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Abstract

An electoral spoiler is usually defined as a losing candidate whose removal would
affect the outcome by changing the winner. So far spoiler effects have been analyzed
primarily for single-winner electoral systems. We consider this subject in the context
of party elections, where there is no longer a sharp distinction between winners and
losers. Hence, we propose a more general definition, under which a party is a spoiler
if their elimination causes any other party’s share in the outcome to decrease.
We characterize spoiler-proof electoral allocation rules for zero-sum voting methods.
In particular, we prove that for seats-votes functions only identity is spoiler-proof.
We also show that spoilers are ubiquitous under some of the most common electoral
rules. However, their impact can vary depending on the rule. Hence, we introduce
a measure of spoilership, which allows us to experimentally compare a number of
multiwinner social choice rules according to their spoiler susceptibility. Since the
probabilistic models used in COMSOC have been developed for non-party elections,
we extend them to generate multi-district party elections.

1 Introduction

In the context of single–winner elections, a spoiler is usually defined as a losing candidate
whose removal would affect the outcome by changing the winner [14, 34]. In this paper, we
extend the definition of a spoiler to party elections, investigate spoiler-proofness of multi-
winner electoral rules, and analyze their spoiler susceptibility.

We primarily seek to investigate spoiler effects in political elections to multi–member
representative bodies. They are distinguished from other multiwinner elections by their
character as party elections. By party election we mean such an election where the allocation
of some payoff (e.g., parliamentary seats) among parties (rather than the identity of the
winners) is the main outcome.1 Thus, spoiler effects should be considered in terms of party
seat allocations.

1.1 Contribution

The five principal contributions of the paper are:
First. We generalize the definition of a spoiler to party elections. A party is deemed a

spoiler if there exists another party whose payoff decreases if the former is eliminated.
Second. We prove a general impossibility theorem regarding the existence of spoiler-proof

electoral rules that can be described by seats-votes functions distinct from identity.
Third. We characterize spoiler-proof electoral rules for zero-sum voting methods like

ordinal or cumulative voting.
Fourth. We compare electoral rules according to their expected spoiler susceptibility.

We analyze seven rules based on ordinal voting: k–Borda, Chamberlin–Courant, Harmonic-
Borda, Jefferson–D’Hondt, k–PAV, SNTV, and STV.

Fifth. Since party elections under ordinal voting have not been hitherto considered in
COMSOC, we propose probabilistic models of party elections extending several common
statistical cultures.

1This definition differs from that put forward by earlier authors to address party elections in COMSOC,
such as Botan [11], for whom its defining characteristics was a block voting pattern. However, it generalizes
the concept of apportionment methods, discussed in, e.g., [12] and [13].



1.2 Related Work

While spoiler effects have long been a familiar subject in the field of voting theory, there
have been few attempts to formally define spoilers or to measure the immunity of electoral
systems to spoilers. However, spoiler effects have been tangentially considered in classical
social choice theory in the context of stronger postulates such as independence of irrelevant
alternatives [1, 46, 10] or candidate stability [23, 24, 27, 48] or distinct though related
postulates such as the independence of clones [55].

In computational social choice, spoilers have been addressed from the point of view
of electoral control problems [40, 37, 17, 29, 42, 28], in particular of the problems
of Constructive-Control-by-Adding-Candidates (CCAC) and Constructive-
Control-by-Deleting-Candidates (CCDC), and their destructive control counterparts
(DCAC and DCDC). While closely related to our subject, those problems are distinct, as
they treat the election outcome in binary terms which are inapposite in party elections.

Kaminski [34] has been the first to propose a generalized definition of a spoiler applicable
to party elections. He focused on distinguishing ways in which a potential spoiler can affect
the seat payoff. Thus, apart from classical spoilers (who turn a majority winner into a
majority loser, while making another player a majority winner), he distinguishes kingmaker
spoilers (who turn a majority loser into a majority winner), kingslayer spoilers (who turn a
majority winner into a majority loser), and valuegobblers (who affect the seat payoff of one
player by an amount greater than their own payoff).

2 Introductory Example

While no formal definition of spoilers in party elections exists, psephologists have never-
theless regarded some parties as spoilers. For example, a small left-wing party Razem has
been widely consider to be one in the Polish general election of 2015. We shall examine this
example more closely to illustrate the intuition underlying our proposed Definition 3.

In Polish general elections, the Jefferson–D’Hondt rule is used to allocate a total of 460
seats in 41 districts with the district magnitude varying between 7 and 20. In addition, a
statutory threshold is set at 5% of the total number of valid votes for parties and 8% for
electoral coalitions. Only parties and coalitions whose vote shares exceed the appropriate
threshold are eligible for seat allocation. In 2015, there have been eight major contenders,
see Table 1, columns 1 to 3.

Let us consider what would happen if Razem had not participated in the election. Its votes
would likely have been redistributed among other parties. Assume for the sake of argument
that each party’s share in those votes would be inversely proportional to its distance from
Razem in the Chapel Hill Expert Survey dataset [2]. We thus obtain the outcome of a
counterfactual election without Razem.

We could have expected that since every party gains votes when Razem is removed, its
seats shares should not decrease. However, an inspection of the results reveals that four
parties lose seats (including PiS, which no longer commands a majority). All in all, 9.5% of
seats would change hands, even though Razem held none. Conversely, if we were instead to
exclude PiS and redistribute its votes, everyone would benefit: no seats beyond PiS’s share
would be redistributed.

3 Seats-Votes Model

Let us now formalize the intuition described above. We start with introducing the seats-
votes model, a highly simplified model of electoral systems that allows us to formulate and
discuss the definition of electoral spoiler and all concepts requisite therefor with only the
minimal formalism. We then establish that identity (i.e., seats-votes proportionality) is



name
actual no Razem no PiS

votes seats votes seats votes seats

PiS .376 .511 .380 .454 .000 .000
PO .241 .300 .246 .278 .287 .332
Kukiz .088 .091 .092 .076 .153 .156
Nowoczesna .076 .061 .081 .062 .109 .099
Lewica (*) .076 .000 .085 .067 .123 .116
PSL .051 .035 .056 .029 .159 .164
Korwin .048 .000 .051 .022 .091 .075
Razem .036 .000 .000 .000 .069 .046

Table 1: Polish general election of 2015. Asterisk (*) marks coalitions.

