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Abstract

This paper offers a framework for the study of strategic behavior in proxy voting,
where non-active voters delegate their votes to active voters. It further studies how
proxy voting affects the strategic behavior of non-active voters and proxies (active
voters) under complete and partial information. We focus on the median voting rule
for single-peaked preferences. Our results show strategyproofness with respect to
non-active voters. Furthermore, while strategyproofness does not extend to proxies,
we show that under mild restrictions strategic behavior can lead to socially optimal
outcomes. For partial information settings, our results show that while convergence
is guaranteed, it may be sub-optimal.

1 Introduction

In the age of internet, we see an increase of platforms and mechanisms for collective decision-
making. However, many of these platforms suffer from low participation rates [24, 15]. Thus,
while there is an increase in the ability of individuals to influence collective decision-making
in many areas, most decisions are made by a small, non-elected and non-representative
groups of active voters. Partial participation may increase vote distortion [11] (the worst-
case ratio between the social cost of the candidate elected and the optimal candidate, first
defined in [19]); lead to counter-intuitive equilibria [7]; and significantly decrease the likeli-
hood of selecting the Condorcet winner (when it exists) [10]. Above all, when the outcome
of an election only considers a fraction of all opinions, it is unreasonable to assume that
they accurately reflect the aggregated opinions of the collective.

Proxy voting, a long standing practice in politics and corporates [21], and an up-and-
coming practice in e-voting and participatory democracies [18], aims at mitigating the ad-
verse effects of partial participation. Non-active voters (followers) delegate their vote to
another active voter (proxy), thereby at least having some influence on the outcome. In
some cases, the outcome of proxy elections provide a better estimate of the aggregated
social preference of all voters [5].

However, such delegation changes the power dynamic of voters by shifting some of the
voting power to proxies. While much consideration is granted in the literature of social choice
for the strategic behavior of voters [12, 23] and candidates [9, 22], there is little consideration
of the strategic behavior of proxies or followers in proxy-mediated settings. Cohensius et
al.[2017] consider strategic participation (i.e. selecting to participate or abstain) with mostly
positive results; yet they pose the question of strategic behavior of proxies and followers as
an open question, which was part of the inspiration to the current study.

Moreover, it is common to study strategic behavior in adversarial settings assuming
complete information. However, this assumption may be unreasonable in the context of
proxy voting. By delegating their vote, followers may wish to avoid the cognitive strain,
time loss and other costs associated with determining and communicating their position.
Thus, a setting that requires followers to explicitly define their positions negates these
benefits of proxy voting for followers. Reijngoud and Endriss [20] propose a framework for
the study of strategic behavior in partial information settings. We apply it to study strategic
behavior of proxies.

1This work was previously published at EUMAS2022 [2], an extended version is available at
arXiv:2305.10969 [3]
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Our model considers a political spectrum over the real line [14, 8], using the median
voting rule for single-peaked preferences that was shown to be strategyproof [17]. Our
initial study considers strategyproofness and manipulability with respect to both followers
and proxies positions. Then, we consider sequences where proxies react to other proxies’
actions. Finally, we turn to study strategic behavior in partial information settings. Our
contribution is as follows:

• Strategyproofness of the median voting rule for single-peaked preferences extends to
followers in proxy voting.

• Proxy voting with the median voting rule is manipulable with respect to proxy positions.
• Under mild restrictions, sequences of manipulations converge to an optimal equilibrium.
• Manipulations under partial information may converge to a worse equilibrium than

without delegation.

2 Model and Preliminaries

We define the model of Strategic Proxy Games (SPG) as follows. There is a set of voters
N = {1, ..., n}, and a set of proxies (active agents) Φ = {φ1, ..., φm} ⊆ N . Non-active voters,
i.e. the set N \Φ are called followers. Each voter 1 ≤ i ≤ n has a position pi ∈ R along the
political spectrum. Voters are assumed to have single-peaked preferences with peak at pi.
That is, for every x, y ∈ R, if x < y ≤ pi, then Voter i prefers y to x, and if pi ≤ x < y,
then Voter i prefers x to y. A profile is a vector s ∈ Rn, such that si is the position Voter
i declares. We denote by (s−i, s

′
i) the profile that is equal to s except for the strategy of

Voter i, that is s′i. We adopt the model of [5], where followers each delegate their vote to the
nearest proxy (as in [25]). That is, given a profile s, each Follower i ∈ N \Φ delegates their
vote to Proxy φj ∈ Φ, where φj = argminφj∈Φ|sj − si|. All proxies delegate their vote to
themselves. Voters’ preferences are symmetric single-peaked for followers, that is, for every
x, y ∈ R, if |x− pi| < |y − pi|, then Follower i prefers x to y. Thus, voters’ preferences are
consistent with the delegation model. We assume that some tie-breaking scheme exists that
only depends on positions of proxies.

Example 2.1. Consider the SPG appearing in Figure 1.

