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Abstract

We consider a one-sided matching problem where there are m items and n agents
who are partitioned into disjoint classes. Each class must receive fair treatment in a
desired matching. This model, recently proposed by Benabbou et al. [7] and Hosseini
et al. [16], captures a wide range of real-life scenarios, such as the allocation of public
housing and the allocation of medical resources across different ethnic groups and
different age groups, respectively. The main interest has been to achieve class envy-
free matchings, in which each class receives a total utility at least as large as the
maximum value of a matching they would achieve from the items matched to another
class. However, class envy-freeness is unattainable for worst case utilities without
allowing some items to remain unused. To analyze the existence of a class envy-
free matching in practice, we consider a distributional model, in which the agents’
utilities for the items are drawn from a probability distribution. Our main result
is the asymptotic existence of class envy-free and non-wasteful matchings when the
number of agents approaches infinity. To this end, we propose a round-robin style
algorithm and prove that it produces a desirable matching with high probability.

1 Introduction

One-sided matching is a fundamental problem both theoretically and practically. For in-
stance, in the allocation of tasks to workers, or social housing to residents, ensuring fairness
is of paramount importance. Consider the allocation of scarce medical resources to differ-
ent regions in a country. To gain public acceptance, the social planner must ensure a fair
distribution of the resources across various regional groups.

Recently, Benabbou et al. [7] and Hosseini et al. [16] proposed a model that captures
such scenarios. They adapted fairness notions from fair division literature into the one-sided
matching problem. In this model, there are m items and n agents forming k disjoint classes.
Each class evaluates a matching through assignment valuations, representing the value of a
class for the items allocated to another class. The optimum value of a matching between the
members of the class and the items determines this value. A central concept of fairness is
class envy-freeness, which requires that no class prefer being allocated to the items assigned
to another class.

It is possible to achieve envy-freeness among classes if all items can be discarded, although
such a matching would not be desirable at all. Unfortunately, a class envy-free matching
is not guaranteed to exist without wasting any items. For example, consider a case with
one item and two classes, each consisting of one agent who likes the single item. In any
nonempty matching, one class receives nothing whereas the other class receives one item.
This strong conflict between fairness and efficiency, however, does not necessarily imply that
achieving a non-wasteful1 class envy-free matching is impossible in practice. Experimental
studies [7, 8] have demonstrated that an approximate notion of class envy-freeness can often
be achieved with minimal wastage.2

1We provide a formal definition of non-wastefulness in Section 2.
2See Appendix C of Benabbou et al. [8] for experiments using real-life instances and Section 5 of Benabbou

et al. [7] for experiments using random instances.
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In the context of fair division, related studies have analyzed situations in which the
agents’ utilities for each item are drawn from a random distribution [12]. Although the
non-existence of an envy-free allocation also holds in this setting, the distributional model
allows us to analyze practical cases and ignore pathological inputs. Interestingly, a very
simple algorithm is likely to output a complete envy-free allocation for agents with additive
valuations. For instance, Manurangsi and Suksompong [29] demonstrated that the round-
robin algorithm, which lets each agent choose the favorite item in the order, computes an
envy-free allocation with high probability when agents have additive valuations.

Our contributions In this paper, we propose a distributional model in which each agent
has utilities drawn from a continuous probability distribution. Our main result is the asymp-
totic existence of class envy-free and non-wasteful matchings, subject to mild assumptions
on the number and the sizes of classes. To prove this, we adopt the round-robin algorithm
from fair division into our setting. Specifically, in each round, each class selects an item with
highest marginal utility among the remaining items to create a maximum weight matching
with one more edge. We demonstrate that this algorithm produces an envy-free non-wasteful
matching when the number of agents goes to infinity.

Although our algorithm behaves in a very similar manner to the round-robin algorithm
for the fair division problem with additive valuations, the non-additivity of classes’ valu-
ations presents significant differences in our analysis compared with that for the additive
setting [29] and poses technical challenges. To be more concrete, for additive valuations,
the envy between any pair of agents based on the output of the round-robin algorithm can
be decomposed into per-round envies, which represent the differences between the values
of each agent i for the item they received and that by another agent in each round. How-
ever, obtaining such a decomposition is challenging for assignment valuations, owing to the
combinatorial structure of the matchings.

To address these challenges, our proof crucially utilizes the techniques from the random
assignment theory [2, 9, 14, 37, 40]. The random assignment theory employs a bipartite
graph with random edge weights, primarily focusing on analyzing the expected value of
a minimum weight perfect matching, essentially equivalent to a maximum weight perfect
matching. In Section 3.1, rather than examining an individual pair of items allocated to two
classes p and q in each round, we present the investigation of the marginal utility that each
class p enjoys in each round. This approach allows us to analyze the expected value of the
items allocated to class p. In addition, we evaluate the expected value of the items allocated
to another class q from the viewpoint of p using a randomly selected bundle of the class
p’s size. In Section 3.2 discusses the concentration of probability around these expected
values. Finally, in Section 3.3, we combine these results to establish our main theorem. See
Appendix A for a more extensive discussion about the further related work.

2 Model

In this paper, we use [k] to denote the set {1, 2, ..., k}. Let I = [m] be the set of items
and N = [n] be the set of agents. We call a subset of I a bundle. The set of agents N
is partitioned into k classes, N1, N2, ..., Nk, where Np denotes the set of agents with class
p and np = |Np| denotes the number of agents in the class p. We arrange k classes so
that n1 ≤ n2 ≤ · · · ≤ nk. We refer to Np as class p. Each agent i ∈ N possesses utility
ui(j) ∈ [0, 1] for every item j ∈ I, where we assume that ui(j) is drawn from distribution D
on [0, 1], with some assumptions of the distribution presented in Section 2.1.

Consider a bipartite graph G = (N ∪ I, E), where {i, j} ∈ E if and only if ui(j) > 0 for
every pair of i ∈ N and j ∈ I. A matching M of G is a set of edges such that each vertex
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appears in at most one edge of M . Given a matching M , we denote by Mp the submatching
of M , the edges of which have endpoints in Np. For S ⊆ N , let M(S) be the set of items
assigned to S by matching M . We write (M(N1),M(N2), ...,M(Nk)) as the allocation to
k classes induced by matching M , where M(Np) is a bundle allocated to class p ∈ [k]. Let
M(N) ⊆ I denote the set of items allocated to some agent and I0 = I \M(N) denote the
set of unallocated items.

