
Leximin Approximation: From

Single-Objective to Multi-Objective

Eden Hartman and Avinatan Hassidim and Yonatan Aumann
and Erel Segal-Halevi

Abstract

Leximin is a common approach to multi-objective optimization, frequently employed
in fair division applications. In leximin optimization, one first aims to maximize
the smallest objective value; subject to this, one maximizes the second-smallest
objective; and so on. Often, even the single-objective problem of maximizing the
smallest value cannot be solved accurately. What can we hope to accomplish for
leximin optimization in this situation? Recently, Henzinger et al. (2022) defined a
notion of approximate leximin optimality. Their definition, however, considers only
an additive approximation.
In this work, we first define the notion of approximate leximin optimality, allowing
both multiplicative and additive errors. We then show how to compute, in poly-
nomial time, such an approximate leximin solution, using an oracle that finds an
approximation to a single-objective problem. The approximation factors of the algo-
rithms are closely related: an (α, ϵ)-approximation for the single-objective problem
(where α ∈ (0, 1] and ϵ ≥ 0 are the multiplicative and additive factors respectively)

translates into an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-approximation for the multi-objective leximin

problem, regardless of the number of objectives.
Finally, we apply our algorithm to obtain an approximate leximin solution for the
problem of stochastic allocations of indivisible goods. For this problem, assuming
sub-modular objectives functions, the single-objective egalitarian welfare can be ap-
proximated, with only a multiplicative error, to an optimal 1 − 1

e
≈ 0.632 factor

w.h.p. We show how to extend the approximation to leximin, over all the objective

functions, to a multiplicative factor of (e−1)2

e2−e+1
≈ 0.52 w.h.p or 1

3
deterministically.

1 Introduction

Many real life scenarios involve more than one objective. These situations are often modeled
as multi-objective optimization problems, which include defining the set of possible decisions,
along with functions that describe the different objectives. As a concrete example, we use
the context of social choice, in which the objective functions represent people’s utilities.
Different criteria can be used to determine optimality when considering multi-objectives.
For example, the utilitarian criterium aims to maximize the sum of utilities, while the
egalitarian criterium aims to maximize the least utility. This paper focuses on the leximin
criterium, according to which one aims to maximize the least utility, and, subject to this,
maximize the second-smallest utility, and so on. In the context of social choice, the leximin
criterium is usually mentioned in the context of fairness, as strives to benefit, as much as
possible, the least fortunate in society.

Common algorithms for finding a leximin optimal solution are iterative, optimizing one
or more single-objective optimization problems at each iteration (for example [25, 2, 1, 3,
20, 22]). Often, these single-objective problems cannot be solved exactly (e.g. when they
are computationally hard, or when there are numeric inaccuracies in the solver), but can be
solved approximately. In this work, we define an approximate variant of leximin and show
how such an approximation can be computed, given approximate single-objective solvers.



The Challenge When single-objective solvers only approximates the optimal value, ex-
isting methods for extending the solvers to leximin optimally may fail, as we illustrate next.

A common algorithm, independently proposed many times, e.g. [22, 25, 1, 20], is based
on the notion of saturation, operates roughly as follows. In the first iteration, the algorithm
looks for the maximum value that all objective functions can achieve simultaneously, z1, and
then it determines which of the objective-functions are saturated — that is, cannot achieve
more than z1 given that the others do. Afterwards, in each iteration t, given that for any
i < t the objective-functions that were determined saturated in the i’th iteration achieve
at least zi, it looks for the maximum value that all other objective-functions can achieve
simultaneously, zt, and then determines which of those functions are saturated. When all
functions become saturated, the algorithm ends.

Now, the following simple example demonstrates the problem that may arise when the
individual solver may return sub-optimal results. Consider the following problem:

lex max min {f1(x) = x1, f2(x) = x2}
s.t. (1) x1 + x2 ≤ 1, (2) x ∈ R2

+

As f1 and f2 are symmetric, the leximin optimal solution in this case is (0.5, 0.5). Now
suppose that rather than finding the exact value 0.5, the solver returns the value 0.49. The
optimal value of f1 given that f2 achieves at least 0.49 is 0.51, and vice versa for f2. As
a consequence, none of the objective functions would be determined saturated, and the
algorithm may not terminate. One could perhaps define an objective as ”saturated” if its
maximum attainable value is close to the minimum zt, but there is no guarantee that this
would lead to a good approximation.

Contributions This paper studies the problem of leximin optimization in multi-objective
optimization problems, focusing on problems for which even the single-objective problems
cannot be solved exactly in polynomial time. Our contribution is threefold.

First, a new definition of leximin approximation is presented. It captures both multi-
plicative and additive errors. The definition has several desirable properties, including that
a leximin optimal solution is also approximately-optimal (for any approximation factor),
and that the definition is equivalent to the original one in the absence of errors.

Second, an algorithm is provided that, given an approximation algorithm for a single-
objective problem, computes a leximin approximation to the multi-objective problem. The
algorithm was first presented by Ogryczak and Śliwiński [21] for exact leximin-optimization.
In contrast to the saturation-based algorithm described in the Introduction, this algorithm
always terminates even when the single-objective solver is inaccurate. Moreover, the accu-
racy of the returned solution is closely correlated with the accuracy of the single-objective
solver — given an (α, ϵ)-approximation algorithm for the single-objective problem (where α
and ϵ describe the multiplicative and additive factors respectively), the returned solution is

an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-approximation of leximin. Importantly, this holds for any number of

objectives.
Lastly, we apply our results to the problem of stochastic allocations of indivisible goods.

When agents have submodular utilities, approximating the egalitarian value to a (multi-
plicative) factor better than 1− 1

e ≈ 0.632 is NP-hard [16]. That is, even the first-objective
of leximin, i.e., maximizing the smallest objective, is NP-hard. We demonstrate that our
method enables extending an approximation algorithm for the egalitarian welfare to an
approximation for leximin with only a multiplicative error. In particular, we prove that a
1
3 -approximation can be obtained deterministically, whereas a (e−1)2

e2−e+1 ≈ 0.52-approximation
can be obtained w.h.p.



Organization Section 2 gives preliminary knowledge and basic definitions. Section 3
presents the definition of leximin approximation. An algorithm for computing such an
approximation is presented in Section 4. The problem of stochastic allocations of indivisible
goods is considered in Section 5. Section 6 concludes with some future work directions.

1.1 Related Work

This paper is related to a large body of research, which can be classified into three main
fields: multi-objective optimization problems, approximation variants of known solution
concepts, and algorithms for finding optimal leximin solutions.

In general multi-objective1 optimization problems, finding a leximin2 optimal solution
is quite common goal [8], which is still an open challenge. Studies on this topic are usually
focused on a specific problem and leverages its special characteristics — the structure of the
feasible region and objective-functions that describe the concrete problem at hand. In this
paper, we focus on the widely studied domain of resource allocation problems [19]. In that
context, as leximin maximization is an extension of egalitarian welfare maximization, it is
usually mentioned when fairness is desired.

There are cases where a leximin optimal solution can be calculated in polynomial time,
for example in: fair allocation of divisible items [25], giveaway lotteries [2], portioning with
ordinal preferences[1], cake sharing [3], multi-commodity flow networks [20], and location
problems [23]. However, even when algorithms are theoretically polynomial, they can still
be inaccurate in practice, for example due to numeric round-off errors.

In other cases, calculating a leximin optimal solution is NP-hard, for example in: repre-
sentative cohort selection [13], fair combinatorial auctions [4], package upgrade-ability [7],
allocating papers to referees [10, 18], and stochastic allocations of indivisible goods (Section
5 in this paper). However, to our knowledge, studies of this kind typically suggest non-
polynomial algorithms and heuristics for solving small instances of the general problem and
empirically evaluate their efficiency, rather than suggesting polynomial-time approximation
algorithms.

Another approach to leximin optimization is to find an aggregation function, which takes
a utility vector and returns a number such that a solution is leximin-preferred over another
if and only if its aggregate number is higher. Finding such a function will of course reduce
the problem to solving only one single-objective optimization problem. Unfortunately, it
is known that no aggregate function can represent the leximin ordering in all problems
[19, 22]. Still, there are interesting cases in which such functions can be found. For example,
Yager [26] suggested that the ordered weighted averaging (OWA) technique can be used
when there is a lower bound on the difference between any two possible utilities. However,
it is unclear how (and whether) approximating the aggregate function would translate to
approximating leximin.

To the best of our knowledge, other general approximations of leximin exist but they are
less common. They are usually mentioned in the context of robustness or noise (e.g. [14, 13])
and lack characteristics that we emphasize within the context of error.

Most similar to our work is the recent paper by Henzinger et al. [13]. This paper
presents several approximation variants of leximin for the case of additive errors in the
single-objective problems. Their motivation is different than ours — they use approximation
as a method to improve efficiency and ensure robustness to noise. However, one of their
definitions, (ϵ-tradeoff Leximax ) fits our motivation of achieving the best possible leximin-
approximation in the presence of errors. In fact, our approximation definition can be viewed

1Multi-objective is also called multi-criteria (for example in [8]).
2Leximin is also called Max-Min fairness (for example in [20]), Lexicographic Min-Max (for example in

[21]), Lexicographic max-ordering (for example in [8]) and Leximax (for example in [13]).



as a generalization of their definition to include both multiplicative and additive errors. It
should also be noted that the authors mention multiplicative approximation in the their
Future Work section.

2 Preliminaries

We denote the set {1, . . . , n} by [n] for n ∈ N.

Single-objective optimization A single-objective maximization (minimization) problem
is a tuple (S, f) where S is the set of all feasible solutions to the problem (usually S ⊆ Rm for
some m ∈ N) and f : S → R is a function describing the objective value of a solution x ∈ S.
The goal in such problems is to find an optimal solution, that is, a feasible solution x∗ ∈ S
that has the maximum (minimum) objective value, that is f(x∗) ≥ f(x) (f(x∗) ≤ f(x)) for
any other solution x ∈ S.

A (1− β, ϵ)-approximation algorithm for a single-objective maximization problem (S, f)
is one that returns a solution x ∈ S that approximates the optimal solution x∗ from below.
That is, f(x) ≥ (1 − β) · f(x∗) − ϵ for β ∈ [0, 1) and ϵ ≥ 0 (that describe the allowed
multiplicative and additive error factors respectively).

Similarly, a (1 +β, ϵ)-approximation algorithm for a single-objective minimization prob-
lem is one that returns a feasible solution x that approximates the optimal solution x∗ from
above. That is, f(x) ≤ (1 + β) · f(x∗) + ϵ for β ≥ 0 and ϵ ≥ 0.

A p-randomized approximation algorithm, for p ∈ (0, 1], is one that returns a solution
x ∈ S such that, with probability p, the objective value f(x) is approximately-optimal.

Multi-objective optimization A multi-objective maximization problem [5] can be de-
scribed as follows:

max {f1(x), f2(x), . . . fn(x)}
s.t. x ∈ S

Where S ⊆ Rm for some m ∈ N is the feasible region and f1, f2, . . . , fn are n objective-
functions fi : S → R. An example application is group decision making: some n people
have to decide on an issue that affects all of them. The set of possible decisions is S, and
the utility each person i derives from a decision x ∈ S is fi(x).

Ordered outcomes notation The multiset of objective values achieved from a solution
x ∈ S is denoted by V(x) = {fi(x)}ni=1, and the j’th smallest objective value by V ↑

j (x), i.e.,

V ↑
1 (x) ≤ V ↑

2 (x) ≤ · · · ≤ V ↑
n (x).

