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Abstract

In party-approval multiwinner elections the goal is to allocate the seats of a fixed-size
committee to parties based on the approval ballots of the voters over the parties. In
particular, each voter can approve multiple parties and each party can be assigned
multiple seats. Two central requirements in this setting are proportional represent-
ation and strategyproofness. Intuitively, proportional representation requires that
every sufficiently large group of voters with similar preferences is represented in the
committee. Strategyproofness demands that no voter can benefit by misreporting her
true preferences. We show that these two axioms are incompatible for anonymous
party-approval multiwinner voting rules, thus proving a far-reaching impossibility
theorem. The proof of this result is obtained by formulating the problem in propos-
itional logic and then letting a SAT solver show that the formula is unsatisfiable.
Additionally, we demonstrate how to circumvent this impossibility by considering a
weakening of strategyproofness which requires that only voters who do not approve
any elected party cannot manipulate. While most common voting rules fail even
this weak notion of strategyproofness, we characterize Chamberlin–Courant approval
voting within the class of Thiele rules based on this strategyproofness notion.

1 Introduction

A central problem in multi-agent systems is collective decision making: given the preferences
of multiple agents over a set of alternatives, a joint decision has to be made. While classic
literature for this problem focuses on the case of choosing a single alternative as the winner,
there is also a wide range of scenarios where a set of winners needs to be elected. For instance,
this is the case in parliamentary elections, where the seats of a parliament are assigned to
parties based on the voters’ preferences. In the literature, parliamentary elections are studied
under the term apportionment and a crucial assumption for their analysis is that voters
are only allowed to vote for a single party [5, 30]. However, this assumption has recently
been criticized because of its lack of flexibility and expressiveness [12, 13]. Following Brill
et al. [13], we thus study party-approval elections. In this setting, the parliament, or more
generally a multiset of fixed size, is elected based on the approval ballots of the voters, i.e.,
each voter reports a set of approved parties instead of only her most preferred one.

Two central desiderata for party-approval elections are proportional representation and
strategyproofness. The former requires that the chosen committee proportionally reflects
the voters’ preferences. The latter postulates that no voter can benefit by misreporting
her preferences. While Brill et al. [13] have shown that even core-stable committees, which
satisfy one of the highest degrees of proportionality, always exist in party-approval elections,
strategyproofness is not yet well-understood for this setting. We thus analyze the trade-off
between strategyproofness and proportional representation for party-approval elections in
this paper.

Our research question also draws motivation from related models (see Figure 1 for
details). Firstly, party-approval elections can be seen as a special case of approval-based
committee (ABC) elections, where voters approve individual candidates instead of parties
and the outcome is a subset of the candidates instead of a multiset. For ABC elections,
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proportionality and strategyproofness have received significant attention (see, e.g., the survey
by Lackner and Skowron [25]). Unfortunately, these axioms are incompatible for ABC voting
rules [28] and our study can thus be seen as an attempt to circumvent this impossibility. Even
more, there are hints that these axioms could be compatible for party-approval elections: this
setting lies logically between ABC elections on one side, and either apportionment (where
voters can only approve a single party instead of multiple ones [5, 30]) or fair mixing (where
the outcome is a probability distribution over the parties instead of a multiset [7, 4]) on
the other side. Since strategyproofness and proportionality are compatible in the latter two
models, it seems reasonable to conjecture positive results for party-approval elections.

Our contribution. Unfortunately, it turns out that strategyproofness conflicts even with
minimal notions of proportional representation in party-approval elections. To prove this, we
introduce the notions of weak representation and weak proportional representation, which
require that a party is assigned at least 1 (resp. ℓ) out of k available seats if it is uniquely
approved by at least an 1

k (resp. ℓ
k ) fraction of the voters. Then, we show in Section 3 the

following impossibility theorems (k, m, and n denote the numbers of seats, parties, and
voters, respectively):

• No anonymous party-approval rule satisfies weak representation and strategyproofness
if k ≥ 3, m ≥ k + 1, and 2k divides n.

• No anonymous party-approval rule satisfies weak proportional representation and
strategyproofness if k ≥ 3, m ≥ 4, and 2k divides n.

The first result shows that the incompatibility of strategyproofness and proportional repres-
entation first observed for ABC elections also prevails for party-approval elections. Even
more, our result implies such an impossibility for ABC elections as our setting is more
general. The main drawback of the first result is that it requires more parties than seats in
the committee. While this assumption holds for many applications inspired from ABC voting,
this is not true for our initial example of parliamentary elections. However, our second
impossibility shows that strategyproofness still conflicts with proportional representation
if k > m.

We prove these results with a computer-aided approach based on SAT solving, which has
recently led to a number of sweeping impossibility results [e.g., 10, 11, 23, 28]. In particular,
our computer proof relies on 635 profiles, which makes it the largest computer proof in social
choice theory (the previous record is due to Brandl et al. [10] and uses 386 profiles).

Finally, in Section 4 we investigate a weakening of strategyproofness that only requires
that voters who do not approve any party in the elected committee cannot manipulate.
Perhaps surprisingly, many commonly studied voting rules fail this condition. We can thus
characterize Chamberlin–Courant approval voting as the only Thiele rule satisfying this
strategyproofness notion and weak representation, proving an attractive escape route to our
impossibility results.