We assume that each class evaluates a bundle allocated to another class with an assign-
ment valuation [7]. Its definition is as follows:

Definition 1 (Assignment valuation). The assignment valuation vp(I
′) for class p to a

bundle I ′ ⊆ I is the maximum total weight of matching of items in I ′ to the agents in Np.
Namely, vp(I

′) = maxM∈M(Np,I′)

∑
{i,j}∈M ui(j), whereM(Np, I

′) denotes the whole set of

matchings between Np and I ′ in G.

It is worth noting that the value vp(I
′) for bundle I ′ ⊆ I is at most the size np of each

class p ∈ [k], since each utility ui(j) is at most 1 for all i ∈ N and j ∈ I. Each value
vp(I

′) can be computed in polynomial time since, given a bipartite graph and edge weights,
a maximum weight matching can be computed in polynomial time [26].

Next, we define the notion of class envy-freeness, which demands the total utility each
class achieves to be higher or equal to the class p’s assignment valuation for the items
allocated to every other class q.

Definition 2 (Class envy-freeness). Let M be a matching in the bipartite graph G =
(N ∪ I, E). We say that class p envies class q if

∑
{i,j}∈Mp ui(j) < vp(M(Nq)). A matching

M is class envy-free if no class envies another class, i.e.,
∑

{i,j}∈Mp ui(j) ≥ vp(M(Nq)) for

every pair p, q ∈ [k] of distinct classes.

If we allow each class to optimally shuffle items within the members of the class, then
the class would choose a maximum weight matching between the members of the class and
their bundle. In the round-robin algorithm which we will consider in Section 3, we allow
shuffling and therefore the class envy-freeness requirement is equivalent to the definition
above where we replace the left-hand side

∑
{i,j}∈Mp ui(j) with vp(M(Np)).

We define below non-wastefulness, which requires that there is no waste of an item j such
that (a) j is an unallocated item that can increase the total utility of some class p or (b) j can
be reallocated from class q to class p to increase the total utility of class p without hurting
class q. For a bundle I ′ ⊆ I, class p ∈ [k], and an item j ∈ I, we define the marginal utility
∆p(I

′; j) as ∆p(I
′; j) = vp(I

′ ∪{j})− vp(I
′) if j ∈ I \ I ′ and ∆p(I

′; j) = vp(I
′)− vp(I

′ \ {j})
if j ∈ I ′.

Definition 3 (Non-wastefulness). An item j ∈ I is said to be wasted for a matching M if
either (a) j /∈M(N) such that ∆p(M(Np); j) > 0 for some class p, or (b) there exists class
q such that j ∈ M(Nq) and ∆q(M(Nq); j) = 0 but ∆p(M(Np); j) > 0 for some class p. A
matching is non-wasteful if no item is wasted.

The above definition of non-wastefulness is the same as the definition of non-wastefulness
by Benabbou et al. [7] and stronger than that by Hosseini et al. [16], who define a non-
wasteful matching to be a maximal matching.

As is observed in Hosseini et al. [16], unfortunately, a class envy-free matching that is non-
wasteful may not exist. Note that the asymptotic existence of a “complete” class envy-free
matching where each agent is matched to exactly one item readily follows from the result in
the house allocation problem [15, 29], though such a matching may be wasteful. We discuss
details in Appendix B.1. In Section 3, we demonstrate that under mild conditions, we can
in fact obtain the asymptotic existence of a matching that satisfies both class envy-freeness
and non-wastefulness.
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2.1 Distributions

For each agent i ∈ N and item j ∈ I, we assume that the utility ui(j) is independently
drawn from a given distribution D supported on [0, 1]. We assume that all the agents have
the same distribution. We denote the density function of D by fD and the cumulative
distribution function of D by FD. A distribution is said to be non-atomic if it does not
put positive probability on any single point. Throughout this paper, we assume that a
distribution D is non-atomic. We define that a distribution D with density function fD is
(α, β)-PDF-bounded for constants 0 < α ≤ β, if α ≤ fD(x) ≤ β for all x ∈ [0, 1]. We say that
D is PDF-bounded if it is (α, β)-PDF-bounded for some α, β > 0. If α = β = 1, then D is
the uniform distribution over [0, 1] since fD(x) = 1 for all x ∈ [0, 1]. The PDF-boundedness
assumption was originally introduced by Manurangsi and Suksompong [29] in the context
of fair division as a natural class of distributions, such as a truncated normal distribution
is PDF-bounded. Bai and Gölz [5] also assumed this condition to prove the asymptotic
existence of an envy-free allocation in the asymmetric model. We denote by Unif(0, 1) (resp.,
Exp(λ) and Bin(n, p)) the uniform distribution on [0, 1] (resp., the exponential distribution
with rate λ on [0,∞) and the binomial distribution with parameter n and p). We say that
an event occurs almost surely if the event occurs with probability 1. We here introduce the
Talagrand’s inequality, which will be used in the proof of Theorem 1.3

Lemma 1 (Talagrand’s inequality). Let F be a family of d-tuples of non-negative real num-
bers ω = (ω1, ω2, ..., ωd) and X1, X2, ..., Xd be an independent sequence of random variables

on [0, 1]. In addition, let Z = minω∈F
∑d

i=1 ωiXi, σ = maxω∈F ∥ω∥2 and ε > 0 be a
constant, then we obtain

Pr[|Z − E[Z]| ≥ ε] ≤ 4 exp

(
− ε2

4σ2

)
.

3 Asymptotic Existence of Non-wasteful Class Envy-
free Matchings

In this section, we show the asymptotic existence of class envy-free and non-wasteful match-
ings between agents and items. We say that an event happens with high probability if the
event’s probability converges to 1 as n→∞. Our main result is as follows:

Theorem 1. Suppose that the distribution D is (α, β)-PDF-bounded and that the following
conditions hold:

(a) the number k of classes is a constant satisfying k > β
α2 ,

(b) the number m of items is sufficiently large such that k ·maxp∈[k](np + 1) ≤ m,

(c) the sizes of the classes are almost proportional to the total population; more precisely,
there exists a constant c > 0 such that n ≤ c · (minp np)

3/2 · (logminp np)
−5/2.

Then, the round-robin algorithm, presented as Algorithm 1, produces a class envy-free and
non-wasteful matching exists with high probability.

