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Abstract

We study the formation of stable outcomes via simple dynamics in cardinal hedonic games,
where the utilities of agents change over time depending on the history of the coalition formation
process. Specifically, we analyze situations where members of a coalition decrease their utility
for a leaving agent (resentment) or increase their utility for a joining agent (appreciation). We
show a series of convergence results for dynamics for resentful or appreciative agents which do
not hold for classical dynamics. In particular, resentment turns out to be a strong stability-
driving force. If resentment is expressed by the deviator, we find a more nuanced picture, but
still a broad possibility of convergence. We complement our theoretical analysis with simulations
that allow us to get insight on the average running time of the dynamics and on the structure
of the produced outcomes. On the theoretical side, we obtain broad hardness of determining
the fastest convergence time, a result which also carries over to classical dynamics under static
utility functions.

1 Introduction

Coalition formation is a vibrant topic in multi-agent systems that has been continuously researched
during the last decades. It concerns the question of dividing a set of agents, for example, humans or
machines, into disjoint coalitions such as research teams. Agents carry preferences over these coalition
structures. A common assumption is that externalities, that is, the coalition structure outside one’s own
coalition, play no role. This is captured in the prominent framework of hedonic games. Moreover, the
desirability of a coalition structure is usually measured with respect to stability. Abstractly speaking, a
coalition structure is stable if there is no agent or set of agents that can perform a beneficial deviation
by joining existing coalitions or by forming new coalitions.

There are two specific properties of hedonic games crucially influencing past research. First, the
number of possible coalitions an agent can be part of is exponentially large. Therefore, a repeatedly
considered challenge is to come up with reasonable succinctly representable settings. It is very prominent
in this context to aggregate utilities from cardinal valuations of other agents [8, 3, 1]. Second, most
established stability concepts suffer from non-existence under strong restrictions which often leads to
computational boundaries such as hardness of the decision problem whether a stable state exists [28, 2, 1].
Much of the research has therefore focused on identifying suitable conditions guaranteeing stable states.

The dominant coalition formation framework is static in two dimensions. First, stability is usually a
static concept in the sense that, since a coalition structure is either stable or not, we are only interested in
finding these stable structures. The underlying assumption here is that we operate in a centralized system
where a (desirable) coalition structure can be created by a central authority. This paradigm has only
recently been complemented by interpreting deviations of agents as a dynamic process, and analyzing
how stable coalition structures can be reached through decentralized individual decisions [10, 11]. Second,
utility functions are static. To demonstrate the implications of this assumption, we describe a run-and-
chase example, which is present in many classes of hedonic games. Consider a situation where there are
only the two agents Alice and Bob. Alice wants to be alone in her coalition, whereas Bob wants to be
in a joint coalition with Alice. It is clear that in the two possible coalition structures, there is always
an agent who wants to change their situation. From a centralized perspective, this simply means that
no coalition structure has the prospect of stability. In a distributed, dynamic setting where utilities are
static, the following occurs indefinitely: Whenever Alice and Bob are in a joint coalition, then Alice
leaves the coalition to be alone. However, whenever Alice and Bob are in two separate coalitions, then
Bob joins Alice. In practice, such an infinite situation is unreasonable: After playing run-and-chase for
a while, one of the agents is likely to change their behavior, and therefore their preferences. On the
one hand, Bob might get frustrated because he is constantly left by Alice and therefore stops his efforts
to join her. On the other hand, Alice could realize the high effort that Bob makes to be in a coalition
with her and feels sufficient appreciation to eventually accept Bob in her coalition. In both scenarios,
we reach a state that is stable because of the history of the coalition formation process.
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Table 1: Overview of results. Each column corresponds to one stability criterion (see Section 2 for
definitions). “✓” means that the corresponding dynamics is guaranteed to converge; “✗” means that
we have an example for an infinite sequence. For each result, we include the number of the respective
statement. For appreciation, all non-convergence results also hold if deviations are restricted to be
individually rational.

SCS CS IS CNS NS

ASHG
resentment ✓ (3.1) ✓ (3.1) ✓ (3.1) ? ?
resentment+IR ✓ (3.1) ✓ (3.1) ✓ (3.1) ✓ (3.3) ✓ (3.3)
appreciation ✗ (4.3) ✗ (4.3) ? ✓ (4.4) ?

MFHG
resentment ? ? ? ? ✗ (3.4)
resentment+IR ✓ (3.2) ✓ (3.2) ✓ (3.2) ✓ (3.3) ✓ (3.3)
appreciation ✗ (4.3) ✗ (4.3) ? ? ✗ (4.1)

In this paper, we model situations where the history influences the agents’ utilities, offering a new
perspective on the reachability of stable coalition structures. We study a dynamic coalition formation
process where agents perform deviations based on stability concepts. However, in contrast to previous
work on dynamics, we assume that a deviation has an effect on the perception of the deviator, resulting
in agents changing their utility for the deviator. We distinguish two approaches. First, an agent might
act resentfully in the sense that, like Bob, she lowers her utility for an agent abandoning her. If a
resentful agent is repeatedly abandoned by a deviator, the resentful agent eventually looses interest in
being together with the deviator. On the other hand, an agent could appreciate the effort of another
agent to be part of her coalition, and therefore, like Alice, increase her utility for an agent whenever the
agent joins her. After sufficient effort, the urge to leave the deviator ceases.

1.1 Contribution

We initiate the study of cardinal hedonic games under utility functions changing over time. In particular,
we consider utility modifications based on the resentful and appreciative perception of other agents. We
investigate whether decentralized dynamics based on various types of deviations are guaranteed to con-
verge. Deviations might be constrained to be individually rational (IR), that is, a deviating agent needs
to prefer her new coalition to being alone. We showcase our results by considering additively separable
hedonic games (ASHGs) and modified fractional hedonic games (MFHGs), where an agent’s utility for
a coalition is the sum or average utility for the other agents in the coalition, respectively. Table 1 pro-
vides an overview of these results. First, for resentful agents performing individually rational deviations,
convergence is guaranteed in all considered cases. If deviations may also violate individual rationality,
the situation becomes more complicated and elusive to a complete understanding; nevertheless, we es-
tablish several convergence guarantees while also having an involved example of a cycling dynamics in
MFHGs. In contrast, appreciation is usually not sufficient to guarantee convergence. Notably, as proved
in Propositions 3.5 and 4.2, some of our open questions are equivalent.

In fact, most of our results do not only apply to ASHGs and/or MFHGs but to larger classes of hedonic
games. For this, we develop an axiomatic framework for utility aggregation based on the perception of
friends and enemies, that is, agents yielding positive and negative utility, respectively.

In our simulations, we observe that our model of dynamic utilities leads to the (quick) convergence
of Nash dynamics. Moreover, we analyze the structure and expressiveness of the produced outcomes.
Finally, we outline results for other perception models and for computational questions concerned with
finding shortest converging sequences.

1.2 Related Work

Hedonic games originate from economic theory [17], but their constant and broad consideration only
started with key publications by Banerjee et al. [5], Cechlárová and Romero-Medina [15], and Bogo-
molnaia and Jackson [8]. An overview of hedonic games is provided in the survey by Aziz and Savani
[1]. The search for suitable representations of reasonable classes of hedonic games has led to various
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proposals [see, e.g., 15, 8, 4, 18, 24, 3].
Various stability concepts and their computational boundaries have been previously studied. We

focus on results concerning ASHGs [8] and MFHGs [24]. Sung and Dimitrov [28] show prototype NP-
hardness reductions for single-agent stability concepts in ASHGs, paving the way for many similar results
for single-agent and group stability [see, e.g., 2, 11, 13]. Gairing and Savani [21] consider ASHGs under
symmetric utilities and show PLS-completeness of computing stable states, while Woeginger [29] and
Peters [25] show ΣP

2 -completeness of the (strict) core in ASHGs. Peters and Elkind [26] provide a meta
view on computational hardness. For MFHGs, there seem to be less computational boundaries. Indeed,
for symmetric and binary utilities, stable states exist and can be efficiently computed. Core stability
is even tractable for symmetric and arbitrarily weighted utilities [23]. Apart from the consideration
of stability, other desirable notions of efficiency or fairness such as Pareto optimality, envy-freeness, or
popularity have been studied for ASHGs and MFHGs [2, 19, 12, 9]. These papers provide more evidence
that MFHGs seem to be less complex than ASHGs.

The dynamical, distributed approach to coalition formation received increased attention very recently
[22, 6, 14, 10, 20, 11, 7]. In this line of research, the goal is typically to establish under which circumstances
dynamics are (not) guaranteed to converge [6, 14, 10, 20, 11]. In addition, computational questions such
as deciding whether all (or at least one) execution of some dynamic from a given initial state converge
have been examined [10, 11]. Such questions have been explored both for single-agent deviations Bilò
et al. [6], Brandt et al. [10, 11] and group stability Carosi et al. [14], Fanelli et al. [20] for a variety of
hedonic games, including additively separable and fractional hedonic games. Our work differs from these
papers in that we analyze the convergence of dynamics in cases where the utility of agents depends on
the history of the process.

2 Preliminaries and Model

In this section, we define the basic coalition formation setting, our specific model, and provide some first
observations. For an integer i ∈ N, we define [i] = {1, . . . , i}.

2.1 Cardinal Hedonic Games

Let N = [n] be a finite set of agents. A coalition is any non-empty subset of N . We denote the set of all
possible coalitions containing agent i ∈ N by Ni = {C ⊆ N : i ∈ C}. Any partition of the agents N is
also called coalition structure and we denote the set of all partitions of N by ΠN . Given an agent i ∈ N
and a partition π ∈ ΠN , let π(i) denote the coalition of i, i.e., the unique coalition C ∈ π with i ∈ C. A
(cardinal) hedonic game is a pair (N, u) consisting of a set N of agents and a utility profile u = (ui)i∈N

where ui : N → Q is the utility function of agent i. Thus, for i, j ∈ N , ui(j) is i’s utility for agent j.
We sometimes equivalently view a utility function as a vector ui ∈ Qn. An agent j ∈ N is a friend (or
enemy) of an agent i ∈ N if ui(j) > 0 (or ui(j) < 0).

To move from utilities for single agents to utilities over coalitions, we use cardinal aggregation functions
(CAFs). For every agent i ∈ N , the CAF Ai : Ni×Qn → Q specifies i’s utility for a given coalition for her
given utility vector. Then, the utility of an agent for a partition π with respect to aggregation function
Ai is uAi

i (π) = Ai(π(i), ui). To keep notation concise, we sometimes omit the CAF as a superscript
when it is clear from the context. For an agent i ∈ N with utility function ui, a coalition C ∈ Ni is
individually rational (IR) if Ai(C, ui) ≥ Ai({i}, ui). Further, a partition π is individually rational (IR)
for agent i if π(i) is an individually rational coalition.

Common classes of cardinal hedonic games such as the two specific classes studied in this paper have
a straightforward representation with respect to CAFs. For each agent i ∈ N with utility function ui,

• additively separable hedonic games (ASHGs) [8] use the aggregation function AS defined by
AS i(C, ui) =

∑
j∈C\{i} ui(j) and

• modified fractional hedonic games (MFHGs) [24] use the aggregation function MF defined by

MF i(C, ui) =
∑

j∈C\{i} ui(j)

|C|−1 if |C| ≥ 2 and MF i(C, ui) = 0, otherwise.

Note that both in ASHGs and MFHGs agents derive zero utility from being in a singleton coalition.

3



NS

ISCNS

SCS

CS

Figure 1: Relations among our stability concepts. Arrows indicate implications. For example, strict core
stability (SCS) implies core stability (CS) and individual stability (IS).

2.2 Deviations and Stability

As indicated in the introduction, we distinguish different stability notions based on single-agent deviations
and group deviations. Given a partition π ∈ ΠN , agent i ∈ N might perform a single-agent deviation
from π(i) to any coalition C ∈ π∪{∅}, resulting in the partition π′ = (π\{π(i), C})∪{π(i)\{i}, C∪{i}};
and a group of agents C ⊆ N might perform a group deviation, leading to the partition π′ = (π \ {π(j) |
j ∈ C}) ∪ {π(j) \ C | j ∈ C} ∪ {C}. Depending on which agents improve as a result of a deviation, we
distinguish the following types of deviations. Agent i’s single-agent deviation from π(i) to C ∈ π ∪ {∅},
resulting in partition π′, is a Nash (NS) deviation if ui(π

′) > ui(π). An NS deviation of i from π to π′

is called

• an individual (IS) deviation if uj(π
′) ≥ uj(π) for all j ∈ C, where C is the coalition to which i

deviated; and

• a contractual Nash (CNS) deviation if uj(π
′) ≥ uj(π) for all j ∈ π(i) \ {i}.

A group deviation of coalition C from π to π′ is

• a core (CS) deviation if ui(π
′) > ui(π) for all i ∈ C; and

• a strict core (SCS) deviation if ui(π
′) ≥ ui(π) for all i ∈ C and uj(π

′) > uj(π) for some j ∈ C.

Finally, for all types of deviations introduced above, we define the respective stability notion of a
partition by the absence of a corresponding deviation. For example, a partition π is said to be Nash-
stable (NS) if there is no NS deviation from π to another partition. The logical relations among the
resulting stability concepts are illustrated in Figure 1 (see also the survey of Aziz and Savani [1]).

For a given partition, several single-agent or group deviations might be possible. Yet, some deviations
seem to be more reasonable than others. We say that a deviation is IR if the resulting partition is IR for
all deviating agents. For all our considered stability concepts it holds that if an agent has a deviation
(that is potentially not IR), then she also has an IR deviation where she forms a singleton coalition.

2.3 Dynamic Coalition Formation

We now introduce our model of dynamic coalition formation over time, and the concepts of resentment
and appreciation. Throughout the paper, we consider sequences of partitions (πt)t≥0, where for every
t ≥ 1, πt evolves from πt−1 by means of some single-agent or group deviation. We assume that both
the initial coalition structure π0 and the initial utility vectors u0

i for each agent i ∈ N are given.
However, utilities change over time as follows. Under resentment, agents decrease their utilities by one
for all deviators that leave them, while under appreciation, agents increase their utilities by one for all
deviators that join them.1 More formally, if for some t ≥ 1, πt evolves from πt−1 via a single-agent
deviation of agent k ∈ N , then, for i, j ∈ N ,

• for resentful agents, ut
i(j) arises from ut−1

i (j) as ut
i(j) =

{
ut−1
i (j)− 1 i ̸= k, j = k, j ∈ πt−1(i),

ut−1
i (j) else.

• for appreciative agents, ut
i(j) arises from ut−1

i (j) as ut
i(j) =

{
ut−1
i (j) + 1 i ̸= k, j = k, j ∈ πt(i),

ut−1
i (j) else.