Omitted proofs and further details can be found in the full version of the paper [17].

Related work. Party-approval elections have been introduced by Brill et al. [13] who
showed that strong proportionality axioms can be satisfied in this setting, but we are not
aware of any follow-up paper. We thus draw much inspiration from ABC elections for which
there is a large amount of work on proportional representation [e.g., 3, 31, 29, 14] and
strategyproofness [e.g., 2, 28, 24] . For instance, Aziz et al. [3] analyze ABC voting rules with
respect to more restrictive variants of weak representation. The main message from work on
proportional representation is that there are few ABC voting rules that guarantee strong
representation axioms. The results on strategyproofness are mostly negative: after early
results [2, 24] proving that no known rule satisfies both strategyproofness and proportional
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Models ordered by domain restrictions:

party-approval apportionment

fair mixing

Models ordered by output type:

party-approval ABC

Figure 1: Relation of party-approval elections to other voting settings. An arrow from X
to Y means that model X is more general than model Y . In the settings in the top row,
elections return sets of alternatives but the models impose different restrictions on the input
profiles: for ABC voting every input profile is allowed, for party-approval profiles each voter
can for each party (viewed as a set of alternatives) either approve all of its members or none,
and for apportionment each voter must approve all members of exactly one party. In the
bottom row, the models are ordered with respect to their output type: all of fair mixing,
party-approval elections, and ABC elections can take arbitrary approval profiles as input,
but fair mixing rules return a probability distribution over the alternatives, party-approval
rules choose a multiset of the alternatives, and ABC rules choose a subset of the alternatives.
This shows that party-approval elections can be seen both as generalization and special case
of ABC elections.

representation, Peters [28] showed that these axioms are inherently incompatible for ABC
voting rules [see also 18, 23]. Our impossibility theorems are closely connected to this result
but logically independent: we need stronger strategyproofness and representation axioms
and additionally anonymity, but use a more flexible setting and no efficiency condition.

2 Preliminaries

Let N = {1, . . . , n} denote a set of n voters and P = {a, b, c, . . . } a set of m parties. Each
voter i ∈ N is assumed to have a dichotomous preference relation over the parties, i.e., she
partitions the parties into approved and disapproved ones. The approval ballot Ai ⊆ P of a
voter i is the non-empty set of her approved parties. With slight abuse of notation we omit
commas and brackets when writing approval ballots. Let A denote the set of all possible
approval ballots. An approval profile A ∈ An is the collection of the approval ballots of all
voters. When writing approval profiles, we denote ballots just as strings of parties, and the
numbers in front of them indicate how many voters share a ballot (see, e.g., Example 1).
Given an approval profile A, the goal in party-approval elections is to assign a fixed number
of seats to the parties. We call such an outcome a committee, which is formally a multiset of
parties W : P → N, and W (x) denotes the number of seats assigned to party x. We extend
this notation also to sets of parties X ⊆ P by defining W (X) =

∑
x∈X W (x). Furthermore,

we indicate specific committees by square brackets, e.g., [a, a, b] is the committee containing
party a twice and party b once. Let Wk denote the set of all committees of size k.

A party-approval rule is a function f which maps each approval profile A ∈ An and target
committee size k to a winning committee W ∈ Wk. In particular, party-approval rules are
resolute, i.e., there is always a single winning committee. We define f(A, k, x) as the number
of seats assigned to party x by f for the profile A when choosing a committee of size k. We
extend this notion also to sets by defining f(A, k,X) =

∑
x∈X f(A, k, x).

Two well-known properties of voting rules are anonymity and Pareto optimality. Intuit-
ively, anonymity requires that all voters are treated equally. Formally, a party-approval rule
f is anonymous if f(A, k) = f(A′, k) for all committee sizes k ∈ N and all approval profiles
A,A′ ∈ An such that there is a permutation π : N → N with A′

i = Aπ(i).
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Next, we say that a party x Pareto dominates another party y in an approval profile A
if y ∈ Ai implies x ∈ Ai for all i ∈ N and there is a voter i ∈ N with x ∈ Ai and y ̸∈ Ai.
Then, a party-approval rule f is Pareto optimal if f(A, k, y) = 0 for all approval profiles A,
committee sizes k, and parties y that are Pareto dominated in A.

2.1 Proportional Representation

One of the central desiderata in committee elections is to choose a committee that propor-
tionally represents the voters’ preferences. The notion of justified representation, introduced
by Aziz et al. [3], formalizes this idea by requiring that in a committee of size k, any group of
voters G ⊆ N with |G| ≥ n

k that agrees on a party should be represented. In this paper, we
we will consider a weakening of this property which we call weak representation. Intuitively,
weak representation weakens justified representation by only considering cases where all
voters in G uniquely approve a single party x.

Definition 1 (Weak Representation). A party-approval rule f satisfies weak representation
if f(A, k, x) ≥ 1 for every profile A, committee size k, party x, and group of voters G such
that |G| ≥ n

k and Ai = {x} for all i ∈ G.