The leximin order A solution y is considered leximin-preferred over a solution x, denoted
y ≻ x, if there exists an integer 1 ≤ k ≤ n such that the smallest (k− 1) objective values of
both are equal, whereas the k’th smallest objective value of y is higher:

∀j < k : V ↑
j (y) = V ↑

j (x)

V ↑
k (y) > V ↑

k (x)

Two solutions, x, y, are leximin equivalent if V(x) = V(y). The leximin order is a total order,
and strict between any two solutions that yield different utility multisets (V(x) ̸= V(y)).
A maximum element of the leximin order is a solution over which no solution is preferred
(including solutions that yield the same utilities).



Leximin optimal A leximin optimal solution is a maximum element of the leximin order.
Given a feasible region S, as the order is determined only by the utilities, we denote this
optimization problem as follows.

lex max min {f1(x), f2(x), . . . fn(x)}
s.t. x ∈ S

3 Approximate Leximin Optimality

In this section, we present our definition of leximin approximation in the presence of multi-
plicative and additive errors, in the context of multi-objective optimization problems.

3.1 Motivation: Unsatisfactory Definitions

Which solutions should be considered approximately-optimal in terms of leximin? Several
definitions appear intuitive at first glance. As an example, suppose we are interested in
approximations with an allowable multiplicative error of 0.1. Denote the utilities in the
leximin-optimal solution by (u1, . . . , un). A first potential definition is that any solution
in which the sorted utility vector is at least (0.9 · u1, . . . , 0.9 · un) should be considered
approximately-optimal. For example, if the utilities in the optimal solution are (1, 2, 3),
then a solution with utilities (0.9, 1.8, 2.7) is approximately-optimal. However, allowing
the smallest utility to take the value 0.9 may substantially increase the maximum possi-
ble value of the second (and third) smallest utility — e.g. a solution that yields utilities
(0.9, 1000, 1000) might exist. In that case, a solution with utilities (0.9, 1.8, 2.7) is very far
from optimal. We expect a good approximation notion to consider the fact that an error in
one utility might change the optimal value of the others.

The following, second attempt at a definition, captures this requirement. An
approximately-optimal solution is one that yields utilities at least (0.9 ·m1, 0.9 ·m2, . . . , 0.9 ·
mn), where m1 is the maximum value of the smallest utility, m2 is the maximum value of
the second-smallest utility among all solutions whose smallest utility is at least 0.9 ·m1; m3

is the maximum value of the third-smallest utility among all solutions whose smallest utility
is at least 0.9·m1 and their second-smallest utility is at least 0.9·m2; and so on. In the above
example, to be considered approximately-optimal, the smallest utility should be at least 0.9
and the second-smallest should be at least 900. Thus, a solution with utilities (0.9, 1.8, 2.7)
is not considered approximately-optimal. Unfortunately, according to this definition, even
the leximin-optimal solution — with utilities (1, 2, 3) — is not considered approximately-
optimal. We expect a good approximation notion to be a relaxation of leximin-optimality.

3.2 Our Definition

Let α ∈ (0, 1] and ϵ ≥ 0 be multiplicative and additive approximation factors, respectively.
As we focus on maximization problems, we say that a value v2 is (α, ϵ)-preferred over another
value v1 if v2 > 1

α (v1 + ϵ). That is, if v1 is smaller than any approximation of v2.

The approximate leximin order The first step is defining the following partial order3:
a solution y is (α, ϵ)-leximin-preferred over a solution x, denoted y ≻(α,ϵ) x, if there exists
an integer 1 ≤ k ≤ n such that the smallest (k − 1) objective values of y are at least those

3A proof that the approximate leximin order is a strict partial order can be found in appendix A.



of x, and the k’th smallest objective value of y is (α, ϵ)-preferred over the k’th smallest
objective value of x, that is:

∀j < k : V ↑
j (y) ≥ V ↑

j (x)

V ↑
k (y) >

1

α

(
V ↑
k (x) + ϵ

)
A maximal element of this order is a solution over which no solution is (α, ϵ)-leximin-
preferred. For clearity, we define the corresponding relation set as follows:

R(α,ϵ) = {(y, x) | ∀x, y ∈ S : y ≻(α,ϵ) x}

Before describing the approximation definition, we present two observations about this
relation that will be useful later, followed by an example to illustrate how it works. The
proofs are straightforward and are omitted.

The first observation is that the leximin order is equivalent to the approximate leximin
order for α = 1 and ϵ = 0 (that is, in the absence of errors).

Lemma 1. Let x, y ∈ S. Then, y ≻ x ⇐⇒ y ≻(1,0) x

The second observation relates different approximate leximin orders according to their
error factors. Notice that, for additive errors, ϵ also describes the error size; whereas for
multiplicative errors, one minus α describes it. Throughout the remainder of this section,
we denote the multiplicative error factor by θ(α) = 1− α.

Observation 2. Let 0 ≤ θ(α1) ≤ θ(α2) < 1 and 0 ≤ ϵ1 ≤ ϵ2. Then, y ≻(α2,ϵ2) x ⇒
y ≻(α1,ϵ1) x.

One can easily verify that it follows directly from the definition as 1
α2
≥ 1

α1
. Accordingly,

by considering the relation sets R(α1,ϵ1) and R(α2,ϵ2), we can conclude that R(α2,ϵ2) ⊆
R(α1,ϵ1). This means that as the error parameters θ(α) and ϵ increase, the relation becomes
more partial : when θ(α) = 0 and ϵ = 0 it is a total order, any two elements that yield
different utilities appear as a pair in R(1,0); but as they increase, the set R(α,ϵ) potentially
becomes smaller, as fewer pairs are comparable.

Example To illustrate, consider a group of 3 agents, that has to select one out of three op-
tions x, y, z, with utility multisets V(x) = {1, 10, 15},V(y) = {1, 40, 60},V(z) = {2, 20, 30}.
Table 1 indicates what is R(α,ϵ) for different choices of α and ϵ. It is easy to verify that,
indeed, R(1,0) is a total order — (z, x), (z, y) ∈ R(1,0) since 2 > 1 and (y, x) ∈ R(1,0) since
1 = 1 and 40 > 10. In accordance with Observation 2, the relation set remains the same or
becomes smaller as either α decreases (and the error factor θ(α) increases) or ϵ increases. As
an example, we provide a partial calculation of R(0.75,1). First, by Observation 2, we know
that R(0.75,1) ⊆ R(1,0), and so, it is sufficient to consider only the pairs in R(1,0). Consider
the pair (z, x). In order to be included in the relation set, there must be a 1 ≤ k ≤ 3
that meets the requirements. For k = 1, as 2 ≯ 1

0.75 (1 + 1), the requirement for k does
not hold. However, for k = 2, it does. As 2 ≥ 1, the requirement for i < k holds; and
as 20 > 1

0.75 (10 + 1), the requirement for k holds. Therefore, (z, x) ∈ R(0.75,1). Similarly,
one can check that (y, x) ∈ R(0.75,1). Next, consider the pair (z, y). For k = 1, as before,

since 2 ≯ 1
0.75 (1 + 1), the requirement for k does not hold. For k = 2 and k = 3, it is

sufficient to notice that 20 < 40, therefore the requirements for both does not hold. And
so, (z, y) /∈ R(0.75,1).

The leximin approximation can now be defined.



Table 1: Different relation sets result from different choices of α and ϵ in the example above. Each cell
contains the corresponding relation set R(α,ϵ).

α
ϵ

0 1 15 45

1 {(z,x),(z,y),(y,x)} {(z,x),(y,x)} {(y,x)} {}
0.75 {(z,x),(z,y),(y,x)} {(z,x),(y,x)} {(y,x)} {}
0.5 {(y,x)} {(y,x)} {} {}
0.25 {} {} {} {}

Leximin approximation We say that a solution x ∈ S is (α, ϵ)-approximately leximin-
optimal if it is a maximum element of the order ≻(α,ϵ). For brevity, we use the term leximin
approximation to describe an approximately leximin-optimal solution.

This definition has some important properties. Lemma 3 proves that in the absence of
errors (θ(α) = ϵ = 0) it is equivalent to the exact leximin optimal definition. Then, Lemma
4 shows that an (α1, ϵ1)-leximin-approximation is also an (α2, ϵ2)-leximin-approximation
when 0 ≤ θ(α1) ≤ θ(α2) < 1 and 0 ≤ ϵ1 ≤ ϵ2. Finally, Lemma 5 proves that a leximin
optimal solution is also a leximin approximation for all factors.

Lemma 3. A solution is a (1, 0)-leximin-approximation if and only if it is leximin optimal.

Proof. By definition, a solution x∗ is a (1, 0)-leximin-approximation if and only if x ⊁(1,0) x
∗

for any solution x ∈ S. This holds if and only if x ⊁ x∗ for any solution x ∈ S (by Lemma
1). Thus, by definition, x∗ is also leximin optimal.

Lemma 4. Let 0 ≤ θ(α1) ≤ θ(α2) < 1, 0 ≤ ϵ1 ≤ ϵ2, and x ∈ S be an (α1, ϵ1)-leximin-
approximation. Then x is also an (α2, ϵ2)-leximin-approximation.

Proof. Since x is an (α1, ϵ1)-leximin-approximation, by definition, y ⊁(α1,ϵ1) x for any solu-
tion y ∈ S. Observation 2 implies that y ⊁(α2,ϵ2) x for any solution y ∈ S. This means, by
definition, that x is an (α2, ϵ2)-leximin-approximation.

Lemma 5. Let x∗ ∈ S be a leximin optimal solution. Then x∗ is also an (α, ϵ)-leximin-
approximation for any θ(α) ∈ [0, 1) and ϵ ≥ 0.

Proof. By Lemma 3, x∗ is an (1, 0)-leximin-approximation. Thus, according to Lemma 4,
x∗ is also an (α, ϵ)-leximin-approximation for any 0 ≤ θ(α) < 1 and ϵ ≥ 0.

Using the example given previously, we shall now demonstrate that as the error param-
eters θ(α) and ϵ increase, the quality of the approximation decreases. Consider table 1 once
again. If the corresponding relation set for α and ϵ is the total order {(z, x), (z, y), (y, x)},
the only solution over which no other solution is (α, ϵ)-leximin-preferred is z. Therefore, z
is the only (α, ϵ)-leximin-approximation for these factors. Indeed, it is the only group deci-
sion that maximizes the welfare of the agent with the smallest utility. If the corresponding
relation set is either {(z, x), (y, x)} or {(y, x)}, as no solution is (α, ϵ)-leximin-preferred over
z and y, both are (α, ϵ)-leximin-approximations. For example, for α = 0.5 and ϵ = 0, z still
maximizes the utility of the poorest agent (2), and y gives the poorest agent a utility of 1,
which is acceptable as it is half the maximum possible value (2), and subject to giving the
poorest agent at least 1, maximizes the second-smallest utility (40). In contrast, while x, too,
gives the poorest agent utility 1, its second-smallest utility is 10, which is less than half the
maximum possible in this case (40), and therefore, x is not a (α, ϵ)-leximin-approximation.
Lastly, if the relation set is the empty set, then no solution is (α, ϵ)-leximin-preferred over
the other, and all are (α, ϵ)-leximin-approximations.