−1 0 1.5

Figure 1: An example SPG. Large dots indicate the positions of proxies, small dots indicate
the positions of followers.

There are three voters N = {1, 2, 3} with positions p1 = −1, p2 = 0, and p3 = 1.5, where
φ1 = 1, φ2 = 3 are proxies. In the truthful profile s = (−1, 0, 1.5), the follower (voter 2)
delegates their vote to the closer proxy φ1. Thus, there are two votes to −1 and a single
vote to 1.5. ■

Given a finite set S ⊆ R such that each element si ∈ S has weight wsi ∈ R+,
let W =

∑
si∈S wsi . The weighted median of S is an element si ∈ S such that∑

{sj∈S\{si}:sj≤si} wsj ≤ W
2 and

∑
{sj∈S\{si}:sj≥si} wsj ≤ W

2 . That is, the sum of weights
of elements that are smaller than si is at most half the total sum of weights, and the same
holds for the sum of weights of elements that are larger than si.

Next, we define the Weighted Median voting rule. The weight if each proxy is defined
as the number of delegations to them. Then, the weighted median voting rule (WM) selects
the position that is the weighted median of proxy positions. Note that in this case, W = n.
For example, the WM in Example 2.1 is the position −1, as there are 2 votes for −1 (the
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proxy at −1 and the single follower who delegates to them), and 1 vote for 1.5 (the proxy
at 1.5 with no followers).

For a profile s, we denote the unweighted median of s by meds, or med when clear from
context. For a truthful profile p the median voter is a voter i such that pi = medp.

We say that a voter is truthful if they declare their true position, i.e. pi = si. Voters may
lie about their positions, i.e. pi ̸= si. We assume that voters are rational, that is, voters lie
only if the outcome changes in their favor. We say that Voter i has a manipulation in p if
there is si ̸= pi such that Voter i strictly prefers the outcome by reporting si to the outcome
by reporting pi. A voting rule is strategyproof if for every p, no voter has a manipulation,
otherwise, it is manipulable. The Median voting rule is known to be (group) strategyproof
for single-peaked preferences [4, 17].

3 Strategyproofness for Median Proxy Voting

We begin our analysis by showing that strategyproofness extends to Median Proxy Voting
with respect to followers’ positions. In [5] the authors show that for an infinite population
of non-atomic voters given by some distribution where proxies are randomly selected, the
winner of median proxy voting is the closest proxy to the true median. The following Lemma
shows that this result extends to our setting. A similar variant appears in [22].

Lemma 3.1. Let s be a profile, and let meds be the median of s. Then the reported position
sj of φj = argminφi∈Φ|si −med| is the winner by WM.

Proof. W.l.o.g, assume sj ≤ med. As there are at most n
2 voters with positions smaller

than meds, the sum of votes to proxies left of sj is at most n
2 . As all median followers

(followers that report position sj) delegate their vote to φj , and there are at most n
2 voters

with positions greater than meds, the sum of votes to proxies with positions greater than
sj is at most n

2 . Thus, sj is the weighted median of s. ■

Next, we prove that for WM, followers do not have manipulations. Note that for followers
manipulation implies delegation to another proxy.

Theorem 3.2. WM is strategyproof w.r.t followers’ positions.

Proof. Assume towards contradiction that for some truthful profile s, there is a follower
i ∈ N \ Φ that has a manipulation. W.l.o.g, assume pi ≥ meds. Let φ be the proxy that
is the winner for s, and let s′i be the manipulation for Follower i. As s′i is a manipulation,
it must be that the winner for s′ = (s−i, s

′
i) changed. Let φ′ ̸= φ be the winner for

s′. By Lemma 3.1, meds ̸= meds′ . Therefore, it must be that s′i < meds, and therefore
meds′ < meds, hence sφ′ < sφ. One of the following must hold:

• pi < sφ′ < sφ: Since meds ≤ pi, it follows that sφ′ is closer to meds than sφ, in
contradiction to Lemma 3.1.

• sφ′ < sφ < pi by single-peakedness, Follower i prefers sφ to sφ′ , in contradiction to s′i
being a manipulation.

• sφ′ < pi < sφ: as pi ≥ meds, and since by Lemma 3.1 |meds − sφ| < |meds − sφ′ |, we
get |pi − sφ| < |pi − sφ′ |. Thus by symmetric single-peakedness Follower i prefers sφ
to sφ′ , in contradiction to s′i being a manipulation.

■

As Theorem 3.2 shows that WM is strategyproof with respect to followers’ positions,
we can henceforth consider them as non-strategic agents. In what follows, followers are
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considered to always be truthful, and we abuse the notation of a profile restricted to the
strategic agents, i.e., the proxies.

We continue to analyze the strategic behavior of proxies. While we obtain a positive
result of strategyproofness when only followers are considered strategic, the same does not
hold for proxies, as demonstrated by the following example.