Weak representation can easily be satisfied if we have more seats in the committee than
parties by simply assigning at least one seat to every party. This, however, contradicts
the idea of proportional representation since a large part of the chosen committee can be
independent of the voters’ preferences. To address this issue, we consider weak proportional
representation, which is a weakening of proportional justified representation [31]. Clearly,
weak proportional representation implies weak representation.

Definition 2 (Weak Proportional Representation). A party-approval rule f satisfies weak
proportional representation if f(A, k, x) ≥ ℓ for every ℓ ∈ N, profile A, committee size k,
party x, and group of voters G such that |G| ≥ ℓnk and Ai = {x} for all i ∈ G.

2.2 Strategyproofness

Intuitively, strategyproofness requires that a voter cannot benefit by lying about her true
preferences. Consequently, if a party-approval rule fails strategyproofness, we cannot expect
the voters to submit their true preferences, which may lead to socially undesirable outcomes.

Definition 3 (Strategyproofness). A party-approval rule f is strategyproof if f(A, k,Ai) ≥
f(A′, k, Ai) for all approval profiles A,A′, committee sizes k, and voters i ∈ N such that
Aj = A′

j for all j ∈ N \ {i}.

The motivation for this strategyproofness notion stems from the assumption that voters
are indifferent between their approved parties. Then, only the number of seats assigned to
these parties matters to the voters. This strategyproofness notion is commonly used in ABC
voting under the name cardinality strategyproofness [e.g., 24, 8] and equivalent notions are
used for fair mixing [e.g., 7, 4].

Since we will show that strategyproofness is in conflict with minimal representation
axioms, we also consider the following weakening which requires that only voters without
representation in the committee cannot manipulate.

Definition 4 (Strategyproofness for Unrepresented Voters). A party-approval rule f is
strategyproof for unrepresented voters if f(A, k,Ai) ≥ f(A′, k, Ai) for all approval profiles
A,A′, committee sizes k, and voters i ∈ N such that Aj = A′

j for all j ∈ N \ {i} and
f(A, k,Ai) = 0.
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We believe this to be a sensible relaxation of strategyproofness because voters without
any representation in the committee are more prone to manipulate. Firstly, voters who do
have some representation may be more cautious to manipulate because they fear losing their
representation when misstating their preferences. Secondly, the benefit of having additional
representation in the committee is less straightforward than that of being represented at all.

2.3 Party-Approval Rules

Finally, we introduce three classes of party-approval rules. Note that even though we define
party-approval rules for a fixed numbers of voters n and parties m, all subsequent rules are
independent of such details.

Thiele rules. Thiele rules are arguably the most well-studied class of rules in the ABC
setting. Introduced by Thiele [33], a w-Thiele rule f is defined by a non-increasing and
non-negative vector w = (w1, w2, . . . ) and chooses for each committee size k the committee

W ∈ Wk that maximizes the score sw(W,A) =
∑

i∈N

∑W (Ai)
j=1 wj . Throughout the paper, we

assume without loss of generality that w1 = 1. There are many well-known Thiele rules, e.g.:

• multiwinner approval voting (AV): w = (1, 1, 1, . . .),

• proportional approval voting (PAV): w = (1, 1
2 ,

1
3 , . . .),

• Chamberlin–Courant approval voting (CCAV): w = (1, 0, 0, . . .).

Sequential Thiele rules. Sequential Thiele rules are closely related to Thiele rules: instead
of optimizing the score of the committee, these rules proceed in rounds and greedily choose
in each iteration the party that increases the score of the committee the most. An important
example of sequential Thiele rules is sequential proportional approval voting (seqPAV) defined
by w = (1, 1

2 ,
1
3 , . . . ). Moreover, we note that AV coincides with its sequential variant.

Divisor methods based on majoritarian portioning. Brill et al. [13] introduced the
concept of composite party-approval rules, which combine a portioning method with an
apportionment method. In this paper, we focus on an important subclass of such composite
rules, namely divisor methods based on majoritarian portioning, because many of these rules
satisfy strong representation axioms [13]. These methods first apply majoritarian portioning
to compute a weight wx for each party x. Majoritarian portioning works in rounds and in
each round, we determine the party x that is approved by the most voters. Then, we set
its weight wx to the number of voters who approve x and remove all corresponding voters
from the profile. This process is repeated until no voters are left. Finally, for all parties x
that have no weight after all voters were removed, we set wx = 0. After the portioning, we
use a divisor method to allocate the seats to the parties based on the weights wx. Divisor
methods are defined by a monotone function g : N0 → R>0 and proceed in rounds: in the
i-th round, the next seat is assigned to the party x that maximizes wx

g(txi−1)
, where txi−1 is the

number of seats allocated to x in the previous i− 1 rounds. An example of a divisor method
is Jefferson’s method, where g(x) = x+ 1.