3The original Talagrand’s inequality [37] is proven as the stochastic concentration around the median of
Z, where the median ν of a random variable X distributed according to a density function f is a real number
satisfying

∫
(−∞,ν] f(x)dx ≥ 1/2 and

∫
[ν,∞) f(x)dx ≥ 1/2. Nevertheless, it is known that the concentration

inequality around the median with Gaussian upper bound implies that for the mean and vice versa. See [11]
or Exercise 2.14 in [38] for details.
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Note that the condition k > β
α2 in (a) is very mild for some distributions, e.g. for

uniform distributions, it is equivalent to k > 1 since α = β = 1. A perhaps more intuitive
but stronger condition of (c) is the case where the total number of agents is within a constant
factor of the size of every class, i.e., n = C · minp np where C ≥ 1 is a constant. This is
relevant in scenarios when the sizes of the classes under consideration are proportional to
the total population size, e.g. classes may correspond to gender groups, ethnic groups, and
groups of people with the same political interest.

Here, we refer to each iteration of the while loop (Lines 2–12) in Algorithm 1 as a round.
As explained in Section 1, in each round r, each class selects its most preferred item jpr ,
which has the highest marginal utility to the current bundle M(Np) (Line 5) and updates
its matching to create a new maximum weight matching Mp

r with one more edge (Line 6).
In our model, the edge weights are drawn from a non-atomic distribution independently. So,
no pair of distinct matchings with size r have the same total weight almost surely.4 Hence,
the item jpr as well as the maximum weight matching Mp

r for each class p can be uniquely
determined in every round r.

In the sequel, let M be the matching produced by Algorithm 1 and Mr be the matching
at the end of round r in the algorithm. We denote the set of remaining items just before
class p selects an item in round r by Ipr = I \(Mr(N1 ∪ · · · ∪Np−1) ∪Mr−1(Np ∪ · · · ∪Nk)).
Let mp

r = |Ipr |.

Algorithm 1 Round-robin algorithm for classes with assignment valuations

Input: (N = Np ∪ · · · ∪Nk, I, {ui(j)}i∈N,j∈I)
Output: M

1: Set M ← ∅, I0 ← I and r ← 1.
2: while there is a remaining item for which some class p has positive marginal utility,

i.e., I0 ̸= ∅ and ∃j ∈ I0 ∃p ∈ [k] ∆p(M(Np); j) > 0 do
3: for p = 1, 2, ..., k do
4: if there is j ∈ I0 such that ∆p(M(Np); j) > 0 then
5: jpr ← argmaxj∈I0∆p(M(Np); j).
6: Mp

r ← the maximum weight matching between Np and M(Np) ∪ {jpr}.
7: M ← (M \Mp) ∪Mp

r .
8: I0 ← I0 \ {jpr}.
9: end if

10: end for
11: r ← r + 1.
12: end while
13: return M .

As mentioned before, we allow each class to optimally shuffle items within the members
of the class in each round and so the class selects a maximum weight matching between the
members of the class and the items allocated to them. Thus, the total utility

∑
{i,j}∈Mp ui(j)

that class p receives under Algorithm 1 is vp(M(Np)).
To begin with, we show that the output of Algorithm 1 is non-wasteful.

Lemma 2. The resulting matching M of Algorithm 1 is non-wasteful.

Proof. It is immediate that the resulting matching satisfies the condition (a) in Definition 3
by construction of the algorithm. To show that M satisfies the condition (b) in Definition 3,
we prove a stronger statement that no class is allocated to an item whose removal does
not change their total utility. We use the fact that for assignment valuations, the greedy

4This is from a similar proof of the isolation lemma [31]. See Appendix D for details.
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algorithm that sequentially adds an item with the highest marginal utility and constructs a
size-r subset is guaranteed to compute an optimal set of items that maximizes the valuation
across all size-r subsets (See Theorem 17.2 in [33]). This implies that for each round r and
each class p,

Mp
r (Np) ∈ argmax{ vp(I ′) | |I ′| = r ∧ I ′ ⊆Mp

r−1(Np) ∪ Ipr }. (1)

Suppose towards a contradiction that there exists class p and item j ∈ M(Np) such that
∆p(M(Np); j) = 0. Thus, vp(M(Np) \ {j}) = vp(M(Np)). Since each item jpr added to the
bundle of class p has a positive contribution, we have

vp(M(Np)) > vp(Mr∗−1(Np)),

where r∗ denotes the last round when class p obtains some item. However, this implies
vp(M(Np) \ {j}) > vp(Mr∗−1(Np)), which contradicts (1) as M(Np) \ {j} has the same
cardinality as Mr∗−1(Np) and yields a higher value for class p.

It thus suffices to prove that a matching produced by Algorithm 1 is class envy-free with
high probability. Throughout this section, we fix any two classes p and q.

In Section 3.1, we show Lemma 3 which presents a lower bound on the expected difference
value between vp(M(Np)) and vp(M(Nq)). Lemma 3 is proved from Claims 1 and 2. To this
end, we use techniques from the random assignment theory, which analyzes the expected
value of a maximum weight perfect matching given random edge weights. We evaluate the
expected total weight of a maximum weight perfect matching by using a technique developed
in [13, 14, 40]. Specifically, we add a special vertex whose incident edges are weighted by an
exponential distribution. By adding a special vertex, we can estimate the difference between
the expected values each class achieves in two consecutive rounds.

In Section 3.2, to achieve a probabilistic concentration around the expected value of the
maximum weight matching for class p, we demonstrate that both the weights of the edges
in the matching Mp and the weights of the edges in the maximum weight matching between
Np and M(Nq) are sufficiently heavy. This is formalized in Lemma 4 and follows from the
fact that a bipartite graph with only heavy edges satisfies the property of the expanding
bipartite graph.

In Section 3.3, we combine Lemmas 3 and 4, we prove that the probability that class p
itself envies another class q is bounded from above by using Talagrand’s inequality. Finally,
we show that the probability that at least one class has envy converges to 0 as the number
of agents n approaches infinity, thereby establishing the asymptotic existence of a class
envy-free and non-wasteful matching.

It is worth noting that the deterministic behavior of the round-robin algorithm exhibits
some important differences between the additive and our settings. For additive valuations,
if an agent i is ahead of another agent i′ in the round-robin order, i does not envy i′ in the
resulting outcome. However, a similar property does not hold in our setting with assignment
valuations, since the greedy strategy does not necessarily produce an optimal matching. Due
to this, unlike the additive setting, our round-robin algorithm may not produce a matching
that satisfies EF1, an approximate notion of envy-freeness [10]. See Appendix C for details.

Notations and definitions Here we introduce additional notations and definitions. An
alternating path P (respectively, a cycle C) of a matching M ′ in a bipartite graph H is
a path (respectively, a cycle) in H where for every pair of consecutive edges on P , one of
them is in M ′ and another one is not in M ′. An augmenting path P of a matching M ′ in a
bipartite graph H is an alternating path where no edge from M ′ is incident to the first or
the last vertex of P . We say that a vertex is saturated by a matching if it is an endpoint of
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one of the edges in the matching. We call a matching saturated if all the vertices on one side
are saturated. For a bipartite graph H and each vertex i that appears in a matching M ′ of
H (namely {i, j} ∈M ′ for some j), we denote by M ′(i) the vertex matched to i under M ′.