Example 3.3. Recall the SPG appearing in Example 2.1. When proxies are truthful,
s1 = −1 is the winner by the Weighted Median voting rule.

Next, consider the profile s′ = (−1, 1− ε) for some 0 < ε < 2.

−1 0 1− ε 1.5

Figure 2: The SPG with φ3 manipulation. Large empty dot is φ3’s true position, the
manipulation is re-positioning strategically at 1− ε. Follower delegates their vote to φ3.

Follower 2 delegates their vote to φ3. There are two votes to s2 = 1 − ε and a single
vote to s1 = −1, thus, 1 − ε is the winner by WM. As preferences are single-peaked and
φ3’s peak is at p3 = 1.5, we get that φ3 prefer 1− ε to −1. Hence, s′ is a manipulation for
φ3. ■

To highlight the pervasiveness of this result, we point out that the (unweighted) median
voting rule is strategyproof for single-peaked preferences. Example 3.3 shows that even when
we relax preferences of followers to be symmetric single-peaked, strategyproofness does not
extend to WM with respect to positions of proxies.

Moreover, this example can be easily expanded to any number of followers and proxies.
However, rather than formally constructing such example, The following theorem provides
a complete characterization of manipulable scenarios. As a consequence, it shows that
manipulations exist under very simple and reasonable conditions.

Theorem 3.4. There is a proxy that has a manipulation in the profile s iff it holds that
sφi

̸= med for all 1 ≤ i ≤ m, and there are proxies φi, φj ∈ Φ such that pφi
< med < pφj

.

Proof. First, assume the winner is φ∗ with position pφ∗ , and assume pφ∗ < med. For proxy
φj we have that pφ∗ < med < pφj

. As preferences are single-peaked, φj prefers med to pφ∗ .
We proceed by showing that sφj = med is a manipulation for Proxy φj , as in Fig. 3.

pφ∗ med pφj

sφj

Figure 3: med is a manipulation for φj .

The median of
(
p−j , sφj

)
remains med, as there are at most n

2 voters with position that
are smaller than med, hence the sum of votes to all proxies with positions smaller than med
is at most n

2 . The same holds for the sum of votes to proxies with position larger than
med. Since φj reports position sφj

= med, by Lemma 3.1 their position med is the winner
by WM. Since φj prefer med to p∗, that is a manipulation for φj . When p∗φ > med, by
the same reasoning sφi

= med is a manipulation for φi. Hence, no proxy has position at
med, and there are φi, φj such that pφi

< med < pφj
, then there is a proxy that has a

manipulation.
Next, if there is some proxy φk such that sφk

= med, then by Lemma 3.1 med is the
winner and no proxy with position that is not med can change the outcome by reporting
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a position that is closer to med. Furthermore, every proxy with position at med have
their peak outcome, so they cannot improve the outcome for them. Therefore, the only
possible manipulations are by proxies with positions other than med, and they can only
manipulate by reporting a position that changes the location of the median. Assume towards
contradiction that there is such a proxy φ, and w.l.o.g assume that pφ > med. Then, to
change the location of the median φ must report a position sφ < med. Denote the median of
(p−φ, sφ) by med′. We get that med′ < med. Since sφ is a manipulation, the outcome is at
position p′ ≤ med′ < med < pφ. By single-peakedness φ prefers med to p′, in contradiction
to sφ being a manipulation.

Finally, assume that for all proxies pφi
≤ pφ∗ < med. By the same reasoning as for

the case where there is a proxy with position at med, no proxy can change the outcome
in their favor by reporting a position larger than med. Then, by Lemma 3.1 the only way
to change the outcome is to get closer to the true median, i.e. set a strategy sφ such that
pφ∗ < sφ ≤ med. As proxy preferences are single-peaked, every proxy prefer pφ∗ to any
position pφ∗ < sφ, thus, they do not have a manipulation. ■

4 Manipulations for Better Outcomes

So far, we showed not only that proxy voting using WM is manipulable, but also that manip-
ulations exist in common voting scenarios. Though strategyproofness is usually considered
as a desirable property for voting rules, in what follows we argue that in the case of proxy
voting, manipulations can actually be proven useful.

Recall that one of the motivations for proxy voting is to mitigate the caveats of partial
participation. In [5], the authors show that proxy voting can better aggregate voter pref-
erences as it can only reduce the distance from the true median over partial participation.
The true median is the outcome of the median voting rule. It is both Condorcet consistent
and the minimal sum of distances from voters’ true preferences. It is common in Hotelling-
Downs-like settings [8, 14] to measure the social cost of outcomes using the sum of distances
of all agents positions to the outcome. Thus, the median of all voters reflects the social
optimum. Moreover, reducing the distance of the outcome from the median may improve
the social welfare, and generally can better reflect the collective preference.