We claim that the for-
mer effect, i.e., a party’s
removal causing another
to lose seat shares, is
the essence of spoiler-
ship. Hence, Razem was
a spoiler in 2015, while
PiS was not – in ac-
cord with the intuition
that the election winner
should not be regarded a
spoiler.

the unique spoiler-proof electoral rule in the framework of this model. Our interest in the
seats-votes model is not merely expository: it can be used to approximate a vast majority
of electoral formulae used in real-life party elections.

We begin with some notation used throughout the paper:

[t] For t ∈ Z+, let [t] denote the set {1, . . . , t}.

∆ Put ∆ := {x ∈ RN
+ :
∑
i∈N xi = 1}.

∆S Let ∅ 6= S ⊂ N be finite. Put ∆S := {x ∈ ∆ :
∑
i∈S xi = 1}. Note that the simplices

∆K (∅ 6= K ⊂ S) are faces of ∆S . Moreover, ∆ :=
⋃
S∈P(N):S 6=∅∆S .

∆−i For i ∈ S ⊂ N, put ∆−i := ∆S\{i} for short if S is given.

x−i For n ∈ N, x ∈ Rn, and i ∈ [n], put x−i := (xj)j∈[n]\{i} for short if n is given.

Let P ⊂ N be a finite set of parties, and let p := |P |. Let us consider voting systems
in which the profile can be fully represented by an actually p-dimensional vector of vote
shares, w ∈ ∆P . These include all single-district single- or multiple-choice voting systems
like plurality or SNTV, as well as single-district scoring systems like k–Borda. Under such
systems, the election and its outcome share a single domain, allowing us to model electoral
rules by a particularly simple function.

Definition 1 (Seats-Votes Function). A seats-votes function is a function f : ∆ → ∆
fulfilling the following properties:

symmetry σ ◦ f = f ◦ σ for any σ that permutes the coordinates of a point in ∆,

weak monotonicity xi > yi and xj ≤ yj for each j 6= i implies that fi(x) ≥ fi(y) for
every x,y ∈ ∆ and i ∈ N,

negative unanimity xi = 0 implies fi(x) = 0 for every x ∈ ∆ and i ∈ N.

In other words, a seats-votes function maps a vector of vote shares to an election outcome
(usually a vector of seat shares, but see the following remark). We require it to satisfy three
natural axioms: the system should treat all parties in the same manner (symmetry), getting
more votes should always be non-detrimental (weak monotonicity), and no party should be
entitled to any seats without getting any votes (negative unanimity). Note that the former
two conditions have natural Arrovian counterparts.

Remark 1. Despite its name, a seats-votes function not necessarily maps vote shares to seat
shares. For example, a function mapping voting weights to indices of voting power [43, 4, 49]
can also be (formally) consider as a seats-votes function under the above definition.

Apportionment methods, used to divide proportionally discrete goods (like parliamentary
seats), are the most common example of real-life electoral systems that can be described



by seats-votes functions. On the other hand, systems involving multiple electoral districts
(like common multi-district plurality systems) are not seats-votes systems, since election
results depend not only on the aggregate vote distribution, but also on district-level results.
However, such systems, at least in some situations, may still be approximated by seats-votes
functions under reasonable distributional assumptions.

Any discussion of spoiler effect in party elections presumes that a party is removed and
its votes (or seats) are redistributed. Mathematically, such a process can be modeled by a
monotonic projection:

Definition 2 (Monotonic Projection). For any finite P ∈ P(N) and any ∅ 6= K ⊆ P , a
function π : ∆P → ∆K is a monotonic projection if π2 = π and πj(x) ≥ xj for all x ∈ ∆P

and j ∈ K. For i ∈ P , we denote the set of all monotonic projections ∆P → ∆P\{i} by Π−i.

We now have introduced all the concepts necessary for a definition of an electoral spoiler:

Definition 3 (Electoral Spoiler). Let ∅ 6= P ⊂ N be finite and let w ∈ ∆P be a vector of
vote shares. Then the i-th party, i ∈ P , is an electoral spoiler under a seats-votes function
f and a monotonic projection π ∈ Π−i if and only if there exists no monotonic projection
ρ ∈ Π−i such that f(π(w)) = ρ(f(w)).

Corollary 1. If the i-th party is an electoral spoiler, then there exists a party j 6= i such that
fj(π(w)) ≤ fj(w)), i.e., j’s share in the election outcome decreases when i is eliminated.

From the definition of a spoiler, it is natural to proceed to the issue of spoiler-proofness:

Definition 4 (Spoiler-Proofness). A seats-votes function f is spoiler-proof if for every finite
∅ 6= P ⊂ N, x ∈ ∆P , i ∈ P , and π ∈ Π−i there exists ρ ∈ Π−i such that f(π(x)) = ρ(f(x)).

f(w)
f(w) + fi(w)(w1 − wi)

f(w) + fi(w)(w2 − wi)

f(π(w))

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

{ρ(f(w)) : ρ ∈ Π−i}

λi

Figure 1: Geometric interpretation of Definitions
3 and 5.

Finally, our framework enables us not only
to distinguish between spoilers and non-
spoilers, but also to measure the magnitude
of a spoiler’s impact on election results (see
Figure 1):

Definition 5 (Excess Electoral Impact).
Let a finite set of parties ∅ 6= P ⊂ N and
a vote share vector w ∈ ∆P be given. By

λfi,π, where π ∈ Π−i, we denote the excess
electoral impact of the i-th party under a
seats-votes function f , i.e., the L1 distance
between π(f(w)) and the redistribution re-
gion {ρ(f(w)) : ρ ∈ Π−i}.

Remark 2. Note that λfi,π > 0 if and only
if i is a spoiler under f and π.

3.1 Spoiler-Proofness

Our main theoretical result here is an impossibility theorem regarding the existence of
spoiler-proof seats-votes functions that are distinct from identity (i.e., perfect proportional-
ity between votes and seats for each party).

Theorem 1. The identity function given by I(x) = x for x ∈ ∆ is the unique spoiler-proof
seats-votes function.



Outline of Proof. (See Appendix on arXiv, [9], for the full proof). Let f be a spoiler-proof
seats-votes function. Fix any i ∈ N and v ∈ (0, 1), and consider Λi := {x ∈ ∆ : xi = v}.
We begin by demonstrating that fi �Λi

achieves maxima in the vertices of Λi. It is enough
to show that spoiler-proofness implies that for any face of Λi the function fi is maximized
at its facets. Then we establish that fi �Λi

also achieves minima in the vertices of Λi, by
adding a dummy party j and showing that every point in Λi can be obtained by a monotonic
projection from a vertex where xi = v, xj = 1− v.