Note that all rules defined above are irresolute, i.e., they may declare multiple committees
as tied winners of an election. Since we investigate resolute voting rules in this paper, we
assume that ties are broken lexicographically: for every k ∈ N, there is a linear tie-breaking
order ≻k on the committees W ∈ Wk and, if a party-approval rule f declares multiple
committees as tied winners, we choose the best one according to ≻k. Similarly, if any rule is
tied between multiple parties in a step, the tie is broken according to ≻1. The assumption
of lexicographic tie-breaking is standard in the literature on strategyproofness [e.g., 20, 2].
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Example 1. We close out this section with an example showcasing most of our definitions.
For this, consider the approval profile A for 9 voters and 4 parties a, b, c, d shown below and
suppose that our target committee size is k = 3.

A: 4: a 1: ac 3: b 1 : d

In this profile, the four left-most voters approve only party a and the next voter approves
both parties a and c. On this example, AV will choose [a, a, a], which fails weak representation
as there are 3 = 9/3 voters who uniquely approve b. On the other hand, CCAV chooses
[a, b, d] which clearly satisfies weak representation as every voter approves one member in
the committee. However, assuming lexicographic tie-breaking, the voter with ballot ac can
manipulate by only reporting c: then, CCAV will choose [a, b, c], which makes her better off
as she approves now two members of the committee.

3 Impossibility Results

In this section, we discuss the incompatibility of strategyproofness and proportional repres-
entation for party-approval rules by proving two sweeping impossibility theorems.

Theorem 1. No party-approval rule simultaneously satisfies anonymity, weak representation,
and strategyproofness if k ≥ 3, m ≥ k + 1, and 2k divides n.

Note that Theorem 1 does not hold for all combinations of k, m, and n: we require that 2k
divides n and that m ≥ k+1. The first assumption is mainly a technical one as we—just like
other authors [28, 23]—could not find an argument to generalize the impossibility to arbitrary
values of n. However, many party-approval rules (e.g., all Thiele rules and sequential Thiele
rules) do not change their outcome when adding voters who approve all parties. For such
rules, we can extend Theorem 1 to all n ≥ 2k by adding voters who approve all parties.

On the other side, the assumption that m ≥ k + 1 is crucial for Theorem 1: if m ≤ k,
every rule that constantly returns a fixed committee W with W (x) ≥ 1 for all x ∈ P satisfies
the considered axioms. Nevertheless, we can restore the impossibility by strengthening weak
representation to weak proportional representation.

Theorem 2. No party-approval rule simultaneously satisfies anonymity, weak proportional
representation, and strategyproofness if k ≥ 3, m ≥ 4, and 2k divides n.

We believe that also the proofs of our results are of interest: for showing Theorems 1
and 2, we rely on a computer-aided approach called SAT solving. In the realm of social
choice, this technique was pioneered by Tang and Lin [32] and has by now been used to
prove a wide variety of results [e.g., 28, 19, 10]. We refer to Geist and Peters [21] for an
overview of this technique.

To apply SAT solving for our theorems, we proceed in three steps: first, we encode the
problem of finding an anonymous party-approval rule that satisfies strategyproofness and
weak representation for committees of size k = 3, m = 4 parties, and n = 6 voters as logical
formula. By letting a computer program show the formula unsatisfiable, we prove the base
case of Theorems 1 and 2 for the given parameters. Next, we generalize the impossibility to
larger values of k, m, and n based on inductive arguments. Finally, we verify the computer
proof. The following subsections discuss each of these steps in detail.

Remark 1. AV satisfies all axioms of Theorem 1 except weak representation, and CCAV
satisfies all axioms except strategyproofness. These examples show that these axioms are
required for the impossibility. On the other hand, we could not show that anonymity is
necessary for the impossibility and we conjecture that this axiom can be omitted.
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Remark 2. For electorates where the committee size k is a multiple of the number of voters n,
there are voting rules that satisfy weak proportional representation, anonymity, and strategy-
proofness. We can simply let every voter choose k

n parties of the committee independently
of the ballots of other voters. This is an important difference to the impossibility by Peters
[28], which also holds in the case that n = k.

Remark 3. If k = 2, a variant of AV satisfies all axioms of Theorems 1 and 2. For introducing
this rule f , let ≻ denote a linear order over the parties and mAV (A) the maximal approval
score of a party in the profile A. As first step, f removes clones according to ≻, i.e., for all
parties x, y such that x ∈ Ai if and only if y ∈ Ai for all i ∈ N and x ≻ y, we remove y from
A. This results in a reduced profile A′. Now, if mAV (A′) ̸= n

2 or there is only a single party
with approval score of n

2 , f assigns both seats to the approval winner. Else, f assigns the
seats to the best and second best party with respect to ≻ that have an approval score of n

2 .

3.1 Computer-Aided Theorem Proving

The core observation for computer-aided theorem proving is that for a fixed committee size
k and fixed numbers of parties m and voters n, there is a very large but finite number of
party-approval rules. Hence, we could, at least theoretically, enumerate all rules and check
whether they satisfy our requirements. However, the search space grows extremely fast (for
k = 3, m = 4, and n = 6, there are roughly 6.2×1014819544 party-approval rules) and we thus
use a different idea: we construct a logical formula which is satisfiable if and only if there is
an anonymous party-approval rule that satisfies weak representation and strategyproofness
for the given parameters of k, m, and n. By showing that the formula is unsatisfiable, we
prove Theorems 1 and 2 for fixed parameters. Moreover, we can use computer programs,
so-called SAT solvers, to show this.