4.1 Dynamics and Convergence

While manipulations are actions that agents may take from their truthful profile to get a
better outcome, proxies may continue to take actions and reposition themselves to get better
outcomes. In this section, we discuss on-going dynamics for proxies.

Our model offers an infinite action set. Hence, the terminology used in Iterative Vot-
ing [16], which is the standard framework for studying the ongoing dynamics in voting,
cannot be directly applied. We address it when relevant.

In what follows, we assume scenarios where manipulations exist, i.e., that meet the
conditions of Theorem 3.4.

For every φi ∈ Φ and every profile s−φi
, we say that the position s′φi

is a better-response

to s if φi prefers the outcome of
(
s−φi , s

′
φi

)
to the outcome of s. We denote the set of better-

responses for a profile s and proxy φi by Bφi
s . We abuse the terminology of manipulations,

such that a better-response from any profile s is a manipulation. A profile s is a pure Nash
equilibrium (PNE) if for every φi ∈ Φ it holds that Bφi

s = ∅, that is, no proxy have a
manipulation for s.

A policy for proxy φi ∈ Φ is a function that maps a profile to a manipulation in the
better-response set. Formally, let S be the set of all possible profiles for the proxies, and
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let S∗ =
⋃∞

k=1 Sk. Then, a policy for φi is a function πφi : S → R such that πφi (s) ∈ Bφi
s .

One particular policy is the best-response policy, which selects a position with an outcome
that the proxy prefers to all other positions in the better-response set, when one exists.

A better-response dynamics is a series of profiles, such that for every two consecutive

profiles si, si+1 in the series s∗, there is a proxy φj such that si+1 =
(
si−φj

, πφj

(
si
))

. That

is, every profile in the series is created from a single manipulation by some proxy, according
to that proxy’s policy. We say that a dynamics s∗ converges if the series s∗ has a limit.

4.2 Monotone Policies

For proxies that are on the other side of the median than the outcome, it is reasonable to
assume that their policies select a position that is on the side of the median as their position.
This is due to the fact that every position on their side of the median is a better-response
to every position on the opposite side of the median. In the following discussion, we restrict
policies to ones that preserves the integrity of proxies positions with respect to the median.

Formally, we say that a better-response dynamics s∗ is monotone if for every φi ∈ Φ,
we have that pφ ≤ med iff for every st it holds that πφi

(st) ≤ med. Note that for every
monotone better-response s∗ starting from the truthful profile, for every st of s∗ it holds
that the median of st is med. We discuss non-monotone dynamics in Subsection 4.4.

For a better-response dynamics s∗, and for a profile st of s∗, we say that φ (t) is the

moving proxy at t if st+1 =
(
st−φ(t), πφ(t) (s

t)
)
. We denote the manipulation of φ (t) at

st by s′ (t) = πφ(t) (s
t). We say that φ∗ (t) is a winning proxy at st if the outcome of st

is sφ∗(t), and denote s∗ (t) = stφ∗(t). Finally, denote ∆t = |med − s∗ (t)|, i.e. the distance

between the median and the outcome of st.
We next show that any manipulation in a monotone better-response dynamics where the

winning proxy is not the moving proxy decreases the distance to the median.

Lemma 4.1. For every monotone better-response dynamics s∗ starting from the truthful
profile s1 = p, for every t ≥ 1 if φ (t) ̸= φ∗ (t), then ∆t+1 < ∆t.

Proof. By Lemma 3.1, for st+1 it holds that φ∗ (t+ 1) = argminφk∈Φ|st+1
φk

−med|, therefore,
for every φk ∈ Φ it holds that |s∗ (t+ 1) −med| ≤ |st+1

φk
−med|. In particular, this holds

for φ∗ (t). We get:
|s∗ (t+ 1)−med| ≤ |st+1

φ∗(t) −med|

Since φ (t) ̸= φ∗ (t), it holds that s′ (t) is a manipulation for φ (t), so
|st+1

φ∗(t+1) −med| ≠ |st+1
φ∗(t) −med|. Hence:

∆t+1 = |s∗ (t+ 1)−med| < |s∗ (t)−med| = ∆t. ■

Lemma 4.1 suggests that manipulations made by proxies that do not have strategic
positions at the current outcome reduce the distance to the true median. However, it is
possible for winning proxies to manipulate in a way that increase the distance to the median.
Figure 4 describe a proxy with 2 consecutive steps. The first makes them the winning proxy,
the next is a better-response as they remain the winning proxy with a position that is closer
to their true position.

We call sequences of consecutive manipulations by the same winning proxy meta-move.
The following shows that while local manipulations within a meta-move can increase the cur-
rent distance to the true median (as Figure 4 demonstrates), meta-moves globally decrease
the distance to the true median.
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pφ1 med pφ2∆ ∆

Figure 4: Consecutive steps that increase the distance to the median. Gray dots indicate
truthful positions of proxies, empty dots indicate positions of manipulation. Arrows indicate
repositions. A small full dot is the position of a (single) follower.

pφ1 med pφ2∆ ∆

Figure 5: A dynamics that diverges. The two large black dots indicate oscillation positions.
The arrow indicates the first manipulation.

