .00 .06 .00
Baldwin .19 .19 .30 .32 .19 .28 .31 .18 .15 .23 .13 .22 .14 .23 .14 .24 .15 .25
Nanson .28 .17 .19 .30 .00 .18 .25 .05 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .02 .13 .02 .09 .03 .09 .03 .09 .03 .01 .04 .01 .04 .01 .04 .01
Kemeny .19 .16 .15 .21 .36 .31 .42 .28 .45 .31 .48 .33 .49 .34 .50 .35 .51 .36
Threshold .06 .17 .11 .19 .24 .22 .30 .34 .32 .37 .40 .38 .42 .44 .42 .45 .46 .45

Table 10: IM3(3,n,Rank,F)
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Winner 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .10 .12 .14 .26 .28 .25 .33 .33 .30 .37 .36 .34 .39 .37 .36 .40 .38
Veto .03 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .22 .31 .15 .15 .16 .17 .19 .20 .22 .23 .24 .25 .26 .27 .27 .28 .28 .29
Run-off .22 .38 .71 .70 .37 .59 .00 .37 .00 .08 .00 .00 .00 .00 .00 .00 .00 .00
STV .00 .10 .71 .29 .00 .60 .00 .00 .00 .15 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .06 .37 .00 .29 .00 .32 .00 .35 .00 .36 .00 .38 .00 .38 .00 .39 .00 .39
Maximin .06 .22 .02 .13 .43 .09 .20 .00 .23 .00 .25 .00 .27 .00 .28 .00 .29 .00
Baldwin .06 .22 .64 .13 .00 .30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Nanson .22 .22 .21 .25 .00 .18 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .06 .22 .64 .13 .00 .09 .00 .09 .00 .08 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .06 .22 .02 .13 .43 .09 .20 .00 .23 .00 .25 .00 .27 .00 .28 .00 .29 .00
Threshold .06 .22 .32 .14 .19 .18 .22 .25 .23 .27 .29 .27 .30 .31 .29 .32 .32 .31

Table 11: IM3(3,n,Winner,F)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Plurality .00 .15 .00 .17 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Veto .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Borda .31 .27 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Run-off .22 .52 .71 .57 .37 .32 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
STV .00 .15 .71 .29 .00 .22 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Copeland .17 .21 .00 .15 .00 .20 .00 .23 .00 .26 .00 .28 .00 .29 .00 .30 .00 .31
Maximin .17 .18 .21 .57 .26 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Baldwin .17 .18 .43 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Nanson .31 .18 .00 .57 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Black .17 .18 .43 .57 .00 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Kemeny .17 .18 .21 .57 .26 .20 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
Threshold .11 .44 .62 .13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 12: IM3(3,n,1Winner,F)

20



C Appendix
Proposition C.1. For any PIF π , for any rule F, the number of voters n, and the number of alter-
natives m if IM1(m,n,F,π ′) = 0, then IM2(m,n,π ′,F) = 0.

Proof. The proof follows directly from the definitions of manipulation in Model 1 and Model 2.
To have an incentive to manipulate in Model 2, a voter needs to have an incentive to manipulate
in Model 1. If IM1(m,n,π ′,F) = 0, then no voter has in incentive to manipulate in Model 1, and,
consequently, also not in Model 2. So, IM2(m,n,π ′,F) = 0.

Lemma C.1. For any scoring rule F, any number of alternatives m, any voter i, any jump ∆ j, and
any two distinct alternatives ah and al there is a number of voters n∗, such that for all n > n∗ there
exists P ∈ L(X)N such that
1) Pi = (a1,a2, ...,am);
2) for all ag ∈ X \{ah,al} S(ah,P)> S(ag,P);
3) S(ah,P)−S(al ,P) = ∆ j (S(ah,P)−S(al ,P) = 0).

Proof. 1) For simplicity, let voter i be the first with a preference order P1 = (a1, ...,ah, ...,al , ...,am)
(which means a1P1ahP1alP1am, dots mean there can be other alternatives). First, we consider the
case when h < l. Then we denote P2 = (al , ...,a1, ...,ah, ...), P3 = (ah, ...,al , ...,a1, ...) (alterna-
tives a1, ah, and al are on the same places, but cycled according to a permutation (a1 al ah)), P4 =
(a1, ...,al , ...,ah, ...,am) (the same as P1, but ah and al switched), P5 = (ah,al , ...), P6 = (al ,ah, ...),
P7 = (...,ah|al , ...) (the line | denotes the position of j-th jump, ∆ j).