Accordingly, we arrive at the conclusion that fi(x) depends only on xi, i.e., that there
exists some ϕ : [0, 1] → [0, 1] such that fj(x) = ϕ(xj) for each j ∈ N. From weak mono-
tonicity and negative unanimity of f we obtain a sequence of Schröder’s functional equations
ϕ(px) = pϕ(x) for any x ∈ [0, 1/p]. Applying Theorem A from [56], we then conclude that
ϕ(x) = x for all x > 0, which concludes the proof.

3.2 Probability of the Occurrence of Spoilers

The natural next step is to consider whether spoilers, if unavoidable, are low-probability
outliers or something that arises regularly. Accordingly, we investigate the probability of the
occurrence of spoilers under seats-votes functions approximating two of the electoral rules
that are most commonly used in real-life party elections: FPTP (plurality) and Jefferson–
D’Hondt method of apportionment [33, 21, 22, 3, 44]. Because the proofs in this section are
highly technical, they have been moved to the Appendix [9].

We assume that for any vote share vector w ∈ ∆P and every i ∈ P , the vote share
under the restriction to P \ {i} is given by the monotonic projection π such that π−i(w) :=
w−i + wix, where x ∼ Unif(∆P\{i}). We call π the uniform projection. We denote the set
of spoilers by S.

3.2.1 Jefferson–D’Hondt

The following seats-votes function approximates the Jefferson–D’Hondt allocation rule under
certain assumptions regarding vote distribution [31]. Let parties be ordered degressively by
their vote shares, wi, i ∈ P . Then

fi(w) = wi
/(∑r

j=1
wj
)(

1 +
r

2k

)
− 1

2k
(1)

for i ∈ [r], and fi(w) = 0 for i > r, where

r := max

{
l ∈ P :

wl∑l
j=1 wj

>
1

2k + l

}
, (2)

and k ∈ R+ represents the mean district magnitude.

Lemma 1. Let W ∼ Unif(∆p) be a vote share vector, and f be a seats-votes function
given by (1). The probability that S is empty, assuming the uniform projection, equals:

Pr
(
∀i ∈ P : f(πi(W)) ∈ Ri

)
= ΨJDH

p,k :=

(1− t)p−1Γ(p)Γ(p− 1)

(
1− t
t

)p−2

L−1

{(
1

s
U
(
p− 2, 0,

s

2k

))p} ∣∣∣∣∣
s=1

, (3)

where U is Tricomi’s confluent hypergeometric function.

As far as we know, the inverse Laplace transform appearing in (3) needs to be evaluated
numerically.



Lemma 2. Let w ∈ ∆p be a vote share vector, and f be given by (1). The probability that
S is empty if πi ∼ Unif(Π−i) for each i ∈ P is bounded from above by:

ΨJDH
p,k ≤ Ψ̃p,k := (1− t)

(
2kp2

1 + 2kp2

)p−2

. (4)

Corollary 2. Let p, k be a non-decreasing function of x > 0:

• if lim
x→∞

log p(x)
log k(x) >

1
3 , then lim

x→∞
Ψ̃p(x),k(x) = 0,

• if lim
x→∞

log p(x)
log k(x) <

1
3 , then lim

x→∞
Ψ̃p(x),k(x) = 1,

• if lim
x→∞

log p(x)
log k(x) = 1

3 , then lim
x→∞

Ψ̃p(x),k(x) = 1/
√
e.

Note in particular that under many formal models (e.g. [7]), as well as under common
heuristics such as the Seat-Product Model [51], p ≥ k1/2 as p, k →∞. Thus, the probability
that there are no spoilers converges to 0 (and is already negligible for commonly encountered
values of those parameters).

3.2.2 FPTP (1–SNTV)

Per [52], the FPTP (1–SNTV) rule can be heuristically approximated by a seats-votes
function given by:

fi(w) = wβi

/(∑r

j=1
wβj

)
. (5)

Let the vote share vector W ∼ Unif(∆p), and let f be given by (5). We have numerically
evaluated probability that there are no spoilers for β ∈ [1, 4] and p ∈ {3, . . . , 8} (see Fig. 2).
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Figure 2: Spoiler occurrence probability, FPTP.

For β = 1 the power-law formula (5) yields
a perfectly proportional system which, by
Theorem 1, is spoiler-proof.

We have thus seen that seats-votes func-
tions approximating two of the most com-
monly used electoral rules not only fail to
satisfy spoiler-proofness, but yield spoilers
with a high probability. But perhaps this
is an artifact of single-choice voting method
underlying those rules? It has been claimed,
although informally, that systems like STV,
k-Borda, or approval voting are less suscep-
tible to spoilers. To analyze such claims, we
need a more general framework.

4 Generalized Model

The challenge in generalizing the model for-
mulated in the preceding section lies in the fact that as we move beyond single-choice voting
methods, there is no longer a natural definition of the number of votes cast for a given
party, or at least that information is insufficient to obtain the election outcome. As we need
to preserve potentially all the information contained in votes, we proceed by using a richer
model of elections than in Section 3 and endowing it with a structure (order, restriction
operation, etc.) that mirrors the structure of the unit simplex. While somewhat complex,
this structure yields a powerful generalization of Theorem 1.



We start by introducing a framework model of party elections. Let C be a finite set of
candidates, m := |C|, let P := [p] be a set of parties, p ∈ N+, and let a be a function
that assigns parties to candidates. On the other hand, the definition of a vote necessarily
depends on the voting method, i.e., the structure of the ballot. For instance, a vote can be:

• an element of C (single-choice voting),
• a linear order on C (ordinal voting),
• a binary sequence {0, 1}C (approval voting),
• a point in ∆C (cumulative voting),
• a point in unit cube [0, 1]C (cardinal voting).

Hence, we proceed by specifying the properties that the set of all possible votes must satisfy.
Intuitively, we treat a vote as a function assigning to each candidate some ‘judgment’. For
example, for single-choice and approval voting the judgment is binary (with an additional
restriction that only a single candidate can be approved in single-choice); for cumulative
and cardinal voting it is an element of [0, 1] (again with a restriction on the sum of values
for cumulative voting); and for ordinal voting it is the set of less favored candidates under
the voter’s underlying order.