3.1 Difference between two expected values

To establish the asymptotic existence of a class envy-free and non-wasteful matching, it
is necessary to understand how likely each class may envy another class in expectation.
Lemma 3 provides a lower bound on the expected envy under matching M , expressed as
the ratio between the class sizes. In this section, we present the proof of Lemma 3.

Lemma 3. Suppose that D is (α, β)-PDF-bounded and k ·maxp∈[k](np + 1) ≤ m. Then we
have

E[vp(M(Np))]− E[vp(M(Nq))] ≥ np −min(np, nq) +

(
α

β
− 1

αk

)
min(np, nq)

nq
− o(1).

Let us explain Lemma 3. Here, from the condition (a) in Theorem 1: k > β
α2 , we obtain

α/β − 1/αk > 0. Therefore, when np ≥ nq, Lemma 3 implies that there exists a positive
constant c > 0 such that E[vp(M(Np))]−E[vp(M(Nq))] ≥ c−o(1). Note that when np > nq,
then we obtain an even stronger lower bound c ≥ 1 since np − min(np, nq) ≥ 1. On the
other hand, when np < nq, according to Lemma 3, we have E[vp(M(Np))]−E[vp(M(Nq))] ≥
(α/β − 1/αk)np/nq − o(1) where the lower bound depends on np and nq.

To prove Lemma 3, we analyze the expected values of vp(M(Np)) and vp(M(Nq)) sep-
arately. Let us note here the difficulty in calculating the exact expectations of vp(M(Np))
or vp(M(Nq)) exactly. The exact calculations of the expected minimum total weight of
matchings have been studied in the random assignment theory. Typically, these models
assume that the weight of each edge is drawn from the exponential distribution. Assuming
the exponential distribution, we can compute the expected minimum total weight exactly,
as the distribution is memoryless, that is, the past process does not influence the future
behavior. However, in this study, we assume the PDF-bounded distributions that do not
have the memorylessness property. Nevertheless, we can show that, just like the fact shown
by Aldous [2] that the uniform and the exponential distributions asymptotically behave in
the same way, the PDF-bounded distributions also asymptotically exhibit these same be-
haviors. Therefore, we can learn about the asymptotic behavior of the difference between
the expected values of vp(M(Np)) and vp(M(Nq)) and derive the inequality in Lemma 3.

Lower bound on vp(M(Np)): Our goal here is to show the lower bound on the expected
value of vp(M(Np)), as described in Claim 1.

Claim 1. Under the same conditions as in Lemma 3, we have

E[vp(M(Np))] ≥ np −
1

α

np∑
r=1

1

r

r∑
r′=1

1

mp
r′ + 1

.

The formal proof of Claim 1 is deferred to Appendix E.1. Here we outline a
brief sketch of the proof. Recall that, in each round r, class p selects an item jpr =
argmaxj∈Ip

r
vp (Mr−1(Np) ∪ {j}) and updates their matching from Mp

r−1 to Mp
r , which is

the maximum weight matching between Np and Mr−1(Np) ∪ {jpr}. Moreover, since all
edge weights are positive almost surely and we assume m ≥ n, the size of the match-
ing Mp is np, and the size of the bundle M(Np) is also np. By linearity of expectation,
we can decompose E[vp(M(Np))] into the expected difference piled in each round, i.e.,
E[vp(Mr(Np))]− E[vp(Mr−1(Np))].
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To analyze the expected difference between vp(Mr(Np)) and vp(Mr−1(Np)), we analyze
an augmenting path that has been used to update matchings. Our approach is inspired by
an idea of Wästlund [40]. Specifically, we add a special vertex ĵ to I and edges from ĵ to
all np vertices in Np. We assume that these edge weights are drawn independently from
the distribution over (−∞, 1] whose density function is given by f(x) = λe−λ(1−x). This
probability distribution is the reversed exponential distribution, which is a reflection of the
exponential distribution over the line x = 1/2. Also, we add edges from ĵ to vertices in
N \Np whose weights are −∞. As λ→ 0, the maximum weight matching in this bipartite
graph converges to the maximum weight matching in the original bipartite graph since
f(x) = λe−λ(1−x) → −∞ as λ→ 0 and any edges connected to ĵ does not participate in the
maximum weight matching. Let M̂ denote the matching which is produced by the round-
robin algorithm when the input items are I ∪ {ĵ}. Let M̂r denote the matching, computed
by the algorithm, at the time of the end of the round r for the modified instance. Also, for
the modified instance, let Îpr denote the remaining items just before class p selects a new
item in round r and let ĵpr denote an item selected by class p in round r.

For the proof of Claim 1, we consider the probability that the added item ĵ is selected
by class p until round r ends. We consider the following two steps.

In the first step, we show that, under the same conditions as in Lemma 3, the expected
difference is equivalent to one minus the probability that class p has selected item ĵ until
round r ends, namely, ĵ belongs to the bundle M̂r(Np). This is formalized as follows:

E[vp(Mr(Np))]− E[vp(Mr−1(Np))] = 1− 1

r
lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)]. (2)

The proof of the equation (1) above is similar to the proof given by Wästlund [40].
In the second step, we show the upper bound on the probability that ĵ is selected by

class p until round r ends. That is, for r = 1, 2, ..., np,

lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)] ≤

r∑
r′=1

1

α

1

mp
r′ + 1

. (3)

We have mp
r′ + 1 = |Îpr′ |. To prove the inequality (2), we consider an augmenting path of

the matching M̂r−1 on the modified bipartite graph between Np and M̂r−1(Np)∪ Îpr . More

precisely, we condition ĵ /∈ M̂r−1(Np) and consider an augmenting path of the matching

M̂r−1: P = (ir, ..., ia, ĵ
p
r ) as Figure 1. By considering the conditioned distribution and the

nesting lemma by Buck et al. [9], we obtain a bound on the probability that ĵ is the item
selected by class p in round r (that is, ĵpr = ĵ).

Finally, combining (1) and (2), we obtain an inequality about the increment of the
expected valuation. Summing the inequalities from r = 1 to r = np, we establish Claim 1.

Upper bound on vp(M(Nq)): Next, we examine the upper bound on the expected
value vp(M(Nq)) of class p for q’s bundle under matching M . Note that unlike the additive
setting, class p may envy class q even when class p selects an item before q in every round;
see an example in Appendix C.1.