Subsequently, we specify the variables and explain how we construct the formula. The
idea is to introduce a variable xA,W for each profile A ∈ An and committee W ∈ Wk, with
the interpretation that xA,W is true if and only if f(A, k) = W . However, for this formulation
the mere number of profiles becomes prohibitive when k = 3, m = 4, and n = 6 and we thus
apply several optimizations. First, we use anonymity to drastically reduce the number of
considered profiles. This axiom states that the order of the voters does not matter for the
outcomes and we thus view approval profiles from now on as multisets of approval ballots
instead of ordered tuples. Next, we exclude certain approval profiles from the domain by
imposing three conditions: (i) no voter is allowed to approve all parties, (ii) no party can
be approved by more than four voters, and (iii) the total number of approvals given by all
voters does not exceed eleven. We call the domain of all anonymous profiles that satisfy
these conditions An

SAT . Clearly, if there is no anonymous party-approval rule satisfying
strategyproofness and weak representation on An

SAT , there is also no such function on the
full domain An. For our final optimization, we note that weak representation requires that a
committee W cannot be returned for a profile A if there is a party x with W (x) = 0 that is
uniquely approved by n

k or more voters. Hence, all corresponding variables xA,W must be
set to false and we can equivalently omit them. To formalize this, we define WR(A, k) as
the set of committees of size k that satisfy weak representation for the profile A. Then, we
add for every profile A ∈ An

SAT and every committee W ∈ WR(A, k) a variable xA,W .
Next, we turn to the constraints of our formula. First, we specify that the formula encodes

a function f on An
SAT , i.e., for every profile A ∈ An

SAT , there is exactly one committee
W ∈ WR(A, k) such that xA,W = 1. For this, we add two types of clauses for every profile
A: the first one specifies that at least one committee is chosen for A and the second one
that no more than one committee can be chosen.
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∨
W∈WR(A,k)

xA,W ∀A ∈ An
SAT∧

V,W∈WR(A,k):V ̸=W

¬xA,V ∨ ¬xA,W ∀A ∈ An
SAT

Since weak representation and anonymity are encoded in the choice of variables, we only
need to add the subsequent constraints for strategyproofness. Here, AAi→Aj is the profile
derived from A by changing a ballot Ai to Aj .

¬xA,V ∨ ¬xA′,W ∀A,A′ ∈ An
SAT , V ∈ WR(A, k),W ∈ WR(A′, k) :

∃Ai, Aj ∈ A : A′ = AAi→Aj ∧W (Ai) > V (Ai)

For committees of size k = 3, m = 4 parties, and n = 6 voters, this construction results
in a formula containing 21, 418, 593 constraints and a state-of-the-art SAT solver, such as
Glucose [1], needs less than a minute to prove its unsatisfiability. Our code also provides
options which further reduce the size of the formula to speed up the SAT solving (see the
full version for details). Consequently, we derive the following result.

Proposition 1. There is no party-approval rule that satisfies anonymity, weak representation,
and strategyproofness if k = 3, m = 4, and n = 6.

3.2 Inductive Arguments

Since weak proportional representation implies weak representation, Proposition 1 proves
Theorems 1 and 2 for fixed parameters k, m, and n. To complete the proofs of these
theorems, we use inductive arguments to generalize the impossibilities to larger parameters
and subsequently present them for Theorem 1. For Theorem 2, only the third claim needs to
be adapted (see the full version).

Lemma 1. Assume there is no anonymous party-approval rule f that satisfies weak rep-
resentation and strategyproofness for committees of size k, m parties, and n voters. The
following claims hold:

(1) For every ℓ ∈ N, there is no such rule for committees of size k, m parties, and ℓ · n
voters.

(2) There is no such rule for committees of size k, m+ 1 parties, and n voters.

(3) If k divides n, there is no such rule for committees of size k + 1, m + 1 parties, and
n(k+1)

k voters.

Proof sketch. For all three claims, we prove the contrapositive: if there is an anonymous party-
approval rule f that satisfies strategyproofness and weak representation for the increased
parameters, there is also such a rule g for committees of size k, m parties, and n voters.
Subsequently, we discuss how to define the rule g for the three different cases:

(1) Assume an ℓ ∈ N such that f is defined for committees of size k, m parties, and ℓ · n
voters. Given a profile A for m parties and n voters, g copies every voter ℓ times to
derive the profile A′. Then, g(A, k) = f(A′, k).

(2) Assume f is defined for committees of size k, m + 1 parties, and n voters. Given a
profile A for m parties and n voters, g first constructs the profile Axy by cloning a party
x ∈ P into a new party y /∈ P. More formally, Axy = Ai if x ̸∈ Ai and Axy

i = Ai ∪ {y}
otherwise. Finally, g(A, k, z) = f(Axy, k, z) for all z ̸= x and g(A, k, x) = f(Axy, k, xy).
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(3) Assume k divides n and f is defined for committees of size k + 1, m+ 1 parties, and
n(k+1)

k voters. In this case, g maps a profile A for m parties and n voters to the profile
Āxy defined as follows: first g derives Axy as explained in the previous case and then
it adds n

k voters with ballot xy. Finally, g(A, k, z) = f(Āxy, k + 1, z) for all z ̸= x and
g(A, k, x) = f(Āxy, k + 1, xy)− 1.