Lemma 4.2. Let s∗ be a monotone better-response dynamics starting from the truthful
profile s1 = p. Then, every meta-move strictly decreases the distance between the winning
position and med.

Proof. We start by giving a formal description of meta-moves. Let sk such that φ (k) ̸=
φ∗ (k) and φ∗ (k + 1) = φ (k). That is, in profile sk, a proxy φ (k) manipulates such that
the manipulation makes them the winner. Next, let t ≥ 1 such that for every 1 ≤ i ≤ t it
holds that φ (k + i) = φ (k) = φ∗ (k + 1). That is, once φ (k) becomes the winning proxy,
they keep making consecutive manipulations for t steps. We show that ∆k+t < ∆k.

By Lemma 3.1, monotonicity and since for every 1 ≤ i ≤ t it holds that φ (k + i) =
φ∗ (k + 1) ̸= φ∗ (k), we get that ∆k+i ≤ ∆k. Furthermore, since s′ (k) is a manipulation for
φ (k), it must be that the outcome of sk+1 is not equal to the outcome of sk. We get that
for every i, sk+i is a manipulation and therefore sk+i ̸= sk. Thus ∆k+i ̸= ∆k. ■

Lemma 4.1 and Lemma 4.2 together provide a complete analysis of the better-response
sets for proxies, and show that the better-response set strictly decreases after each (meta)
move. However, this alone is not sufficient for convergence.

Example 4.3. Recall the setting appearing in Example 2.1. Define α1 = 1
4 , and for every

t ∈ N, define αt+1 = 1
2αt. We define the following policy for φi ∈ Φ:

πφi

(
st
)
= med− sign (med− pφi

) (∆t − αt)

For every t ∈ N we get that

∆t+1 = |st+1
φt+1

−med| = |med− sign
(
med− pφt+1

)
(∆t − αt)−med|

= |−sign
(
med− pφt+1

)
(∆t − αt)| = ∆t − αt

As αt =
1
2αt−1, we get ∆t+1 = ∆1−

∑t−2
i=0

1
2iα1 = ∆1−α1

∑t−2
i=0

1
2i . As t → ∞, we get that

the distance to the median converges to ∆1 − 2α1 = ∆1 − 2 1
4∆1 = 1

2∆1, and the outcome
oscillates between − 1

2 and 1
2 , thus the best-response dynamics diverges. Figure 5 shows a

schematic of this dynamic. ■

Note that Example 4.3 not only shows that monotone better-response dynamics need
not converge, it also shows a key difference between our setting and Iterative Voting. We say
that a dynamic is acyclic if there are no recurring states. For finite action sets, i.e., when
the space of available manipulations for each agent is finite, acyclicity implies convergence.
Example 4.3 shows that for infinite action spaces this does not hold.

In effect, αt is the amount by which the outcome gets closer to the true median between
steps. As ∆t decreases, so does the leeway that proxies have to improve the outcome for
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themselves. While it is reasonable that αt decreases as ∆t decreases, Example 4.3 captures
the behavior in which αt decreases at a higher rate than ∆t.

By restricting policies such that αt and ∆t decrease at the same rate, we can obtain
convergence. Moreover, this guarantees that ∆t itself converges to 0, meaning that the
outcome converges to the true median.

Let s∗ be a monotone better-response dynamics from the truthful profile s1 = p with
policies πφi , and let 0 < α < 1. We restrict policies such that manipulations must create
a noticeable difference in the outcome. In particular, as ∆t defines the interval in which
manipulations are possible, such a restriction bounds the outcome away from ∆t. Formally,
for every t ≥ 1, if φ∗ (t) ̸= φ (t) then we require |med − πφi

(st)| ≤ α · ∆t. For every t, l
such that for every 0 ≤ i ≤ l it holds that φ (t+ i) = φ (t) = φ∗ (t+ 1) ̸= φ∗ (t), we require
|med− πφi

(
st+i

)
| ≤ α ·∆t.

Theorem 4.4. Under the above restrictions, every monotone better-response dynamics from
the truthful profile converges, and the limit is a PNE where the outcome is the true median.

Proof. First, if the series {∆t}∞t=1 converges to 0, then by definition of ∆t, the distance
between the outcome and the true median in s∗ converges to 0. By Lemma 3.1, this implies
that no proxy can change the outcome, thus, the better response set of every proxy is empty,
and this is a PNE. Moreover, the outcome is the true median med.

Next, we argue that under the policy restrictions, ∆t → 0 as t → ∞. We construct a
series {Γt}∞t=1 as follows. Γ1 = ∆1. If φ∗ (t) ̸= φ (t), then set Γt+1 = α · Γt. Otherwise,
set Γt+1 = Γt. We get that for every t ≥ 1, it holds that ∆t ≤ Γt. For the case where
Γt+1 = α · Γt due to assumption and Lemma 4.1, and for the case where Γt+1 = Γt by
Lemma 4.2.