Definition 6 (Domain of Admissible Votes). Let D(C) be a set endowed with a partial
order �∼C such that every chain maximal by inclusion has a minimum, and with an order-
preserving inverse system rI,K : D(I) → D(K), ∅ 6= K ⊆ I ⊆ C. A domain of admissible
votes is a set V(C) of some maps from C to D(C). For any v ∈ V(C) we require a restriction
of rC,K ◦v to a nonempty K ⊆ C to be an element of V(K) if v(x) is minimal in (D(C),�∼C)
for each x ∈ C \K.

For any v ∈ V(C) and x ∈ C we denote v(x) as vx.

method D(C) V(C) isomorphic to
single-choice {0, 1} {ex : x ∈ C} element of C
ordinal P(C) P(C)C (†) linear order on C
approval {0, 1} {0, 1}C {0, 1}C
cumulative [0, 1] ∆C ∆C

cardinal [0, 1] [0, 1]C [0, 1]C

Table 2: Domains of admissible votes for common voting methods.

† For ordinal voting, the image of C under each vote needs to be a

permutation of some maximal chain in P(C) ordered by inclusion.

The order on D(C) cor-
responds to the intuition
that some votes are less
favorable for the candi-
date than others. For
most of our examples, it
is induced by the nat-
ural order on reals, ex-
cept that for ordinal vot-
ing it is induced by the
inclusion order on P(C).
The reason for the re-
quirement that each maximal chain have a minimum is to be able to define a counterpart
to party getting no votes under the Sec. 3 model.

Definition 7. For each candidate x ∈ C, the order on D(C) induces a partial preorder
�∼x,C on V(C) such that v �∼x,C w iff vx �∼c wx for v, w ∈ V(C). Note that �∼x,C inherits
the property that each maximal chain has a minimum. To simplify notation if C is fixed we
will use �∼x to denote �∼x,C .

The restriction corresponds to a ‘mechanical’ removal of a subset of candidates. However,
sometimes a candidate cannot be removed without the vote ceasing to be admissible. For
instance, in single-choice voting we cannot remove x from a vote for x – otherwise, the
vote would become empty. However, under any method we can remove a candidate who is
irrelevant, i.e., for whom the vote is minimal under �∼x .

Definition 8. A vote v ∈ V(C) is restrictible to ∅ 6= K ⊆ C iff its restriction to K,
vC,K := (rC,K ◦ v) �K∈ V(K).



As for the inverse system r, we need it to account for cases when D(C) is not constant.
This is the case for ordinal voting, where rC,K(X) := X ∩ K, i.e., the set of less favored
candidates X is restricted to a subset of K. The requirement that rI,K be order-preserving
corresponds to the individual choice independence of irrelevant alternatives axiom [45], ac-
cording to which removal of some candidates does not affect the judgment on others.

We can now define preference profiles, which correspond to vote share vectors from Sec. 3.

Definition 9 (Preference Profile). For a set of candidates C and a domain of votes V(C),
a profile V is a probability measure on V(C). We denote the set of all profiles as M(C).

Definition 10 (Marginal Profile). For a profile V ∈ M(C) and a party i ∈ P , we denote
the marginal measure of V on {(vx)x∈a−1(i) : v ∈ V(C)}, i.e., coordinates corresponding to
the candidates of the i-th party, by Vi and call it a marginal profile of i. It corresponds to
the i-th party’s vote share.

Just as vote share vectors on ∆p have been partially ordered for each party, we need a
partial preorder on the set of profiles.

Definition 11. For each candidate x ∈ C, their preorder on votes �∼x induces a partial
preorder on profiles, �∗x, such that for V,W ∈M(C) we have V �∗x W if and only V (U) ≤
W (U) for each U ⊆ V(C) that is an upper set under �∼x . Note that �∗x is a stochastic
preorder on posets.

Definition 12. For each party i ∈ P , there exists a partial preorder on profiles, �i, such
that for V,W ∈ M(C) we have V �i W iff there exists such permutation of candidates of
the i-th party, σ, that V �∗x σ(W ) for every x ∈ a−1(i). The permutation accounts for the
fact that from a party’s point of view it is irrelevant which candidate is first.

The intuition here is that a profile is ‘better’ for a candidate if some votes has been changed
to be ‘better’ for him, and none have been change to be worse (up to a permutation).
Similarly, it is better for a party if it is better for one of its candidates and not worse for
every other (also up to a permutation). Note also that �i corresponds to the partial order
on the unit simplex induced by the i-th barycentric coordinate. In particular, a profile V
being minimal under �i, i ∈ [p], corresponds to the i-th party’s vote share being equal to 0.

Two other operations for which we need counterparts are restriction of a vector and
permutation of its coordinates:

Definition 13 (Restriction of a Profile). A restriction of a profile V to a nonempty subset
of candidates, K ⊂ C, is the pushforward under v 7→ vC,K of the restriction of V to the set
of votes restrictible to K. A restriction VL of the profile V to a subset of parties, L ⊂ P , is
its restriction to a−1(L) ⊂ C, i.e., to the candidates affiliated with parties in L.

Note that if the profile V is concentrated on votes restrictible to K ⊆ C, then VK is a
probabilistic measure. In particular, if the profile is minimal under �i for any party i ∈ P ,
it is always concentrated on votes restrictible to P \ {i}.

Definition 14 (Permutation of Parties). A permutation of candidates σ is a permutation
of parties if a(x) = a(y) implies a(σ(x)) = a(σ(y)) for any two candidates x, y ∈ C.

Definition 15 (Party Election). For sets of candidates C and parties P , an affiliation
function a : C → P , and a profile V ∈M(C), we refer to E := (C,P, a, V ) as party election.

Allocation rules, introduced here, are the counterpart of seats-votes functions from Sec. 3:

Definition 16 (Allocation Rule). An allocation rule is a function f :
⋃
C∈P(N)M(C) →⋃

C∈P(N) ∆a(C) that maps a preference profile into a unit simplex and satisfies the following

axioms for any fixed C and each V,W ∈M(C):



dimension preservation f(V ) ∈ ∆a(C),

symmetry σ∆ ◦ f = f ◦ σM for any permutation of parties σ, with σ∆ and σM induced
by σ on ∆a(C) and M(C),

negative unanimity V being minimal under �i implies fi(V ) = 0 for each party i ∈ a(C),

consistency fj(Va(C)\{i}) = fj(V ), where V is minimal under �i, for any distinct parties
i, j ∈ a(C),

weak monotonicity W ≺i V and V �j W for each j ∈ a(C) \ {i} implies fi(W ) ≤ fi(V )
for every i ∈ a(C).