For all cases, it remains to show that g is a well-defined party-approval rule that satisfies
anonymity, weak representation, and strategyproofness. Due to space restrictions, we explain
this only for case (1) and defer the remaining cases to the full version. In this case, we first
observe that g clearly inherits anonymity from f . Also, g satisfies weak representation: if n

k

or more voters uniquely approve a party x in a profile A, at least ℓ·n
k voters uniquely approve

x in A′. Thus, g(A, x) = f(A′, x) ≥ 1 because f satisfies weak representation. Finally, we
prove that g is strategyproof. Note for this that f(Ā, k, Āi) ≥ f(Ā′, k, Āi) for all profiles
Ā, Ā′ that only differ in the ballots of voters who report Āi in Ā. This is true because
we can transform Ā into Ā′ by letting voters with ballot Āi manipulate one after another,
and strategyproofness shows for every step that the number of seats assigned to parties in
Āi cannot increase. Hence, g is strategyproof because if A and A′ only differ in a single
ballot Ai, the enlarged profiles Ā and Ā′ differ in ℓ voters with ballot Ai. Thus, g meets all
requirements in case (1).

3.3 Verification

Since Proposition 1 is proved by automated SAT solving, there is no complete human-readable
proof for verifying Theorems 1 and 2. The standard approach for adressing this issue is
to analyze minimal unsatisfiable subsets (MUSes) of the original formula, i.e., subsets of
the formula which are unsatisfiable but removing a single constraint makes them satisfiable.
Such MUSes are typically much smaller than the original formula, which makes it possible
to translate them into a human-readable proof. Unfortunately, this technique does not work
for Proposition 1 because all MUSes that we found (by using the programs haifamuc and
muser2 [6, 26]) are huge: even after applying several optimizations, the smallest MUS still
contained over 20,000 constraints and 635 profiles. Because of the size of the MUSes, any
human-readable proof would be unreasonably long and we thus verify our results by other
means.

Firstly, we have published the code used for proving Proposition 1 [15], thus enabling
other researchers to reproduce the impossibility.

Secondly, we provide a human-readable proof for a weakening of Proposition 1 that
additionally uses Pareto optimality. This proof is derived by applying the computer-aided
approach explained in Section 3.1 and by analyzing MUSes of the corresponding formula.
Hence, it showcases the correctness of our code. Unfortunately, the proof of this weaker claim
still takes 11 pages (even though the used MUSes only consist of roughly 500 constraints),
and we thus have to defer it to the full version.

Thirdly, we have—analogous to Brandl et al. [9] and Brandt et al. [11]—verified the
correctness of our results with the interactive theorem prover Isabelle/HOL [27]. Such
interactive theorem provers support much more expressive logics and we can hence formalize
the entire theorems with all the mathematical notions expressed in a similar way as in
Section 2. For instance, Figure 2 displays our Isabelle formalization of weak representation.
Our Isabelle/HOL implementation thus directly derives Proposition 1 as well as Theorems 1
and 2 from the definitions of the axioms. This releases us from the need to check any
intermediate steps encoded in Isabelle because Isabelle checks the correctness of these steps
for us. Moreover, Isabelle/HOL is highly trustworthy as all proofs have to pass through
an inference kernel, which only supports the most basic logical inference steps. Thus, to
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weak_rep_for_anon_papp_rules n P k f =

(anon_PAPP_rule n P k f ∧
(∀A x. anon_papp_profile n P A ∧ k * count A {x} ≥ n → count f(A) x ≥ 1))

Figure 2: The Isabelle/HOL code for weak representation. Given the number of voters n,
the set of parties P, a target committee size k, and a function f , the code first verifies that
f is an anonymous party-approval rule for the given parameters and then requires for every
profile A (that is valid for n and P) and every party x that x has at least one seat in f(A) if
at least n

k voters uniquely approve x.

trust the correctness of our result, one only needs to trust the faithfulness of our Isabelle
implementation to the definitions in Section 2. Such formal proofs are widely considered to
be the “gold standard” of increasing the trustworthiness of a mathematical result [e.g., 22].
Our formal proof development is available in the Archive of Formal Proofs [16].

4 Strategyproofness for Unrepresented Voters

Since strategyproofness does not allow for attractive party-approval rules, we consider
strategyproofness for unrepresented voters (Definition 4) in this section. Instead of prohibiting
all voters from manipulating, this property requires that only voters who do not approve
any party in the elected committee cannot manipulate.

As a first result, we prove that CCAV satisfies this axiom and can even be characterized
based on strategyproofness for unrepresented voters and weak representation within the class
of Thiele rules. Hence, CCAV offers an attractive escape route to Theorem 1.

Theorem 3. CCAV is the only Thiele rule that satisfies weak representation and strategy-
proofness for unrepresented voters for all committee sizes k, numbers of parties m, and
numbers of voters n.