Note that as long as ∆t > 0, there is a proxy with position not in s∗ (t), therefore, every
manipulation for them strictly reduces the distance to the median. We therefore get that
the amount of cases where Γt+1 = Γt is finite, and therefore for convergence it is sufficient
to consider only the case where Γt+1 = α ·Γt. We get that Γt+1 = αt ·Γ1 = αt∆1. As α < 1,
we get that t → ∞ implies Γt → 0.

Finally, since {Γt}∞t=1 bounds {∆t}∞t=1 from above, and {Γt}∞t=1 converges to 0, then
{∆t}∞t=1 also converges to 0. ■

As the true median of voters is the socially optimal outcome, Theorem 4.4 implies that
the strategic behavior of proxies can in fact produce a socially optimal outcome.

4.3 Discretization

In many real-world applications, the assumption that voters can express any position on the
political spectrum R is unreasonable. Voters are unlikely to distinguish between positions
that are too similar, and this is the case both for selecting their truthful position, and
distinguishing between different proxy positions for delegation. In computerized settings,
there is some limited resolution to the expression of preferences (e.g. a temperature or a
monetary amount). As it turns out, any such limit eliminates the possibility of oscillation
we encountered in the previous section. In this section, we assume w.l.o.g that the political
spectrum is restricted to the set of all integers Z.

For discrete spaces, every policy meets the conditions of Theorem 4.4. This is due to the
fact that every manipulation made by a proxy with position that is not the current weighted
median must decrease the distance to the true median by at least 1 (as the minimal distance
between every distinct possible positions). Thus, the conditions are met for α = 1 − 1

∆1
.

Therefore, for discrete spaces, every better-response dynamics converges, and the outcome
is the true median, which is the socially optimal outcome.
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Furthermore, for discrete spaces (in contrast to continuous) there is a well-defined best-
response, that is to reposition at a distance that is one step closer to the true median than
the current winner on their opposite side of the median. In particular, the best-response is
monotone. Following the terminology of [16], a game has the Finite Best Response Prop-
erty (FBRP) from truth if from any truthful profile, when restricted to best-responses, the
dynamics converges. Thus, SPGs with WM are FBRP from truth.

4.4 Non-Monotone Policies

In the previous sections we restricted the set of policies to those that maintain the integrity
of proxies. That is, proxies always position themselves in the same side of the median as
their truthful positions. However, there may be cases where it might be beneficial for a proxy
to deviate to a position that is on the other side of the median. Proxies might attempt this
in an intention to divert the positions of proxies on the opposite side of the median, or they
might be willing to shift the median a little in an attempt to cause convergence to this new
position. The following example demonstrate such a scenario.

Example 4.5. Consider the SPG appearing in Figure 6

−2.5 −1 0 3 4

Figure 6: The SPG, large dots indicate proxies, small dots are followers.

The positions are p = (−2.5,−1, 0, 3, 4). There are 3 proxies
Φ = {φ1, φ2, φ3} with positions pφ1

= −2.5, pφ2
= 3, pφ3

= 4. There are 2 followers with
positions p2 = −1, p3 = 0. The median is 0, and the outcome by the Weighted Median
voting rule is the position pφ1

= −2.5.
Assume that φ2 manipulates to s1φ2

= −2. Now, the median is p2 = −1, and the weighted
median is s1φ2

. Note that φ2 prefers this outcome to −2.5 by single-peakedness. Therefore,
this is a manipulation for φ2.

Next, assume that φ3 manipulates to s2φ3
= −1.5. Now, the median in s2φ3

= −1.5, and
it is also the position of the closest proxy, thus, this is the weighted median. This outcome
is preferable to φ3 than −2.

Finally, φ2 manipulates to s3φ2
= −1. Now both the median and the weighted median is

−1. Furthermore, both φ1 and φ3 can change the outcome in their favor.
Note that this does not imply convergence, as φ2 still has a manipulation. ■

This example shows that a similar potential argument as used in the proof of Theo-
rem 4.4, even with the added assumption that proxies make substantial enough steps to
decrease the distance to the median, is unlikely to work. Our conjecture is that convergence
holds for the unrestricted case as well, and that ultimately proxies would have an incentive
to deviate back to their original side of the median, yet this is a matter of future research.

5 Partial Information

In previous sections we assumed that the proxies have complete information about the posi-
tions of proxies and followers alike. This assumption is common when analyzing adversarial
behavior. However, is it reasonable in a proxy voting setting?

Recall that one of the applications of proxy voting is to mitigate the adverse effects of
partial participation, where voters choose not to report their positions, rather only delegate
their vote. Moreover, followers may not even know their exact position, rather they only
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know how to rank proxies by proximity. Thus, followers can still delegate their vote without
the added cognitive strain of figuring what is their exact position.