2) Let us prove by construction that there exists a profile with S(ah,P)− S(al ,P) = ∆ j. For an
odd n: P′ = (P1,P4,qP5,qP6,P7). For an even n: P′′ = (P1,P2,P3,qP5,qP6,P7). A profile with
S(ah,P) = S(al ,P) is constructed the same way by leaning out P7.

3) Now we prove that the condition ∀ag ∈ X \ {ah,al} S(ah,P) > S(ag,P) could be satisfied for
the constructed profiles. First, in preferences of type P5 and P6 let all other m− 2 alternatives be
cycled. The number of scores got by ah and al in (qP5,qP6) is qs1 + qs2. Let h = [2q/(m− 2)],
which is the number of whole cycles in (qP5,qP6). The number of scores got by any alternative
from X \{ah,al} is not greater than h(s3 + ...+ sm)+ (2q−h(m−2))s3 ≤ hsm +(2q−h)s3. Since
s1 ≥ s2 ≥ s3 ≥ ... ≥ sm and s1 > sm, qs1 + qs2 > hsm + (2q− h)s3 and the difference is not less
then min(h,q)(s1 − sm) (so, for this difference to be positive for all alternatives in X \{ah,al}, there
should be at least one cycle of m− 2 alternatives, i.e. m− 2 < 2q). Thus, by taking q big enough
we can make scores of ah in P be higher than scores of any other alternative in each type of P
constructed in 2). If the condition ∀ag ∈ X \{ah,al} S(ah,P)> S(ag,P) is satisfied for some q, then
for q′ = q+1 it is also satisfied.

n′ = 3+min{q : ∀ag ∈ X \{ah,al}S(ah,P′)> S(a j,P′)},

n′′ = 4+min{q : ∀ag ∈ X \{ah,al}S(ah,P′′)> S(ag,P′′)},

n∗ = max(n′,n′′).

Therefore, for all n > n∗ there exists a preference profile with Pi = (a1,a2, ...,am), ∀ag ∈ X \{ah,al}
S(ah,P)> S(ag,P) and S(ah,P)−S(al ,P) = ∆ j.

4) If h > l, i.e. ah is less preferred than al by voter i, then we switch alternatives ah and al in P1, P2,
P3, and P4 with all other parts of the proof staying the same.

Theorem C.1. For any scoring rule F and any number of alternatives m there is a finite number of
voters n∗, such that for all n > n∗ it holds IM2(m,n,1Winner,F) = 0.
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Proof. Let X = {a1, ...,am}. Consider a scoring rule with a scoring vector s = (s1,s2, ...,sm), the
first jump in s goes after sk, sk − sk+1 = ∆1.

1) Let us prove that voter i with preferences a1Pia2Pi...Piam has no incentive to manipulate (in Model
1) under 1Winner-PIF if V (P) ∈ {a1,a2, ...,ak+1}.

1.1) If V (P) = a1, then there is no need for voter i to misrepresent preferences, since it is the best
alternative for i.

1.2) Suppose that V (P) = b, b ∈ {a2,a3, ...,ak+1} and i manipulates in favor of some a, such that
aPb. If i puts alternative a higher (if a is not a1), then nothing changes for a since s1 = ...= sk. Thus,
i could only put b lower in P̃i, but then some alternative c ∈ {ak+2, ...,am} goes higher. If b = ak+1
and there are no jumps in s after k+ 1, then putting b lower will not change the scores of b and c
and no manipulation is possible in this case. In other cases b gets −A scores and c gets +A scores,
where A = α1∆1 +α2∆2 + ... and α j ∈ {0,1}.

Thus, if there exists P′ = (Pi,P′
−i), P′

−i ∈ W π(P)
i , such that S(b,P′)− S(c,P′) = min(∆1,∆2), then

c wins in (P̃i,P′
−i), since it gets +A scores and b gets −A scores. By 1 such preference profile

exists for all n > n̂. It means that there is a chance of getting c as a result which is worse than b
for i. Therefore, i does not have an incentive to manipulate in Model 1 under 1Winner-PIF when
V (P) ∈ {a1,a2, ...,ak+1}.