1Note that our choice of decreasing or increasing the utilities by one is somewhat arbitrary, as our theoretical results
hold for any fixed increase or decrease of utilities. Moreover, our results still work if every agent has an individual constant
to modify utilities. However, in case the utility change in each round is not constant, our convergence guarantees are no
longer applicable, as, for instance, run-and-chase situations can occur.
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If for t ≥ 1, πt evolves from πt−1 via a group deviation of C ⊆ N , then, for i, j ∈ N ,

• for resentful agents, ut
i(j) arises from ut−1

i (j) as ut
i(j) =

{
ut−1
i (j)− 1 i /∈ C, j ∈ C, j ∈ πt−1(i),

ut−1
i (j) else.

• for appreciative agents, ut
i(j) arises from ut−1

i (j) as ut
i(j) =

{
ut−1
i (j) + 1 i ̸= j, i ∈ C, j ∈ C,

ut−1
i (j) else.

We are concerned about sequences of partitions that evolve by deviations with respect to the current
utilities of the agents. For any stability concept α ∈ {NS , IS ,CNS ,CS ,SCS}, a sequence of partitions
(πt)t≥0 is called an execution of an α dynamics if πt evolves from πt−1 through an α deviation with
respect to the utility functions (ut−1

i )i∈N . If all deviations are individually rational, we call the dynamics
individually rational, e.g., individually rational NS dynamics in the case of Nash stability.

An execution of an α dynamics converges if it terminates after a finite number of T steps in a partition
πT that is stable with respect to (uT

i )i∈N under the stability notion α. We say that the α dynamics
converges if every execution of the α dynamics converges for every initial utility profile and partition.
By contrast, the dynamics cycles if there exists an infinite execution of the dynamics (for some initial
utilities and partition). The central question of this paper is when dynamics converge for resentful or
appreciative agents.

It is convenient to use a compact notation for utilities. We write ut,Ai

i (π) = Ai(π(i), u
t
i) and

ut,Ai

i (C) = Ai(C, u
t
i) for the utility of agent i at time t for a partition π ∈ ΠN or for coalition C ∈ Ni,

respectively. If the CAF Ai is clear from context, we usually omit it as superscript.
Before our main analysis, we present a useful lemma that holds for arbitrary dynamics. The lemma

can be applied to show that, from a certain point onwards, every deviation occurs infinitely often in an
infinite execution of a dynamic.2

Lemma 2.1. Let (πt)t≥0 be an infinite sequence of partitions induced by single-agent (or group) devia-
tions. Then, there exists a t0 ≥ 0 such that every single-agent (or group) deviation performed at some
time t ≥ t0 occurs infinitely often.

Lastly, we call an infinite sequence of partitions π = (πt)t≥0 periodic if there exist t0 ∈ N and p ∈ N
such that, for all k ∈ N0 and l ∈ {0, . . . , p− 1}, it holds that πt0+kp+l = πt0+l.

2.4 Properties of Aggregation Functions

We now introduce some useful properties of CAFs. For a simplified exposition, we give intuitive, informal
definitions. A formal treatment can be found in Appendix A. The CAF of an agent i ∈ N satisfies

• aversion to enemies (ATE) if i’s aggregated utility does not decrease when an enemy leaves i’s
coalition.

• individually rational aversion to enemies (IR ATE) if i’s aggregated utility does not decrease when
an enemy leaves one of i’s individually rational coalitions.

• enemy monotonicity (EM) if decreasing the utility for an enemy cannot increase i’s aggregated
utility for a coalition containing the enemy.

• enemy domination (ED) if in case i’s utility for some agent j is sufficiently negative and i’s utility
for every other agent is bounded, then no coalition containing j is individually rational for i.

All of these axioms capture the treatment of enemies. The first two axioms deal with situations where
an enemy leaves the agent’s coalition, where ATE is stronger than IR ATE. On the other hand, EM and
ED are variable utility conditions describing situations where the utility for an enemy decreases or some
agent turns into a very bad enemy, respectively. Apart from the implication between ATE and IR ATE,
there are no other logical relationships between any pair of axioms.

2All missing proofs can be found in the appendix.
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Example 2.2. In this example, we consider a game (N, u) for which the CAF MF violates ATE. Let
N = {a, b, c} and let the single-agent utilities be ua(b) = −1, ua(c) = −3, ub(a) = 1, and ub(c) = −1.
(The utilities uc(a) and uc(b) are irrelevant.)

Then, removing an enemy can make an agent worse. Indeed, MF a(N, ua) = −2 > −3 =
MF a({a, c}, ua). Hence, MF violates ATE. On the other hand, as we will see in Proposition 2.3, re-
moving an enemy from an individually rational coalition cannot decrease the utility in an MFHG. For
instance, MF b(N, ub) = 0 < 1 = MF b({a, b}, ub). ◁

Still, classical aggregation functions usually satisfy (most of) our introduced axioms.

Proposition 2.3. The additively separable CAF AS i satisfies ATE, IR ATE, EM, and ED. The modified
fractional CAF MF i satisfies IR ATE, EM, and ED but violates ATE.

3 Dynamics for Resentful Agents

In this section, we study the convergence of different types of dynamics for resentful agents. We start
by considering SCS, CS, and IS dynamics, before turning to CNS and NS dynamics.

3.1 Core Stability and Individual Stability

If deviating agents need consensus from their new coalition, it turns out that resentment is a strong
force to establish convergence. The intuitive reason for this is that an agent a can only leave an agent b
for a limited number of times until resentment prevents that they form a joint coalition again. In fact,
otherwise b’s utility for a becomes arbitrarily negative and b no longer gives a her consent to join. We
will prove that SCS dynamics, and thereby also CS and IS dynamics, always converge for a wide class
of CAFs.

Theorem 3.1. The SCS, CS, and IS dynamics converge for resentful agents whose CAFs satisfy aversion
to enemies and enemy monotonicity.

Proof. It suffices to consider SCS dynamics because every CS dynamics and every IS dynamics is also
an SCS dynamics.

Let a hedonic game (N, u0) with resentful agents be given where every agent i ∈ N has a CAF Ai that
satisfies aversion to enemies and enemy monotonicity. The key insight to show convergence of the SCS
dynamics is to prove that in every infinite sequence of SCS deviations, it happens infinitely often that
the non-negative single-agent valuation of some agent for another agent is decreased (due to resentment).
This is a contradiction, as the number of such deviations is bounded by

∑
i,j∈N : u0

i (j)≥0(⌊u0
i (j)⌋+ 1).

Consider an infinite execution (πt)t≥0 of the SCS dynamics. For the sake of contradiction, assume
that there is a step t0 ≥ 0 in this execution such that, starting with t0, it never happens again that
the non-negative valuation of some agent for another agent is decreased. The first step towards a
contradiction is to show that every SCS deviation is a Pareto improvement in this situation.3 Indeed,
every deviation is weakly improving for every agent in the coalitions that are abandoned: As no agent
decreases her non-negative utility for another agent, each abandoned agent is solely abandoned by agents
for which she momentarily has a negative utility. We can then iteratively apply aversion to enemies to
conclude that the deviation (weakly) increases the utility of each abandoned agent. Further, since by
the definition of an SCS deviation, every agent of the newly formed coalition is weakly improving, and
some of them are strictly improving, each SCS deviation is a Pareto improvement.

It remains to prove that there cannot be sequences of Pareto improvements of infinite length (due
to the changes of the utility functions implied by resentment). To prove this, we will make use of the
enemy monotonicity property. To this end, we will show that every agent i can deviate at most once to
each coalition C ∈ Ni while improving her utility by doing so. This provides an upper bound for the
length of any sequence of Pareto improving deviations.

Consider a time t ≥ t0 and define for some agent i ∈ N the set Ct
i = {C ∈ Ni : u

t
i(C) > ut

i(π
t)},

i.e., the set of coalitions that would lead to an improvement of agent i at time t. Consider the potential

3An outcome is a Pareto improvement over another outcome if it is weakly better for all agents and strictly better for
some agents.
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function V t =
∑

i∈N |Ct
i |. Note that V t0 ≤

∑
i∈N |Ni| is initially bounded and that the potential attains

only non-negative integer values. We will show that the potential decreases in every time step after t0.
To this end, let i ∈ N be some fixed agent and t ≥ t0 some fixed time. If πt+1(i) = πt(i), then agent

i does not change her utilities, and Ct+1
i = Ct

i . Further, if π
t+1(i) ̸= πt(i) but agent i was not part of the

deviating coalition, then, by our above assumption that no non-negative utility gets decreased, ut
i(j) < 0

for all agents j ∈ πt(i) \ πt+1(i). Hence, we can repeatedly apply aversion to enemies for all agents
in πt(i) \ πt+1(i) to conclude that ut+1

i (πt+1) = ut
i(π

t+1) ≥ ut
i(π

t). Further, as only i’s valuations of
agents from πt(i)\πt+1(i) got modified (decreased), the only coalitions C ∈ Ni that might have changed
their value for agent i contain some agent in πt(i) \ πt+1(i). Hence, we can (repeatedly) apply enemy
monotonicity to conclude that ut+1

i (C) ≤ ut
i(C) for all such coalitions. Hence, Ct+1

i ⊆ Ct
i .

Finally, if agent i is part of the deviating coalition at step t, then she does not change her utilities
for any agent and weakly improves the valuation of her coalition. Hence, Ct+1

i ⊆ Ct
i and we can conclude

that V t+1 ≤ V t. Further, if i strictly improves her utility, then ut+1
i (πt+1) > ut+1

i (πt) and it follows
that πt+1(i) ∈ Ct

i \ C
t+1
i . Hence, Ct+1

i ⊊ Ct
i . Since this has to be the case for at least one agent in every

time step, we conclude that V t+1 < V t.

As the cardinal aggregation function AS satisfies aversion to enemies and enemy monotonicity (Propo-
sition 2.3), Theorem 3.1 in particular implies that the SCS, CS, and IS dynamics always converge in
ASHGs for resentful agents.

Notably, Theorem 3.1 breaks down if we consider a CAF violating aversion to enemies, even if enemy
monotonicity is still satisfied. Indeed, we can then “ignore” individual utilities. For instance, anonymous
hedonic games where agents only care about the size of their coalitions satisfy enemy monotonicity.
In such games, resentment is clearly irrelevant and there exist anonymous hedonic games where IS
dynamics cycle [10]. Consequently, a result similar to Theorem 3.1 for aggregation functions that only
satisfy enemy monotonicity cannot be obtained. On the other hand, it remains an open question whether
enemy monotonicity is necessary for Theorem 3.1.

Unfortunately, MF violates aversion to enemies (Proposition 2.3), implying that Theorem 3.1 cannot
be directly applied to MFHGs for resentful agents. Nevertheless, if we require the performed SCS
deviations to be individually rational, then we can achieve convergence for a class of games containing
MFHGs (see Proposition 2.3).

Theorem 3.2. The individually rational SCS, CS, and IS dynamics converge for resentful agents whose
CAFs satisfy individually rational aversion to enemies and enemy monotonicity.

It remains open whether general SCS, CS, or IS dynamics for resentful agents may cycle in an MFHG.

3.2 Contractual Nash Stability and Nash Stability

For individually rational NS dynamics, resentment helps to establish convergence for a wide class of
games.

Theorem 3.3. The individually rational NS dynamics converges for resentful agents whose CAFs satisfy
enemy domination.

Proof. Let a hedonic game (N, u0) with resentful agents be given where every agent i ∈ N has a CAF Ai

that satisfies enemy domination. Assume for contradiction that there is an infinite execution of the
individually rational NS dynamics (πt)t≥0. Suppose that, for every t ≥ 1, πt evolves from πt−1 by an
individually rational NS deviation of agent dt.

By Lemma 2.1, there exists t0 ≥ 0 such that every deviation performed after t0 is performed infinitely
often. We will reach a contradiction in two steps. First, we use enemy domination to show that no agent
can ever be abandoned by an agent that she joined after t0. Then, as a second step, we use this insight
to show the existence of a non-negative potential function decreasing in every time step after t0.

For the first step, let i ∈ N be an agent and let C ∈ Ni be a coalition such that agent i performs a
deviation at time t1 ≥ t0 to form coalition C. Then, no agent from C \ {i} can abandon agent i in any
of their deviations after time t0. Assume for contradiction that there exists an agent j ∈ C \ {i} who
abandons agent i after time t0. Since the aggregation function satisfies enemy domination, there is a
constant c(ui, j) such that for all utility vectors u′

i with u′
i(k) ≤ ut1

i (k) for all k ∈ N and u′
i(j) ≤ c(ui, j),

it holds that u′
i(C) < u′

i({i}).

7



Since every deviation occurs infinitely often, there exists a time t2 ≥ t1 such that agent j has
abandoned agent i for at least ut1

i (j) − c(ui, j) times between time t1 and time t2. Since agent i is
resentful, this implies that ut2

i (j) ≤ ut1
i (j)− (ut1

i (j)− c(ui, j)) = c(ui, j). Additionally, resentful agents
can only decrease utilities for other agents. Therefore, it holds for all t ≥ t2 and k ∈ N that ut

i(k) ≤ ut1
i (k)

and ut
i(j) ≤ c(ui, j). Consequently, it follows from enemy domination for all times t ≥ t2 that agent i

cannot deviate to form coalition C again because this deviation would not be individually rational.
However, this contradicts the fact that every deviation after time t1 has to be performed infinitely often.
This establishes the second step, i.e., that an agent can never be left by an agent that is part of a coalition
which she joins after time t0.

For the second step, we will now define a potential function that is bounded from below by 0, integer-
valued, and strictly decreasing in every step t ≥ t1. Therefore, fix an agent i ∈ N and define Ai = {j ∈
N : j abandons i after time t0}. Given t ≥ t0, we have to distinguish two cases. If i already performed
a deviation after time t0, then let di(t) = max{t0 ≤ t′ ≤ t : dt

′
= i} be the last time that i performed

a deviation between t0 and t. In this case, define Pi(t) = {C ⊆ N \ Ai : i ∈ C, ut
i(C) > ut

i(π
di(t))}.

Otherwise, set Pi(t) = 2N\Ai . Note that Pi(t) contains all coalitions which i could potentially form
through a deviation after time t. Define the potential Λ(t) =

∑
j∈N |Pj(t)|.

We observe that Pi(t + 1) = Pi(t) if i ̸= dt+1. Assume now that i = dt+1. If the first deviation of i
occurs at time t, then Pi(t+ 1) ⊆ Pi(t) \ {πt(i)}. Otherwise, it must hold that πt(i) = πdi(t)(i), i.e., i is
part of the same coalition in step t to which it deviated in step di(t), which is the last deviation performed
by i. Indeed, due to the second step, no agent that was present when i joined πdi(t)(i) \ {i} can have left
and i is not allowed to leave if any agent fromN\πdi(t)(i) is still present. Also, agent i’s utilities for agents
in N \ Ai have not changed since her last deviation and therefore ut

i(j) = udi(t)(j) for all j ∈ N \ Ai.
Thus, i derives the same utility from πt(i) and πdi(t)(i). It follows that Pi(t + 1) ⊆ Pi(t) \ {πt(i)}.
Consequently, in each case, Λ(t+1) < Λ(t). As Λ(t) ≥ 0 for all t ≥ t1, the dynamics can run for at most
Λ(t1) steps after time t1. This completes the proof.