When proxies have no information about positions of followers, then proxy voting is
strategyproof. To see this, consider the profiles appearing in Figure 7

−50 40−20 10 50 −50 −20 0 10 50

Figure 7: Example of profiles that are indistinguishable if followers positions are not public.

For the bottom profile, the proxy at −20 has a manipulation by deviating to −5. How-
ever, for the top profile, the proxy has no manipulation. When proxies have no information
except proxies positions, the proxies cannot distinguish between the two profiles. Thus,
proxies do not even know if the have a valid manipulation, let alone their better-responses.

This example shows that restricting the information available to proxies to reported
proxy positions is too severe of an assumption.

In this section we relax the assumption of complete information. We first describe
formally a less restrictive setting for the study of partial information. Next, we show that
when only partial information is made available to voters, the strategic behavior of proxies
may converge to a worse position than without delegation.

We employ the framework described in [20]. In this setting, a poll information function
(PIF) σ maps each profile s to an information set σ (s). For example, σ returns the outcome
by WM, the number of delegations for each proxy, and even s itself. The set σ (s) is then
communicated to all voters.

In this setting, proxies cannot distinguish between profiles that yield the same informa-
tion by σ. Recall the two profiles from Figure 7. When only proxy positions are communi-
cated by σ, the profiles are indistinguishable by the proxies. Therefore, they must assume
the profiles are equally likely. However, proxies can deduce an equivalent set of profiles that
are consistent with the information they have. In particular, both profiles in Figure 7 would
be in the same set.

Formally, Each proxy φi, based on their knowledge of their own preferences and the

additional information σ (s), deduce a set W
σ(s)
φi of the possible positions of other followers

(and proxies) that are compatible with the information set. That is, each profile s−i
′ in

W
σ(s)
i is a profile of all voters except i such that (s−i

′, si) is mapped by σ to the same
information set they received σ (s), i.e. σ (s−i

′, si) = σ (s).
Following the terminology of [6], we say that a position s∗φi

is a dominating manipulation

for Proxy φi if by reporting s∗φi
, there is some profile in W

σ(s)
i that will produce a preferable

outcome, and for all other profiles in W
σ(s)
i , it holds that their outcome is weakly preferred

by φi over the current outcome. More formally, let F be a resolute voting rule, and let ≻φi

be a full order over all possible outcomes that define φi’s true preferences. Then, s∗φi
is a

dominating strategy if there is a profile s−i
′ ∈ W

σ(s)
i such that F

(
s−i

′, s∗φi

)
≻i F (s−i

′, si)

and for all profiles s−i
′ ∈ W

σ(s)
i it holds that F

(
s−i

′, s∗φi

)
≽i F (s−i

′, si). Note that if
σ returns the profile s, then the set of dominating strategies coincides with the set of
better-responses. Moreover, dominating manipulations are the only rational actions that a
risk-averse agent may take.

For the rest of this discussion, We also assume that the positions of the proxies are
known as a choice of modeling, as followers need to know their positions for delegation.

In this section, we assume that followers keep their positions as private information, and
only delegate their vote to the proxy that is nearest to them. Therefore, for feasibility of
delegation, we assume that proxies reveal their reported positions to all voters. Finally, we
use σwinner, the PIF that maps a profile s to the outcome of s by WM.
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Next, we derive a similar positive result of convergence as in the complete informa-
tion setting. First, as the PNE is defined with respect to better-responses, we consider
convergence to a stable state (equilibrium) where none of the proxies have a dominating
manipulation. However, as the position of the median is unknown to proxies, there is no
straighforward interpretation of monotonicity. Instead, we consider a setting where proxies
do not have a vote themselves. That is, votes are only delegated to them by followers. In
this case, the position of the median is not affected by manipulations as is the case for
monotone dynamics. This setting is closely related to the models of [5, 22].

We begin our analysis by characterizing the set of dominating manipulations for proxies.

Theorem 5.1. For any profile s and proxy φ ∈ Φ, the set of dominating manipulations
of φ is the interval between the position of the current winner and the closest proxy to the
winner on the same side as pφ (including their truthful position).

Proof. First, every position s′φ in the set is a dominating manipulation. Consider the profile(
s−φ, s

′
φ

)
. There are only two possible winners, either sφ∗(s) (the position of the current

winner) or s′φ. W.l.o.g assume pφ < sφ∗(s). By single-peakedness we get pφ ≤ s′φ < sφ∗(s),
thus φ weakly prefers the outcome. Next, there is a profile where φ wins, thus it is a
dominating manipulation.

Next, for every position that is farther than the closest proxy on the same side as φ’s
truthful position, the outcome of

(
s−φ, s

′
φ

)
is φ∗ (s) no matter the positions of followers.