Algorithm 1 The Ordered Outcomes Algorithm

1: for t = 1 to n do
2: (xt, zt)← OP(z1, . . . , zt−1)
3: end for
4: return xn (with objective values f1(xn), . . . , fn(xn)).

4 Approximation Algorithm

We now present an algorithm for computing a leximin approximation. The algorithm is an
adaptation of one of the algorithms of Ogryczak and Śliwiński [21] for finding exact leximin
optimal solutions.

4.1 Preliminary: exact leximin-optimal solution

Following the definition of leximin, the core algorithm for finding a leximin optimal solution
is iterative, wherein one first maximizes the least objective function, then the second, and so
forth. In each iteration, t = 1, . . . , n, it looks for the value that maximizes the t-th smallest
objective, zt, given that for any i < t the i-th smallest objective is at least zi (the value
that was computed in the i-th iteration). The core, single-objective optimization problem
is thus:

max zt (P1)

s.t. (P1.1) x ∈ S

(P1.2) V ↑
ℓ (x) ≥ zℓ ℓ = 1, . . . , t− 1

(P1.3) V ↑
t (x) ≥ zt

where the variables are the scalar zt and the vector x, whereas z1, . . . zt−1 are constants
(computed in previous iterations).

Suppose we are given a procedure OP(z1, . . . , zt−1), which, given z1, . . . , zt−1, outputs
(x, zt) that is the exact optimal solution to (P1). Then, the leximin optimal solution is
obtained by iterating this process for t = 1, . . . , n, as described in Algorithm 1.

Since constraints (P1.2) and (P1.3) are not linear with respect to the objective-functions,
it is difficult to solve the program (P1) as is. [21] suggests a way to “linearize“ the program
in two steps. First, we replace (P1) with a the following program, that considers sums
instead of individual values (where again the variables are zt and x):

max zt (P2)

s.t. (P2.1) x ∈ S

(P2.2)
∑
i∈F ′

fi(x) ≥
|F ′|∑
i=1

zi ∀F ′ ⊆ [n], |F ′| < t

(P2.3)
∑
i∈F ′

fi(x) ≥
t∑

i=1

zi ∀F ′ ⊆ [n], |F ′| = t

Here, constraints (P1.2) and (P1.3) are replaced with constraints (P2.2) and (P2.3), respec-
tively. Constraint (P2.2) says that for any ℓ < t, the sum of any ℓ objectives is at least the
sum of the first ℓ constants zi (equivalently: the sum of the smallest ℓ objectives is at least
the sum of the first ℓ constants zi

4). Similarly, (P2.3) says that the sum of any t objectives

4A formal proof of this claim is given in Appendix B.2



(equivalently: the sum of the smallest t objectives) is at least the sum of the first t − 1
constants zi, plus the variable zt.

While (P2) is linear with respect to the objective-functions, it has an exponential number
of constraints. To overcome this challenge, auxiliary variables were used in the second
problem (yℓ and mℓ,j for all 1 ≤ ℓ ≤ t and 1 ≤ j ≤ n):

max zt (P3)

s.t. (P3.1) x ∈ S

(P3.2) ℓyℓ −
n∑

j=1

mℓ,j ≥
ℓ∑

i=1

zi ℓ = 1, . . . , t− 1

(P3.3) tyt −
n∑

j=1

mt,j ≥
t∑

i=1

zi

(P3.4) mℓ,j ≥ yℓ − fj(x) ℓ = 1, . . . , t, j = 1, . . . , n

(P3.5) mℓ,j ≥ 0 ℓ = 1, . . . , t, j = 1, . . . , n

The importance of the problems (P2) and (P3) for leximin is shown by the following theorem
(that combines Theorem 4 in [22] and Theorem 1 in [21]):

Theorem. If Algorithm 1 is applied with a solver for (P2) or (P3)5 (instead of for (P1)),
the algorithm still outputs a leximin-optimal solution.

We shall later see that our main result (Theorem 8) extends and implies their theorem.

4.2 Using an approximate solver

Now we assume that, instead of an exact solver in Algorithm 1, we only have an approximate
solver. In this case, the constants z1, . . . , zt−1 are only approximately-optimal solutions for
the previous iterations. It is easy to see that if OP is an (α, ϵ)-approximation algorithm to
(P1), then Algorithm 1 outputs an (α, ϵ)-leximin-approximation6.

In contrast, for (P2) and (P3), we shall see that Algorithm 1 may output a solution that
is not an (α, ϵ)-leximin-approximation. However, we will prove that it is not too far from

that — in this case, the output is always an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-leximin-approximation.

In order to demonstrate both claims more clearly, we start by proving that the problems
(P2) and (P3) are equivalent in the following sense:

Lemma 6. Let 1 ≤ t ≤ n and let z1, . . . zt−1 ∈ R. Then, (x, zt) is feasible for
(P2) if and only if there exist yℓ and mℓ,j for 1 ≤ ℓ ≤ t and 1 ≤ j ≤ n such that
(x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) is feasible for (P3).

The proof is provided in Appendix B.2. Since both (P2) and (P3) have the same
objective function (max zt), the lemma implies that (x, zt) is an (α, ϵ)-approximate solution
for (P2) if and only if (x, zt) is a part of an (α, ϵ)-approximate solution for (P3). Thus, it is
sufficient to prove the theorems for only one of the problems. We will prove them for (P2).

Theorem 7. There exist α ∈ (0, 1], ϵ ≥ 0 and OP that is an (α, ϵ)-approximation procedure
to (P2), such that if Algorithm 1 is applied with this procedure, it might return a solution
that is not an (α, ϵ)-leximin-approximation.

5If the algorithm uses a solver for (P3), it takes only the assignment of the variables x and zt , ignoring
the auxiliary variables.

6A formal proof is given in Appendix B.1



Proof. Consider the following multi-objective optimization problem with n = 2:

max {f1(x) := x1, f2(x) := x2}
s.t. (1.1) x1 ≤ 100, (1.2) x1 + x2 ≤ 200, (1.3) x ∈ R2

+

In the corresponding (P2), constraint (P2.1) will be replaced with constraints (1.1)-(1.3).
The following is a possible run of the algorithm with OP that is a (0.9, 0)-approximate
solver. In iteration t = 1, condition (P2.2) is empty, and the optimal value of z1 is 100, so
OP may output z1 = 0.9 · 100 = 90. In iteration t = 2, given z1 = 90, condition (P2.2) says
that each of x1 and x2 must be at least 90; the optimal value of z2 under these constraints
is 110, so OP may output z2 = 99, for example with x1 = x2 = 94.5. Since n = 2, the
algorithm ends and returns the solution (94.5, 94.5). But (x1, x2) = (94.5, 105.5) is also
a feasible solution, and it is (0.9, 0)-leximin-preferred since 105.4 > 1

0.9 · 94.5 = 105. Hence,
the returned solution is not a (0.9, 0)-leximin-approximation.

Note that, while the above solution is not a (0.9, 0)-leximin-approximation, it is for α =
0.896. Our main theorem below shows that this is not a coincidence: using an approximate
solver to (P2) or (P3) in Algorithm 1 guarantees a non-trivial leximin approximation.

Theorem 8. Let α ∈ (0, 1], ϵ ≥ 0, and OP be an (α, ϵ)-approximation procedure to (P2) or

(P3). Then Algorithm 1 outputs an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-leximin-approximation.

For the above example, it guarantees an ( 81
91 , 0) ≈ (0.89, 0)-leximin-approximation.

A complete proof of Theorem 8 is given in Appendix B.3. Here we provide a high level
overview of the main steps. First, we note that the value of the variable zt is completely
determined by the variable x. This is because the program aims to maximize zt that appears
only in constraint (P2.3), which is equivalent to zt ≤

∑t
i=1 V ↑

i (x) −
∑t−1

i=1 zi. Thus, this
constraint will always hold with equality. Next, we show that the returned solution, x∗,
is feasible to all single-objective problems that were solved during the algorithm run. This
allows us to relate the objective values attained by x∗ and the zi values. We then assume
for contradiction that x∗ is not a leximin approximation as claimed in the theorem. By
definition, there exits a solution y ∈ S and an integer 1 ≤ k ≤ n such that V ↑

i (y) ≥ V ↑
i (x∗)

for any i < k, while V ↑
k (y) is

(
α2

1−α+α2 ,
ϵ

1−α+α2

)
-preferred7 over V ↑

k (x∗). Accordingly, we

prove that y is feasible to the program that was solved in the k-th iteration, and that its
objective value in this problem is higher than the optimal value z∗t , which is a contradiction.

Theorem 8 implies that if OP has only a multiplicative error (ϵ = 0), the returned
solution will also have only a multiplicative error, and if OP has only an additive error
(α = 1), the returned solution will also have only the same additive error ϵ.

4.3 Using a randomized solver

Next, we assume that the solver is not only approximate but also randomized — it always
returns a feasible solution to the single-objective problem, but only with probability p ∈
[0, 1] it is also approximately-optimal. As Algorithm 1 activates the solver n times overall,
assuming the success events of different activations are independent, there is a probability
of pn that the solver returns an approximately-optimal solution in every iteration and so,
Algorithm 1 performs as in the previous subsection. This leads to the following conclusion:

Corollary 9. Let α ∈ (0, 1], ϵ ≥ 0, p ∈ (0, 1], and OP be a p-randomized (α, ϵ)-

approximation procedure to (P2) or (P3). Then Algorithm 1 outputs an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-

leximin-approximation with probability pn.

7See Section 3.2 for formal definition.



Notice that, since the procedure OP always returns a feasible solution to the single-
objective problem, Algorithm 1 always returns a feasible solution as well.

The following section applies such a solver to obtain a leximin approximation to the
problem of stochastic allocations of indivisible goods w.h.p.

5 Stochastic Allocations of Indivisible Goods

In this section, we consider a particular application of our results, for the problem of stochas-
tic allocations of indivisible goods. We prove that, under the setting described bellow, a
leximin approximation with only a multiplicative error can be obtained in polynomial time.
Specifically, we prove that a 1

3 -approximation8 can be obtained deterministically, whereas a
(e−1)2

e2−e+1 ≈ 0.52-approximation can be obtained w.h.p. As a reference point, it is worth noting
that the problem of maximizing the egalitarian welfare in the same settings has been shown
to be NP-hard to approximate to a (multiplicative) factor better than than 1 − 1

e ≈ 0.632
[16]. However, as an α-approximation to leximin is first and foremost an α-approximation
to the egalitarian welfare, the same hardness result applies to our problem as well.

The setting postulates a set of n agents 1, . . . , n, and m items, 1, . . . ,m, to be distributed
amongst the agents. A deterministic allocation of the items to the agents is a mapping A :
[m]→ [n], determining which agent gets each item. Note that as the term ”deterministic” is
used in this section also when discussing algorithms, we will use the term simple allocation
from now on. We denote by A the set of simple allocations. Each agent j is associated with
a function uj : A → R≥0 that describes its utility from a simple allocation.

A stochastic allocation, d, is a distribution over the simple allocations. The set of all
possible stochastic allocations is:

D = {d | pd : A → [0, 1],
∑
A∈A

pd(A) = 1}

Agents are assumed to assign a positive utility to the set of all items and to care only about
their own share (allowing us to use the following abuse of notation in which uj takes a
bundle b of items). Their utilities are assumed to be normalized (uj(∅) = 0), monotone
(uj(b1) ≤ uj(b2) if b1 ⊆ b2), and submodular (uj(b1) + uj(b2) ≥ uj(b1 ∪ b2) + uj(b1 ∩ b2) for
any bundles b1, b2); and to be given in the value oracle model — that is, we do not have a
direct access to them, but only to an oracle that indicates the value of an agent from a given
simple allocation. Lastly, the agents are assumed to be risk-neutral. This means that,
given a stochastic allocation d, the utility of each agent j is given by the expected value:

Ej(d) =
∑
A∈A

pd(A) · uj(A).