Remark 3. Every multiwinner voting rule in the sense of [25] that satisfies neutrality,
monotonicity, and never elects a candidate for whom the profile is minimal, naturally induces
an allocation rule. It is obtained by normalizing, for each winning committee S, the counting
measure of the intersection of S and each party’s set of candidates, a−1(i), i ∈ P , and
averaging over such committees.

Remark 4. Definition 16 can be naturally generalized to a system with multiple electoral
districts (as in Section 5).

Definition 17 (Redistribution Function). Fix any nonempty L ⊂ P . A redistribution
function is any function πL :M(C)→M(C) such that for each V ∈M(C):

• π2
L = πL,

• πL(V ) is minimal under �i for each i ∈ P \ L,

• V �j πL(V ) for every j ∈ L,

• VL(XL) ≤ (πP,L(V ))L(XL) for all measurable X ⊆ {v ∈ V(C) : v restrictible to K},
where K := a−1(L) and XL is the image of X under v 7→ vC,K .

For i ∈ P , we denote the set of all such πP\{i} by R−i.

Note that a redistribution function is a counterpart to a monotonic projection from Section
3. Condition 1 guarantees that it is a projection, condition 2 – that its codomain is embedded
in an equivalent of a face of the simplex, and condition 3 – that it is monotonic in the sense of
Definition 2. Unlike restriction, which is determined by the voting method, a redistribution
function can be arbitrarily chosen as long as the axioms are satisfied. However, we only
redistribute those votes that cannot be restricted (see condition 4 in Definition 17).

Definition 18 (Electoral Spoiler). For a party election (C,P, a, V ) the i-th party, i ∈ P , is
an electoral spoiler under an allocation rule f and a redistribution function π ∈ R−i if and
only if there exists no monotonic projection ρ ∈ Π−i such that f(π(V )) = ρ(f(V )). Note
how this definition corresponds to Definition 3.

Definition 19 (Spoiler-Proofness). An allocation rule f is spoiler-proof if for every profile
V ∈ C, party i ∈ [p], and redistribution function ρ ∈ R−i there exists some monotonic
projection π ∈ Π−i such that f(ρ(V )) = π(f(V )).

Definition of excess electoral impact mirrors Definition 5.

Definition 20 (Zero-Sum Voting Methods). A voting method is zero-sum if, for any x, y ∈
V(C), xi ≺∼ yi for some i ∈ C implies xj �∼ yj for some j ∈ C.

Examples of zero-sum voting methods include single-choice, cumulative, and ordinal voting.

Theorem 2. For any zero-sum voting method an allocation rule f is spoiler-proof if and
only if fi is constant in every equivalence class in M(C)/ ≡i, i.e., the class of profiles
equivalent under partial preorder �i, for each i ∈ P .

The proof of the above theorem mirrors the first part of the proof of Theorem 1. A reader
is referred to the Appendix [9].



Section 3 Section 4

unit simplex ∆p set of profiles M(C)
vote share vector w ∈ ∆p profile V ∈M(C)
barycentric coordinate wi marginal profile Vi

order ≤ on each coordinate preorder �i on marginals
partial order ≤i on ∆p preorder �i on profiles

section of ∆p with wi fixed equivalence class in M(C)
/
≡i

wi = 0 V minimal under �i
K-face of a unit simplex profiles minimal under �i for i ∈ K

restriction of a vector w−i restriction of a profile V−i
monotonic projection redistribution function

set of monotonic projections Π−i set of redistribution functions R−i
seats-votes function allocation rule

Table 3: Parallels between Sections 3 and 4.

5 Spoiler Susceptibility

In the preceding sections, we have demonstrated that spoiler-proofness is rare while spoilers
are ubiquitous. But from a practical point of view the real issue is not whether spoilers
exists, but what is the magnitude of their electoral impact.

Fix a family of redistribution functions, (πi)i∈P . We define spoiler susceptibility of an
allocation rule f as the expected maximum excess electoral impact, where the maximum is
takenover parties, and the expectation is over some probability distribution D on M(C):

Φ(D, f) := E max
i∈P

λfi,πi
(V), where V ∼ D. (6)

Spoiler susceptibility is difficult to model analytically, so we focus on experimental results.

5.1 Probabilistic Models

The probabilistic models commonly used in computational social choice (see generally [5, 50])
have been developed for single-district non-party elections. Thus, we need to appropriately
extend those models, addressing two basic challenges: grouping of candidates into parties,
and existence of multiple electoral districts.

Grouping of candidates into parties is based on a latent assumption of intra-party can-
didate clustering: candidates of the same party are assumed to be perceived by voters as,
on average, more similar than candidates of different parties. Without that assumption,
parties would tend to obtain equal seat shares, leading to an overall tie.

Existence of multiple electoral districts reflects another latent assumption – one of intra-
district voter clustering. Voters within a single district are assumed to share preferences
to a greater extent than an unbiased sample of the population. Otherwise the c-district
allocation rule would (per the central limit theorem) converge to the expected value of the
rule for the population (commingled) profile.

We consider four classes of probabilistic models:

Spatial Models. In a d-dimensional Euclidean model each party, voter, and candidate is
assigned an ideal point in Rd [26, 41]. First, party ideal points are drawn from Unif((0, 1)d),
and then candidate ideal points for each district are drawn from the multivariate normal
distribution with location at the party’s ideal point and the correlation matrix Σ := σId,
where Id is a d×d identity matrix and σ ∈ R+. Voter ideal points are drawn independently
from the uniform distribution on (0, 1)d, then shifted in each district independently by a



vector drawn from Unif(−1/4, 1/4)d (to account for district clustering). A vote is obtained
by sorting candidates according to the increasing L2 distance from the voter’s ideal point.

Single-Peaked Models. We consider two models for generating single-peaked profiles. In
one [57] we are given an ordering on the set of candidates, and each vote is drawn from the
uniform distribution on the set of all single-peaked votes consistent therewith. In the other
one [18] the peak is drawn from a uniform distribution on candidates, and the remainder of
the vote is obtained by a random walk. In both models, candidate ordering in each district
is obtained in the same manner as in the 1-dimensional Euclidean model.

Mallows Model. The Mallows model [39, 19] is parametrized by a single parameter
φ ∈ [0, 1], and a (central) vote vc ∈ D(C). The probability of generating a vote v is
proportional to φf(vc,v), where f(vc, v) is the Kendall tau distance [35] between vc and v.
We first generate a central vote for each district, vic with parameter φ1 and a starting vote
v0
c := [m], then generate votes within each district with parameter φ2 and a district–wide

central vote vic. Intra-party clustering is achieved by grouping party candidates together in
the starting vote. On sampling from the Mallows model, see [38]2.