As AS andMF satisfy enemy domination (Proposition 2.3), Theorem 3.3 implies that the individually
rational NS dynamics converges in ASHGs and MFHGs for resentful agents. However, we do not know
under which conditions resentment is sufficient to guarantee convergence for arbitrary (not necessarily
individually rational) NS dynamics. In this case, our proof for Theorem 3.3 no longer works because it
is possible that agents join coalitions for which they have an arbitrarily low utility (if the utility for their
abandoned coalition was even worse). In fact, slightly counterintuitively, there is a non-trivial example
of a cycling NS dynamics in an MFHG for resentful agents.

Theorem 3.4. The NS dynamics may cycle in MFHGs for resentful agents.

This result indicates that some condition like aversion to enemies is probably needed for establishing
a convergence guarantee for general NS dynamics; however, it remains open whether such a result is
possible (even for ASHGs). Notably, this question for CAFs satisfying aversion to enemies is the same
as asking whether a CNS dynamics may cycle: For resentful agents in case of a cycling NS dynamics,
there is also a cycling CNS dynamics.

Proposition 3.5. For resentful agents with CAFs satisfying aversion to enemies, every sequence of NS
deviations contains only finitely many deviations that are not CNS deviations.

4 Dynamics for Appreciative Agents

We now turn to analyzing the effects of appreciation on the convergence of different types of dynamics.
Here, as statements for general CAFs would require the introduction of (even) further axioms, we focus on
AS and MF instead. We start by considering the possibility of cyclic NS and IS dynamics. Subsequently,
we analyze CS and CNS dynamics.

4.1 From Resentment to Appreciation

We proved in Theorem 3.4 that NS dynamics may cycle in MFHGs for resentful agents. “Reversing” this
sequence and appropriately adjusting the initial utilities leads to a cycling NS dynamics for appreciative
agents.
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Theorem 4.1. The individually rational NS dynamics may cycle in MFHGs for appreciative agents.

For ASHGs, we are not able to prove or disprove the convergence of NS dynamics. Still, we obtain
an analogous result to Proposition 3.5 showing that the question whether there is a cycling NS dynamics
is equivalent to asking for a cycling IS dynamics.

Proposition 4.2. For appreciative agents in ASHGs every sequence of NS deviations contains only
finitely many deviations that are not IS deviations.

The idea is that in every infinite sequence of NS deviations, there exists a certain time step from
which on agent a has a positive utility for each agent b that joins a (because b has already joined a
sufficiently often). However, note that the proof of Proposition 4.2 does not work for MFHGs, as in
MFHGs (in contrast to ASHGs) an agent a might veto the join of an agent b even if a has a positive
utility for b. Thus, despite of Theorem 4.1, it remains open whether IS dynamics may cycle in MFHGs
for appreciative agents.

Finally, we conjecture that it is possible to revert cyclic dynamics similar to the counterexamples for
MFHGs to obtain the equivalence of cycling NS dynamics under resentment and appreciation.4 This
would even show the equivalence of all four problems considered in Propositions 3.5 and 4.2.

4.2 Convergence for Appreciative Agents

We now consider stability concepts beyond Nash stability and give an overview under which circum-
stances appreciation is (not) sufficient to guarantee convergence in MFHGs and ASHGs. In contrast to
resentment, appreciation is not sufficient to guarantee convergence of CS dynamics.5

Theorem 4.3. The individually rational CS dynamics may cycle in ASHGs and MFHGs for appreciative
agents.

However, in the games considered in Theorem 4.3, there exists an execution of the CS dynamics that
converges. This raises the (open) question whether a converging execution of the CS dynamics exists for
every initial state in ASHGs and MFHGs for appreciative agents.

Lastly, we consider CNS dynamics. While the convergence of CNS dynamics remains open under
resentment, appreciation is sufficient to guarantee convergence. The proof idea is to consider an infinite
execution of the dynamics and identify a pair of agents i and j such that i infinitely often joins a coalition
containing j, whereas j infinitely often leaves a coalition containing i. We then show that it cannot be
beneficial for i to join j at some point.

Theorem 4.4. The CNS dynamics converges in ASHGs for appreciative agents.

Proof. Let an ASHG (N, u0) be given and consider an execution (πt)t≥0 of the CNS dynamics. Assume
for contradiction that the dynamics is infinite. By Lemma 2.1, there exists t0 ≥ 0 such that every
deviation performed at time t ≥ t0 is performed infinitely often.

Now, consider an agent i that joins a coalition C containing agent j at some time t ≥ t0. We claim
that it is impossible that j ever joins a coalition containing agent i after time t0. For the contrary, assume
that this happens, and therefore happens infinitely often. Then, since agent i and agent j join each other
infinitely often, there exists a time t′ ≥ t0 such that ut

j(i) > 0 and ut
i(j) > 0 for all t ≥ t′. Some time

after t′, the agents i and j will be in a joint coalition, again. Then, to perform the deviation again where
i joins C, the two agents have to be dissolved, i.e., one of them has to leave the other. However, since
they by now have positive utility for each other, each of them would block the other agent from leaving
according to the additively separable CAF. Hence, this cannot happen, a contradiction. Consequently,
agent j cannot join a coalition containing i after time t0.

Thus, the utilities of an agent i for agents in coalitions which she joins by a deviation are not affected
after time t0 by appreciation. Therefore, there exists a global constant U such that the maximum utility
of any agent obtained after any deviation is U . We derive a contradiction by showing that some agent
has to abandon a coalition of unbounded utility.

To this end, we prove the following claim.

4The conference version of our paper contains a proof of this conjecture which unfortunately turned out to be erroneous.
5For ASHGs, the next statement can be extended to an ASHG where initial valuations are symmetric by slightly

modifying the game presented by Aziz et al. [2, Figure 2].
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Table 2: Some of our experimental results on ASHGs. The columns contain the name of the dynamics,
the average number of steps until convergence, the average number of coalitions in the produced outcome,
and the average maximum size of a coalition in the produced outcome.

steps #coalitions max coalition size

Uniform utilities
resentment 60 055 50 1
appreciation 4309 2.74 42.57
res+apprec 15 261 5.26 18.43

Gaussian utilities
resentment 968 25.74 25.2
appreciation 1226 21.69 25.19
res+apprec 694 24.64 25.28

Claim 4.5. There exists an agent i ∈ N that abandons a coalition C containing an agent j that joins i
at some point during the dynamics.

Proof. Assume for contradiction that no such agent exists. To derive a contradiction, we will construct
an infinite sequence of coalitions increasing in utility with respect to the utility at time t0. This cannot
happen, because the number of coalitions an agent can be part of (and therefore the number of different
utility values that an agent can achieve at a fixed time) is bounded.

We claim that there exists an agent d ∈ N and a sequence of coalitions (Ck)k≥0 such that for every
k ≥ 1, the following two conditions hold: (i) d’s utility with respect to time t0 is strictly increasing, i.e.,
ut0
d (Ck) > ut0

d (Ck−1) and (ii) the coalition Ck is formed by a deviation of agent d.
Consider the first agent d performing a deviation after time t0, where d abandons coalition C0 to

form coalition C1. Then, u
t0
d (C1) > ut0

d (C0). Hence, we have found the first step of the sequence. Now,
assume that we have constructed a sequence (Ck)

m
k=0 which satisfies the two conditions. We know that

Cm is formed by a deviation of agent d. Consider the next time t̂ where some agent e ∈ Cm leaves the
coalition C containing Cm (which must happen, because the dynamics is infinite). If e ̸= d, then we
derive a contradiction to our initial assumption because e then leaves a coalition containing an agent,
namely agent d, that joined her by a deviation. Hence, e = d. If there exists an agent f ∈ C \ Cm,
then we again derive a contradiction because f must have joined d at some point. This implies that
C = Cm. Set Cm+1 to the coalition joined by agent d. Then, Cm+1 clearly fulfills the second condition.

Also, ut0
d (Cm+1) = ut̂

d(Cm+1) > ut̂
d(C) = ut̂

d(Cm) = ut0
d (Cm). In the first and last equality, we use that

appreciation does not affect the utilities for agents joined by agent d after time t0. Hence, also the first
condition is fulfilled. As such a sequence of coalitions cannot exist, we derive a contradiction, and the
claim must hold. ◁

Now, consider an agent i that abandons a coalition C containing an agent j that joins i at some point
during the dynamics. Since the deviation where agent j joins i happens infinitely often, there exists a
time T ≥ t0 such that ut

i(j) ≥ U −
∑

l∈C\{j} u
t0
i (l) for all t ≥ T . Consider the next time T ′ ≥ T where i

abandons C to form some coalition D. Then, uT ′

i (D) ≤ U ≤ uT ′

i (j) +
∑

l∈C\{j} u
t0
i (l) ≤ uT ′

i (C). In the

last inequality, we use that the utility of i for other agents can only have increased since time t0 (because
of appreciation). Hence, this deviation was not beneficial for i. This is a final contradiction showing that
an infinite dynamics cannot exist. □

5 Simulations

We analyze by means of simulations how resentment and appreciation influence NS dynamics in ASHGs
by examining the speed of convergence and the composition of the reached stable states. This gives
insights in the actual process that leads to convergence beyond the convergence guarantees and coun-
terexamples presented before. We only provide a brief overview of some of our results; see Appendix D
for details. We focus on ASHGs with n = 50 agents and sample 100 games for each of the following
utility models:

Uniform For two agents a, b ∈ N with a ̸= b, we sample ua(b) by sampling an integer from [−100, 100].
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Gaussian For each agent a ∈ N , we sample her base qualification µa by sampling an integer from
[−100, 100]. For two agents a, b ∈ N with a ̸= b, we sample ua(b) by drawing an integer from the
Gaussian distribution with mean µb and standard deviation 10.

Our dynamics start with the singleton partition. Subsequently, we perform an NS deviation selected
uniformly at random until the dynamics converges. In addition to the concepts considered in our the-
oretical analysis, we also consider resentful-appreciative agents, i.e., agents that are both resentful and
appreciative. Table 2 shows parts of our results.

Uniform Utilities The original NS dynamics without resentment or appreciation did not converge in
any of our sampled games within a limit of 100 000 steps. In contrast to this, for resentful, appreciative
and resentful-appreciative agents, NS dynamics always converged within this limit. However, resentful
agents needed much longer (i.e., on average 60 005 steps) than resentful-appreciative agents (15 261
steps) and appreciative agents (4309 steps). Thus, while both resentment and appreciation are helpful to
establish convergence, appreciation is more powerful than resentment here, and in fact adding resentment
to appreciation rather hurts than helps (as the two can “cancel out”). Moreover, generally speaking, a
lot of steps until convergence are still needed. In fact the produced outcomes for all three dynamics are
quite “degenerated”: For resentful agents, in all games, all pairwise utilities have become non-positive
resulting in a final outcome only consisting of singletons. For appreciative agents, there is typically
one large coalition containing 40 or more agents together with one or two small coalitions. Notably,
it does not happen here that eventually all utilities between pairs of agents are positive but only that
certain pairwise utilities become large enough so that enough agents favor larger coalitions (even if their
utility for some coalition members is negative). For resentful-appreciative agents, we usually have several
medium-size coalitions in the produced outcomes which are thus in some sense in between outcomes for
resentful agents and outcomes for appreciative agents. In fact, outcomes for resentful-appreciative agents
also have a stronger connection to the initial utilities than for resentment or appreciation. On average,
significantly a smaller number of agents has an NS deviation in the produced outcome with respect to
their initial utilities.

Gaussian Utilities For Gaussian utilities, the original NS dynamics without resentment or apprecia-
tion converged for 3 of our 100 games within 100 000 steps. In contrast, for resentful, appreciative, and
resentful-appreciative agents, NS dynamics converged in all games. In particular, convergence was much
quicker (at most 2000 steps) than under uniform utilities, indicating that Gaussian utilities seem to fa-
cilitate reaching stable states in ASHGs compared to uniform utilities. The difference between resentful
agents (converging in on average 968 steps), appreciative agents (1226 steps), and resentful-appreciative
agents (694 steps) is less profound here with resentful-appreciative agents converging fastest. Moreover,
the outcomes produced by our three dynamics are quite similar and are in fact all quite close to being
stable in the initial game (only around 10% of the agents have an NS deviation with respect to their
initial utilities). The outcomes typically consist of one large coalition containing roughly half of the
agents (these are usually the agents with a positive ground qualification), while other agents are placed
into coalitions of size one or two.

6 Discussion

We initiated the study of hedonic games with time-dependent utility functions being influenced by
previous deviations. In our theoretical analysis, we have investigated whether the resentful or appreciative
perception of other agents is sufficient to guarantee convergence for dynamics based on various deviation
types. We have posed several open questions throughout the paper (even showing the equivalence of
some of them in Propositions 3.5 and 4.2). For future work, complementing our simulations, it would
be interesting to theoretically analyze the effects of combining resentment and appreciation. A concrete
open question here is whether CS dynamics are guaranteed to converge, which is the case for resentful
agents but not for appreciative agents. More generally, it is also possible to consider other effects that
could affect agents’ valuations over time and potentially contribute to additional convergence results.
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Deviator-Resent One specific idea is deviator-resent, which models the restraint of a deviator to
revert her decision to abandon other agents. In this case, an agent leaving coalition C to join coalition
C ′ decreases her utility for all agents in C \ C ′. We present results concerning deviator-resentment in
Appendix E. An intuitive reason why deviator-resentment can contribute to the convergence of dynamics
is that, after agent a abandons a coalition C, a’s utility for C decreases and thus a is less likely to join
C again. However, deviator-resentment does not resolve the run-and-chase example, implying that NS
dynamics may cycle for a wide variety of hedonic games with deviator-resentful agents. In contrast,
for CNS dynamics, we show that deviator-resentment guarantees convergence in ASHGs and MFHGs
if agents only deviate to non-singleton coalitions if they strictly prefer them to being alone. While this
additional constraint might look arbitrary, we remark that it is needed as there are ASHGs and MFHGs
with infinite sequences of individually rational CNS deviations. Deviator-resentment is nevertheless a
powerful force for stability, as CS dynamics with individual rational deviations in MFHGs and ASHGs
and IS dynamics in ASHGs always converge. However, deviator-resentment is not sufficient to guarantee
convergence of IS and general CS dynamics in MFHGs, yielding a different behavior of ASHGs and
MFHGs for IS dynamics. Notably, we did not prove any such contrasts in our analysis of resentment
and appreciation. Overall, our results indicate that deviator-resentment has clear ramifications on con-
vergence guarantees, yet the general picture seems to be slightly more nuanced than for resentment or
appreciation.