The goal is to find a stochastic allocation that maximizes the set of functions E1, . . . , En.
Formally, we consider the following problem:

lex max min {E1(d), E2(x), . . . En(d)}
s.t. d ∈ D

That is, the feasible region is the set of stochastic allocations (S = D) and the objective
functions are the expected utilities (fi = Ei for any i ∈ [N ]).

Kawase and Sumita [16] present an approximation algorithm, which relates the problem
of finding a stochastic allocation that approximates the egalitarian welfare, to the problem

8Throughout this section, we only discuss multiplicative approximations; so, for brevity, we use the term
”α-approximation” to refer to ”(α, 0)-approximation”.



of finding a simple allocation that approximates the utilitarian welfare (i.e., the sum of
utilities):

max

n∑
i=1

ui(A) s.t. A ∈ A. (U1)

We adapt their algorithm to find an approximately leximin-optimal allocation as follows:

Theorem 10. Given a randomized algorithm that returns a simple allocation that β-
approximates the utilitarian welfare (with success probability p). Then, Algorithm 1 can
be used to obtain a stochastic allocation that approximates leximin with a multiplicative
error of at most β

1−β+β2 (with the same probability).

A complete proof is given in Appendix C. Here we provide an outline. We start by taking
(P3) and replacing the constraint (P3.1) with the constraints describing a feasible stochastic
allocation. Here we face a computational challenge: the number of variables describing a
stochastic allocation is exponential in the input size, as we need a variable for each simple
allocation. We address this challenge by moving to the dual of a closely related program.
The dual has polynomially-many variables but exponentially-many constraints. However,
we prove that a randomized approximate separation-oracle for this program can be designed
and used within a variant of the ellipsoid method to approximate (P3).

Theorem 10 yield two immediate corollaries, using known algorithms to approximate the
utilitarian welfare when the agents’ utility functions are monotone and submodular.

First, there are deterministic 1
2 -approximation algorithms[9, 6], and therefore:

Corollary 11. Algorithm 1 can be used to obtain a stochastic allocation that approximates
leximin with a multiplicative error at most 0.5

1−0.5+0.52 = 2
3 .

Second, there is a randomized (1− 1
e )-approximation algorithm w.h.p [24], and therefore:

Corollary 12. Algorithm 1 can be used to obtain a stochastic allocation that approximates
leximin with a multiplicative error at most e

e2−e+1 ≈ 0.48 w.h.p.

6 Conclusion and Future Work

We presented a practical solution to the problem of leximin optimization when only an
approximate single-objective solver is available. The algorithm is guaranteed to terminate
in polynomial time, and its approximation ratio degrades gracefully as a function of the
approximation ratio of the single-objective solver.

It may be interesting to identify more problems (in addition to stochastic allocations),
where an approximate egalitarian solution can be converted into an approximate leximin
solution using the approach in this paper. In particular, in the problem of stochastic alloca-
tions (in Section 5), to extend the approximation algorithm for the egalitarian welfare, we
had to change some steps within. What if an algorithm for egalitarian welfare is provided as
a black box — could it be used to design the appropriate procedure to approximate leximin?

In the context of fair division, this study assumes that there is an access to the true
valuations of the agents involved. In reality, people may lie about their valuations. Can our
definition of approximate-leximin be related to some approximate version of truthfulness?

Another question is whether it is possible to obtain a better approximation factor for
leximin, given an (α, ϵ)-approximation algorithm for the single-objective problem. Specifi-
cally, can an (α, ϵ)-approximation to leximin can be obtained in polynomial time? If not,
what would be the best possible approximation in this case?
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A The Approximate Leximin Order

Unlike the leximin order, ≻, which is a total order, the approximate leximin order, ≻(α,ϵ) for
α ∈ (0, 1] and ϵ ≥ 0 is a partial order. The difference is that in partial orders, not all vectors
are comparable. Consider for example the sorted vectors (1, 2) and (1, 3). According to the
leximin order, (1, 3) is clearly preferred (as 3 > 2), but according to many approximate
leximin orders neither one is preferred over the other, for example according to the orders
≻(0.6,0),≻(1,1) or ≻(0.8,0.5).

An order is a strict partial order if it is irreflexive, transitive and asymmetric. Lemma 13
proves that the order is irreflexive, Lemma 14 proves it is transitive, and Lemma 15 proves
that it is asymmetric.

Let α ∈ (0, 1] and ϵ ≥ 0.

Lemma 13. The approximate leximin order ≻(α,ϵ) is irreflexive.

Proof. Let x be a solution. We will show that x ⊁(α,ϵ) x. As the definition requires that
one component be strictly greater than the other, it is trivial.

Lemma 14. The approximate leximin order ≻(α,ϵ) is transitive.

Proof. Let x, y and z be solutions such that x ≻(α,ϵ) y and y ≻(α,ϵ) z. We will prove that
x ≻(α,ϵ) z.

Since x ≻(α,ϵ) y, there exists an integer k1 ∈ [n] such that:

∀j < k1 : V ↑
j (x) ≥ V ↑

j (y)

V ↑
k1

(x) >
1

α

(
V ↑
k1

(y) + ϵ
)

And since y ≻(α,ϵ) z, there exists an integer k2 ∈ [n] such that:

∀j < k2 : V ↑
j (y) ≥ V ↑

j (z)

V ↑
k2

(y) >
1

α

(
V ↑
k2

(z) + ϵ
)

As α ∈ (0, 1] and ϵ ≥ 0, it follows that:

V ↑
k1

(x) > V ↑
k1

(y), V ↑
k2

(y) > V ↑
k2

(z) (1)

Let k = min{k1, k2}.
If k = k1, by the definition of k1, V ↑

k (x) > 1
α

(
V ↑
k (y) + ϵ

)
. However, V ↑

k (y) ≥ V ↑
k (z), by

definition if k < k2 and by Equation (1) if k = k2. 2 Therefore, V ↑
k (x) > 1

α

(
V ↑
k (z) + ϵ

)
.

Otherwise, if k = k2, by the definition of k2, V ↑
k (y) > 1

α

(
V ↑
k (z) + ϵ

)
. But, V ↑

k (x) ≥

V ↑
k (y), by definition if k < k1 and by Equation (1) if k = k1. Again, we can conclude that

V ↑
k (x) > 1

α

(
V ↑
k (z) + ϵ

)
.

In addition, for each j < k, since j < k1 and j < k2, by definition the following holds:

V ↑
j (x) ≥ V ↑

j (y) ≥ V ↑
j (z) (2)

So, k is an integer that satisfy all the requirements, and so, x ≻(α,ϵ) z.

Lemma 15. The approximate leximin order ≻(α,ϵ) is asymmetric.

Proof. Let x and y be solutions such that x ≻(α,ϵ) y. We will show that y ⊁(α,ϵ) x. Assume
by contradiction that y ≻(α,ϵ) x. From Lemma 14, this relation is transitive. Therefore,
since x ≻(α,ϵ) y and y ≻(α,ϵ) x, also x ≻(α,ϵ) x. But, from Lemma 13, this relation is
irreflexive — a contradiction.



B Proofs Omitted From Section 4

B.1 Using an approximate solver for (P1)

Recall that (P1) is described as follows:

max zt (P1)

s.t. (P1.1) x ∈ S

(P1.2) V ↑
ℓ (x) ≥ zℓ ∀ℓ ∈ [t− 1]

(P1.3) V ↑
t (x) ≥ zt

This section proves the following lemma:

Lemma 16. Let α ∈ (0, 1], ϵ ≥ 0, and OP be an (α, ϵ)-approximation procedure to (P1).
Then Algorithm 1 outputs an (α, ϵ)-leximin-approximation.

Proof. Let x∗ be the returned solution and assume by contradiction that it is not (α, ϵ)-
approximate leximin-optimal. This means that there exists a y ∈ S that is (α, ϵ)-leximin-
preferred over it. That is, there exists an integer k ∈ [n] such that:

∀i < k : V ↑
i (y) ≥ V ↑

i (x∗)

V ↑
k (y) >

1

α

(
V ↑
k (x∗) + ϵ

)
Since x∗ is a solution to (P1) that was solved in the iteration t = n, it must satisfy all

its constraints, and therefore:

∀i ∈ [n] : V ↑
i (x∗) ≥ zi (3)

by constraint (P1.2) for i < n and by constraint (P1.3) for i = n.
As y’s smallest k values are at least as those of x∗, we can conclude that for each i ≤ k

the i-th smallest value of y is at least zi. Therefore, y is feasible to (P1) that was solved in
the iteration t = k.

During the algorithm run, zk was obtained as an (α, ϵ)-approximation to (P1) that was
solved in the iteration t = k , and therefore, the optimal value of this problem is at most
1
α (zk + ϵ). But, the objective value y yields in this problem is V ↑

k (y), which is higher than
this value:

V ↑
k (y) >

1

α

(
V ↑
k (x∗) + ϵ

)
≥ 1

α
(zk + ϵ) (By Equation (3) for i = k)

This is a contradiction.

B.2 Equivalence of (P2) and (P3)

Recall the problems’ descriptions:



max zt (P2)

s.t. (P2.1) x ∈ S

(P2.2)
∑
i∈F ′

fi(x) ≥
|F ′|∑
i=1

zi ∀F ′ ⊆ [n], |F ′| < t

(P2.3)
∑
i∈F ′

fi(x) ≥
t∑

i=1

zi ∀F ′ ⊆ [n], |F ′| = t

max zt (P3)

s.t. (P3.1) x ∈ S

(P3.2) ℓyℓ −
n∑

j=1

mℓ,j ≥
ℓ∑

i=1

zi ℓ = 1, . . . , t− 1

(P3.3) tyt −
n∑

j=1

mt,j ≥
t∑

i=1

zi

(P3.4) mℓ,j ≥ yℓ − fj(x) ℓ = 1, . . . , t, j = 1, . . . , n

(P3.5) mℓ,j ≥ 0 ℓ = 1, . . . , t, j = 1, . . . , n

We use another equivalent representation of (P2), which is more compact and will sim-
plify the proofs, also introduced by [21]:

max zt (P2-Comp)

s.t. (P2-Comp.1) x ∈ S

(P2-Comp.2)

ℓ∑
i=1

V ↑
i (x) ≥

ℓ∑
i=1

zi ℓ = 1, . . . , t− 1

(P2-Comp.3)

t∑
i=1

V ↑
i (x) ≥

t∑
i=1

zi

In this problem, constraints (P2.2) and (P2.3) are replaced by (P2-Comp.2) and (P2-
Comp.3), respectively. (P2.2) gives, for each ℓ, a lower bound on the sum for any set
of ℓ objective functions; whereas (P2-Comp.2) only considers the sum of the ℓ smallest such
values, and similarly for (P2.3) and (P2-Comp.3).

This section proves that these three problems are equivalent in the following sense:

Lemma 17. Let t ∈ [n] and let z1, . . . zt−1 ∈ R. Then, (x, zt) is feasible for (P2) if and
only if (x, zt) is feasible for (P2-Comp) if and only if there exist yℓ and mℓ,j for ℓ ∈ [t] and
j ∈ [n] such that (x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) is feasible for (P3).