2) Now prove that if V (P) ∈ {ak+2, ...,am}, then voter i with preferences a1Pia2Pi...Piam has an
incentive to manipulate (in Model 1) under 1Winner-PIF. Suppose, V (P) = c and c is on k + t-
th place in Pi, where t ∈ {2, ...,m}. Then manipulation in favor of some b ∈ {ak+1, ...,ak+t−1}
is possible: voter i switches alternatives a ∈ {a1, ...,ak} and b. Since it does not matter which
a ∈ {a1, ...,ak} to choose for switching with b, we can assume that it is ak. By the principle of the
best winning alternative b must be ak+1. After this manipulation b gets +∆1 scores and a gets −∆1

scores, scores of other alternatives do not change. Thus, if there exists P′ = (Pi,P′
−i), P′

−i ∈W π(P)
i ,

such that S(c,P′)− S(b,P′) = ∆1, then b wins in (P̃i,P′
−i) provided that bPT c. If cPT b, then we

need a profile P′′ = (Pi,P′′
−i), P′′

−i ∈ W π(P)
i , such that S(c,P′′) = S(b,P′′) for b to win after getting

+∆1 scores. By 1, such profiles exist for all n > n̆. Therefore, in some preference profiles of i’s
information set b wins, and there is no risk of getting a worse alternative as a result, so, i has an
incentive to manipulate in Model 1 under 1Winner-PIF when V (P) ∈ {ak+2, ...,am} for all n > n̆.

3) Take a voter i with preferences a1Pia2Pi...Piam having an incentive to manipulate (in Model 1). If
in W π(P)

i there is at least one preference profile such that V (Pi, P̃
′
−i)PiV (P̃i, P̃

′
−i), then voter i has no

incentive to manipulate in Model 2. We prove the existence of such a profile P′ by construction.

For simplicity, let us denote c = ak+t , b = ak+1, a = ak.

We construct P′ with the following preference orders: preferences of voter i P1 = (...a|b...c...),
P2 = (...b|a...c...), P3 = (...|c...a...), P4 = (...c|...a...) (in P1 and P2 c on k+ t-th place, in P3 and
P4 a on k+ t-th place), P5 = (c a...|...), P6 = (a c...|...), P7 = (c|a...). Thus, we have voter i with a
preference order P1, having an incentive to manipulate in Model 1. Voters with preference order P2

are also GS-manipulators, but their manipulation is an opposite one (putting b on k+1-th place and
a on k-th). Voters with preference orders P3, P4, P5, and P6 do not have an incentive to manipulate
in Model 1 since the winning alternative is not lower than k+1 place.

The way of construction depends on a tie-breaking between c and a. Consider two cases: aPT c and
cPT a. For all the following cases let us assume that the condition ∀x ∈ X \ {a,c} S(c) > S(x) is
satisfied. Later (in part 6 of the proof) we will show that there is a finite number of voters n∗, such
that for all n > n∗ this is true.
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4) If aPT c, then S(c)> S(a).
4.1) n is even, k ∈ {1, . . . ,m−2}, P′ = (P1,2P2,2P3,P4,qP5,qP6,2P7). For this profile, S(c,P′)−
S(a,P′) = 2∆1 and V (P′) = c. If all voters from Π(P′) manipulate, then S(c, P̃′

)−S(a, P̃′
) = ∆1. If i

does not manipulate, and Π(P′)\{i} does, then S(c,(P′
i , P̃

′
−i)) = S(a,(P′

i , P̃
′
−i)) and V (P′

i , P̃
′
−i) = a.

4.2) n is odd, k ∈ {1, . . . ,m − 2}, P′ = (P1,P2,P3,P4,qP5,qP6,P7). For this profile, S(c,P′)−
S(a,P′) = ∆1 and V (P′) = c. If all voters from Π(P′) manipulate, then S(c, P̃′

)−S(a, P̃′
) = ∆1. If i

does not manipulate, and Π(P′)\{i} does, then S(c,(P′
i , P̃

′
−i)) = S(a,(P′

i , P̃
′
−i)) and V (P′

i , P̃
′
−i) = a.

5) If cPT a, then S(a)≥ S(c).
5.1) n is even, k ∈ {1, . . . ,m−2}, P′ = (P1,P2,P3,P4,qP5,qP6). For this profile, S(a,P′) = S(c,P′)

and V (P′) = c. If all voters from Π(P′) manipulate, then S(c, P̃′
) = S(a, P̃′

) and again V (P̃′
) = c.

If i does not manipulate and Π(P′) \ {i} (which is only one voter with preferences P2 in this case)
does, then S(c,(P′

i , P̃
′
−i))< S(a,(P′

i , P̃
′
−i)) = S(a,P′)+∆1 and V (P′

i , P̃
′
−i) = a.

5.2) n is odd, k = 1, P′ = (P1,2P2,2P3,P4,(q+ 1),qP6). For this profile, S(c,P′)− S(a,P′) = ∆1

and V (P′) = c. If all voters from Π(P′) manipulate, then S(a, P̃′
) = S(a,P′)+2∆1 −∆1, S(c, P̃′

) =

S(a, P̃′
) and again V (P̃′

) = c. If i does not manipulate, S(c,(P′
i , P̃

′
−i))< S(a,(P′

i , P̃
′
−i)) = S(a,P′)+

2∆1 and V (P′
i , P̃

′
−i) = a.