Shortest Converge Sequences In our simulations, we have analyzed how fast random executions
of NS dynamics converge for resentful and/or appreciative agents. An interesting related direction to
shed further light on the power of resentment and appreciation is to analyze the length of the shortest
converging execution of dynamics. The corresponding computational problem is to decide whether in
a given game (where a stable outcome is guaranteed to be reachable), there is a converging deviation
sequence of a given length from some given starting partition. Notably, this problem has not been
addressed in the literature for classical dynamics, yet is of no less relevance in the general case. While
existing hardness results for deciding whether a game admits a stable outcome suggest the hardness of
the shortest converge sequence problem for the general case, they do not directly imply hardness, as
stable states might not be reachable from some initial partition via the allowed deviations. Moreover,
convergence might require exponential time from some initial partition [11]. In Appendix F, we present
reductions showing that for ASHGs deciding whether we can converge in a given number of steps is
NP-hard for CS, IS, CNS, and NS dynamics for resentful, for appreciative, and for classical agents (with
constant utility functions over time).

Comparison to Static Models To conclude, we consider the effects of resentment and appreciation in
view of existing static utility models, and we want to discuss two phenomena that sound counterintuitive
at first glance. First, we have seen that resentment is a strong force for convergence whereas appreciation
is less helpful. However, in friend-and-enemy oriented ASHGs [16], a friend-oriented approach, where
agents focus on which friends are in their coalition, seems to more favorable than an enemy-oriented
approach in terms of achieving stable outcomes. For instance, a partition in the strict core under friends
appreciation can be found in polynomial time, whereas finding a partition in the core under enemies
aversion is NP-hard [16]. This behavior appears to be in contrast to our results because reducing utilities
due to resentment seems to lead to games similar to the enemy-oriented approach, whereas appreciation
has the flavor of the friend-oriented approach. Our explanation why resentment is still the stronger force
for convergence is that it systematically eliminates “stability-breaking” friendships while appreciation
cannot completely nullify such friendships.

Second, it is interesting to see that ASHGs allow for stronger convergence results than MFHGs. This
is interesting because MFHGs are generally more stabilizable than ASHGs (see our discussion in the
related work). For instance, there always exist partitions in the core of symmetric MFHGs where every
coalition is of size at most 2 [23], whereas it is Σp

2-complete to decide about the existence of core partitions
in ASHGs [29]. Our explanation here is that the simpler combinatorial structure of MFHGs actually
helps to achieve cycles in variable utility models. Indeed, the preferences in MFHGs are invariant under
a shift of all utilities by a common constant, which is not true in ASHGs due to coalitions of different
sizes.
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[17] J. H. Drèze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econometrica, 48(4):
987–1003, 1980.

[18] E. Elkind and M. Wooldridge. Hedonic coalition nets. In Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 417–424, 2009.

[19] E. Elkind, A. Fanelli, and M. Flammini. Price of pareto optimality in hedonic games. Artificial
Intelligence, 288:103357, 2020.

[20] A. Fanelli, G. Monaco, and L. Moscardelli. Relaxed core stability in fractional hedonic games.
In Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), pages
182–188, 2021.

[21] M. Gairing and R. Savani. Computing stable outcomes in symmetric additively separable hedonic
games. Mathematics of Operations Research, 44(3):1101–1121, 2019.

[22] M. Hoefer, D. Vaz, and L. Wagner. Dynamics in matching and coalition formation games with
structural constraints. Artificial Intelligence, 262:222–247, 2018.

[23] G. Monaco, L. Moscardelli, and Y. Velaj. Stable outcomes in modified fractional hedonic games. In
Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 937–945, 2018.

[24] M. Olsen. On defining and computing communities. In Proceedings of the 18th Computing: Aus-
tralasian Theory Symposium (CATS), volume 128, pages 97–102, 2012.

[25] D. Peters. Precise complexity of the core in dichotomous and additive hedonic games. In Proceedings
of the 5th International Conference on Algorithmic Decision Theory (ADT), pages 214–227, 2017.

[26] D. Peters and E. Elkind. Simple causes of complexity in hedonic games. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI), pages 617–623, July 2015.

[27] S. Sung and D. Dimitrov. On myopic stability concepts for hedonic games. Theory and Decision,
62(1):31–45, 2007.

[28] S. C. Sung and D. Dimitrov. Computational complexity in additive hedonic games. European
Journal of Operational Research, 203(3):635–639, 2010.

[29] G. Woeginger. A hardness result for core stability in additive hedonic games. Mathematical Social
Sciences, 65(2):101–104, 2013.

14



A Additional Material for Section 2

We start this section by providing the proof for our lemma considering infinite sequences of partitions.

Lemma 2.1. Let (πt)t≥0 be an infinite sequence of partitions induced by single-agent (or group) devia-
tions. Then, there exists a t0 ≥ 0 such that every single-agent (or group) deviation performed at some
time t ≥ t0 occurs infinitely often.

Proof. We simultaneously prove the part of the lemma about single-agent deviations and group deviations
by showing a stronger lemma that implies both. To this end, we consider labeled transitions. A labeled
sequence with respect to µ is a sequence a = (at)t≥0 together with a (labeling) function µ : N≥0 → L.
Given a labeled sequence a = (at)t≥0 with respect to µ, a labeled transition of a with respect to L is a
tuple (l, a1, a2) such that there exists t ≥ 0 with at = a1, a

t+1 = a2, and µ(t) = l. Then, Lemma 2.1
follows from the next claim by interpreting the deviating single agent or group of agents as labels of a
transition between partitions.

Claim A.1. Let N be a non-empty and finite ground set and L be a non-empty and finite set of labels.
Let a = (at)t≥0 be an infinite labeled sequence over A with respect to µ where at ∈ N for all t ≥ 0. Then,
there exists a t0 ≥ 0 such that every labeled transition of a with respect to L performed at some time
t ≥ t0 occurs infinitely often.

Proof. Let a = (at)t≥0 be an infinite labeled sequence with respect to µ over finite and non-empty
ground sets and label sets. Given a1, a2 ∈ N and l ∈ L, define t(l, a1, a2) = sup{t ≥ 0: at = a1, a

t+1 =
a2, µ(t) = l}, where we set sup ∅ = 0. In other words, t(l, a1, a2) defines the last time step where the
labeled transition (l, a1, a2) occurs. We define t0 = max{t(l, a1, a2) : l ∈ L, a1, a2 ∈ N, t(l, a1, a2) < ∞}.
By construction, every labeled transition performed after t0 must occur infinitely often. ◁

This completes the proof of the lemma. □

For the remainder of this section, we will have a closer look at the properties of hedonic aggregation
functions. In addition to the axioms introduced in Section 2, we also define two more axioms that are
relevant for the results in Appendix E. We start by formally defining all axioms. For convenience, we also
give definitions in words similar to the definition in Section 2. The additional axioms friend necessity
and single friend desire are weak conditions about friends.

For any i ∈ N , a CAF Ai satisfies

• aversion to enemies (ATE) if, for all coalitions C ∈ Ni, agents j ∈ C \ {i}, and utility vectors
ui ∈ Qn with ui(j) < 0, it holds that Ai(C, ui) ≤ Ai(C \ {j}, ui). In other words, the aggregated
utility is weakly better whenever an enemy leaves i’s coalition.

• individually rational aversion to enemies (IR ATE) if, for all coalitions C ∈ Ni, agents j ∈ C \ {i},
and utility vectors ui ∈ Qn with ui(j) < 0, it holds that Ai(C, ui) ≤ Ai(C \ {j}, ui) if Ai(C, ui) ≥
Ai({i}, ui). In other words, the aggregated utility is weakly better when an enemy leaves one of
i’s individually rational coalitions.

• enemy monotonicity (EM) if, for all coalitions C ∈ Ni, agents j ∈ N , and utility vectors ui, u
′
i ∈ Qn

with ui(k) = u′
i(k) for all k ̸= j and u′

i(j) < ui(j) < 0, it holds that Ai(C, ui) ≥ Ai(C, u
′
i). In other

words, decreasing the utility for an enemy cannot improve a coalition value.

• enemy domination (ED) if, for all utility vectors ui ∈ Qn and agents j ∈ N \ {i}, there exists a
constant c(ui, j) such that for all utility vectors u′

i ∈ Qn with u′
i(k) ≤ ui(k) for all k ∈ N and

u′
i(j) ≤ c(ui, j), it holds for every C ∈ Ni with j ∈ C that Ai(C, u

′
i) < Ai({i}, u′

i). In other words,
if the utility for some agent is sufficiently negative and the utility for every other agent is bounded,
then no coalition containing this agent is individually rational.

• friend necessity (FN) if, for all coalitions C ∈ Ni and utility vectors ui ∈ Qn, Ai(C, ui) > 0 implies
that there exists j ∈ C \ {i} with ui(j) > 0. In other words, an agent can only have a positive
utility for a coalition if it contains a friend.
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• single friend desire (SFD) if, for all coalitions C ∈ Ni, agents j ∈ C \ {i}, and utility vectors
ui ∈ Qn such ui(j) > 0 and ui(k) ≤ 0 for all k ∈ C \ {j}, it holds that Ai(C, ui) > Ai(C \ {j}, ui).
In other words, a coalition to which exactly one friend belongs is strictly preferred to the same
coalition without this friend.

The proof of Proposition 2.3 is integrated in the next more general proposition considering all axioms.

Proposition A.2. The additively separable CAF AS i satisfies ATE, IR ATE, FN, EM, ED, and SFD.
The modified fractional CAF MF i satisfies IR ATE, FN, EM, ED, and SFD but violates ATE.

Proof. We first consider additively separable aggregation and each axiom separately.

• ATE holds because a sum gets smaller when removing a negative summand.

• IR ATE follows from ATE.

• FN holds because a sum can only be positive if some summand is positive.

• EM holds because a sum can only get smaller when decreasing every summand (and decreasing
one of them strictly).

• ED holds because
∑

k∈C\{i} ui(k) gets negative if all summands only diminish and, for j ∈ C \ {i},
u(j) ≤ −1 −

∑
k∈C\{j} ui(k). Hence, we can choose the constant c(ui, j) = minC∈Ni : j∈C −1 −∑

k∈C\{j} ui(k).

• SFD holds because a sum gets larger when adding a positive number.

Next, we consider modified fractional aggregation. The violation of ATE is considered in Example 2.2.

• IR ATE: Let C ⊆ Ni, j ∈ C \ {i}, and ui ∈ Qn with ui(j) < 0. Moreover, suppose that
MF i(C, ui) ≥ 0. Then, |C| ≥ 3 because otherwise MF i(C, ui) = ui(j) < 0. Consequently,

MF i(C \ {j}, ui) ≥ MF i(C, ui)

⇔
∑

k∈C\{i,j} ui(k)

|C| − 2
≥

∑
k∈C\{i} ui(k)

|C| − 1

⇔(|C| − 1)
∑

k∈C\{i,j}

ui(k) ≥ (|C| − 2)
∑

k∈C\{i}

ui(k)

⇔
∑

k∈C\{i,j}

ui(k) ≥ (|C| − 2)ui(j)

⇔
∑

k∈C\{i} ui(k)

|C| − 1
≥ ui(j).

Hence, whenever ui(j) < 0 and MF i(C, ui) ≥ 0, the utility increases in the coalition where j has
left.

• FN, EM, ED, and SFD hold for the same reasons as for ASHGs because the division by a positive
number does not change the respective arguments.

B Additional Material for Section 3

We start this section by considering the convergence of individually rational SCS, CS, and IS dynamics
for resentful agents.

Theorem 3.2. The individually rational SCS, CS, and IS dynamics converge for resentful agents whose
CAFs satisfy individually rational aversion to enemies and enemy monotonicity.
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Proof. Again, it suffices to consider SCS dynamics.
Let a hedonic game (N, u0) with resentful agents be given where every agent i ∈ N has a CAF Ai

that satisfies individually rational aversion to enemies and enemy monotonicity. Assume that agents
perform only individually rational deviations. Assume for contradiction that there exists an infinite
execution of the individually rational SCS dynamics. Since the single-agent utilities for other agents can
only decrease and are bounded by the initial partition of the sequence, there exists a time t0 ≥ 0 in the
infinite dynamics after which no agent can be left by an agent for which she has non-negative utility.
By Lemma 2.1, there exists a time t1 ≥ t0 such that every SCS deviation performed after time t1 is
performed infinitely often.

Now, consider the first group deviation performed after time t1, where a coalition C is formed and let
i ∈ C be an arbitrary agent in this coalition. Note that the formation of C was an individually rational
deviation, and therefore C is individually rational for agent i at time t1. We claim that i’s utility cannot
decrease until the next time when the same deviation is performed, and that all coalitions that i is part
of until then are IR. Until the next repetition of the same deviation, there are two potential cases when
i’s utility is affected. First, it can happen that i is part of a deviating coalition. Clearly, this cannot
decrease her utility, and therefore not affect her individual rationality. Second, it can happen that i’s
coalition is left by a set of agents D. Since i is resentful and decreases her utility for all agents in D, it
must be the case that her utility is negative for every agent in D at the point in time where the deviation
involving D occurs.

Moreover, i’s coalition is IR when D leaves. Indeed, assume for contradiction that i’s coalition is
not IR, and consider the first time after the formation of C when i is in a coalition that is not IR. By
our analysis before, this can only happen after i performed a group deviation, but since this deviation
originated from an IR coalition, the resulting coalition must also be IR, a contradiction.

Now, by applying individually rational aversion to enemies for each agent in D one after another, we
can conclude that i cannot have decreased her utility at the point in time where she is left by D.

Hence, at the next time, when coalition C is formed, by the same deviation as our initial deviation,
none of the agents in C has decreased her utility. Moreover, enemy monotonicity implies that the utility
of C of any agent for C can only have decreased since the last time when C was formed. Hence, no agent
can strictly improve her utility when forming C again, a contradiction. We conclude that the dynamics
cannot run infinitely.

Theorem 3.4. The NS dynamics may cycle in MFHGs for resentful agents.

Proof. We now describe an involved example of an MFHG together with an infinite periodic sequence of
NS deviations for resentful agents. We construct this example in a way such that each agent leaves every
other agent exactly once in each cycle. This establishes that the agents’ preference between relevant
coalitions is maintained : if a deviating agent prefers a joined coalition C1 to an abandoned coalition C2

before (and during) the first execution of the cycle, then it still prefers C1 to C2 before (and during)
each execution of the cycle.