It is clear that this lemma implies Lemma 6, which only claims a part of it.
We start by proving that (P2) and (P2-Comp) are equivalent. That is, (x, zt) is feasible

for (P2) if and only if (x, zt) is feasible for (P2-Comp). First, it is clear that x satisfies
constraint (P2.1) if and only if it satisfies constraint (P2-Comp.1) (as both constraints are
the same, x ∈ S). To prove the other requirements, we start with the following lemma:



Lemma 18. For any x ∈ S, any ℓ ∈ [n] and a constant c ∈ R the following two conditions
are equivalent:

∀F ′ ⊆ [n], |F ′| = ℓ :
∑
i∈F ′

fi(x) ≥ c (4)

ℓ∑
i=1

V ↑
i (x) ≥ c (5)

Proof. For the first direction, recall that the values V ↑
1 (x), . . . ,V ↑

ℓ (x) were obtained from
ℓ objective functions (those who yield the smallest value). By the assumption, the sum
of any set of function with size ℓ is at least c; therefore, it is true in particular for the
functions corresponding to the values (V ↑

1 (x))ℓi=1. For the second direction, assume that∑ℓ
i=1 V ↑

i (x) ≥ c. Since V ↑
1 (x), . . . ,V ↑

ℓ (x) are the ℓ smallest values in V(x), we get that:

∀F ′ ⊆ [n], |F ′| = ℓ :
∑
i∈F ′

fi(x) ≥
s∑

i=1

V ↑
i (x) ≥ c.

Accordingly, x satisfies constraint (P2.2) — for any ℓ ∈ [t− 1],

∀F ′ ⊆ [n], |F ′| = ℓ :
∑
i∈F ′

fi(x) ≥
ℓ∑

i=1

zi

if and only if it satisfies
∑ℓ

i=1 V ↑
i (x) ≥

∑ℓ
i=1 zi, which is constraint (P2-Comp.2). Similarly,

x and zt satisfy constraint (P2.3),

∀F ′ ⊆ [n], |F ′| = t :
∑
i∈F ′

fi(x) ≥
t∑

i=1

zi

if and only if
∑t

i=1 V ↑
i (x) ≥

∑t
i=1 zi, which is constraint (P2-Comp.3). That is, x ans zt

satisfy all the constraints of (P2) if and only if they satisfy all the constraints of (P2-Comp).
Now, we will prove that that (P2-Comp) and (P3) are equivalent, that is, (x, zt) is

feasible for (P2-Comp) if and only if there exist yℓ and mℓ,j for ℓ ∈ [t] and j ∈ [n] such that
(x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) is feasible for (P3).

We start with the following lemma:

Lemma 19. For any x ∈ S and any constant c ∈ R (where c does not depend on j),

n∑
j=1

max(0, c− fj(x)) =

n∑
j=1

max(0, c− V ↑
j (x)).

Proof. Let (π1, . . . , πn) be a permutation of {1, . . . , n} such that fπi
(x) = V ↑

i (x) for any
i ∈ [n] (notice that such permutation exists by the definition of V ↑()). That is, the value that
fπi obtains is the πi-th smallest one in the multiset of all values V(x). Since each element
in the sum

∑n
j=1 max(0, c − fj(x)) is affected by j only through fj(x), the permutation π

allows us to conclude the following:
n∑

j=1

max(0, c− fj(x)) =

πn∑
j=π1

max(0, c− fj(x))

=

n∑
j=1

max(0, c− fπi
(x)) =

n∑
j=1

max(0, c− V ↑
j (x)).



Lemma 20 below proves the first direction of the equivalence between (P2-Comp) and
(P3):

Lemma 20. Let (x, zt) be a feasible solution to (P2-Comp). Then there exist yℓ and mℓ,j

for ℓ ∈ [t] and j ∈ [n] such that (x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) is feasible for (P3).

Proof. For any ℓ ∈ [t] and j ∈ [n] define yℓ and mℓ,j as follows:

yℓ := V ↑
ℓ (x)

mℓ,j := max(0,V ↑
ℓ (x)− fj(x))

First, since x satisfies constraint (P2-Comp.1), it is also satisfies constraint (P3.1) of (as
both constraints are the same and include only x).

In addition, based on the choice of y and m, it is clear that mℓ,j ≥ 0 and mℓ,j ≥
V ↑
ℓ (x)− fj(x) = yℓ − fj(x) for any ℓ ∈ [n] and j ∈ [n]. Therefore, this assignment satisfies

constraints (P3.4) and (P3.5).
To show that this assignment also satisfies constraints (P3.2) and (P3.3), we first prove

that for any ℓ ∈ [n] this assignment satisfies the following equation:

ℓyℓ −
n∑

j=1

mℓ,j =

ℓ∑
i=1

V ↑
i (x) (6)

By the choice of m,
∑n

j=1 mℓ,j =
∑n

j=1 max(0,V ↑
ℓ (x)−fj(x)), and therefore, by Lemma 19,

it equals to
∑n

j=1 max(0,V ↑
ℓ (x)− V ↑

j (x)). Since V ↑
ℓ (x) is the ℓ-th smallest objective, it is

clear that V ↑
ℓ (x)− V ↑

j (x) ≤ 0 for any j > ℓ, and V ↑
ℓ (x)− V ↑

j (x) ≥ 0 for any j ≤ ℓ. And so,∑n
j=1 mℓ,j = ℓ · V ↑

ℓ (x)−
∑ℓ

i=1 V ↑
i (x):

n∑
j=1

mℓ,j =

n∑
j=1

max(0,V ↑
ℓ (x)− V ↑

j (x))

=

ℓ∑
j=1

max(0,V ↑
ℓ (x)− V ↑

j (x)) +

n∑
j=ℓ+1

max(0,V ↑
ℓ (x)− V ↑

j (x))

=

ℓ∑
j=1

(V ↑
ℓ (x)− V ↑

j (x)) +

n∑
j=ℓ+1

0 = ℓ · V ↑
ℓ (x)−

ℓ∑
i=1

V ↑
i (x)

We can now conclude Equation (6):

ℓyℓ −
n∑

j=1

mℓ,j = ℓ · V ↑
ℓ (x)− ℓ · V ↑

ℓ (x) +

ℓ∑
i=1

V ↑
i (x)

=

ℓ∑
i=1

V ↑
i (x).

Now, since x satisfies constraint (P2-Comp.2),
∑ℓ

i=1 V ↑
i (x) ≥

∑ℓ
i=1 zi for any ℓ ∈ [t−1].

Therefore, by Equation (6), ℓ · yℓ −
∑n

j=1 mℓ,j ≥
∑ℓ

i=1 zi for any ℓ ∈ [t − 1] and this
assignment satisfies constraint (P3.2). Similarly, as x and zt satisfy constraint (P2-Comp.3),∑t

i=1 V ↑
i (x) ≥

∑t
i=1 zi, and so by Equation (6), t · yt −

∑n
j=1 mt,j ≥

∑t
i=1 zi. This means

that it also satisfies constraints (P3.3).



Finally, Lemma 21 below proves the second direction of the equivalence:

Lemma 21. Let (x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) be a feasible solution to (P3). Then,
(x, zt) is feasible for (P2-Comp).

Proof. It is easy to see that since x satisfies constraint (P3.1), it is also satisfies constraint
(P2-Comp.1) (as both are the same). To show that it also satisfies constraints (P2-Comp.2)
and (P2-Comp.3), we start by proving that for any ℓ ∈ [n]:

ℓ∑
i=1

V ↑
i (x) ≥ ℓyℓ −

n∑
j=1

mℓ,j (7)

Suppose by contradiction that
∑ℓ

i=1 V ↑
i (x) < ℓyℓ −

∑n
j=1 mℓ,j .

For any j ∈ [n] and any ℓ ∈ [n], mℓ,j ≥ yℓ−fj(x) by constraint (P3.4), and also mℓ,j ≥ 0
by constraint (P3.5). Therefore, mℓ,j ≥ max(0, yℓ − fj(x)). And so, by Lemma 19, for any
ℓ ∈ [t], the sum of mℓ,j over all j ∈ [n] can be described as follows:

n∑
j=1

mℓ,j ≥
n∑

j=1

max(0, yℓ − fj(x)) =

n∑
j=1

max(0, yℓ − V ↑
j (x)) (8)

Therefore,
∑ℓ

i=1 V ↑
i (x) < ℓyℓ −

∑n
j=1 max(0, yℓ − V ↑

j (x)) . Which means that:

ℓyℓ −
ℓ∑

i=1

V ↑
i (x)−

n∑
j=1

max(0, yℓ − V ↑
j (x)) > 0

However, we will now see that the value of this expression is at most 0, which is a contra-
diction:

ℓyℓ −
ℓ∑

i=1

V ↑
i (x)−

n∑
j=1

max(0, yℓ − V ↑
j (x))

=

ℓ∑
i=1

yℓ −
ℓ∑

i=1

V ↑
i (x)−

n∑
j=1

max(0, yℓ − V ↑
j (x))

≤
ℓ∑

i=1

(yℓ − V ↑
i (x))−

ℓ∑
j=1

max(0, yℓ − V ↑
j (x))−

n∑
j=ℓ+1

0 (Since max with 0 is at least 0)

=

ℓ∑
j=1

(
(yℓ − V ↑

j (x))−max(0, yℓ − V ↑
j (x))

)
≤ 0 (Since each element is at most 0)

This is a contradiction; so (7) is proved.

Now, by constraint (P3.2), ℓyℓ −
∑n

j=1 mℓ,j ≥
∑ℓ

i=1 zi for any ℓ ∈ [t − 1]. Therefore,

by (7), also
∑ℓ

i=1 V ↑
i (x) ≥

∑ℓ
i=1 zi, which means that x satisfies constraint (P2-Comp.2).

Similarly, by constraint (P3.3), tyt−
∑n

j=1 mt,j ≥
∑t

i=1 zi, and so by (7), also
∑t

i=1 V ↑
i (x) ≥∑t

i=1 zi. This means that x and zt satisfy constraint (P2-Comp.3).

B.3 Proof of Theorem 8

This section is dedicated to proving Theorem 8: let α ∈ (0, 1], ϵ ≥ 0, and OP be an (α, ϵ)-

approximation procedure to (P2) or (P3). Then Algorithm 1 outputs an
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-

leximin-approximation.



Based on Lemma 17, it is sufficient to prove the theorem for (P2-Comp).
We start by observing that the value of the variable zt is completely determined by the

variable x. This is because zt only appears in the last constraint, which is equivalent to
zt ≤

∑t
i=1 V ↑

i (x) −
∑t−1

i=1 zi. Therefore, for every x that satisfies the first two constraints,
it is possible to satisfy the last constraint by setting zt to any value which is at most∑t

i=1 V ↑
i (x) −

∑t−1
i=1 zi. Moreover, as the program aims to maximize zt, it will necessarily

set zt to be equal to that expression, since zt is maximized when the constraint holds with
equality. This is summarized in the observation below:

Observation 22. For any t ≥ 1 and any constants z1, . . . , zt−1, every vector x that satisfies
constraints (P2-Comp.1) and (P2-Comp.2) is a part of a feasible solution (x, zt) for zt =∑t

i=1 V ↑
i (x)−

∑t−1
i=1 zi. Moreover, the objective value obtained by a feasible solution x to the

problem (P2-Comp) solved in iteration t is zt =
∑t

i=1 V ↑
i (x)−

∑t−1
i=1 zi.