A natural way to obtain the upper bound is to estimate the expected value E[vp(M(Nq))]
directly. However, it is difficult to do this since the bundle M(Nq) is determined after the
round-robin algorithm terminates and the edge weights on the bipartite graph between
Np and M(Nq) are conditioned. Instead, we analyze vp(Iu) where Iu is a bundle of size
nq, which is selected uniformly at random from I; recall that all edges weights between
Np and Iu are drawn independently from the distribution D. In Appendix E.2, we prove
E[vp(M(Nq))] ≤ E[vp(Iu)], which yields Claim 2 below.
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i1

i2

...
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Figure 1: A new edge which is selected by an augmenting path.

Claim 2. Under the same conditions in Lemma 3, we have

E[vp(M(Nq))] ≤ min(np, nq)−
min(np,nq)∑

r=1

α

β
(1− o(1))

1

r

r∑
r′=1

1

nq − r′ + 1
.

The formal proof of Claim 2 is given in Appendix E.2. The upper bound on E[vp(Iu)] is
calculated in a similar manner to the technique which we used to show the lower bound on
E[vp(M(Np))]. Finally, from Claims 1 and 2, we can prove Lemma 3 shown in Appendix E.3.

3.2 No light edges in maximum weight matchings

To prove Theorem 1, we need not only to investigate the expected envies among classes but
also to show that the variance around the expected values of vp(Np) and vp(Nq) is small.
As defined in Section 3.1, we define Iu to be a bundle of size nq, which is selected uniformly
at random from I. Our goal in this section is to prove Lemma 4 described below. In (a)
of Lemma 4, we claim that the weights of edges in the matching Mp are sufficiently heavy,
which will be used in Section 3.3 to obtain a stochastic concentration for vp(M(Np)). In
(b) and (c) of Lemma 4, we provide lower bounds on the weights of edges in the maximum
weight matchings between Np and M(Nq), and between Np and Iu.

Lemma 4 (No light edge lemma). Suppose that distributions are (α, β)-PDF-bounded. With
high probability, we have the followings:

(a) No edge of weight at most 1− cp
(lognp)

2

np
appears in the matching Mp. Here cp > 0 is

a constant.

(b) No edge of weight at most 1−cq (logmin(np,nq))
2

min(np,nq)
appears in a maximum weight matching

in the bipartite subgraph of G induced by Np and M(Nq) with edge weights ui(j) for
i ∈ Np and j ∈M(Nq). Here cq > 0 are sufficiently large constant.

9



(c) No edge of weight at most 1−cu (logmin(np,nq))
2

min(np,nq)
appears in a maximum weight matching

in the complete bipartite graph between Np and Iu with edge weights drawn from D
independently. Here cu > 0 is a constant.

To show Lemma 4, we employ an approach inspired by a technique for expanding bi-
partite graphs in the random assignment theory [13, 14, 37]. Especially, the process to
obtain a stochastic concentration resembles the argument by Frieze and Johansson [14] and
Talagrand [37]. Specifically, we consider a bipartite graph restricted to the “heavy” edges
and analyze the edge weights of a maximum weight matching in the original bipartite graph
by considering an alternating cycle of a maximum weight matching in the bipartite graph
restricted to the heavy edges and bounding its length. Now, we define the notions of a
θ-expanding bipartite graph and a heavy θ-expanding bipartite graph. The definition of an
expanding bipartite graph is similar to the definition given by Talagrand [37].

Let us explain some additional notations which we use in this section. Consider a
bipartite graph H = (L ∪ R,EH) with left vertices L and right vertices R. For a bipartite
graph H and S ⊆ L, we denote the neighborhood of S in H by ΓH(S) ⊆ R, i.e., ΓH(S) =
{j ∈ R | {i, j} ∈ EH for some i ∈ S}.

Definition 4 (θ-expanding bipartite graph). Consider a bipartite graph H = (L ∪R,EH)
with left vertices L and right vertices R. Suppose that |L| ≥ |R|. A bipartite graph H is
θ-expanding for a constant θ > 1 if

• for every S ⊆ L such that |S| ≤ |R|
2 , |ΓH(S)| ≥ min

(
θ|S|, |R|

2

)
,

• for every S ⊆ L such that |R|
2 < |S|, |R| − |ΓH(S)| ≤ 1

θ (|R| − |S|).

It is known that a θ-expanding bipartite graph admits an alternating cycle of bounded
length [37] in the balanced case (|L| = |R|). Note that we define expanding bipartite graph
even in the unbalanced case (|L| > |R|). This is described in Lemma 5 whose proof is
presented in Appendix F.1. Here, we denote by Oa big O notation with respect to the
parameter a.

Lemma 5. Consider the complete bipartite graph H∗ with left vertices L and right vertices
R with |L| ≥ |R| = a and its saturated matching M ′. Suppose that H = (L ∪ R,EH) is
a θ-expanding subgraph of H∗ for some constant θ > 1. Then, for any vertex i ∈ L that
participates in M ′, there exists an alternating cycle C of length ℓ = Oa(log a) in H∗ such
that C includes i, uses an edge in H when it goes from a left vertex to a right vertex, and
uses an edge in M ′ when it goes from a right vertex to a left vertex.

Next, we turn our attention to the edge weights in a bipartite graph. We denote the
weight of edge {i, j} by w(i, j) here. Consider a bipartite graph H∗ with left vertices L and
right vertices R with |L| ≥ |R| = a and with edge weights w where w(i, j) ∈ (0, 1] for every
edge {i, j}. We say that H∗ is heavy θ-expanding if the bipartite subgraph H = (L∪R,EH)
where {i, j} ∈ EH if and only if w(i, j) = 1−Oa(a

−1 log a) is θ-expanding.
Then, from Lemma 5, we can obtain a bound on the weights of edges in a maximum

weight matching of a heavy θ-expanding bipartite graph as the following lemma:

Lemma 6. Let H∗ be a heavy θ-expanding complete bipartite graph with left vertices L
and right vertices R with |L| ≥ |R| = a and with edge weights w where w(i, j) ∈ (0, 1] for
every edge {i, j}. Then, the weights of all edges in a maximum weight matching in H∗ are

1−Oa

(
(log a)2

a

)
.

From Lemma 6, to prove Lemma 4, it suffices to show that the bipartite graphs between
Np and M(Np), between Np and M(Nq), and between Np and Iu are heavy 2-expanding
with high probability. We provide the full proof of Lemma 4 in Appendix F.3.
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3.3 Proof of Theorem 1

In this section, we show Theorem 1. We bound from above the probability that class p envies
class q. From the results in Section 3.2, we can show the the stochastic concentration for
the value of maximum weight matchings around its expectation from Talagrand’s inequality.
This technique is similar to the one in Frieze and Johansson [14].