Consider the game with agent set N = {a, a′, b, b′, c, c′} and utilities as depicted in Table 3. The
initial utilities result from setting x = 0 in Table 3. Note that the utility values are not chosen to be
minimal but simply in a way that it can easily be verified that deviations are indeed NS deviations. We
now present an infinite sequence (πt)t≥0 of partitions, always consisting of three coalitions. For each
partition, we refer to the first listed coalition as C1, to the second as C2, and the third as C3. For the
sake of clarity, for each partition, we also specify which agent deviates to which coalition in the next
step. Specifically, for n ≥ 0, we have

• π18n+1 = {{b′, a′}, {a}, {c′, c, b}} with agent b deviating to C1,

• π18n+2 = {{b′, a′, b}, {a}, {c′, c}} with agent c deviating to C1,

• π18n+3 = {{b′, a′, b, c}, {a}, {c′}} with agent a′ deviating to C3,

• π18n+4 = {{b′, b, c}, {a}, {c′, a′}} with agent a′ deviating to C2,

• π18n+5 = {{b′, b, c}, {a, a′}, {c′}} with agent c deviating to C2,

• π18n+6 = {{b′, b}, {a, a′, c}, {c′}} with agent b′ deviating to C3,
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Table 3: Example from Theorem 3.4. Utilities after x cycles of deviations. Each row depicts the utility
that one agent has for the other agents.

a a′ b b′ c c′

a − 20− x 10− x 230− x 0− x 230− x
a′ 110− x − 30− x 120− x 30− x 100− x
b 0− x 230− x − 20− x 10− x 230− x
b′ 30− x 100− x 110− x − 30− x 120− x
c 10− x 230− x 0− x 230− x − 20− x
c′ 30− x 120− x 30− x 100− x 110− x −

• π18n+7 = {{b}, {a, a′, c}, {c′, b′}} with agent c deviating to C3,

• π18n+8 = {{b}, {a, a′}, {c′, b′, c}} with agent a deviating to C3,

• π18n+9 = {{b}, {a′}, {c′, b′, c, a}} with agent b′ deviating to C2,

• π18n+10 = {{b}, {a′, b′}, {c′, c, a}} with agent b′ deviating to C1,

• π18n+11 = {{b, b′}, {a′}, {c′, c, a}} with agent a deviating to C1,

• π18n+12 = {{b, b′, a}, {a′}, {c′, c}} with agent c′ deviating to C2,

• π18n+13 = {{b, b′, a}, {a′, c′}, {c}} with agent a deviating to C2,

• π18n+14 = {{b, b′}, {a′, c′, a}, {c}} with agent b deviating to C2,

• π18n+15 = {{b′}, {a′, c′, a, b}, {c}} with agent c′ deviating to C1,

• π18n+16 = {{b′, c′}, {a′, a, b}, {c}} with agent c′ deviating to C3,

• π18n+17 = {{b′}, {a′, a, b}, {c, c′}} with agent b deviating to C3, and

• π18n+18 = {{b′}, {a′, a}, {c, c′, b}} with agent a′ deviating to C1.

Then, it is possible to verify that for k ≥ 1, πk−1 leads to πk by means of an NS deviation. Hence,
we have presented an MFHG with an infinite sequence of NS deviations for resentful agents.

We conclude this section by examining the occurrence of CNS deviations in NS dynamics.

Proposition 3.5. For resentful agents with CAFs satisfying aversion to enemies, every sequence of NS
deviations contains only finitely many deviations that are not CNS deviations.

Proof. Let a hedonic game (N, u0) with resentful agents be given where every agent i ∈ N has a CAF Ai

that satisfies aversion to enemies. Furthermore, assume that there exists an infinite sequence (πt)t≥0 of
partitions resulting from NS deviations of resentful agents. By Lemma 2.1, there exists a time t0 ≥ 0
such that every deviation performed after t0 must occur infinitely often.

Define L = {(i, j) ∈ N2 : i left by j after time t0}, i.e., the set of pairs of such agents. Let (i, j) ∈ L.
Then, there exists a time t(i, j) ≥ t0 such that i was left by j for at least ⌊ut0

i (j)⌋ + 1 times after time
t0 and before time t(i, j). Consider the time t1 = max{t(i, j) : (i, j) ∈ L}. We claim that all deviations
after time t1 are CNS deviations. Indeed, assume that agent i is left by agent j at time t ≥ t1. By
construction, as t(i, j) ≤ t1, it holds that ut

i(j) < 0. Consequently, enemy monotonicity implies that
Ai(π

t, ut
i) ≤ Ai(π

t+1, ut
i). Hence, every deviation after time t1 is a CNS deviation. Thus, there are only

finitely many deviations (at most t1 many) that are not CNS deviations.

C Additional Material for Section 4

Theorem 4.1. The individually rational NS dynamics may cycle in MFHGs for appreciative agents.
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Table 4: Example from Theorem 4.1. Utilities after x cycles of deviations. Each row depicts the utility
that one agent has for the other agents.

a a′ b b′ c c′

a − 110 + x 120 + x −100 + x 130 + x −100 + x
a′ 20 + x − 100 + x 10 + x 100 + x 30 + x
b 130 + x −100 + x − 110 + x 120 + x −100 + x
b′ 100 + x 30 + x 20 + x − 100 + x 10 + x
c 120 + x −100 + x 130 + x −100 + x − 110 + x
c′ 100 + x 10 + x 100 + x 30 + x 20 + x −

Proof. We now describe an involved example of an MFHG together with an infinite periodic sequence
of NS deviations for appreciative agents. Our example is very similar to the one presented for resentful
agents in Theorem 3.4. As in Theorem 3.4, each agent joins each other agent exactly once in each cycle.
This establishes the same invariant: if a deviating agent prefers a joined coalition C1 to an abandoned
coalition C2 before (and during) the first execution of the cycle, then it still prefers C1 to C2 before (and
during) each execution of the cycle.

Consider the game with agent set N = {a, a′, b, b′, c, c′} and utilities as depicted in Table 4. The
initial utilities result from setting x = 0 in Table 4. We now present an infinite sequence (πt)t≥0 of
partitions, always consisting of three coalitions. For each partition, we refer to the first listed coalition
as C1, to the second as C2, and the third as C3. For the sake of clarity, for each partition, we also specify
which agent deviates to which coalition in the next step. Specifically, for n ≥ 0, we have

• π18n+1 = {{b′}, {a, a′}, {b, c, c′}} with agent b deviating to C2,

• π18n+2 = {{b′}, {b, a, a′}, {c, c′}} with agent c′ deviating to C1,

• π18n+3 = {{b′, c′}, {b, a, a′}, {c}} with agent c′ deviating to C2,

• π18n+4 = {{b′}, {b, a, a′, c′}, {c}} with agent b deviating to C1,

• π18n+5 = {{b′, b}, {a, a′, c′}, {c}} with agent a deviating to C1,

• π18n+6 = {{b′, b, a}, {a′, c′}, {c}} with agent c′ deviating to C3,

• π18n+7 = {{b′, b, a}, {a′}, {c, c′}} with agent a deviating to C3,

• π18n+8 = {{b′, b}, {a′}, {c, c′, a}} with agent b′ deviating to C2,

• π18n+9 = {{b}, {a′, b′}, {c, c′, a}} with agent b′ deviating to C3,

• π18n+10 = {{b}, {a′}, {c, c′, a, b′}} with agent a deviating to C2,

• π18n+11 = {{b}, {a′, a}, {c, c′, b′}} with agent c deviating to C2,

• π18n+12 = {{b}, {a′, a, c}, {c′, b′}} with agent b′ deviating to C1,

• π18n+13 = {{b, b′}, {a′, a, c}, {c′}} with agent c deviating to C1,

• π18n+14 = {{b, b′, c}, {a′, a}, {c′}} with agent a′ deviating to C3,

• π18n+15 = {{b, b′, c}, {a}, {c′, a′}} with agent a′ deviating to C1,

• π18n+16 = {{b, b′, c, a′}, {a}, {c′}} with agent c deviating to C3,

• π18n+17 = {{b, b′, a′}, {a}, {c′, c}} with agent b deviating to C3,

• π18n+18 = {{b′, a′}, {a}, {c′, c, b}} with agent a′ deviating to C2.

Then, it is possible to verify that for k ≥ 1, πk−1 leads to πk by means of an NS deviation. Hence,
we have presented an MFHG with an infinite sequence of NS deviations for appreciative agents.

Proposition 4.2. For appreciative agents in ASHGs every sequence of NS deviations contains only
finitely many deviations that are not IS deviations.
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Proof. Let an ASHG (N, u0) with appreciative agents be given. Furthermore, assume that there exists
an infinite sequence (πt)t≥0 of partitions resulting from NS deviations. By Lemma 2.1, there exists a
time t0 such that every deviation performed after t0 occurs infinitely often.

Define L = {(i, j) ∈ N2 : i is joined by j after time t0}. Let (i, j) ∈ L. Then, there exists a time
t(i, j) ≥ t0 such that i was joined by j for at least ⌈|ut0

i (j)|⌉ + 1 times after time t0 and before time
t(i, j). Consider the time t1 = max{t(i, j) : (i, j) ∈ L}. We claim that all deviations after time t1 are
IS deviations. Indeed, assume that agent i is joined by agent j at time t ≥ t1. By construction, as
t(i, j) ≤ t1, it holds that ut

i(j) > 0. Consequently, agent i prefers πt+1 to πt. Hence, every deviation
after time t1 is an IS deviation. Thus, there are only finitely many deviations (at most t1 many) that
are not IS deviations.

Theorem 4.3. The individually rational CS dynamics may cycle in ASHGs and MFHGs for appreciative
agents.

Proof. Let N = {a, b, c} be the set of agents and let the agents’ initial utilities be as follows:

u0
a(b) = u0

b(c) = u0
c(a) = 4, u0

a(c) = u0
b(a) = u0

c(b) = 1.

Let π0 = {{a}, {b}, {c}} and for t > 0, let

πt =


{{a, c}, {b}}, if t mod 3 = 0

{{a, b}, {c}}, if t mod 3 = 1

{{a}, {b, c}}, if t mod 3 = 2.

We claim that (πt)t≥0 is an infinite sequence, where for every t ≥ 1, πt evolves from πt−1 by a core
deviation of coalition Ct. Specifically, we have

Ct =


{a, c}, if t mod 3 = 0

{a, b}, if t mod 3 = 1

{b, c}, if t mod 3 = 2.

Thus in each cycle of length three, each agent performs exactly one core deviation with any other agent.
Thus, for t ≥ 0 with t mod 3 = 0 it holds that

ut
a(b) = ut

b(c) = ut
c(a) =

2

3
t+ 4

and

ut
a(c) = ut

b(a) = ut
c(b) =

2

3
t+ 1.

Thus, for each t > 0, it holds that ut
a(b) > ut

a(c), u
t
b(c) > ut

b(a), and ut
c(a) > ut

c(b), implying that each
of the deviations Ct for t > 0 is a core deviation if each agent i ∈ N aggregates utilities according to
AS i or MF i.

D Simulations

In this section, we analyze by means of simulations how resentment and appreciation influence dynamics
in ASHGs. We focus on NS dynamics, as in randomly sampled ASHGs the IS dynamics typically converge
quickly even without resentment or appreciation (implying that they have only a small effect). Moreover,
executing core dynamics is computationally too costly, as already checking whether an outcome is core
stable is computationally intractable.

D.1 Setup

We mostly focus on ASHGs with an agent set N containing n = 50 agents,6 and sample their utilities
using one of the following two models:

6We analyze the influence of the number of agents in Appendix D.5.
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(b) Gaussian utilities

Figure 2: Influence of the change coefficient on the average convergence time

Uniform For two agents a, b ∈ N with a ̸= b, we sample ua(b), i.e., a’s value for b, by drawing a random
integer between −100 and 100.

Gaussian For each agent a ∈ N , we sample her base qualification µa by drawing a random integer
between −100 and 100. For two agents a, b ∈ N with a ̸= b, we sample ua(b) by drawing an integer
from the Gaussian distribution with mean µb and standard deviation 10.7

Our dynamics start with the singleton partition. Subsequently, in each step, we compute all possible NS
deviations. If there are no NS deviations, we stop; otherwise, we sample one NS deviation uniformly at
random and execute it. To be able to vary the “intensity” of the resentful/appreciative perception, we
introduce a change coefficient c, which we typically set to 1: For resentful agents, if an agent a deviates
from a coalition C ′ to a coalition C, then we reduce the utility that agents from C ′ have for a by c;
for appreciative agents, we increase the utility that agents from C have for a by c. We also examine
what happens if agents are both resentful and appreciative and both of the above described effects are
present. In this case we speak of resentful-appreciative agents. For all our simulations, we set a time-out
of 100 000, i.e., after 100 000 steps we report that the dynamics did not converge.8

D.2 Convergence Time

We start by analyzing the influence of resentment and of appreciation on how fast NS dynamics con-
verge. For this, we sampled 100 games with 50 agents and for each recorded the number of steps until
convergence.

Uniform Utilities In Figure 2a, we visualize the results for uniform utilities. The NS dynamics for
agents that are neither resentful nor appreciative did not converge in any of our sampled games (within
the limit of 100 000 steps). By contrast, even for a change coefficient c = 1, NS dynamics converged in
all games for resentful or appreciative agents. However, there is a clear difference between these two:
For resentful agents, the average number of steps until convergence is 59 910 for c = 1, whereas for
appreciative agents the NS dynamics converges much faster (for c = 1 the average convergence time is
4243). Increasing c to 4, for resentful agents and for appreciative agents, the average convergence time
roughly quarters, while increasing c to 10 only decreases the time by an additional factor of two. In sum,
appreciation seems more helpful to establish fast convergence than resentment in case of uniform utilities.
Nevertheless, for both concepts, the number of steps until convergence is quite large (compared to the
number of agents). While increasing the change coefficient leads to faster convergence the decrease in
convergence time is particularly strong for smaller values of the coefficient, indicating that NS dynamics
need some time to find the “right” deviations somewhat independent of the value of the change coefficient.

In contrast to our theoretical analysis, we also consider the case of resentful-appreciative agents.
Compared to appreciative agents, adding resentment leads to a substantial increase of the convergence

7We analyze the influence of the chosen standard deviation in Appendix D.4.
8We want to remark that this does not necessarily imply that no NS stable outcome exists in such a game or that there

is no path to stability for the dynamics, but rather that selecting NS deviations randomly was not sufficient to ensure
convergence (in a reasonable time).
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Table 5: Properties of different dynamics and the produced outcomes for different ASHGs. For an
explanation of the table, we refer to the beginning of Appendix D.3.

coalition sizes stability in original utilities

steps number avg. size max size # ag. IR viol # ag. NS dev avg. util avg. change pos. vals

Uniform utilities n = 50
resentment 60055.0 50 1.0 1 0 50 0.0 -51.25 0.0
appreciation 4309.0 2.74 19.31 42.57 18.7 22.21 589.39 12.8 0.56
res+apprec 15261.0 5.26 9.73 18.43 2.33 10.15 237.08 -0.13 0.51

Gaussian utilities n = 50
resentment 968.0 25.74 1.99 25.2 0 5.07 626.3 -0.42 0.49
appreciation 1226.0 21.69 2.36 25.19 3.67 5.11 638.79 0.6 0.51
res+apprec 694.0 24.64 2.07 25.28 0.61 4.66 637.34 -0.12 0.5

Gaussian utilities n = 25
resentment 282.0 13.62 1.91 12.36 0 2.11 291.49 -0.49 0.48
appreciation 438.0 11.92 2.2 12.29 1.76 2.24 296.59 0.77 0.5
res+apprec 208.0 13.32 1.95 12.42 0.18 1.97 297.54 -0.12 0.49

Gaussian utilities n = 25 with stable outcome (13 games)
original 100.38 12.46 2.15 13.54 0 0 344.26 0.0 0.52
resentment 90.69 12.46 2.15 13.54 0 0 343.14 -0.16 0.52
appreciation 92.77 12.31 2.24 13.54 0.15 0.15 348.78 0.29 0.52
res+apprec 100 12.46 2.15 13.54 0 0 347.82 -0.05 0.52

time by a factor of around 2.5 (while for resentful agents, adding appreciation still leads to faster conver-
gence). While this slower convergence for resentful-appreciative agents compared to appreciative agents
may be surprising at first glance, recall the intuitive justifications why resentment and appreciation con-
tribute to a faster convergence. For appreciative agents, utilities only increase over time, whereas for
resentful agents utilities only decrease over time. Thus, if we combine the two, it is in principle possible
that some valuations that increase for appreciative agents stay constant for resentful-appreciative agents,
and the two effects can cancel out each other. For uniform utilities, this effect seems to be stronger than
the additional “stability force” established by resentment.