Based on Observation 22, we can now slightly abuse the terminology and say that a
solution x is “feasible“ in iteration t if it satisfies constraints (P2-Comp.1) and (P2-Comp.2)
of the program solved in iteration t.

We denote x∗ := xn = the solution x attained at the last iteration (t = n) of the
algorithm. Since x∗ is a feasible solution of (P2-Comp) in iteration n, and as each iteration
only adds new constraints to (P2-Comp.2), it follows that x∗ is also a feasible solution of
(P2-Comp) in any iteration 1 ≤ t ≤ n.

Observation 23. x∗ is a feasible solution of (P2-Comp) in any iteration 1 ≤ t ≤ n.

Lastly, as the value obtained as (α, ϵ)-approximation for this problem is the constant zt,
the optimal value is at most 1

α (zt + ϵ). Consequently, the objective value of any feasible
solution is at most this value. Since x∗ is feasible for any iteration t (Observation 23) and

since the objective value corresponding to x∗ is
∑t

i=1 V ↑
i (x∗) −

∑t−1
i=1 zi (Observation 22),

we can conclude:

Observation 24. The objective value obtained by x∗ to the problem (P2-Comp) that was
solved in iteration t is at most 1

α (zt + ϵ). That is:

t∑
i=1

V ↑
i (x∗)−

t−1∑
i=1

zi ≤
1

α
(zt + ϵ) .

We start with Lemmas 25-27, which establish a relationship between the k-th least ob-
jective value obtained by x∗ and the difference between the sum of the (k−1) least objective
values obtained by x∗ and the sum of the (k − 1) first zi values. Theorem 8 then uses this

relation to prove that the existence of another solution that would be
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-

leximin-preferred over x∗ would lead to a contradiction.
For clarity, throughout the proofs, we denote the multiplicative error factor by β = 1−α.

Lemma 25. For any 1 ≤ k ≤ n,

β

k∑
i=1

V ↑
i (x∗)− β

k−1∑
i=1

zi ≥
k∑

i=1

V ↑
i (x∗)−

k∑
i=1

zi − ϵ



Proof. By Observation 24,

k∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi ≤
1

α
(zk + ϵ) =

1

1− β
(zk + ϵ)

⇒ (1− β)

(
k∑

i=1

V ↑
i (x∗)−

k−1∑
i=1

zi

)
≤ zk + ϵ

⇒
k∑

i=1

V ↑
i (x∗)−

k−1∑
i=1

zi − β

k∑
i=1

V ↑
i (x∗) + β

k−1∑
i=1

zi ≤ zk + ϵ

⇒
k∑

i=1

V ↑
i (x∗)−

k∑
i=1

zi − ϵ ≤ β

k∑
i=1

V ↑
i (x∗)− β

k−1∑
i=1

zi.

Lemma 26. For any 1 ≤ k ≤ n,

k∑
i=1

βiV ↑
k−i+1(x∗) ≥

k∑
i=1

V ↑
i (x∗)−

k∑
i=1

zi −
1

1− β
ϵ

Proof. The proof is by induction on k. For k = 1 the claim follows directly from Lemma 25
as 1

1−β ≥ 1 for any β ∈ [0, 1). Assuming the claim is true for 1, . . . k − 1, we show it is true
for k:

k∑
i=1

βiV ↑
k−i+1(x∗) = βV ↑

k (x∗) +

k∑
i=2

βiV ↑
k−i+1(x∗)

= βV ↑
k (x∗) +

k−1∑
i=1

βi+1V ↑
k−(i+1)+1(x∗)

= βV ↑
k (x∗) + β

k−1∑
i=1

βiV ↑
(k−1)−i+1(x∗)

≥ βV ↑
k (x∗) + β

(
k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi −
1

1− β
ϵ

)
(By induction assumption)

= β

k∑
i=1

V ↑
i (x∗)− β

k−1∑
i=1

zi −
β

1− β
ϵ

≥
k∑

i=1

V ↑
i (x∗)−

k∑
i=1

zi − ϵ− β

1− β
ϵ (By Lemma 25)

=

k∑
i=1

V ↑
i (x∗)−

k∑
i=1

zi −
1

1− β
ϵ

Lemma 27. For all 1 < k ≤ n,

β

1− β
V ↑
k (x∗) ≥

k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi −
1

1− β
ϵ



Proof. First, notice that since k ≥ (k−1)− i+ 1 for any 1 ≤ i ≤ k and as the function V ↑
i ()

represents the i-th smallest objective value, also:

∀1 ≤ i ≤ k : V ↑
k (x∗) ≥ V ↑

(k−1)−i+1(x∗) (9)

In addition, consider the geometric series with a first element 1, a ratio β, and a length
(k − 1). As β < 1, its sum can be bounded in the following way:

k−1∑
i=1

βi−1 =
1− βk−1

1− β
< lim

k→∞

1− βk−1

1− β
=

1

1− β
(10)

Now, the claim can be concluded as follows:

β

1− β
V ↑
k (x∗) = β

(
1

1− β
V ↑
k (x∗)

)
> β

(
k−1∑
i=1

βi−1V ↑
k (x∗)

)
(By Equation (10))

≥ β

(
k−1∑
i=1

βi−1V ↑
(k−1)−i+1(x∗)

)
(By Equation (9))

=

k−1∑
i=1

βiV ↑
(k−1)−i+1(x∗)

≥
k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi −
1

1− β
ϵ (By Lemma 26 for (k − 1) ≥ 1)

We are now ready to prove the Theorem 8.

Proof of Theorem 8. Recall that the claim is that x∗ is a
(

α2

1−α+α2 ,
ϵ

1−α+α2

)
-leximin-

approximation.
For brevity, we define the following constant:

∆(α) =
1

1− α + α2

Accordingly, we need to prove that x∗ is a
(
α2 ·∆(α), ϵ ·∆(α)

)
-approximation.

As α = 1− β, it is easy to verify that:

∆(α) =
1

1− β + β2
(11)

Now, suppose by contradiction that x∗ is not
(
α2 ·∆(α), ϵ ·∆(α)

)
-approximate leximin-

optimal. By definition, this means there exists a solution y ∈ S that is
(
α2 ·∆(α), ϵ ·∆(α)

)
-

leximin-preferred over it. That is, there exists an integer 1 ≤ k ≤ n such that:

∀j < k : V ↑
j (y) ≥ V ↑

j (x∗);

V ↑
k (y) >

1

α2 ·∆(α)

(
V ↑
k (x∗) + ϵ ·∆(α)

)
.



Since x∗ was obtained in (P2-Comp) that was solved in the last iteration n, it is clear that∑k
i=1 V ↑

i (x∗) ≥
∑k

i=1 zi (by constraint (P2-Comp.2) if k < n and (P2-Comp.3) otherwise).
Which implies:

k∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi ≥ zk (12)

Now, consider (P2-Comp) that was solved in iteration k. By Observation 23, x∗ is
feasible to this problem. As the (k − 1) smallest objective values of y are at least as high
as those of x∗, it is easy to conclude that y also satisfies constraints (P2-Comp.2) of this
problem; since, for any ℓ < k:

ℓ∑
i=1

V ↑
i (y) ≥

ℓ∑
i=1

V ↑
i (x∗) ≥

ℓ∑
i=1

zi

Therefore, by Observation 22, y is also feasible to this problem.
The value obtained during the algorithm run as an approximation for this problem is zk.

This means that the optimal value is at most 1
α (zk + ϵ). As y is feasible in this problem,

and since the objective value obtained by y in this problem is
∑k

i=1 V ↑
i (y) −

∑k−1
i=1 zi (by

Observation 22), this implies the following:

k∑
i=1

V ↑
i (y)−

k−1∑
i=1

zi ≤
1

(1− β)
(zk + ϵ) (13)

If k = 1, we get that the objective value obtained by y is V ↑
1 (y). In addition, V ↑

1 (x∗) ≥ z1
by Equation (12). However, as 0 < α ≤ 1, then ∆(α) ≥ 1 but α ·∆(α) ≤ 1. It follows that:

V ↑
1 (y) >

1

α2 ·∆(α)

(
V ↑
1 (x∗) + ϵ ·∆(α)

)
≥ 1

α
(z1 + ϵ)

In contradiction to Equation (13).
Therefore, k > 1. We start by showing that the following holds:

V ↑
k (y) >

1

1− β

(
V ↑
k (x∗) + β

k−1∑
i=1

V ↑
i (x∗)− β

k−1∑
i=1

zi + ϵ

)
(14)

Consider V ↑
k (y), by the definition of y for k we get that:

V ↑
k (y) >

1

α2 ·∆(α)

(
V ↑
k (x∗) + ϵ ·∆(α)

)
=

1

α

(
1− β + β2

1− β
V ↑
k (x∗) +

1

α
ϵ

)
(By Equ. (11) and β’s def.)

=
1

α

(
V ↑
k (x∗) +

β2

1− β
V ↑
k (x∗) +

1

α
ϵ

)
≥ 1

α

(
V ↑
k (x∗) + β

[ k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi −
1

1− β
ϵ
]

+
1

α
ϵ

)
(By Lemma 27)

1

1− β

(
V ↑
k (x∗) + β

k−1∑
i=1

V ↑
i (x∗)− β

k−1∑
i=1

zi + ϵ

)
(By β’s def.)



But, we shall now prove that this means, once again, that the objective value of y, which
is
∑k

i=1 V ↑
i (y)−

∑k−1
i=1 zi, is higher than 1

1−β (zk + ϵ), in contradiction to Equation (13):

k∑
i=1

V ↑
i (y)−

k−1∑
i=1

zi =

k−1∑
i=1

V ↑
i (y)−

k−1∑
i=1

zi + V ↑
k (y)

By the definition of y for i < k:

≥
k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi + V ↑
k (y)

By Equation (14):

>

k−1∑
i=1

V ↑
i (x∗)−

k−1∑
i=1

zi +
1

1− β
V ↑
k (x∗) +

β

1− β

k−1∑
i=1

V ↑
i (x∗)− β

1− β

k−1∑
i=1

zi +
1

1− β
· ϵ

Since 1 +
β

1− β
=

1

1− β
, this equals to:

=
1

1− β

k−1∑
i=1

V ↑
i (x∗)− 1

1− β

k−1∑
i=1

zi +
1

1− β
V ↑
k (x∗) +

1

1− β
ϵ

=
1

1− β

(
k∑

i=1

V ↑
k (x∗)−

k−1∑
i=1

zi + ϵ

)
By Equation (12):

≥ 1

1− β
(zk + ϵ) .

This is a contradiction, so Theorem 8 is proved.