5.3) n is odd, k ∈ {2, . . . ,m−2}, P′ = (P1,P2,P3,P4,(q+1)P5,qP6). All relations between scores
of c and a are the same as in 5.1).

6) Now we need to show that it is possible to have the condition ∀x ∈ X \{a,c} S(c)> S(x) satisfied
and find out when it is possible. Let us assume that in preferences of type P5 and P6 all other m−2
alternatives are cycled, i.e. (a c x1 x2 ...xm−1), (a c xm−1 x1 x2...xm−2), etc. Let h = [2q/(m− 2)],
which is the number of whole cycles in (qP5,qP6).

The number of scores got by c in (qP5,qP6) is qs1+qs2. The number of scores got by any alternative
from X \ {a,c} is not greater than h(s3 + ...+ sm)+ (2q− h(m− 2))s3 ≤ hsm +(2q− h)s3. Since
s1 ≥ s2 ≥ s3 ≥ ...≥ sm and s1 > sm, qs1 +qs2 > hsm +(2q−h)s3 and the difference is not less then
min(h,q)(s1− sm). Thus, by taking q big enough we can make scores of c in P be higher than scores
of any other alternative.

Let such number of voters that the condition ∀x ∈ X \ {a,c} S(c) > S(x) is satisfied for all cases
4.1), 4.2), 5.1), 5.2) be denoted by ǹ. Summing up, having a fixed number of alternatives, voter i
with preferences a1Pia2Pi...Piam has no incentive to manipulate (in Model 1) under a scoring rule
and 1Winner-PIF if V (P) ∈ {a1,a2, ...,ak+1} for all n > n̂, but has an incentive to manipulate if
V (P) ∈ {ak+2, ...,am} for all n > n̆. However, voter i does not have an incentive to manipulate under
the same conditions in Model 2 for all n > ǹ. Thus, IM2(m,n,1Winner,F) = 0 for all n > n∗ =
max(n̂, n̆, ǹ).

Proposition C.2. For any PIF π , for any rule F, the number of voters n, and the number of alter-
natives m if IM1(m,n,π,F) = 0, then IM3(m,n,π,F) = 0.

Proof. The proof is the same as for Proposition 1, but with respect to Model 3.

Proposition C.3. For any PIF π , for any rule F, the number of voters n, and the number of alter-
natives m if IM2(m,n,π,F) = 0, then IM3(m,n,π,F) = 0.

Proof. If IM2(m,n,π,F) = 0, then in any preference profile P no voter i has an incentive to manipu-
late in Model 2. There are two cases. In the first case voter i does not have an incentive to manipulate
in Model 1. Then, by Definition 4, she does not have an incentive to manipulate in Model 3. In the
second case, voter i has an incentive to manipulate in Model 1, but there is P′

−i in W π
i such that
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V (Pi, P̃
′
−i)PiV (P̃i, P̃

′
−i) for all P̃i. Thus, condition ii) from Definition 4 is not satisfied, and voter i

does not have an incentive to manipulate in Model 3. Consequently, IM3(m,n,π,F) = 0.

Proposition C.4. Suppose, π ′ is at least as informative as π ′′. Then for any M ∈ {M1,M2,M3},
for any rule F, number of voters n, and number of alternatives m if IM(m,n,π ′,F) = 0, then
IM(m,n,π ′′,F) = 0.

Proof. Let us introduce a notation specially for this proof: every voter has her own information set
W π

i , but in accordance with a behavioral model M voters may change their preferences (as in Model
2 and 3) or not (Model 1), so let Ŵ π

i be an information set of voter i with respect to the behavioral
model M.

If IM(m,n,F,π ′) = 0, then for any voter i in every profile P and any strategy P̃i ̸= Pi there exists P′
−i

in Ŵ π
i , such that V (Pi,P′

−i)PiV (P̃i,P′
−i). Since π ′ is at least as informative as π ′′, W π ′

i ⊆W π ′′
i , and,

consequently, Ŵ π ′
i ⊆ Ŵ π ′′

i . Then, P′
−i belongs to Ŵ π ′′

i as well and voter i does not have an incentive
to manipulate under PIF π ′′. Since that holds for any voter i in any preference profile P and any
strategy P̃i ̸= Pi, we get IM(m,n,π ′′,F) = 0.
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