Gaussian Utilities In Figure 2b, we visualize the result of our first set of simulations for Gaussian
utilities. In this case, the NS dynamics for agents that are neither resentful nor appreciative converged in
3 of the 100 games. In contrast, for resentful or for appreciative agents, the NS dynamics converged in all
games. In particular, convergence was much quicker (in at most 2000 steps) than under uniform utilities,
indicating that ASHGs under Gaussian utilities seems to facilitate reaching stable states compared to
uniform utilities. Examining the results in more detail, the difference between resentful and appreciative
agents is less profound here than for uniform utilities. While resentment leads to faster convergence
for c < 3, appreciation is more powerful for c ≥ 3. Considering the influence of the change coefficient,
for resentful agents, we again see the trend that increasing the change coefficient has a strong effect
for smaller c but that this effect becomes less strong for larger c. On the other hand, for appreciative
agents, the relation between c and the convergence time is rather linear. Moreover, in contrast to uniform
utilities, resentment and appreciation seem to not “cancel out” each other. For resentful-appreciative
agents, NS dynamics converge faster than for either of the two separately.

D.3 Structure of Outcomes and Comparison to Base Game

We now take a closer look at the outcomes and utility functions produced by NS dynamics for resentful
and/or appreciative agents. Again, we generated 100 games with n = 50 agents each for uniform and
Gaussian utilities. In addition, we generated 100 games with n = 25 agents and Gaussian utilities (as
the original NS dynamics converge more often in such games). In all games, we set the change coefficient
c to 1. Table 5 summarizes the results of our simulations. All values in the table are averaged from
the respective 100 games. In the last part of the table, we only consider the 13 games with n = 25
and Gaussian utilities in which an NS dynamics in the original game converged within 100 000 steps.
For reference, we depict the number of steps the dynamics needed to converge in the first column.
We analyze the structure of the produced NS outcomes as follows. Columns three to six consider the
produced coalitions, that is, the number of coalitions and their average and maximum size. The next two
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columns concern the outcome’s degree of stability with respect to the original utilities, where we record
the number of agents violating individual rationality and possessing an NS deviation, respectively. The
last three columns concern the change of the utility profile, that is, the average utility in the outcome
partition with respect to the final utilities, the average change of each entry of the utility function
comparing the initial and final utilities, and the fraction of pairs of friends with respect to the final
utilities, that is tuples (a, b) ∈ N2 for which ua(b) > 0.9

Uniform Utilities We first focus on uniform utilities. Recall that our dynamics need many steps until
reaching convergence. Therefore, it is not surprising that the produced outcomes are quite “degenerated”
for both resentful agents and appreciative agents. For resentful agents, the produced outcomes consist
only of singleton coalitions in all games, which means that agents have left each other sufficiently often
to ensure that all pairwise utilities are non-positive. This is also reflected by the facts that all agents
have NS deviations with respect to their original utilities, and that on average the valuations of agents
changed by 51.25. Overall, the produced outcomes have little connection to the original game and simply
exploit that all utilities become negative at some point for resentful agents.

By contrast, for appreciative agents, there is typically one large coalition containing 40 or more
agents together with one or two small coalitions. Indeed, this is also reflected by the observations that
the average number of coalitions is 2.74 and the average maximum size is 42.57. The typical run of an
NS dynamics for appreciative agents here can be described in two phases. First, agents increase their
utility for each other by deviating between smaller coalitions (where some agents, which are negatively
valued by many others, are not joined, which often leads to them being part of small coalitions in the final
outcome). Subsequently, in a second phase, agents already possess a generally high utility level, and thus
tend to favor large coalitions (even when having a negative utility for some of the agents in the coalition).
Notably, it does not happen that eventually all utilities between pairs of agents are positive, and in this
sense, the behavior of appreciative agents is not the contrary of the behavior of resentful agents. In
fact, slightly counterintuitively, only 56% of agent pairs have a positive evaluation after convergence of
the dynamics. Consequently, agents (from the large coalition) often dislike other coalition members: On
average, an agent only values 59% of her coalition members positively. Nevertheless, the relationship
of the produced outcome and the agent’s original utilities is still quite low with 18.7 agents for which
individual rationality is violated and 22.21 agents having an NS deviation.

For resentful-appreciative agents, the produced outcomes are in some sense between the two extremes
for resentful agents and for appreciative agents: Typically, several medium-size coalitions form (the
average number of coalitions is 5.26 and the maximum size is on average 18.43). Further, the average
change of the utility values is −0.13 and only 51% of agent pairs have a positive evaluation, implying that
the utility changes caused by resentment and by appreciation cancel out each other from an aggregated
perspective. However, on an individual level, utilities still change quite drastically, as the absolute
difference between the initial utilities values and the values at the end of the dynamic is on average 12.15.
Notably, the outcome produced by resentful-appreciative agents is also in some sense less “degenerated”
as for the the two separately: It consists of medium-size coalitions, utilities are structurally more similar
to the initial utilities, and most importantly, the outcome is closer to stability in the original game
(with only 2.33 agents for which individual rationality is violated and only 10.15 agents having an NS
deviation).

Gaussian Utilities We now turn to Gaussian utilities, where the dynamics converge much quicker
than for uniform utilities. Moreover, the outcomes produced by our three dynamics are quite similar,
which follows the intuition that the final utility profiles remain quite similar after the execution of
“few” steps. In general, NS outcomes produced by our dynamics typically consist of one large coalition
containing roughly half of the agents (these are usually the agents with positive ground qualification),
while other agents are placed into coalitions of size one or two.

Let us first focus on the second and third part of Table 5 presenting the results of 100 games with
n = 50 and n = 25 agents, respectively. First, the outcomes for appreciative agents typically contain
fewer coalitions than for resentful agents. Interestingly, this is not achieved because of the size of the
“large” coalition but due to a larger average size of the many small coalitions. For resentful-appreciative
agents, the produced outcomes are structurally similar to the ones for resentful agents with a slightly

9Note that, in both utility models, this value is on average 0.5 for the initial utilities.
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Figure 3: Influence of the standard deviation of Gaussian utilities on the average convergence time.
We only take into account dynamics converging within the time limit of 100 000 steps. For resent-
ful agents, the NS dynamics did not converge in 7/23/48/63/75 games for a standard deviation of
60/70/80/90/100, respectively (for appreciative agents and for resentful-appreciative agents the dynam-
ics always converged).

smaller number of coalitions (achieved by an increase of the size of the “large” coalition). Second, for
all three types of dynamics the produced outcomes are much closer to being stable in the original game
than for uniform utilities (only around 10% of the agents have an NS deviation). In particular, for
resentful-appreciative agents, the produced outcomes are closest to stability in the original game. Lastly,
considering the average utility of agents in the produced outcome, the three perception types produce
quite similar results: Naturally, for appreciative agents, the average utility of agents in the produced
outcome is highest. However, in both other dynamics, agents are only slightly less happy.

In the fourth part of the table, we depict statistics concerning the 13 of our 100 games with n = 25
agents having Gaussian utilities for which an original NS dynamic converged (in the time limit). In the
first line, we show properties of the outcomes produced by the original dynamics. The NS outcomes
produced by the original NS dynamics are structurally quite similar to the ones shown in the third part
of the table, indicating that the outcomes produced by our three dynamics on games with 25 or 50 agents
having Gaussian utilities are quite “natural” and not degenerated. The similarities become even more
profound when comparing the outcomes produced by the original dynamics on the selected 13 games
to the outcomes produced by our three types of dynamics on the same 13 games: For resentful and
resentful-appreciative agents, the produced outcomes are very similar or even identical to the outcome
produced by the original NS dynamics in all 13 games (and are in particular always stable in the
original games). For appreciative agents, the “large” coalition in the outcome is typically quite similar
or identical to the “large” coalition produced by the original dynamics; however, sometimes fewer small
coalitions are produced (in particular, some of the produced outcomes are not stable in the original
game). Concerning the average utility in the final partition, resentful agents are only marginally less
happy than in the original dynamics, indicating that only very few agents end up in a coalition with an
agent they left at some point, whereas the average utility is slightly higher for appreciative agents and
resentful-appreciative agents.

D.4 Influence of Standard Deviation for Gaussian Utilities

In this section, we focus on Gaussian utilities and analyze the influence of the standard deviation σ on
convergence times. Recalling the drastic differences in the behavior of the dynamics between Gaussian
utilities (with σ = 10) and uniform utilities observed in the previous subsections, it is to be expected
that the convergence time increases with increasing σ (as we are in some sense getting closer to uniform
utilities for larger σ). To analyze this effect in more detail, for σ ∈ {0, 5, 10, . . . , 95, 100}, we sampled 100
games with n = 50 agents having Gaussian utilities with standard deviation σ, and measured the average
convergence times of our three types of NS dynamics for a change coefficient c = 1. The results are shown
in Figure 3, where we only show the average convergence time of all dynamics that converged in the
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Figure 4: Influence of the number of agents on the average convergence time.

time bound of 100 000 steps. For resentful agents, the NS dynamics did not converge in 7/23/48/63/75
games for a standard deviation of 60/70/80/90/100, respectively (for appreciative agents and resentful-
appreciative agents the dynamics always converged). Overall, our hypothesis that increasing the standard
deviation leads to an increased convergence time is confirmed clearly. Slightly unexpected, for σ ≥ 80,
Gaussian utilities seem to be even “harder” than uniform utilities: For resentful agents, the dynamics
did not even converge for roughly half of the games and for appreciative agents the average convergence
time is about twice as large. The reason for this is that for large σ utilities often fall out of the range
[−100, 100] (from which we sample the agent’s base qualification for Gaussian utilities and the utilities
for uniform utilities). In games which are “far away” from stability and for which resentful agents or
appreciative agents produce degenerated outcomes (as described in the previous section) an increased
range of the utility values clearly contributes to a higher convergence time: For instance, for resentful
agents, we have observed that the dynamics typically runs until all utility values are negative, which
takes more time if some utility values are initially larger.

D.5 Influence of the Number of Agents

We now briefly analyze the influence of the number of agents on the convergence time of NS dynamics
with resentful and/or appreciative agents. For this, for different numbers of agents, we generated 100
games and executed NS dynamics with resentful and/or appreciative agents and a change coefficient of
c = 1. We show the results for uniform utilities in Figure 4a and the results for Gaussian utilities in
Figure 4b. Overall, unsurprisingly, the higher the number of agents, the higher is the convergence time
of our dynamics.

For uniform utilities, the relation of the different types of dynamics is independent of the number of
agents. For appreciative agents, the average convergence time is the lowest, while convergence is still
faster for resentful agents than for resentful-appreciative agents. The increase in the convergence time
between n = 10 and n = 60 is almost linear for all three types. However, the slope substantially depends
on the considered type: For resentful agents, comparing n = 10 and n = 60, the convergence time
increases by a factor of 47, for appreciative agents the factor is 11, and for resentful-appreciative agents
the factor is 38. Thereby, the difference between the three becomes larger with a growing number of
agents. This again highlights the different nature of the three types of NS dynamics for uniform utilities
that we have observed above: For resentful agents, for uniform utilities, all utility values need to become
negative, which requires substantially, but linearly, more deviations the higher the number of agents.
In contrast, for appreciative agents, agents typically only join each other until almost everyone has a
positive valuation for a very large coalition. Naturally also this requires more deviations the higher the
number of agents, yet with slower scaling.

For Gaussian utilities, we also see an almost linear increase of the average convergence time. Moreover,
for most considered agent numbers, dynamics for resentful-appreciative agents converge faster than the
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ones for resentful agents which in turn converge faster than the ones for appreciative agents. However,
in contrast to uniform utilities, here the difference between the three types of NS dynamics changes only
slightly for different numbers of agents. Furthermore, comparing n = 10 and n = 60, the convergence
time of all three types of NS dynamics only increases by a factor of around 12. Lastly, for resentful agents,
we can observe a slightly unexpected phenomenon, as for a smaller number of agents the convergence
time does not steadily increase, e.g., for n = 10 the average converge time is 425 steps and for n = 15 it
is 204 steps.

E Dynamics with Resentful Deviatiors

Previously, we have assumed that a deviation of an agent a changes the utility other agents have for a.
In contrast, one could also consider what happens if a deviation of a changes a’s utility for other agents.
Under deviator-resentment, we assume that an agent decreases her utility for all agents she abandons.
Intuitively, deviator-resentment contributes to the existence of stable states, as it implies that an agent
a is less likely to enter a coalition containing agents that she has previously abandoned.

Formally, for deviator-resentful agents, if for some t ≥ 1, πt evolves from πt−1 via a single-agent
deviation of agent k ∈ N , then, for i, j ∈ N , ut

i(j) arises from ut−1
i (j) as

ut
i(j) =

{
ut−1
i (j)− 1 i = k, j ∈ πt−1(i) \ {i},

ut−1
i (j) else.

Similarly, for deviator-resentful agents, if for t ≥ 1, πt evolves from πt−1 via a group deviation of
C ⊆ N , then, for i, j ∈ N , ut

i(j) arises from ut−1
i (j) as

ut
i(j) =

{
ut−1
i (j)− 1 i ∈ C, j ∈ πt−1(i) \ C,

ut−1
i (j) else.

E.1 Contractual Nash Stability and Nash Stability

We start by observing that deviator-resentment does not resolve run-and-chase examples such as the
dynamics between two agents a and b where initially a has utility 1 for b and b initially has utility −1
for a. In such examples, a will still always join b in one step, while b leaves a in the next step (thereby
decreasing b’s utility for a even further).

Observation E.1. The NS dynamics may cycle for deviator-resentful agents whose CAFs satisfy friend
necessity and single friend desire.

By Proposition A.2 this implies that the NS dynamics may cycle in ASHGs and MFHGs.
Moreover, somewhat surprisingly also CNS dynamics may still cycle in ASHGs and MFHGs with

deviator-resentful agents, even if deviations are restricted to be individually rational. Notably, this is in
a clear contrast to our previous results for resentful agents where individual rationality was for all types
of dynamics sufficient to guarantee convergence.

Proposition E.2. The individually rational CNS dynamics may cycle in MFHGs and ASHGs for
deviator-resentful agents.