Impartial Culture (IC). Under IC, each vote is drawn randomly from the uniform dis-
tribution on linear orders on candidates [15]. This model does not account for intra-party
and intra-district clustering, and is regarded as a poor approximation of real-life [47, 53].

5.2 Allocation Rules

We analyze seven well-known allocation rules (see the Appendix for formal definitions):

SNTV (plurality),

k–Borda [20, 30],

Chamberlin–Courant [16],

Harmonic Borda (HB) [30],

Proportional k–Approval (k–PAV) [36],

Single Transferable Vote (STV) [32, 54] with the fractional Droop quota,

Jefferson–D’Hondt (JDH), discussed in Section 3.2.

5.3 Experimental Results

To compare voting methods, we analyze their performance under 11 probabilistic models:
four spatial models (d = 1, 2 and σ = 0.05, 0.2), four single-peaked models (Walsh and
Conitzer, σ = 0.05, 0.2), two Mallows models (φ1 = 0.75, φ2 = 0.25, 0.75) and impartial
culture. For every voting method, model, committee size k ∈ {1, 5, 15}, and number of
parties p ∈ {3, . . . , 10} we run 600 simulations, with the number of districts c = 100, and
the number of voters per district n = 100. We use exact results for SNTV, k-Borda, and
STV, approximation (1) for JDH, and greedy approximations for CC, HB, and k-PAV.

Experimental results plotted on Figure 3 demonstrate several regularities. First, spoiler
susceptibility depends strongly on the choice of the model. Under spatial models, which
are most likely to approximate political elections, we can distinguish several classes of rules.
Those least susceptible to spoilers are STV, Chamberlin–Courant, and Harmonic-Borda.
The ordering on them depends on the number of parties – CC outperforms STV for large
values of p. SNTV and Jefferson-D’Hondt are the middle performers, with JDH becoming
the more resistant rule as the number of parties increases. On the other hand, k–Borda per-
forms poorly against spoilers in models with high degree of party clustering (σ = 0.05), but is
more spoiler–resistant than JDH and SNTV in models with greater candidate dispersion. In

2We use a Mallows model parameterization by Boehmer et al. [6], based on a normalized dispersion
parameter norm-φ.



single-member districts, Borda rule is the most spoiler-susceptible one for three-party mod-
els, but for large values of p, it outperforms even STV. k–PAV in multi-member districts
and FPTP in single-member districts are almost consistently the worst performers. Finally,
switching from single–member to multi–member districts improves spoiler resistance.

k = 1 k = 5

σ =
 0.05

spatial d=
1

σ =
 0.2

spatial d=
1

σ =
 0.05

spatial d=
2

σ =
 0.2

spatial d=
2

σ =
 0.05

C
onitzer

σ =
 0.2

C
onitzer

σ =
 0.05

W
alsh

φ
 =

 0.25

M
allow

s

φ
 =

 0.75

M
allow

s
IC

4 6 8 10 4 6 8 10

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.05
0.10
0.15
0.20

0.0
0.1
0.2
0.3
0.4

0.00
0.05
0.10
0.15

0.0

0.5

1.0

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6

0.000
0.025
0.050
0.075

0.00
0.02
0.04
0.06
0.08

0.00

0.05

0.10

0.15

p   (number of parties)

F 
  (

sp
oi

le
r 

su
sc

ep
ti

bi
li

ty
)

rule
CC

HB

PAV

Borda

JDH

SNTV

STV

FPTP

Figure 3: Spoiler susceptibility of electoral rules.

The Conitzer model is generally most
susceptible to spoilers, especially when
districts are single-member. Again,
STV and CC are the best perform-
ers in multi-member districts, followed
by Jefferson–D’Hondt, k–Borda, and
Harmonic-Borda. SNTV performs very
poorly for k = 5, and better – but still
worse than most alternatives – for k =
15. Finally, k–PAV is again most suscep-
tible to spoilers.

The Mallows model exhibits high re-
sistance to spoiler effects, especially
for multi-member districts. In single-
member districts, STV is the best per-
former, followed by Borda, and finally by
FPTP. In multi-member districts, JDH
and HB are the best performers, k–Borda
is usually the worst, and results for other
rules depend on k.

We treat Walsh and IC models as ref-
erence points, since they are considered
unlikely to correspond to any real-life
party elections. For both, spoiler suscep-
tibility is an issue only for k = 1. Un-
der Walsh, FPTP is more susceptible to
spoilers than STV, while Borda depends
on the parity of p. Under IC, Borda and
STV perform best.

6 Summary

We have introduced a novel approach
to defining spoilers in party elections,
yielding both theoretical and experimen-
tal results. In particular we show that
spoiler-proofness is a very strong postu-
late: the identity function, corresponding
to proportional allocation of seats, is the
unique spoiler-proof seats-votes function.
Moreover, spoiler effects are ubiquitous
at least under Jefferson–D’Hondt and FPTP.

The magnitude of spoiler impact varies with the allocation rule chosen. The results
depend strongly on the distribution of preferences. An electoral system designer acting
behind a veil of ignorance would do well to choose STV, CC, or HB. On the other hand,
he should avoid k–PAV and FPTP. The performance of k–Borda depends on the degree of
party clustering, while of that of Jefferson–D’Hondt – on single-peakedness of the model.
Single-member districts are more susceptible to spoilers than multi-member ones.
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tual Elections. In Dan S. Felsenthal and Moshé Machover, editors, Electoral Systems. Paradoxes,
Assumptions, and Procedures, pages 217–251. Springer, Berlin–Heidelberg, 2012.

[54] Nicolaus Tideman and Daniel Richardson. Better Voting Methods Through Technology: The
Refinement-Manageability Trade-Off in the Single Transferable Vote. Public Choice, 103(1):13–
34, April 2000.

[55] T. N. Tideman. Independence of Clones as a Criterion for Voting Rules. Social Choice and
Welfare, 4(3):185–206, September 1987.



[56] Timo Tossavainen and Pentti Haukkanen. The Schröder Equation and Some Elementary
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Appendix

A Proof of Theorem 1

Proof. Let f be a spoiler-proof seats-votes function. Fix any i ∈ P and v ∈ (0, 1), and
consider Λi := {x ∈ ∆p : xi = v}. We begin by demonstrating that fi �Λi

achieves maxima
in the vertices of Λi. It is enough to show that for any face of Λi the function fi is maximized
at its facets.