First, we consider the stochastic concentration for the value of the maximum weight
matching Mp. On the complete bipartite graph between agents in Np and items in

M(Np), there are np! perfect matchings. Given ω ∈ {0, 1}n
2
p , we denote by Mω the set

of edges between Np and M(Np) where {i, j} ∈ Mω if and only if ωi,j = 1. We define

F = {ω ∈ {0, 1}n
2
p | Mω is a perfect matching between Np and M(Np)}. Let a random

variable Xi,j = 1− ui(j) and thus we have

vp(M(Np)) = max
M∈M(Np,M(Np))

∑
(i,j)∈M

ui(j) = max
ω∈F

∑
(i,j)∈Mω

ui(j) = np −min
ω∈F

∑
(i,j)∈Mω

Xi,j .

(Recall that M(Np,M(Np)) corresponds to the set of perfect matchings between Np and
M(Np).) Let ε > 0 be a constant. Then, we obtain

Pr [|vp(M(Np))− E[vp(M(Np))]| ≥ ε] = Pr [|X − E [X ]| ≥ ε] , (4)

where X = minω∈F
∑

{i,j}∈Mω
Xi,j . By (a) in Lemma 4, if {i, j} ∈ Mp =

argmaxM ′∈M(Np,M(Np))

∑
{i,j}∈M ′ ui(j), then ui(j) ≥ 1− cp · (log np)

2/np with high proba-

bility. So, with high probability, we have Xi,j = 1− ui(j) ≤ cp
(lognp)

2

np
.

Let Yi,j = Xi,j · np

cp(lognp)2
. Then we get Yi,j ≤ 1 with high probability. Let F ′ be the

set of vectors obtained by multiplying the vectors in F with cp
(lognp)

2

np
. Then, we get

min
ω∈F

∑
(i,j)∈Mω

Xi,j = min
ω∈F

∑
(i,j)∈Mω

cp
(log np)

2

np
Yi,j = min

ω′∈F ′

∑
(i,j)∈Mω′

Yi,j

where Mω′ is a matching whose edges are given by {i, j} with ω′
ij > 0. So, we can

set σ2 in the Talagrand’s inequality as σ2 = maxω′∈F ′ ∥ω′∥22 = maxω′∈F ′
∑n2

p

i=1 ω
′2
i =

maxω′∈F np

(
cp

(lognp)
2

np

)2
= c2p

(lognp)
4

np
. Note that Yi,j (i ∈ Np, j ∈ M(Np)) are not in-

dependent but conditional independent with conditioning M(Np), since the distributions
of the weights of edges between N and M are all independent. Thus, from Lemma 1, we
achieve

Pr [|Y − E [Y]| ≥ ε | M(Np)] ≤ 4 exp

(
− ε2np

4c2p(log np)4

)
,

where Y = minω′∈F ′
∑

{i,j}∈Mω′ Yi,j . By taking the expected values of the left-hand and

right-hand sides in terms of the set M(Np) of items matched to class p, we obtain

Pr [|Y − E [Y]| ≥ ε] = EM(Np) [Pr [|Y − E [Y]| ≥ ε | M(Np)]] ≤ 4 exp

(
− ε2np

4c2p(log np)4

)
and, from (4), we have the following inequality:

Pr [|vp(M(Np))− E[vp(M(Np))]| ≥ ε] ≤ 4 exp

(
− ε2np

4c2p(log np)4

)
. (5)
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Second, we consider the stochastic concentration for the value of the maximum weight
matching between Np and M(Nq). Given ωq ∈ {0, 1}np·nq , we denote by Mωq the set of
edges between Np and M(Nq) where {i, j} ∈ Mωq

if and only if ωq takes value 1 at {i, j}.
Similar to F , we define Fq to be the set of vectors ωq ∈ {0, 1}np·nq where Mωq

is a saturated
matching between Np and M(Nq). Then, similarly to the discussion on vp(M(Np)), we have

Pr [|vp(M(Nq))− E[vp(M(Nq))]| ≥ ε] = Pr [|Xq − E [Xq]| ≥ ε] ,

where Xq = minωq∈Fq

∑
{i,j}∈Mωq

Xi,j . Here, ε is a constant. From (b) in Lemma 4, for

an edge {i, j} which appears in the maximum weight matching between Np and M(Nq), we

have ui(j) ≥ 1 − cq
(logmin(np,nq))

2

min(np,nq)
with high probability. By the same argument as above,

we obtain the following inequality:

Pr [|vp(M(Nq))− E[vp(M(Nq))]| ≥ ε] ≤ 4 exp

(
− ε2 min(np, nq)

4c2p(logmin(np, nq))4

)
. (6)

Finally, we bound the probability that class p envies class q. Let Dp,q =

np − min(np, nq) +
(

α
β −

1
αk

)
min(np,nq)

nq
− o(1). Then, from Lemma 3, E[vp(M(Np))] −

E[vp(M(Nq))] ≥ Dp,q. Also, if class p envies class q, then vp(M(Np)) < E[vp(M(Np))] −
1
2Dp,q, or vp(M(Nq)) > E[vp(M(Nq))] +

1
2Dp,q. Hence, from (5) and (6), we obtain

Pr [vp(M(Np)) < vp(M(Nq))]

≤ Pr

[
vp(M(Np)) < E[vp(M(Np))]−

1

2
Dp,q

]
+Pr

[
vp(M(Nq)) > E[vp(M(Nq))] +

1

2
Dp,q

]
≤ 4 exp

(
−

D2
p,qnp

16cp(log np)4

)
+ 4 exp

(
−

D2
p,q min(np, nq)

16cq(logmin(np, nq))4

)
,

Here, we summarize the constant part using constants c′p and c′q. In the case of np ≤ nq,
from Dp,q = (α/β − 1/αk)np/nq − o(1), we have

Pr [Class p envies class q] ≤ 4 exp

(
−c′p

n3
p

n2
q(log np)4

)
+ 4 exp

(
−c′q

n3
p

n2
q(log np)4

)
.