Thus, it is not a dominating manipulation. For positions that are on the other side of the
current winner than φ’s truthful position, consider the profile where sφ∗(s) is the median,
and there are no followers between sφ∗(s) and the position of the closest proxy on the other
side of sφ∗(s) than φ. The outcome must be a position that is further from the truthful
position of φ than sφ∗(s), thus it is not a dominating manipulation. ■

Next, we show that dominating manipulations decrease the distance to the true median.

Theorem 5.2. Let s∗ be a dynamics, then for every t ≥ 1 it holds that ∆t+1 ≤ ∆t.

Proof. Following Theorem 5.1, by repositioning to a dominating manipulations, the outcome
either does not change, in which case ∆t+1 = ∆t, or the moving proxy becomes the winner,
in which case by Lemma 3.1 we get ∆t+1 < ∆t. ■

We get that the distances between the winner and the true median is a decreasing mono-
tone sequence bounded from below, thus, it converges. Therefore, under weak additional
assumptions similarly to those made in the previous section (e.g. discretization) the step
size is lower bounded so the dynamics converges. However, it is not guaranteed to converge
to the true median, and in fact, may converge to a worse position than without delegation.

Consider the SPG appearing in Figure 8.

−50 −30 0 10 50

Figure 8: The SPG, large dots are proxies, small dots are followers.

The true positions are p = (−50,−30, 0, 10, 50). There are two proxies Φ = {φ1, φ2}
with positions pφ1 = −30 and pφ2 = 50, and 3 followers. Note that proxies and followers
are unaware to the positions of other followers. The median is 0, and the weighted median
is −30. The social cost, or sum of distances from the weighted median to each position is

SC = |−50− (−30)|+ |−30− (−30)|+ |−30− 0|+ |−30− 10|+ |−30− 50| = 170
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Next, consider the position s1φ2

′
= 25. By Theorem 5.1, it is a dominating manipulation.

For φ1 in s2 =
(
s1−φ2

, s1φ2

′
)
, the only information that φ1 has is that their position is

−30, and that the position of φ2 in s2 is 25, and it is the outcome of s2. Consider the position
s2φ1

′
= 20. Again, by Theorem 5.1 this is a dominating manipulation for φ1. Moreover, φ1

has no dominating manipulation in s3 =
(
s2−φ1

, s2φ1

′
)
. Additionally, this holds for every

st =
(
s2−φ2

, stφ2

′
)
where stφ2

′ ∈
(
s2φ1

, s1φ2

]
= (20, 25].

Finally, for every st =
(
s2−φ2

, stφ2

′
)
where stφ2

′ ∈
(
s2φ1

, s1φ2

]
= (20, 25], the set of domi-

nating strategies for φ2 is
(
20, stφ2

′
]
. Figure 9 demonstrates the dynamics.

−50 −30 0 10 50

Figure 9: An example that converges to a worse position than without delegation. Gray
dots indicate truthful positions of proxies, empty dots indicate positions of dominating
manipulations, full dot indicate convergence positions. Small full dots are followers.

We get that the distance between the position of φ1 and φ2 converges to 0, and therefore
the dynamics ultimately converges to a PNE where the positions of both proxies is s2φ1

= 20.

The social cost of this outcome is
∑5

i=1|20− pi| = 180, that is greater than the social cost
of the outcome of p.

Note that in the case of complete information, this counter-example would not converge
in the same way. This is due to the fact that once φ1 repositions and becomes the winner
again, as they know the position of the median, their better-response set is not empty.

6 Conclusions and Future Work

We introduced Strategic Proxy Games, a framework to study strategic behavior of proxies
in voting mechanisms.

First, we demonstrated that in this model, the extension of the median voting rule to
the weighted median voting rule via proxy voting maintains strategyproofness with respect
to followers’ positions. In particular, this suggests that with respect to follower positions,
the delegation scheme is optimal for followers preferences. Our study uses the Tullock
delegation scheme, however other delegation models have been studied in the literature. In
the one-step delegation domain, Green-Armytage [13] consider delegation that accounts for
small errors in assessment of positions, and Alon et al. [1] consider social connections that
influence the weight of proxies. It would be interesting to see how the delegation model
affects the outcome of proxy voting and the strategic behavior of followers and proxies.

We continued to study the strategic behavior of proxies, and showed that while strate-
gyproofness does not extend to proxy voting, when proxies maintain the integrity of their
positions with respect to the median, the outcome converges to the true median of all voters.
This result implies that by relaxing truthfulness to integrity, strategic behavior can improve
the outcome with respect to the truthful profile. In future work we would like to study the
outcome without this restriction, and it is our conjecture that the outcome converges to the
true median as well.

Finally, we study the implications of partial information to the strategic behavior of
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proxies. While we get a positive result of convergence, our results also show that in this
case the outcome may increase the social cost.

In this research we focused on the median voting rule. We plan to study the implication
of strategic proxy behavior in higher dimensions, as well as with other voting rules.
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