Proof. Consider a cardinal hedonic game with N = {a, b, c} where the initial single-agent utilities are
given as ua(b) = ub(c) = uc(a) = 0 and ub(a) = uc(b) = ua(c) = −1. For k ≥ 0, let π3k = {{a, b}, {c}},
π3k+1 = {{a}, {b, c}}, and π3k+2 = {{a, c}, {b}}.

Then, (πk)k≥0 represents an individually rational CNS dynamics with respect to additively separable
and modified fractional utility aggregation.

It is possible to modify the previous examples to start a dynamics from the singleton partition.
In contrast to this, as soon as we enforce that agents only deviate to a non-singleton coalition if they

strictly prefer it to being in a singleton coalition, convergence can be guaranteed.
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Proposition E.3. The CNS dynamics converges for deviator-resentful agents whose CAFs satisfy friend
necessity and single friend desire if agents only deviate to non-singleton coalitions if they strictly prefer
them to being in a singleton.

Proof. Let a hedonic game (N, u0) with deviator-resentful agents be given where every agent i ∈ N has a
CAF Ai that satisfies friend necessity and single friend desire. Assume for the sake of contradiction that
there exists an infinite sequence (πt)t≥0 of partitions resulting from CNS deviations of deviator-resentful
agents where agents only deviate to non-singleton coalitions if they strictly prefer them to being in a
singleton. By Lemma 2.1, there exists a time t0 ≥ 0 such that every deviation performed after t0 must
occur infinitely often. This implies in particular that there is a step t′0 ≥ t0 such that an agent i has a
negative utility for all agents that i leaves at some point after t′0.

Now, let us fix a time step t′ ≥ t′0 where some agent d deviates into a non-singleton coalition. As
every deviation is repeated (infinitely often) after t0 ≤ t′, there has to be some time step where d
deviates again. In particular, let t′′ be the smallest t with t > t′ where d deviates again after time t′.
For some time step t, let Ct := πt(d) be the coalition of d after step t. We now examine the coalitions
Ct′ , . . . , Ct′′−1, i.e., the coalitions d is part of between her two deviations.

As we assume that an agent only deviates into a non-singleton coalition if she strictly prefers it to
being in a singleton coalition, d prefers Ct′ to being in a singleton. Hence, by friend necessity, there is an
agent a ∈ Ct′ for which d has positive utility at time t′ − 1. By single friend desire, it follows that there
is an agent a ∈ Ct′′−1 for which d has a positive utility. Indeed, otherwise, there is some t ∈ [t′, t′′ − 2]
such that there is a friend of d in Ct but not in Ct+1. However, this cannot happen because, due to
single friend desire, d strictly prefers Ct to Ct+1, implying that d would have vetoed the deviation taking
place in time step t+ 1. This implies that there is at least one agent for which d has positive utility in
Ct′′−1. However, d leaves this agent in time step t′′. This contradicts our initial assumption that each
agent has a negative utility for all agents they leave in some step after t′0 ≤ t′ ≤ t′′.

As the CAFs AS i and MF i satisfy friend necessity and single friend desire (Proposition A.2), Propo-
sition E.3 implies that, for every ASHG and MFHG with deviator-resentful agents, some execution of
the CNS dynamics converges.

E.2 Core Stability and Individual Stability

We now turn to the consent-based stability concepts individual stability and (strict) core stability. Here,
the influence of deviator-resentment is more profound.

Individual Rationality

We start by considering individually rational SCS dynamics. Here, like for resentful agents, convergence
is guaranteed for a wide class of CAFs.

Proposition E.4. The individually rational SCS, CS, and IS dynamics converge for deviator-resentful
agents whose CAFs satisfy enemy domination.

Proof. We show the statement for SCS deviations, which implies convergence of CS and IS dynamics.
Let a hedonic game (N, u0) with deviator-resentful agents be given where every agent i ∈ N has a
CAF Ai that satisfies enemy domination. Assume for the sake of contradiction that there exists an
infinite sequence (πt)t≥0 of partitions resulting from SCS deviations of deviator-resentful agents. By
Lemma 2.1, there exists a time t0 ≥ 0 such that every deviation performed after t0 must occur infinitely
often.

We first show that if two agent i and j perform a core deviation together at some point after t0,
then i cannot leave j nor can j leave i after t0. We prove that i cannot leave j (the other case is
symmetric). By enemy domination, there exists a constant c(ut0

i , j) such that for all utility vectors
u′
i ∈ Qn with u′

i(k) ≤ ut0
i (k) for all k ∈ N and u′

i(j) ≤ c(ut0
i , j), it holds for every C ∈ Ni with j ∈ C

that Ai(C, u
′
i) < Ai({i}, u′

i).
As each deviation after t0 occurs infinitely often, the fact that i leaves j after t0 infinitely often

implies that there exists a time t1 ≥ t0 such that agent i leaves agent j for ut0
i (j) − c(ut0

i , j) times
between time t0 and time t1. Since agent i is deviator-resentful, this implies that ut1

i (j) ≤ c(ut0
i , j).

Additionally, deviator-resentful agents can only decrease utilities for other agents. Therefore, it holds
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Figure 5: Example from Proposition E.5. Utilities after x cycles of deviations. All missing edges indicate
that the utilities of the agents for each other are zero.

for all t ≥ t0 and k ∈ N that ut
i(k) ≤ ut0

i (k). Consequently, from the definition of c(ut0
i , j) it follows

that agent i cannot deviate to form a coalition together with j after t1, because this deviation would
not be individually rational. However, such a deviation takes place because we have assumed that i
and j deviate together at some point after t0 and such a deviation is performed infinitely often. This
establishes that i and j cannot leave each other after t0.

Finally, consider some time t ≥ t0 in which a coalition Ct performs a group deviation. Then, from
our above observation we get that no agent that is part of Ct can ever leave another agent that is part
of Ct after this, implying that πt′(j) ⊆ Ct for all j ∈ Ct and t′ ≥ t. This implies that the size of Ct

needs to monotonically increase over time. Notably, this holds for all coalitions that ever performed a
deviation after time t0. Yet the overall number of agents is bounded, resulting in a contradiction.

As AS i and MF i satisfy enemy domination (Proposition A.2), Proposition E.4 implies that the
individually rational SCS, IS, and CS dynamics converge in ASHGs and MFHGs for deviator-resentful
agents.

Absence of Individual Rationality

If we drop the requirement that deviations are individual rational, the picture changes. For MFHGs, IS,
CS, and SCS dynamics may cycle.

Proposition E.5. The IS, CS, and SCS dynamics may cycle in MFHG for deviator-resentful agents,
even when starting from the singleton partition.

Proof. Consider the MFHG with agent set N = {a, b, c, d, e, f} and utilities as depicted in Figure 5,
where the number of an arc from agents i to j describes the utility that i has for j. The initial utilities
result from setting x to 0 in Figure 5. Consider the following infinite sequence of partitions. For n ≥ 0,

• π3n = {{α, a, b}, {β}, {γ, c}},

• π3n+1 = {{α, a}, {β, b, c}, {γ}}, and

• π3n+2 = {{α}, {β, b}, {γ, a, c}}.

Note that the utilities of agents after x executions of this cycle of three deviations are shown in Figure 5.
Observing that for k ≥ 1, πk−1 leads to πk by means of a (S)CS deviation completes the counterexample.
Note that we can also modify the dynamics to start in the singleton partition, by inserting the two
partitions {{α}, {β}, {γ}, {a}, {b}, {c}} and {{α, a, b}, {β}, {γ}, {c}} in the beginning of the dynamics.

Using the same initial utilities, for IS deviations we have the following cycling sequence of partitions.
For n ≥ 0,
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• π6n = {{α, a, b}, {β}, {γ, c}},

• π6n+1 = {{α, a, b}, {β, c}, {γ}},

• π6n+2 = {{α, a}, {β, b, c}, {γ}},

• π6n+3 = {{α}, {β, b, c}, {γ, a}},

• π6n+4 = {{α}, {β, b}, {γ, a, c}}, and

• π6n+5 = {{α, b}, {β}, {γ, a, c}}.

Again the utilities of agents after x executions of this cycle of six partitions are shown in Figure 5.
We again observe that for k ≥ 1, πk−1 leads to πk by means of a IS deviation, which completes the
counterexample. Again we can also modify the example to start in a singleton partition by adding the
three partitions {{α}, {β}, {γ}, {a}, {b}, {c}}, {{α, a}, {β}, {γ}, {b}, {c}}, {{α, a, b}, {β}, {γ}, {c}} in the
beginning of the dynamics.

By contrast, IS dynamics are still always guaranteed to converge in ASHG. Note that this is the only
contrast between ASHGs and MFHGs proven in this paper (in all other cases we either have the same
result for both classes, or a result for one and an open question for the other).

Theorem E.6. In ASHGs, the IS dynamics converges for deviator-resentful agents.

Proof. Let an ASHG (N, u0) be given. For the sake of contradiction assume that there exists an infinite
sequence (πt)t≥0 of partitions resulting from IS deviations of deviator-resentful agents. For each t ≥ 0,
let dt be the agent deviating in step t from πt−1(dt) to πt(dt). By Lemma 2.1, there exists t0 ≥ 0 such
that every deviation performed after t0 is performed infinitely often.

Note that for each t ≥ t0 it holds that dt cannot be left by an agent j ∈ πt(dt) after t0, as otherwise
j will leave dt infinitely often and thus, as utilities are only decreasing, at some point will no longer
approve the join of dt, as she derives negative utility from dt. We refer to this as the first observation.

Fix some t ≥ t0 and let d := dt and C := πt(dt) (note that d joins C \ {dt} at step t ). As our second
observation we now show that there is some t′ > t with dt

′
= d and πt′−1(dt) = C.

From our choice of t0 it follows that there is some t′ ≥ t where d performs a deviation for the next time.
Assume now, for the sake of contradiction that there is some t′′ with t′ > t′′ > t where πt′′(d) ̸= πt′′−1(d)
and select the smallest such t′′. If πt′′(d) is changed because an agent j left it, then, by our choice of t′′,
it follows that j ∈ C, which contradicts our first observation. If πt′′(d) is changed because an agent j
joined it, then it needs to hold that j leaves the coalition of d again before t′: Otherwise, d leaves j which
again contradicts the first observation as d needs to approve the join of j. Thus, the second observation
follows.

However, the second observation implies that for d it holds that ut
d(π

t(d)) = ut′−1
d (πt′−1(d)). In the

next step, d performs an IS deviation and thus increases her utility, i.e., ut′

d (π
t′(d)) > ut′−1

d (πt′−1(d)).
Afterwards, the second observation can be applied again until d performs the next deviation. Thus, d’s
utility is strictly increasing, however, as utilities are initially bounded and resentment can only cause
their decay, this leads to a contradiction. Hence, IS dynamics have to converge.

Our results give broad insight into dynamics for deviator-resentful agents. Still, we were not able to
settle whether SCS or CS dynamics are guaranteed to converge in ASHG for deviator-resentful agents
without the individual rationality assumption, leaving this as an open question.

F Fastest Convergence

As discussed in Section 6, we now investigate the problem of deciding whether there exists an execution
of some dynamics for a given hedonic game with resentful or appreciative agents, converging within a
certain time. For α ∈ {NS, IS,CNS,CS}, we define the following decision problem:
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resentful-ashg-α-sequence

Given: An additively separable hedonic game with resentful agents and some integer k.

Question: Is there an execution (πt)t≥0 of the α dynamics that starts from the singleton
partition π0 and converges in at most k steps?

Defining appreciative-ashg-α-sequence analogously for appreciative agents, we can show that these
problems are NP-hard for NS, IS, CNS, and CS.

Theorem F.1. For α ∈ {NS, IS,CNS,CS}, resentful- and appreciative-ashg-α-sequence are
NP-hard.

Before turning to the proof of Theorem F.1, we want to make a few remarks. First, note that
all our constructions in the following proofs also work for normal agents with constant utilities over
time. Hence, our constructions also imply the hardness of the respective decision problem for (time-
independent) ASHGs.

Second, we want to discuss membership in NP. Note that the sequence of partitions leading to a
stable partition is a certificate for a Yes-instance of size O(nk). Hence, if k is given in unary encoding,
then this is a certificate of polynomial size. Moreover, for the reduced instance in our proofs, it holds
that k ∈ O(n), and therefore the hardness holds on a class of instances for which membership in NP is
satisfied. Still, it is not clear whether resentful- and appreciative-ashg-α-sequence are in NP for
a general k in binary encoding.

We are ready to continue with the proof of Theorem F.1 and split it into three parts (Lemmas F.2
to F.4).

Lemma F.2. For α ∈ {NS, IS}, resentful- and appreciative-ashg-α-Sequence are NP-hard.

Proof. We first show the statement for IS and resentful agents. We reduce from Restricted Exact
Cover by 3-Sets (RX3C) where we are given a finite universe U = {x1, . . . , x3t} and a family S =
{S1, . . . , S3t} of 3-subsets of U where each element from U appears in exactly three sets from S. The
question is whether there is a family S ′ ⊆ S which is an exact cover of U .

Construction. Given an instance (U,S) of RX3C, we set k = 10t and create the following additively
separable hedonic game. We add one element agent x for each element x ∈ U and one set agent S for
each set S ∈ S. Moreover, we add 2t filling agents F = {f1, . . . , f2t}. Lastly, we add a penalizing gadget
consisting of 10t + 1 penalizing agents {p} ∪ Q with Q = {pi,j | i ∈ [5t], j ∈ [2]}. The resulting set of
agents is N = U ∪ S ∪ F ∪ {p} ∪Q. The initial utilities of the players are illustrated in Figure 6:

• Each element agent has utility zero for each other element agent and utility 1 for each set agent.

• Each filling agent has utility 1 for each set agent.

• Each set agent S ∈ S has utility 20t for the three element agents x ∈ S, utility 60t for each filling
agent, utility 60t for p, and utility zero for each penalizing agent in Q.

• p has utility 10t for each set agent and utility zero for each penalizing agent in Q.

• Each penalizing agent pi,j ∈ Q has utility 30t for each set agent, utility 30t for p, utility 40t for her
corresponding penalizing agent pi,k with k ∈ [2], k ̸= j, and utility zero for all remaining penalizing
agents in Q.

• All not explicitly mentioned utilities are −1000t.

We now show that there is an exact cover of U if and only if there is a sequence starting with the
singleton partition and reaching an IS partition after at most k IS deviations, where agents are resentful.