Proof. For proving this theorem, we show that CCAV satisfies the given axioms for all k, m,
and n (Claim 1), and that no other Thiele rule does so (Claim 2).

Claim 1: We start by proving that CCAV satisfies weak representation and note for
this that Aziz et al. [3] have shown that CCAV satisfies justified representation in the ABC
setting. It thus satisfies weak representation for party-approval elections as this axiom is
weaker than justified representation and party-approval elections can be seen as special case
of ABC elections.

Next, we prove by contradiction that CCAV satisfies strategyproofness for unrepresented
voters. Hence, suppose that there are a voter i ∈ N , profiles A1 and A2, and a committee size
k such that CCAV(A2, k, A1

i ) > CCAV(A1, k, A1
i ) = 0 and A1

j = A2
j for all j ∈ N \ {i}. To

simplify notation, let W 1 = CCAV (A1, k) and W 2 = CCAV (A2, k), and define s(W,A) =
|{i ∈ N : W (Ai) > 0}| as the CCAV-score of a committeeW in a profile A. Now, the definition
of CCAV requires that s(W 1, A1) ≥ s(W 2, A1) and s(W 2, A2) ≥ s(W 1, A2). Moreover, since
W 1(A1

i ) = 0 and A1
j = A2

j for all voters j ∈ N \ {i}, it follows that s(W 1, A2) ≥ s(W 1, A1).

Finally, we assumed that W 2(A1
i ) > 0, which implies that s(W 2, A1) ≥ s(W 2, A2) since

A1
j = A2

j for all j ∈ N \ {i}. By combining these inequalities, we obtain s(W 2, A2) ≥
s(W 1, A2) ≥ s(W 1, A1) ≥ s(W 2, A1) ≥ s(W 2, A2), which implies that all scores are equal.
However, lexicographic tie-breaking implies then that we choose either W 1 or W 2 for both
A1 and A2, which contradicts that W 1 = CCAV (A1, k) and W 2 = CCAV (A2, k).

Claim 2: Next, we show that no other Thiele rule but CCAV satisfies weak representation
and strategyproofness for unrepresented voters for all k, m, and n. First, observe that AV

10



clearly fails weak representation. Thus, let f be a w-Thiele rule other than AV and CCAV.
We will show that f fails strategyproofness for unrepresented voters. Note for this that there
is an index j with w1 > wj since f is not AV. We denote with j0 the smallest such index,
which means that ∀j < j0, wj = w1 = 1. If wj0 = 0, then j0 ≥ 3 because f is not CCAV. Let
P = {a1, . . . , aj0 , b1, . . . , bj0} be a set of m = 2j0 parties. We construct the profile A with
n = 2 ·

(
2j0
j0

)
− 2 voters and set the target committee size to k = j0. The approval ballots

of the voters are defined as follows: voter 1 reports {a1, . . . , aj0}, voter 2 reports {b1} and
for every set X ⊆ P with |X| = j0, X ̸= {a1, . . . , aj0}, and X ̸= {b1, . . . , bj0}, there are two
voters who report X as their ballot.

First, note that every party appears in exactly nc = 2
(
2j0−1
j0−1

)
− 2 ballots of the voters

Nc = N \{1, 2}. Consequently, every committee W of size j0 gets a total of
∑

x∈P W (x)|{i ∈
Nc : x ∈ Ai}| = j0nc approvals from these voters. We use this fact to compute the scores of
a committee W derived from these voters. Observe that the committees WA = [a1, . . . , aj0 ]
and WB = [b1, . . . , bj0 ] receive a score of j0nc from the voters in Nc because none of them
approves all parties in the committee and w1 = · · · = wj0−1 = 1. On the other hand, for
every other committee W , there are at least two voters who approve all parties in W . Hence,
these voters assign a score of j0 − 1+wj0 to the committee. Since the total sum of approvals
is constant we derive that the remaining voters in Nc assign at most a score of j0(nc − 2)
to W . Hence, the score of W among voters in Nc is upper bounded by j0nc − 2(1− wj0).
Finally, if we add the first two voters, WA obtains a score of j0nc + j0 − 1 + wj0 , WB of
j0nc + 1 < j0nc + j0 − 1 +wj0 (because either j0 ≥ 3 or j0 = 2 and wj0 > 0), and the scores
of other committees is at most j0nc − 2(1− wj0) + j0 < j0nc + j0 − 1 + wj0 (since wj0 < 1).
Hence, f(A, j0) = WA.

Now, consider the profile A′ derived from A by changing the approval ballot of voter 2 to
{b1, . . . , bj0}. Then, the score of the committee WA does not change and the score of WB

is now equal to the score of WA. Moreover, the same argument as before shows that the
score of all other committees is strictly lower. Hence, committees WA and WB are now tied
for the win. If the tie-breaking favors WB over WA, we thus have f(A′, j0) = WB and voter
2 can manipulate even though f(A, j0, A2) = 0. Otherwise, we can exchange the roles of
{a1, . . . , aj0} and {b1, . . . , bj0}. Hence, f fails strategyproofness for unrepresented voters.