C Proof of Theorem 10

This section proves Theorem 10: suppose we are given a randomized algorithm that returns a
simple allocation that approximates the utilitarian welfare with multiplicative error β (with
success probability p). Then, Algorithm 1 can be used to obtain a stochastic allocation
that approximates leximin with a multiplicative error of at most β

1−β+β2 (with the same

probability).
As we saw in Section 4, an approximation to leximin can be obtained by providing a

procedure OP to approximate (P3) (Theorem 8), which, under these particular settings,



becomes:

max zt s.t. (C1)

(C1.1.1)
∑
A∈A

pd(A) = 1

(C1.1.2) pd(A) ≥ 0 ∀A ∈ A

(C1.2) ℓyℓ −
n∑

j=1

mℓ,j ≥
ℓ∑

i=1

zi ℓ = 1, . . . , t− 1

(C1.3) tyt −
n∑

j=1

mt,j ≥
t∑

i=1

zi

(C1.4) mℓ,j ≥ yℓ −
∑
A∈A

pd(A) · uj(A) ℓ = 1, . . . , t, j = 1, . . . , n

(C1.5) mℓ,j ≥ 0 ℓ = 1, . . . , t, j = 1, . . . , n

Here the variables are pd(A) for any simple allocation A ∈ A, zt, and yℓ and mℓ,j for all ℓ ∈ [t]
and j ∈ [n]; and the values z1, . . . zt−1 are constants. Notice that it is a linear program that
has a polynomial number of constraints thanks to (P3) representation, but an exponential
number of variables (since there is a variable pd(A) for each simple allocation). So, it
is unclear how to approach it directly in polynomial time. In addition, it means that the
output size is exponential in n. To deal with this issue, the solutions are considered in sparse
form — a list of the variables with positive values, along with their values. Accordingly, if a
solution has only a polynomial number of variables with positive values it can be represented
by a polynomial size. We will later see that the procedure described in this section returns
such a solution in polynomial time.

With t = 1, (C1) can be viewed as the problem of egalitarian welfare maximization,
indeed, Kawase and Sumita [16] who studied this problem, considered a slightly simpler
representation. We now show how their dual-based technique can be applied to approximate
(C1) for any t ≥ 1 while maintaining the same approximation factor.

To begin, consider the following program (C2), which is the result of modifying (C1) in
three ways. First, changing the objective-function to min 1/zt instead of max zt. Second,
replacing all the original variables and constants, except zt, with new ones that are smaller
by a factor zt (that is, p′A = pd(A)/zt for all A ∈ A, , y′ℓ = yℓ/zt,m

′
ℓ,j = mℓ,j/zt for ℓ ∈ [t]

and j ∈ [n], and z′i = zi/zt for i ∈ [t − 1]). And third, dividing all the constraints by zt
(zt > 0 since zt ≥ z1 for any t ≥ 1 and z1 > 0).



min 1/zt s.t. (C2)

(C2.1.1)
∑
A∈A

p′A = 1/zt

(C2.1.2) p′A ≥ 0 ∀A ∈ A

(C2.2) ℓy′ℓ −
n∑

j=1

m′
ℓ,j ≥

ℓ∑
i=1

z′i ℓ = 1, . . . , t− 1

(C2.3) ty′t −
n∑

j=1

m′
t,j ≥

t−1∑
i=1

z′i + 1

(C2.4) m′
ℓ,j ≥ y′ℓ −

∑
A∈A

p′A · uj(A) ℓ = 1, . . . , t, j = 1, . . . , n

(C2.5) m′
ℓ,j ≥ 0 ℓ = 1, . . . , t, j = 1, . . . , n

The programs (C1) and (C2) are related in the following way:

Lemma 28. There exists a bijection mapping each solution of (C1) with objective value V
to a unique solution of (C2) with objective value 1/V .

Proof. Let pd(A) for A ∈ A, zt, and yℓ and mℓ,j for all ℓ ∈ [t] and j ∈ [n] be a feasible solution
to the program (C1) with objective value V . It can be easily verified that p′A = pd(A)/zt
for A ∈ A, zt, and y′ℓ = yℓ/zt and m′

ℓ,j = mℓ,j/zt for all ℓ ∈ [t] and j ∈ [n] is a feasible
solution to the program (C2) with objective value 1/V .

Denote this bijection by Ψ, this also implies the following:

Lemma 29. If a solution approximates the program (C2) with a multiplicative error of
β

1−β . Then the corresponding solution to (C1) according to the bijection Ψ approximates
this program with a multiplicative error of β.

Proof. Let V ∗ be the optimal objective value of (C1). By Lemma 28, there exists a solution
to (C2) with value 1/V ∗. This solution yields the optimal value for (C2) — if there was
a solution that had a value lower than 1/V ∗ ((C2) is a minimization problem), then the
corresponding solution to (C1) (by the bijection Ψ) would have a value higher than the
optimal value V ∗. Now, let the value of the solution that approximates the program (C2)
with a multiplicative error of β

1−β be 1/V . Since (C2) is a minimization problem, assuming

that 1/V approximates 1/V ∗ with a multiplicative error of β
1−β means that:

1

V
≤
(

1 +
β

1− β

)
1

V ∗ ,

which implies that V ≥ (1− β)V ∗. As (C1) is a maximization problem, this means that V
approximates this problem with multiplicative error β. By Lemma 28, V is the value of the
corresponding solution to (C1) by the bijection Ψ.

Notice that the only constraint of (C2) that includes the variable zt, (C2.1.1), says
that

∑
A∈A p′A = 1/zt, and also that its objective function is min 1/zt. As a result, we

can reduce the need for the variable zt by removing constraint (C2.1.1) and changing the
objective function to min

∑
A∈A p′A. This change makes (C2) a linear program. This will

allow us to approximate it using its dual, as we will see.
The following observation will be useful later:



Observation 30. If a solution to (C2) is given in a sparse form — a list of the variables
with nonzero value and their values, then the corresponding solution to (C1) in a sparse
form can be computed in time polynomial to the number of nonzero variables.

For completeness, we briefly outline the process. When given a list of variables with nonzero
values, we first iterate the list and sum all variables of the form p′A, and then set zt to be 1
divided by this sum. After, for each variable ν′ in the list, we set the corresponding variable,
ν, to zt · ν′.

Now, let us consider the dual program of (C2), which can be described as follows:

max

t−1∑
ℓ=1

qℓ

ℓ∑
i=1

zi + qt(

t−1∑
i=1

zi + 1) (D2)

s.t. (D2.1)

n∑
j=1

uj(A)

t∑
ℓ=1

vℓ,j ≤ 1 ∀A ∈ A

(D2.2) ℓqℓ −
n∑

j=1

vℓ,j = 0 ℓ = 1, . . . , t

(D2.3) qℓ − vℓ,j ≤ 0 ℓ = 1, . . . , t, j = 1, . . . , n

(D2.4) vℓ,j ≥ 0 ℓ = 1, . . . , t, j = 1, . . . , n

(D2.5) qℓ ≥ 0 ℓ = 1, . . . , t

Here, the variables are qℓ and vℓ,j for any ℓ ∈ [t] and j ∈ [n]; and the constants are (as before)
zi for i ∈ [t − 1]. Recall that uj(A) is the utility that agent j assigns to simple allocation
A, as given by the value oracle. This problem has an exponential number of constraints —
a constraint for each allocation (in line (D2.1)) but only a polynomial number of variables.
Using the ellipsoid method [11], it could be solved in polynomial time if we had a separation
oracle — an oracle that given a vector υ either determines that υ is infeasible and returns
a violated constraint, or asserts that υ is feasible. Unfortunately, as we shall now see, it is
NP-hard to compute a separation oracle to this problem.

Lemma 31. Computing a separation oracle to (D2) is NP-hard.

Proof. We prove that a separation oracle for (D2) would allow us to compute a leximin
optimal stochastic allocation. As discussed previously, computing such an allocation is
NP-hard, so the same applies for computing a separation oracle for (D2).

First, we prove that such a separation oracle can be used to extract an optimal solution
to (C2). Assume that the ellipsoid method was operated with the given oracle to solve
(D2). Let C be the set of constraints that the oracle determined as being violated. Since
the ellipsoid method operates in polynomial time, the size of the set C is also polynomial.
Let VC be the set of variables of (C2) associated with the constraints in C. By comple-
mentary slackness, the variables in VC are the only ones that may get a positive value in
the corresponding optimal solution to (C2). Therefore, the program (C2) with only the
variables in VC (and the other variables equal to zero) has a polynomial size, and therefore
can be solved exactly.

But, by Observation 30, this would allow us to find the corresponding optimal solution to
(C1) in polynomial time. This means the described process can be used as an approximation
procedure to (P3) (that became (C1) under the settings of this problem) with β = ϵ = 0.
Therefore, by Theorem 8, this means we can use Algorithm 1 to obtain a leximin optimal
solution13.

13Actually, Theorem 8 says that Algorithm 1 will output a (1, 0)-leximin-approximation; But Lemma 3
says that such a solution is, indeed, a leximin optimal solution.



Algorithm 2 A Half-Randomized Approximate Separation Oracle to (D2)

INPUT: variables qℓ and vℓ,j for any ℓ ∈ [t] and j ∈ [n], an α-approximation algorithm for
the utilitarian welfare problem ((U1)) with success probability p.

1: Iterate over constraints (D2.2)-(D2.5). If one of them is violated, stop and return it.
2: If p = 1 then set T := 1; else set T := 1 + ⌈− log(1−p)(nI)⌉.
3: repeat T times
4: Operate the algorithm for the utilitarian welfare problem on n,m, (u′

j)
n
j=1 to obtain

an allocation Ã with value ν.
5: if ν > 1 then
6: Return the corresponding violated constraint

∑n
j=1 uj(Ã)

∑t
ℓ=1 vℓ,j > 1

7: end if
8: end repeat
9: Return ”the assignment is approximately-feasible”.

In Appendix D, we present another variant of the ellipsoid method, which allows us
to approximate the program (C2) given a half-randomized approximate separation oracle
to (D2). That is, an oracle that, given a multiplicative error β, a success probability p,
and a vector υ, either determines that υ is infeasible and returns a violated constraint; or
determines that υ is β-approximately-feasible, which means that for any constraint a ·x ≤ b,
the vector υ satisfies a·υ ≤ (1+β)·b. When the oracle says that υ is β-approximately-feasible,
it is correct with probability at least p. Given such an oracle for the dual program, the
ellipsoid method variant can be used to output a solution to the primal, that approximates
it to the same factor with probability at least pI , where I is an upper bound on the number
of iterations in any execution of the ellipsoid method variant on the dual (if it is given a
deterministic oracle). We can therefore conclude the following result:

Lemma 32. Given a half-randomized approximate separation oracle to the problem (D2),
with a multiplicative error of β

1−β and a success probability p, a stochastic allocation that

approximates leximin to a multiplicative error β
1−β+β2 can be obtained with probability pnI .

Proof. As described above, we can use the ellipsoid method variant of Appendix D with
the given oracle to (D2) to obtain a solution to (C2), that approximates it with a multi-
plicative error of β

1−β with probability pI . Then, by Observation 30, this would allow us

to find the corresponding solution to (C1), that, with probability pI , approximates it with
a multiplicative error of β. That is, the described process can be used as a randomized
approximation procedure to (P3) (that became (C1) under the settings of this problem).
Therefore, by Theorem 8, Algorithm 1 can be used to obtain a leximin approximation to the
original problem with only a multiplicative error of β

1−β+β2 with probability pnI (Corollary

9).

Now, we show that such an oracle can be designed given a randomized approxima-
tion algorithm for computing a simple allocation that approximates the utilitarian welfare.
Specifically,

Lemma 33. Given a randomized approximation algorithm for computing a simple allo-
cation that approximates the utilitarian welfare with multiplicative error β and a success
probability p, a half-randomized approximate separation oracle to (D2) can be designed with
a multiplicative error of β

1−β and a success probability at least
(
1− 1

nI (1− p)
)
.