Each face of Λi has form of LK := {x ∈ Λi :
∑
k∈K xk = 1 − v} for some non-empty

K ⊆ P \ {i}. Assume on the contrary that there exists some y ∈ intLK such that fi(y) >
supx∈∂LK

fi(x), where ∂LK denotes the boundary of LK , i.e., the union of its facets. But
from the spoiler-proofness of f , it follows that fi(π(y)) ≥ fi(y) for every j ∈ K and π ∈ Π−j .
As π(intLK) ⊂ ∂LK , this is a contradiction. We can apply this reasoning inductively until
we arrive at dimLK = 0. From the symmetry of f it follows that fi is equal for every vertex
of Λi.

On the other hand, we will now show that fi �Λi also achieves minima in the vertices
of Λi. Let us first consider z ∈ ∆p+1 such that zi = v, zp+1 = 1 − v, and zj = 0 for
j ∈ [p] \ {i}. Note that for every x ∈ Λj there exists some projection π ∈ Π−(p+1) such
that π(z) = x. From the spoiler-proofness of f it follows that fi(z) ≤ infx∈∂Λj fi(z). But

from the symmetry of f we have fi(z) = fi(z
j) for every zj ∈ ∆p+1, j ∈ P \ {i}, defined

as zji := v, zjj := 1 − v, and zjk := 0 for k ∈ [p + 1] \ {i, j}. Finally, from the consistency

of f it follows that for every j ∈ [p] \ {i} we have fi(z
j) = fi(y

j), where yj ∈ ∆p, y
j
i := v,

yjj := 1− v, and yjk := 0 for k ∈ P \ {i, j}. As the set {yj : j ∈ [p] \ {i}} is the set of vertices
of Λi, we conclude that fi �Λi

achieves minima in those vertices. Thus, fi is constant over
Λ.

Accordingly, we arrive at the conclusion that fi(x) is independent on all coordinates of x
save xi. From the arbitrariness of the choice of j, the same holds for every other coordinate.
Thus, by symmetry of f , there exists a function ϕ : [0, 1] → [0, 1] such that fj(x) = ϕ(xj)
for each j ∈ P . From weak monotonicity of f it follows that ϕ is non-decreasing, while from
negative unanimity it follows that ϕ(0) = 0 and ϕ(1) = 1. It also follows that for every

x ∈ ∆k, k ∈ N+, we have
∑k
i=1 ϕ(xi) = 1. Hence, in particular, for any n ∈ N+ we have

nϕ((n+ 1)−1 − δn) = 1− ϕ((n+ 1)−1 + nδn),

for every
δn ∈

[
−(n(n+ 1))−1, (n+ 1)−1

]
.

Substituting δn = (δ1 + 1/2 − (n + 1)−1)/n in the n-th equation, n > 1, then subtracting
both sides of every n-th equation from the respective sides of the first equation, and finally
substituting x = (1/2 − δ1)/n, we obtain a sequence of Schröder’s functional equations
ϕ(nx) = nϕ(x) for any x ∈ [0, 1/n]. Applying Theorem A from [56], we then conclude that
ϕ(x) = ϕ(1)x = x for all x > 0. Thus, ϕ necessarily equals identity, as therefore does f .

B Proof of Theorem 2

Definition 21. Fix some i ∈ P and an equivalence class Λ ∈M(C)/≡i, where ≡i is induced
by the preorder defined �i.

Let dim Λ := |{j ∈ P \ {i} : ∃V,W ∈ Λ : V ≺j W}| − 1.

A K-face of Λ, K ⊆ P , is any set of profiles V ∈ Λ that Vj is minimal under �j for any
j ∈ P \K.

A facet of Λ is any set of profiles V ∈ Λ such that V is minimal under �j for exactly two
j ∈ {k ∈ P : ∃V,W ∈ Λ : V ≺k W}.



Proof. Let f be a spoiler-proof allocation rule. Fix any i ∈ [p] and any equivalence class
Λi ∈ M(C)/≡i. We begin by demonstrating that fi �Λi

achieves maxima in the vertices of
Λi, i.e., such profiles that are minimal for all parties except i and at most one another. It
is enough to show that for any face of Λi the function fi is maximized at its facets.

Let LK be a K-face of Λi for some non-empty K ⊆ P \ {i}. Assume on the contrary
that there exists some Y ∈ intLK such that fi(Y ) > supX∈∂LK

fi(X), where ∂LK denotes
the boundary of LK , i.e., the union of its facets. But from the spoiler-proofness of f , it
follows that fi(π(Y )) ≥ fi(Y ) for every j ∈ K and π ∈ R−j . As π(intLK) ⊂ ∂LK , this
is a contradiction. We can apply this reasoning inductively until dimLK = 0. From the
symmetry of f it follows that fi is equal for every vertex of Λi.

On the other hand, we will now show that fi �Λi also achieves minima in the vertices of
Λi. Let (C ′, P ′, a′, Z) be a party election such that C ⊂ C ′, |P | = |P ′| − 1, a = a′ �C , and
Z ∈M(C ′) is such that Z−(p+1) ≡Pi X for any X ∈ Λi and Z is minimal for any j ∈ [p]\{i}.
Note that for every X ∈ Λi there exists some vote redistribution function π ∈ Ξ−(p+1) such
that π(Z) = X. From the spoiler-proofness of f it follows that fi(Z) ≤ infX∈∂Λj

fi(X). But

from the symmetry of f we have fi(Z) = fi(Z
j) for every Zj ∈ M(C ∪ {. . . }), where Zj ,

j ∈ P \{i}, are the vertices of [Z]≡i other than Z. Finally, from the consistency of f it follows

that for every j ∈ [p]\{i} we have fi(Z
j) = fi(Z

j
−(p+1)). As the set {Zj−(p+1) : j ∈ P \{i}} is

the set of vertices of Λi, we conclude that fi �Λi
achieves minima there. Thus, fi is constant

over Λ, as desired.
The proof in the other direction trivially follows from symmetry and weak monotonicity

of f .

C Proofs of Theoretical Results for Jefferson–D’Hondt

For a vector x ∈ Rn, n ∈ N, let x↓i , i ∈ [n], denote the i-th largest coordinate.
The j-th largest party is relevant iff

w↓j ≥
1

2k + j

j∑
i=1

w↓i .

We denote the set of relevant parties as R. Let n := |R|.
If the i-th party is relevant, let

qi := wi
/(∑n

j=1
w↓j

)
.