A natural follow-up question to Theorem 3 is whether party-approval rules other than
Thiele rules satisfy strategyproofness for unrepresented voters. We partially answer this
question by showing that all sequential Thiele rules (except AV) and all divisor methods
based on majoritarian portioning (except AV) fail this axiom. Hence, even this weak notion
of strategyproofness is a challenging axiom for party-approval elections.

Theorem 4. All sequential Thiele rules except AV and all divisor methods based on majorit-
arian portioning except AV fail strategyproofness for unrepresented voters for some committee
size k, number of parties m, and number of voters n.

Proof Sketch. We prove here only the claim for sequential Thiele rules; the claim for divisor
methods based on majoritarian portioning can be found in the appendix. Hence, let f denote
a w-Thiele rule f other than AV. Since, the vector w is decreasing and f is not AV, there
is an index j such that wj < 1. Let j∗ denote the first such index. Moreover, we define
ℓ ∈ N, ℓ ≥ 4, as the smallest integer such that wj∗ < ℓ−2

ℓ . Finally, consider the following
two profiles A and A′ with m = 4 parties and n = 4 · ℓ+ 1 voters.

A: 1: b ℓ: ab ℓ: bd ℓ: ac ℓ− 1: cd 1: d

A′: 1: b ℓ: ab ℓ: bd ℓ: ac ℓ− 1: cd 1: ad

We will now show that an unrepresented voter can manipulate f in A if k = j∗. Note
for this that w1 = · · · = wj∗−1 = 1, which implies that f assigns the first j∗ − 1 seats
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to the approval winner. For the profile A, this means that these seats go to party b as
it is approved by 2ℓ + 1 voters. Finally, the last seat goes to party c. For proving this
claim, let W x denote the committee which assigns j∗ − 1 seats to party b and the last
seat to party x. Then, s(W c, A) = (j∗ − 1)(2ℓ + 1) + 2ℓ − 1, s(W a, A) = s(W d, A) =
(j∗ − 1)(2ℓ+1)+ ℓ · (1+wj∗) < (j∗ − 1)(2ℓ+1)+ ℓ(1+ ℓ−2

ℓ ) = (j∗ − 1)(2ℓ+1)+ 2ℓ− 2, and

s(W b, A) = (j∗−1)(2ℓ+1)+(2ℓ+1)wj∗ < (j∗−1)(2ℓ+1)+(2ℓ+1) ℓ−2
ℓ < (j∗−1)(2ℓ+1)+2ℓ−3,

which proves our claim.
Next, consider the profile A′. Just as for A, f assigns the first j∗−1 seats to the approval

winner, which is in this case a as both a and b are approved by 2ℓ + 1 voters and the
lexicographic tie-breaking chooses a. Finally, analogous computations as for A show that
the last seat then goes to d, i.e., f(A′, j∗) chooses the committee that assigns j∗ − 1 seats
to a and one seat to d. Since A and A′ differ only in the preference of the last voter (who
approves only d) and f(A, j∗, d) = 0 < 1 = f(A′, j∗, d), this proves that an unrepresented
voter can manipulate f .

Remark 4. CCAV becomes highly indecisive if k ≥ m since every voter will approve at least
one party in the chosen committee. Thus, many seats of the committee will be assigned
by the tie-breaking. Hence, CCAV is no attractive rule if k > m. Similar arguments show
that all w-Thiele rules that have an index j with wj = 0 are strategyproof for unrepresented
voters if k ≥ (j − 1)m: in this case, these rules always choose a committee which guarantees
every voter j − 1 representatives and strategyproofness for unrepresented voters is trivially
satisfied. Consequently, Theorem 3 needs to quantify over the committee size, number of
parties, and number of voters.

Remark 5. All results of this section carry over into the ABC setting. For the negative
results this follows from the fact that party-approval elections can be seen as a special case
of ABC elections (see Figure 1). The first claim of Theorem 3 holds since our proof directly
translates into the ABC setting.

5 Conclusion

We study the compatibility of strategyproofness and proportional representation for party-
approval multiwinner elections, where a multiset of the parties is chosen based on the voters’
approval ballots. First, we prove based on a computer-aided approach that strategyproofness
and minimal notions of proportional representation are incompatible for anonymous party-
approval rules. Thus, the incompatibility of strategyproofness and proportional representation
first observed by Peters [28] for approval-based committee voting rules (which return sets
instead of multisets) also prevails in our more flexible setting. As a second contribution,
we investigate a weakening of strategyproofness which requires that only voters who do not
approve any member of the committee cannot manipulate. Perhaps surprisingly, almost all
commonly studied party-approval rules fail even this very weak strategyproofness notion.
Conversely, we can characterize Chamberlin–Courant approval voting as the unique Thiele
rule that satisfies strategyproofness for unrepresented voters and a weak representation
axiom, thus offering an attractive escape route to our previous impossibility theorem.

Our work offers several directions for future extensions. In particular, we feel that
strategyproofness for unrepresented voters deserves more attention; for example, we have
to leave it open whether weak proportional representation is compatible with this axiom.
Furthermore, one can see strategyproofness and strategyproofness for unrepresented voters as
two extreme cases of a parameterization of strategyproofness and it thus might be interesting
to consider quantified strategyproofness notions for party-approval elections.
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