Algorithm 2 describes the oracle. It accepts as input an assignment to the variables of
(D2), that is, qℓ and vℓ,j for any ℓ ∈ [t] and j ∈ [n], and an algorithm for approximating



the maximum utilitarian welfare. It starts by verifying constraints (D2.2)-(D2.5) one by
one (this is possible as their number is polynomial in n and m). If a violated constraint
was found, the oracle simply returns it. Otherwise, it proceeds to check constraints (D2.1).
Although the number of constraints described by (D2.1) is exponential in n, they can be
treated collectively in polynomial time (as in [16]). First, notice that in order to determine
whether the expression

∑n
j=1 uj(A)

∑t
ℓ=1 vℓ,j is at most 1 for all simple allocations (A ∈ A),

it is sufficient to check the allocation that maximizes this expression and compare it to 1.
Define new utility functions for all j ∈ [n] and A ∈ A,

u′
j(A) :=

t∑
ℓ=1

vℓ,j · uj(A)

The above expression can be simplified to
∑n

j=1 u
′
j(A). An allocation that maximizes this

expression is an allocation that maximizes the utilitarian welfare (i.e., the sum of utilities)
when the same sets of agents and items is considered but with different utilities14 (u′

j instead
of uj for j ∈ [n]). Such an allocation cannot be found in polynomial time since approximating
the utilitarian welfare up to a factor better than (1− 1

e ) in the case of submodular utilities
is known to be NP-hard [17]. However, the oracle is given an approximation algorithm to
the utilitarian welfare problem as input. Therefore, an allocation Ã with utilitarian value
at least (1− β) of the optimal can be obtained with probability p. We shall now see that it
is enough.

Proof of Lemma 33. First, observe that when Algorithm 2 returns a violated constraint, it
is always correct. This is obvious for constraints described by (D2.2)-(D2.5), since these
constraints have been verified directly. For constraints described by (D2.1), it means that
the algorithm found an allocation Ã that satisfies

∑n
j=1 u

′
j(Ã) > 1. By the definition of u′,

the constraint corresponding to this allocation is, indeed, violated:

n∑
j=1

uj(Ã)

t∑
ℓ=1

vℓ,j =

n∑
j=1

u′
j(Ã) > 1.

Let us assume that the given algorithm for the utilitarian welfare problem is deterministic
(i.e., p = 1) and then revisit the case p < 1. Assume that the oracle said that the assignment
is approximately-feasible. This means that the algorithm for the utilitarian welfare problem
found an allocation Ã with value at most 1. Since Ã is approximately-optimal, the optimal
utilitarian value is at most 1/(1−β) ·1. As this is an upper bound of the utilitarian value of
any allocation, it follows that all the constraints described bu (D2.1) are β

1−β -approximately
maintained — that is, for any allocation A ∈ A the following holds:

n∑
j=1

u′
j(A) =

n∑
j=1

uj(A)

t∑
ℓ=1

vℓ,j ≤
1

1− β
· 1 =

(
1 +

β

1− β

)
· 1

We get that, in this case, the oracle is also deterministic, and that the success probability
is at least

(
1− 1

nI (1− p)
)

= 1 for p = 1.
Assume now that p < 1. Then, the oracle may be incorrect when it says the assignment

is approximately feasible, but only if the algorithm for the utilitarian welfare problem did
not return an appropriate approximation in all T = ⌈− log(1−p)(nI)⌉ + 1 operations, that

14Notice that the utilities u′
j are normalized, monotone, submodular, and can be computed using t ≤ n

calls to the value oracle of uj



is, with probability at most (1− p)T . Notice that T > 1 since log(1−p)(nI) < 015. Now, as
T ≥ − log(1−p)(nI) + 1 and (1− p) < 1 we get that:

(1− p)T ≤ (1− p) · (1− p)− log(1−p)(nI) = (1− p)(nI)−1

So, the success probability is at least
(
1− 1

nI (1− p)
)
.

We can now prove Theorem 10.

Proof of Theorem 10. Assume we are given an algorithm that returns a simple allocation
that approximates the utilitarian welfare with multiplicative error β with success prob-
ability p. By Lemma 33 this algorithm can be used to obtain an half-randomized ap-
proximate separation oracle to (D2) with a multiplicative error β

1−β with success prob-

ability
(
1− 1

nI (1− p)
)
. By Lemma 32, with such an oracle a stochastic allocation that

approximates leximin to a multiplicative error of β
1−β+β2 can be obtained with probability(

1− 1
nI (1− p)

)nI
. If p = 1 then the success probability is 1 too (at least

(
1− 1

nI (1− p)
)nI

=
1). However, if p < 1, then 1

nI (1 − p) ∈ (0, 1) and therefore the success probability is at
least p16: (

1− 1

nI
(1− p)

)nI

≥
(

1− nI · 1

nI
(1− p)

)
= p.

D Ellipsoid Method Variant for Approximation

This Appendix describes a variant of the ellipsoid method that can be used to approximate
LPs that cannot be solved directly due to a large number of variables. The method combines
techniques presented in [12, 11, 15].

D.1 Using Approximate Separation Oracles (multiple error)

Our goal is to solve the following linear program (the primal):

min cT · x
s.t. A · x ≥ b, x ≥ 0;

(P)

We assume that (P) has a small number of constraints, but may have a huge number of
variables, so we cannot solve (P) directly. We consider its dual :

max bT · y
s.t. AT · y ≤ c, y ≥ 0.

(D)

Assume that both problems have optimal solutions and denote the optimal solutions of (P)
and (D) by x∗ and y∗ respectively. By the strong duality theorem:

cT · x∗ = bT · y∗ (15)

While (D) has a small number of variables, it has a huge number of constraints, so we
cannot solve it directly either. In this Appendix, we show that (p) can be approximated
using the following tool:

15Since (1− p) ∈ (0, 1) and nI > 1 by change of base: log(1−p)(nI) = log(nI)/ log(1− p), the numerator
is positive and the denominator is negative.

16For any ϵ ∈ (0, 1) and k ∈ Z+ : (1− ϵ)k ≥ 1− k · ϵ



Definition D.1. An approximate separation oracle with multiplicative error (MASO) for
the dual LP is an efficient function parameterized by a constant β ≥ 0. Given a vector y it
returns one of the following two answers:

1. ”y is infeasible”. In this case, is returns a violated constraint, that is, a row aTi ∈ AT

such that aTi y > ci.

2. ”y is approximately feasible”. That means that AT y ≤ (1 + β) · c

Given the MASO, we apply the ellipsoid method as follows (this is just a sketch to
illustrate the way we use the MASO; it omits some technical details):

• Let E0 be a large ellipsoid, that contains the entire feasible region, that is, all y ≥ 0
for which AT y ≤ c.

• For k = 0, 1, . . . ,K (where K is a fixed constant, as will be explained later):

– Let yk be the centroid of ellipsoid Ek.

– Run the MASO on yk.

– If the MASO returns ”yk is infeasible” and a violated constraint aTi , then make
a feasibility cut — keep in Ek+1 only those y ∈ Ek for which aTi y ≤ ci.

– If the MASO returns ”y is approximately feasible”, then make an optimality cut
— keep in Ek+1 only those y ∈ Ek for which bT y ≥ bT yk.

• From the set y0, y1, . . . , yK , choose the point with the highest bT · yk among all the
approximately-feasible points.

Since both cuts are through the center of the ellipsoid, the ellipsoid dilates by a factor of
at least 1

r at each iteration, where r > 1 is some constant (see [11] for computation of
r). Therefore, by choosing K := log2 r · L, where L is the number of bits in the binary
representation of the input, the last ellipsoid EK is so small that all points in it can be
considered equal (up to the accuracy of the binary representation).

The solution y′ returned by the above algorithm satisfies the following two conditions:

AT y′ ≤ (1 + β) · c (16)

bT y′ ≥ bT y∗ (17)

Inequality 16 holds since, by definition, y′ is approximately-feasible.
To prove 17, suppose by contradiction that bT y∗ > bT y′. Since y∗ is feasible for (D),

it is in the initial ellipsoid. It remains in the ellipsoid throughout the algorithm: it is
removed neither by a feasibility cut (since it is feasible), nor by an optimality cut (since its
value is at least as large as all values used for optimality cuts). Therefore, it remains in
the final ellipsoid, and it is chosen as the highest-valued feasible point rather than y′ — a
contradiction.

Now, we construct a reduced version of (D), where there are only at most K constraints
— only the constraints used to make feasibility cuts. Denote the reduced constraints by
AT

red · y ≤ cred, where AT
red is a matrix containing a subset of at most K rows of of AT , and

cred is a vector containing the corresponding subset of the elements of c. The reduced-dual
LP is:

max bT y

s.t. AT
red · y ≤ cred, y ≥ 0

(RD)



Notice that it has the same number of variables as the program (D). Further, if we had
run this ellipsoid method variant on (RD) (instead of (D)), then the result would have been
exactly the same — y′. Therefore, (17) holds for the (RD) too:

bT y′ ≥ bT y∗red (18)

where y∗red is the optimal value of (RD).
As AT

red contains a subset of at most K rows of AT , the matrix Ared contains a subset
of columns of A. Therefore, the dual of (RD) has only at most K variables, which are those
who correspond to the remaining columns of A:

min cTred · xred

s.t. Ared · xred ≥ b, xred ≥ 0
(RP)

Since (RP) has a polynomial number of variables and constraints, it can be solved exactly
by any LP solver (not necessarily the ellipsoid method). Denote the optimal solution by
x∗
red.

Let x′ be a vector which describes an assignment to the variables of (P), in which all
variables that exist in (RP) have the same value as in x∗

red, and all other variables are set
to 0. It follows that A · x′ = Ared · x∗

red, therefore, since x∗
red is feasible to (RP)), also x′ is

a feasible solution to (P). Similarly, cT · x′ = cTred · x∗
red. We shall now see that this implies

that the objective obtained by x′ approximates the objective obtained by x∗:

cT · x′ = cTred · x∗
red

= bT · y∗red (By strong duality for the reduced LPs)

≤ bT · y′ (By Equation (18))

≤ (A · x∗)T y′ (By the definition of (P))

= (x∗)T (AT · y′) (By properties of transpose and associativity of multiplication)

≤ (x∗)T ((1 + β) · c) (By Equation (16))

= (1 + β) · (cTx∗) (By properties of transpose)

So, x′ (x∗
red with all missing variables set to 0) is an approximate solution to the primal LP

(P) — as required.

D.2 Using Half-Randomized Approximate Separation Oracles

Here, we allow the oracle to also be half-randomized, that is, when it says that a solution
is infeasible, it is always correct; however, when it says that a solution is approximately
feasible, it is only correct with some probability p ∈ [0, 1].

Since the ellipsoid method variant is iterative, and since the oracle calls are independent,
there is a probability pT that the oracle answers correctly in each iteration, and so, the overall
process performs as before. We shall now explain why, using a half-randomized oracle, this
ellipsoid method variant always returns a feasible solution to the primal (even if the oracle
was incorrect).

First, notice that the oracle is always correct when it determines that a solution is in-
feasible. In addition, the construction of (RD) is entirely determined by these constraints.
Therefore, by the same arguments, x′ would still be a feasible solution to P (but not neces-
sarily with an approximately-optimal objective value).

This means that given a half-randomized approximate separation oracle for the dual with
error β and success probability p, this ellipsoid method variant can be used as a randomized



approximation algorithm for the primal with the same error and success probability pI

(where I is an upper bound on the number of iteration of the method on the given input).
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