From the condition (c) in Theorem 1, the following statement (c′) holds:

(c′) max(np, nq) = nq ≤ c · n3/2
p (log np)

−5/2

for some constant c > 0. See Appendix G.1 for the details. Then we have

Pr [Class p envies class q] ≤ 8 exp

(
−
min(c′p, c

′
q)

c2
log np

)
and the probability that class p envies class q converges to 0 as np → ∞. In the case of
np > nq, from Dp,q = 1− o(1), we have

Pr [Class p envies class q] ≤ 4 exp

(
−c′p

np

(log np)4

)
+ 4 exp

(
−c′q

nq

(log nq)4

)
,

which approaches 0 as np → ∞ and nq → ∞. From the condition (c) in Theorem 1, the
following statement (d) holds (See Appendix G.1 for the details):

(d) np →∞ and nq →∞ as n→∞.

Therefore, we obtain that the probability that class p envies class q approaches 0 as
n → ∞ for all p, q ∈ [k]. Moreover, since k is just a constant, we can show that the
probability that the matching M is not class envy-free approaches 0 as n → ∞ using the
union bound over kC2 pairs of classes. This completes the proof of Theorem 1.
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[40] Johan Wästlund. A simple proof of the Parisi and Coppersmith-Sorkin formulas for
the random assignment problem. Linköping Studies in Mathematics, 6, 2005.
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A Further Related Work

Fair division Our work is closely related to the growing literature on asymptotic fair
division [3, 5, 6, 12, 19, 27, 28, 29, 36]. Dickerson et al. [12] initiated the study of asymp-
totic fair division. They showed that a welfare maximizing algorithm produces an envy-free
allocation with high probability when the number of agents n and the number of items m
satisfy m = Ω(n log n). They assumed that valuations are additive and drawn from a dis-
tribution with positive variances. Following their work, Manurangsi and Suksompong [28]
proved that, with high probability, an envy-free allocation exists among agents with addi-
tive valuations, assuming that utilities are drawn from a polynomial-bounded distribution
when m is divisible by n. However, they also showed that there is no envy-free allocation
with high probability when m = O(n log n/ log log n) under a polynomial-bounded distri-
bution. Moreover, Manurangsi and Suksompong [29] showed that under the assumption
that distributions are PDF-bounded, an envy-free allocation exists with high probability
when agents have additive valuations and m = Ω(n log n/ log log n). Here, a PDF-bounded
distribution is polynomial-bounded, and a polynomial-bounded distribution with a positive
variance. Several papers have studied the asymptotic existence of allocations that satisfy
other fairness notions, such as proportionality [36] or a maximin share guarantee [3, 19].

Manurangsi and Suksompong [27] studied the asymptotic existence of an allocation that
satisfies a group fairness criterion. The main difference between their setting and ours is that
in their model, the agents within each group share the items allocated to that group, i.e.,
the utility of an agent is determined by the sum of the total utilities of the items allocated
to their group. A group fairness notion requires that each agent within a group finds the
bundle allocated to their group at least as valuable as a bundle allocated to every other
group.

In the one-to-one house assignment problem, Gan et al. [15] studied the asymptotic
existence of an envy-free assignment. They demonstrated that an envy-free assignment
exists with high probability when the agents’ preferences are drawn uniformly at random and
m = Ω(n log n). Furthermore, Manurangsi and Suksompong [29] showed that, if m/n ≥ e+ε
where e is Napier’s constant and ε > 0 is any constant, an envy-free assignment can be found
with high probability. Conversely, if m/n ≤ e − ε, there is no envy-free assignment with
high probability. In the house assignment problem, the cardinal model is equivalent to the
ordinal setting because agents must compare only individual items. However, in our setting,
classes must compare bundles of items.

Our problem can be formulated as a fair division problem with assignment valuations,
which may violate the additive assumption prevalent in literature. Specifically, each class
is represented by a “meta” agent, and the meta agent’s valuation for each set of items is
determined by the maximum total weight of an optimal matching between the class mem-
bers and the items in a given bipartite graph. An assignment valuation is also known as
an OXS valuation which is an important subclass of gross substitutes valuations [22, 23]
and submodular valuations. A binary assignment valuation, the underlying bipartite graph
of which has binary edge weights, is a matroid rank function of a transversal matroid. An
assignment valuation is a generalization of additive valuations. That is, given an arbitrary
additive valuation v for m items, an equivalent assignment valuation can be created by rep-
resenting each agent i with a class i withm copies of agents, with every copy having the same
edge weight vi(j) towards each item j. However, the same construction cannot be used to
represent the distributional model for additive valuations using assignment valuations. It is
known that when agents have binary assignment valuations and more generally submodular
valuations with dichotomous marginals, an allocation satisfying the approximate fairness
notion of envy-freeness, known as EF1, and non-wastefulness exists and can be computed
in polynomial time [4, 7, 8]. In fact, EF1 is compatible with a stronger efficiency notion of
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utilitarian-optimality in the binary assignment setting. However, it remains an open ques-
tion whether the same compatibility between EF1 and non-wastefulness holds for general
assignment valuations. For further discussion, see Section 5 of Benabbou et al. [8]. There
are several group fairness notion other than assignment valuation [20, 27, 30, 34]. Almost
all of these study the case in which each group has an additive valuation.

Compared with previous studies on asymptotic fair division that assume additive val-
uations, our setting is inherently non-additive, rendering previous results and techniques
inapplicable.

Random assignment We briefly review the literature on the theory of random assign-
ments [1, 2, 13, 14, 24, 32, 39, 41, 42]. The theory of random assignments deals with a
bipartite graph with random edge weights, and the main focus has been on the analyzing
the expected minimum total weight of a matching. More specifically, let Cn,m,r be the min-
imum total weight of the matching with r edges in a bipartite graph with n and m vertices
on each side when edge weights are independently assigned from the exponential distribu-
tion with rate 1. Here, we assume that n ≤ m. When n = m = r, Walkup [39] showed
that the expected value is bounded above when n goes to infinity. Following numerous pa-
pers on experimental results and improved bounds (see the introduction in [41] for details),
Karp [18] improved the upper bound and showed that the expected value is smaller than 2

for any n. Aldous [1, 2] showed that E[Cn,n,n] converges to
π2

6 as n goes to infinity. For a
more general combination of n,m, and r, Linusson and Wästlund [24] and Nair et al. [32]
obtained a concrete formula for the expected minimum total weight of a matching given by
E[Cn,m,r] =

∑r
i=1

1
n

∑i−1
j=0

1
m−j . Wästlund [41] provided a concise and elegant proof for this

result, by analyzing the expected difference between the minimum weight of matching with
r edges and that with r−1 edges and showing that E[Cn,m,r]−E[Cn,m,r−1] =

1
n

∑r−1
j=0

1
m−j .

Frieze and Johansson [14] and Frieze [13] explored a similar approach for random bipartite
graphs and non-bipartite graphs, and Wästlund [42] and Larsson [21] extended the result
in [41] to more general distributions in some pseudo-dimension.