(⇒) Given an exact cover S ′ ⊆ S, we let the agents deviate as follows. For each S ∈ S \ S ′, one
filling agent deviates to S (there are 2t of these sets and 2t filling agents). For each S ∈ S ′, the three
element agents x with x ∈ S deviate to S. As S ′ is an exact cover, each filling and each element agent
deviate exactly once, leading to 5t deviations so far. Furthermore, for i ∈ [5t], pi,2 deviates to pi,1.
Thus, we have 10t deviations in total. If we order these deviations arbitrarily, then all deviations are NS
deviations, as each agent deviates from the singleton coalition to a coalition for which she has positive
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Figure 6: Scheme of the additively separable hedonic games in Lemma F.2. All omitted utilities are
−1000t.

utility. Furthermore, these NS deviations are IS deviations as the agents in the joined coalitions have
non-negative utilities for the deviators. It remains to show that the resulting partition is NS (and thus
also IS): Observe that there is at most one set agent per coalition. As element and filling agents only
derive a positive utility from set agents and are in a coalition with a set agent, no element or filling
agent has an NS deviation. Agent p only has a positive utility for the set agents but all set agents are
accompanied by either element or filling agents for which p has a large negative utility. Hence, p has
no NS deviation. Agents pi,1 and pi,2 with i ∈ [5t] do not want to deviate as they have utility 40t for
coalition {pi,1, pi,2} and value no other available coalition with more than 30t. Lastly, each set agent
S ∈ S is in a coalition from which she derives utility 60t. All other coalitions are either the coalition
just containing p (for which S has utility 60t as well), coalitions containing other penalizing agents (for
which S has utility zero), or contain a different set agent (for which S has large negative utility). Thus,
S has no NS deviation either and the created partition is NS.

(⇐) Assume that we have a sequence of ℓ ≤ k = 10t IS deviations leading from the singleton partition
π0 to an IS partition πℓ. As a first observation, note that in this sequence no two agents who have utility
−1000t for each other can ever be in the same coalition because they would never join each other. Second,
as we start from the singleton partition, the resentment an agent has build up for the other agents after
ℓ deviations sums up to at most ℓ

2 ≤ 5t.
Next, we show that, in πℓ, no set agent is in a joint coalition with p. For the sake of a contradiction,

assume that p ∈ πℓ(S) for some S ∈ S. By the first observation, this means that there is no other
set agent, no element agent, and no filling agent in πℓ(S). Hence πℓ(S) ⊆ {p, S} ∪ Q. Let pi,j ∈ Q
be a penalizing agent who has not performed any deviation, yet. This agent has to exist because,
otherwise, we would have needed at least 10t + 1 deviations to reach πℓ. Then, pi,j has a utility of at
least u0

pi,j
(S) + u0

pi,j
(p)− 5t = 55t for πℓ(S) and thus has a possible NS deviation to πℓ(S). (As pi,j has

not deviated yet, she can have a utility of at most 40t for πℓ(pi,j) if pi,k with k ∈ [2], k ̸= j has joined
her.) This NS deviation is also an IS deviation as, initially, no agent from πℓ(S) has a negative utility
for pi,j . This is a contradiction to πℓ being IS. So, πℓ(p) ⊆ {p} ∪Q.

As πℓ is IS, no set agent S has any possible IS deviation from πℓ(S) to πℓ(p). As p and all other
penalizing agents would always allow S to join her (note that they cannot have decreased their utility
by more than 5t for S until step ℓ), S has no NS deviation to join πℓ(p). Since (a) the resentment that
S has build up for any agent sums up to at most −5t, (b) S initially has utilities zero for all penalizing
agents pi,j ∈ πℓ(p), (c) S initially has utility 60t for p, and (d) S does not want to move to p, it follows
that uℓ

S(π
ℓ(S)) ≥ 60t− 5t = 55t.

Therefore, πℓ(S) contains at least one filling agent or three element agents x with x ∈ S. Since this
holds for all set agents and no two set agents are in one coalition, the existence of an exact cover (namely
S ′ = {S ∈ S | S is together with three element agents}) is implied.

By the same proof as above, there is an exact cover of U exactly if there is a sequence of at most k
NS deviations leading to an NS partition for resentful agents.

For appreciative agents, we can use the same construction. The proof of correctness is very similar.

Lemma F.3. resentful- and appreciative-ashg-CNS-Sequence are NP-hard.
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Figure 7: Additively separable hedonic games in Lemma F.3. All omitted utilities are −1000t.

Proof. We first show the statement for resentful agents. We again reduce from RX3C.
Construction. From an instance of RX3C, given by a universe U = {x1, . . . , x3t} and a family

S = {S1, . . . , S3t} of 3-subsets of U , we create an additively separable hedonic game as follows. We create
the set of agents N = U ∪S ∪F ∪Q with element agents U , set agents S, filling agents F = {f1, . . . , f2t},
and penalizing agents Q = {p0, . . . , p4}. The initial utilities of the agents are illustrated in Figure 7:

• Each element agent has utility 1 for each other element agent.

• Each set agent S ∈ S has utility 20t for the three element agents x ∈ S, utility 60t for each filling
agent, utility 60t for p0, and utility zero for p1.

• p0 has utility 10t for each set agent and utility zero for p1.

• p1 has utility 1 for p0.

• p2, p3, and p4 have utility 200t for p1.

• p2 has utility −100t for p3 and utility −400t for p4.

• p3 has utility −100t for p4 and utility −400t for p2.

• p4 has utility −100t for p2 and utility −400t for p3.

• All not explicitly mentioned utilities are −1000t.

The penalizing gadget consisting of agents p1, . . . , p4 is a variant of an ASHG by Sung and Dimitrov [27,
Example 2] for which no CNS partition exists (in normal ASHGs).

We set k to 5t+1 and show that there is an exact cover of U if and only if there is a sequence starting
from the singleton partition of at most k CNS deviations leading to an CNS partition, where agents are
resentful.

(⇒) Given an exact cover S ′ ⊆ S, consider the following sequence of k = 5t+1 deviations. First, for
each set S ∈ S ′ with S = {xi, xj , xl}, xi and xj join xl and afterwards the set agent S joins {xi, xj , xl}
(3t deviations). Second, all set agents S with S /∈ S ′ join a filling agent each (2t deviations). Last, p1
joins p0.

All these deviations are NS deviations as each of these deviations is performed from a singleton to
a coalition with positive utility for the deviator. Moreover, all these NS deviations are CNS deviations
because they are performed from singletons; so there are no other agents who could veto the deviation.

Next, we show that the resulting partition π is CNS. First, each set agent has utility 60t for π(S).
Since every other coalition either contains an agent for which she has utility −1000t or is the coalition
{p0, p1}, for which she has utility 60t, she does not want to deviate. Second, each element and filling
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agent do not have any CNS deviation because they have a set agent in their coalition who would veto
their deviation. Third, p1 would veto a deviation of p0, so p0 has no CNS deviation. Fourth, p1 does not
want to deviate to another coalition as she has utility 1 for π(p1) = {p0, p1} and every other coalition in
π contains an agent for which she has utility −1000t. Last, p2, p3, and p4 do not want to deviate as they
only have a positive utility (of 200t) for agent p1 but p1 is together with p0 for which they have utility
−1000t.

(⇐) Assume that we have a sequence of ℓ ≤ k = 5t + 1 CNS deviations leading from the singleton
partition π0 to a CNS partition πℓ. In this sequence, no two agents who mutually have utility −1000t
for each other can ever be in the same coalition because they would never join each other. Furthermore,
as we start from the singleton partition, the resentment an agent has accumulated for the other agents
after ℓ deviations sums up to at most ℓ

2 ≤ 3t.
We will now show that no set agent is together with p0 in πℓ. For the sake of a contradiction, assume

that S ∈ πℓ(p0) for some S ∈ S. By the first observation, this implies that πℓ(p0) ⊆ {S, p0, p1}. It further
holds that p1 /∈ πℓ(p0) because, otherwise, p1 would have a CNS deviation to a singleton coalition. Hence,
πℓ(p0) = {S, p0}. Next, consider coalition πℓ(p1). By the first observation, we have πℓ(p1) ⊆ S ∪ Q.
Furthermore, there is no set agent in πℓ(p1): Indeed, assume for contradiction that there is some set
agent S′ in πℓ(p1). Then, by the first observation, neither p2, p3, nor p4 are in πℓ(p1). Furthermore, we
already now that p0 is not in πℓ(p1). It follows that πℓ(p1) = {S′, p1} which means that p1 has a CNS
deviation to a singleton coalition, a contradiction. Hence, πℓ(p1) ⊆ {p1, . . . , p4}. For i ∈ {2, 3, 4}, it also
holds by the first observation that πℓ(pi) ⊆ {p1, . . . , p4}. We will now show that {p1, . . . , p4} can not be
divided into a CNS partition [cf. 27, Example 2]. Note that the arguments also hold when lowering any
utilities among this agents by at most 3t and therefore πℓ is no CNS partition, which is a contradiction.

First, none of p2, p3, and p4 can be in the same coalition because the agent with a initial utility of
−400t for another agent in her coalition would have a CNS deviation to a singleton. Hence, the remaining
possible partitions of {p1, . . . , p4} are π′ = {{p1}, {p2}, {p3}, {p4}}, π′′ = {{p1, p2}, {p3}, {p4}}, π′′′ =
{{p2}, {p1, p3}, {p4}}, and π′′′′ = {{p2}, {p3}, {p1, p4}}. But all these partitions are not CNS: π′ is not
stable because p2 has a CNS deviation to {p1}; π′′ is not stable because p4 has a CNS deviation to
{p1, p2}; π′′′ is not stable because p2 has a CNS deviation to {p1, p3}; π′′′′ is not stable because p3 has
a CNS deviation to {p1, p4}. Thus, we have shown that πℓ is not CNS. This is a contradiction and
therefore the initial assumption was wrong, i.e., no set agent is together with p0 in πℓ.

Since πℓ is CNS, no set agent has a CNS deviation to p0. Note that p0 is the only agent who has
positive utilities for the set agents. So, for any set agent S ∈ S, there is no agent in πℓ(S) who would
veto a deviation of S. Therefore, no set agent has an NS deviation to p0. Furthermore, we know that
πℓ(p0) ⊆ {p0, p1} because of the first observation and because no set agent is with p0. So, for every set
agent S ∈ S, we have uℓ

S(π
ℓ) ≥ uℓ

S(π
ℓ(p0) ∪ {S}) ≥ 60t− 3t = 57t (where 60t is S’s initial utility for p0

and −3t is a bound for the resentment that S might have build for p0 or p1). Therefore, π
ℓ(S) contains

at least one filling agent or three element agents x with x ∈ S. Since no two set agents are in the same
coalition, this implies the existence of an exact cover for U .

For appreciative agents, we can use almost the same construction. We just set p0’s initial utility for
p1 to −1 while all other utilities stay the same. Then, the proof of correctness is very similar to the proof
for resentful agents.

Lemma F.4. resentful- and appreciative-ashg-CS-Sequence are NP-hard.

Proof. We first show the statement for resentful agents and reduce from RX3C.
Construction. Let an instance of RX3C (U,S) with a universe U = {x1, . . . , x3t} and a family

S = {S1, . . . , S3t} of 3-subsets of U be given. We set k = 3t + 2 and create the following additively
separable hedonic game. The set of agents is N = U ∪ S ∪ F ∪Q with element agents U , set agents S,
filling agents F = {f1, . . . , f2t}, and penalizing agents Q = {p0, . . . , p6}. The initial utilities of the agents
are illustrated in Figure 8:

• Each set agent S has utility 60t for each filling agent, utility 20t for element agents x with x ∈ S,
and utility 60t for the penalizing agent p0.

• Each element agent has utility 1 for each set agent and utility 0 for all other element agents.

• Each filling agent has utility 1 for each set agent.
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Figure 8: Additively separable hedonic games in Lemma F.4. All omitted utilities are −1000t.

• p0 has utility 20t for all set agents and utility 10t for p1.

• Agents p1, p3, and p5 have utility 40t for each other.

• For i ∈ {1, 3, 5}, agent pi has utility 60t for agent pi+1 and vice versa.

• For i ∈ {2, 4, 6}, agent pi has utility 50t for agent pi+1 and vice versa (where p7 = p1).

• All not explicitly mentioned utilities are −1000t.

Note that the penalizing gadget consisting of agents p1, . . . , p6 is a variant of an ASHG by Aziz et al.
[2, Example 1] for which no CS partition exists (for normal ASHGs).

(⇒) Given an exact cover S ′ ⊆ S, consider the following sequence of group deviations. For each
S ∈ S ′, S and the three x ∈ S deviate together (t deviations). For each S ∈ S \ S ′, S deviates with one
filling agent that is still in a singleton (2t deviations). Now, p0 deviates with p1. Lastly, p3, p4, and p5
deviate together. Hence, we have 3t+ 2 deviations in total.

All these deviations are CS deviations as all these deviations are performed from singletons to coali-
tions with positive utilities for all deviators.

Next, we show that the resulting partition π is CS. First note that no two agents who have utility
−1000t for each other want to deviate together. Each element agent x only has a positive utility of 1 for
all set agents and is in a coalition with one set agent. As no two set agents will ever deviate together,
there is no coalition that x could deviate with to improve her utility. The same holds for all filling
agents. Each set agent S has utility 60t for π(S). As no element or filling agent wants to deviate, the
only remaining agent for which S has positive utility is p0. Yet, S only has utility 60t for p0 which is
no improvement compared to π(S). So no set agent has a CS deviation. Therefore, also p0 has no CS
deviation as she would only like to deviate with some set agents. p1 has utility 300t for π(p1) = {p0, p1}
and would thus not deviate without p0. Similarly, the remaining agents p2, . . . , p6 have no CS deviation
without p1. Thus, the whole partition π is CS.

(⇐) Assume that we have a sequence of ℓ ≤ k = 3t + 2 CS deviations leading from the singleton
partition π0 to a CS partition πℓ. In this sequence, no agent is ever in a coalition with an agent for which
she has utility −1000t because she would never deviate with this agent. Therefore, the largest coalitions
in this sequence have size at most four (containing one set agent and three element agents). It follows
that the sum of the resentment that a single agent accumulates for the other agents during ℓ ≤ 3t + 2
deviations is bounded by ℓ

2 · 3 ≤ 3t+2
2 · 3 = 9

2 t+ 3 because she can be left by at most three agents every
second deviation.

We will now show that no set agent is in a joint coalition with p0 in πℓ. For the sake of a contradiction,
assume that S ∈ πℓ(p0) for some S ∈ S. By the first observation, this implies that πℓ(p0) = {S, p0}.
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This means that p1, . . . , p6 have formed coalitions among each other. Yet, as argued by Aziz et al. [2,
Example 1], there is no CS partition for these six agents. Note that resentment, which influences each
player by a total utility change of at most 9

2 t + 3, does not facilitate stability because the differences
between the utilities in this group are at least 10t. It follows that πℓ is not CS which is a contradiction.
So no set agent is together with p0 in πℓ.

Next, since πℓ is CS, no coalition {S, p0} with S ∈ S has a CS deviation. Since p0 is together with
no set agent in πℓ, p0 can have a utility of at most 10t for πℓ and wants to deviate to {S, p0}. So, S does
not want to deviate to {S, p0}. Therefore, uℓ

S(π
ℓ) ≥ uℓ

S({S, p0}) ≥ 60t − ( 92 t + 3) = 111
2 t − 3. Hence,

πℓ(S) contains at least one filling agent or three element agents x with x ∈ S. Since no two set agents
are in the same coalition, this implies the existence of an exact cover for U .

For appreciative agents, we can use the same construction and the proof is very similar.
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