Otherwise, let qi := 0.
Recall that under the uniform projection assumption, if the j-th party is eliminated, its

votes are restributed as follows:
q′i := qi + ρiqj

for i 6= j and (ρ1, . . . , ρp)−j ∼ Unif(∆p−1).

C.1 Probability that j-th Party is not a Spoiler

We begin with estimating the probability that a given party is not a spoiler for a given vote
share vector.

Lemma 3. Let w ∈ ∆p be a vote share vector, and f be a seats-votes function given by
(1). Then for any i ∈ [p] the probability that i is not a spoiler under the uniform projection
π equals:

Pr
(
f(π(w)) ∈ Ri

)
=

(
1− t/ŵi

1− t

)p−2

, (7)



where t = (2k + p)−1, if ŵi > 0, and 0, if ŵi = 0.

Note in particular that parties excluded from seat distribution by the iterative natural
threshold given by (2) are almost surely spoilers.

Proof. There are two cases to consider:
Case 1: all parties are relevant.

(qi + ρiqj)
2k + n− 1

2m
− 1

2k
≥ qi

2k + n

2m
− 1

2k
(qi + ρiqj) (2k + n− 1) ≥ qi (2k + n)

ρiqj (2k + n− 1) ≥ qi

ρi ≥
qi
qj

1

2k + n− 1

ρi ≥ σi :=
qi
qj

t

1− t

Probability of p being a no-spoiler:
Let (ρ1, . . . , ρp) ∼ Unif(∆p−1), and assume (without the loss of generality) that j = p. Let
Ψp be the probability that p is not a spoiler (i.e., that there are no spoilees). Relying on
the fact that an integral of a product of functions over the unit simplex equals the value of
their convolution at 1, we obtain:

Ψp := Pr
(
∀i∈[n−1](ρi > σi)

)
=

= Γ(n− 1)

∫
x∈∆p−1

∏n−1

i=1
u(xi − σi) dv =

= Γ(n− 1)

(⊗n−1

i=1
u(xi − σi)

)
(1) =

= Γ(n− 1)L−1

{∏n−1

i=1
L{u (vi − σi)}

}
(1) =

= Γ(n− 1)L−1

{∏n−1

i=1

1

s
exp(−σis)

}
(1) =

= Γ(n− 1)L−1

{
1

sn−1
exp

(
−
(

1− qn
qn

t

1− t

)
s

)}
(1) =

=
Γ(n− 1)

Γ(n− 1)

(
1− 1− qn

qn

t

1− t

)n−2

=

=

(
1− t/qn

1− t

)n−2

=

(
t

1− t

)n−2 ( 2kwn
2kwn + 1

)n−2

Case 2: j-th party is not relevant (j /∈ R)

Let r := wj
/(∑n

k=1 w
↓
k

)
.

s′i ≥ si
qi + ρir

1 + r

2k + n

2k
− 1

2k
≥ qi

2k + n

2k
− 1

2k

qi + ρir ≥ qi (1 + r)

ρi ≥ qi



Let (ρ1, . . . , ρn) ∼ Unif (∆n−1):

Ψ := Pr
(
∀i∈[p−1] (ρi > σi)

)
=

= Γ(p− 1)

∫
v∈∆p−1

∏p−1

i=1
u (vi − ρi) dv =

= Γ(p− 1)

(⊗p−1

i=1
u (vi − ρi)

)
(1) =

= Γ(p− 1)L−1

{∏p−1

i=1
L{u (vi − ρi)}

}
(1) =

= Γ(p− 1)L−1

{
1

sp−1
e−s
}

(1) = 0

Intuition behind this result is as follows: if j-th party is not relevant, i-th party is not a
spoilee only if it obtains at least proportional share of j’s votes. But all parties can obtain
at least proportional share only if all also obtain at most proportional share – and this result
is non-generic.

Probability of no party being a spoiler

Lemma 4. Let W ∼ Unif(∆p) be a vote share vector, and f be a seats-votes function
given by (1). The probability that S is empty, assuming the uniform projection, equals:

Pr
(
∀i ∈ [p] : f(πi(W)) ∈ Ri

)
= ΨJDH

p,k :=

(1− t)p−1Γ(p)Γ(p− 1)

(
1− t
t

)p−2

L−1

{(
1

s
U
(
p− 2, 0,

s

2k

))p}
(1), (8)

where U is Tricomi’s confluent hypergeometric function.

Proof. Assume (w1, . . . , wp) ∼ Unif(∆p) and n = p. Then, relying again on the fact that an
integral of a product of functions over the unit simplex equals the value of their convolution
at 1, we obtain:

Ψ = Γ(p)

(⊗p

i=1

(
t

1− t
2kx

2kx+ 1

))
(1) =

= Γ(p)L−1

{
p∏
i=1

L
(

t

1− t
2kx

2kx+ 1

)}
(1) =

= Γ(p)Γ(p− 1)

(
1− t
t

)p
L−1

{
p∏
i=1

L
(

2kx

2kx+ 1

)}
(1) =

= Γ(p)Γ(p− 1)

(
1− t
t

)p
L−1

{
s−p U

(
p− 2, 0,

s

2k

)p}
(1).

As far as we know, the inverse transform given above needs to be evaluated numerically.

Remark 5 (Technical Note). Post’s formula is quite inefficient for evaluating the above
inverse transform, but we can numerically compute the Bromwich integral along the vertical
line R(x) = 1. For common values of k and p it is well approximated by:

L−1

{(
1

s
U
(
p− 2, 0,

s

2k

))p}
(1) ≈ 4

5
U
(
p− 2, 0, (2k)−1

)p
. (9)



Upper bound

We shall need the following proposition:

Proposition 1 (Order Statistics of the Uniform Distribution). Let W ∼ Unif (∆p). Then

the density of its j-th largest order statistic, W ↓j , is given by

f↓j (x) = p(p− 1)

(
p− 1

j − 1

)
min(p,b1/xc)∑

l=j

(−1)
l−j
(
p− j
l − j

)
(1− lx)

p−2
(10)

(see [8] for proof).

Our general idea is as follows: the probability that any party is a spoiler is bounded from
below by the probability that the smallest one is a spoiler. By the Jensen inequality, that
probability in turn is bounded by (7) evaluated at W ↓p :

Ψ(EW ↓p ) = Ψ

(
1

p2

)
=

(
1

1− t

)p−2 ( 2kp2

1 + 2kp2

)p−2

. (11)
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