Throughout the paper, we show that the techniques from the random assignment theory
can be usefully exported to our problem.

B Omitted Proofs from Section 2

B.1 Asymptotic existence of complete class envy-free matchings

In Section 2, we have mentioned that one can establish the asymptotic existence of a “com-
plete” class envy-free matching, by using the result from the house allocation problem [29].
Here, a matching is defined to be complete if each agent is matched to exactly one item.
The formal statement is as follows:

Proposition 1. Suppose that each agent’s utility is given by a distribution D. Let ε > 0
be any constant. If m ≥ (e + ε) ·

∑
p∈[k] np, then there exists a complete class envy-free

matching with high probability.

Proof. We say that a matching M is envy-free if no agent envies the others, i.e., ui(j) ≥
ui(j

′) for every pair of agents i, i′ ∈ N where j (resp. j′) is an item matched to i (resp.
i′) under M . The proof of Theorem 6.1 in [29] shows that, when m ≥ (e + ε) · n =
(e + ε) ·

∑
p∈[k] np, Algorithm 5 in [29] computes a complete envy-free matching M with

high probability. Observe that since M is envy-free, we have that for every pair p, q ∈ [k]
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of classes and every matching M ′ ∈M(Np,M(Nq)),

vp(M(Np)) =
∑

{i,j}∈Mp

ui(j) ≥
∑

{i,j}∈M ′

ui(j).

Thus, vp(M(Np)) ≥ vp(M(Nq)) for every pair p, q ∈ [k] of classes. This means that there
exists a complete class envy-free matching with high probability.

We note that Algorithm 5 in [29] may produce a wasteful matching that violates (a).
Further, another algorithm (Algorithm 1 in [15]), which computes a complete envy-free
matching with high probability in the context of the house allocation problem, may not
satisfy the condition (a) in the non-wastefulness definition. We provide such an example
below.

Consider four agents, two classes and five items in Table 1 below. Item j1 is the
most preferred by agents i1 and i3. So, both algorithms remove item j1 to get an
envy-free matching. Then these algorithms find a complete envy-free matching M =
{(i1, j2), (i2, j5), (i3, j4), (i4, j3)}. Here item j1 is wasted under this matching and there-
fore this matching does not satisfy (a).

Table 1: An example showing that both Algorithm 1 in [15] and Algorithm 5 in [29] return
a class envy-free and wasteful matching.

j1 j2 j3 j4 j5
N1 i1 5 4 3 2 1

i2 1 2 3 4 5
N2 i3 5 2 3 4 1

i4 1 4 5 2 3

On the hand, in the same example as in Table 1, our round-robin algorithm (Algorithm 1
in Section 3) produces a class envy-free matching that is non-wasteful. In the first round in
the algorithm, agent i1 ∈ N1 is matched to item j1 and agent i4 ∈ N2 is matched to item
j3. In the second round, agent i2 ∈ N1 is matched to item j5 and agent i3 ∈ N2 is matched
to item j4. Finally we get the matching M = {{i1, j1}, {i2, j5}, {i3, j4}, {i4, j3}}. Class 1’s
utility is

∑
{i,j}∈M1 ui(j) = ui1(j1) + ui2(j5) = 10 and class 2’s utility is

∑
{i,j}∈M2 ui(j) =

ui3(j4) + ui4(j3) = 9. This matching is class envy-free and non-wasteful.

C The Round-robin Algorithm for Deterministic Utili-
ties

There are some interesting differences between the round-robin algorithm for the fair division
problem with additive valuations and the round-robin algorithm for our problem. First, for
the additive setting, an agent who chooses an item earlier does not envy another agent who
picks up an item later. However, in our setting, the former class may envy the latter class
under Algorithm 1. We show this through an example in Appendix C.1. Moreover, for
deterministic utilities, the round-robin algorithm may not produce a class EF1 matching.
We describe details in Appendix C.2 by using an example in Hosseini et al. [16] with binary
utilities and another example with non-binary utilities.
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C.1 An example where earlier agents envy later agents under Al-
gorithm 1.

Consider an example in Table 2. Consider four agents i1, i2, i3, i4, two classes N1 = {i1, i2}
and N2 = {i3, i4}, and four items j1, j2, j3, j4. Each agent has the utilities as described
in Table 2. We assume that class 1 selects an item before class 2. In the first round of
Algorithm 1, class 1 chooses item j1 and class 2 chooses item j3. The matching at the end
of the first round is M1 = {{i1, j1}, {i3, j3}}. In the second round, class 1 selects item j2
and class 2 selects item j4. Thus, the final output of Algorithm 1 is the matching M =
{{i1, j1}, {i2, j2}, {i3, j3}, {i4, j4}}. Observe that class 1 envies class 2 under M . Indeed, we
have v1(M(N1)) = ui1(j1) + ui2(j2) = 4 + 1 = 5, while v1(M(N2)) = ui1(j4) + ui2(j3) =
3 + 3 = 6 > 5 = v1(M(N1)).

Table 2: An example which illustrates the former class may envy the latter class.
j1 j2 j3 j4

N1 i1 4 0.1 0.1 3
i2 0.1 1 3 0.1

N2 i3 4 0.1 4 0.1
i4 0.1 3 0.1 1

C.2 An example where Algorithm 1 may not produce a CEF1 and
non-wasteful matching.

In this section, we consider an approximate fairness notion, class envy-freeness up to one
item [16]. A matching M is class envy-free up to one item (CEF1) if, for every pair of
classes p, q ∈ [k], we have

∑
{i,j}∈M ui(j) ≥ vp(M(Nq)), or there exists an item j ∈M(Nq)

such that
∑

{i,j}∈M ui(j) ≥ vp(M(Nq) \ {j}).
We show that Algorithm 1 may not produce a CEF1 matching, by using Example 1 of

Hosseini et al. [16] who showed that no online deterministic algorithm computes a CEF1
and non-wasteful matching.

Consider an instance as described in Table 3. In the first round of Algorithm 1, class
1 selects j2 and matches it to i2 ∈ N1. Class 2 selects j1 and matches it to i4 ∈ N2. In
the second round, class 1 chooses j3 and assigns it to i3. At this point, no item can be
allocated to class 2 because the last remaining item j4 has zero marginal contribution to
the class 2’s current bundle. In the third round, class 1 selects j4. The resulting matching
is M = {{i1, j4}, {i2, j2}, {i3, j3}, {i4, j1}}, which violates CEF1 since class 2 envies class 1
by more than one item.

Table 3: An example where the round-robin algorithm may not produce a CEF1 and non-
wasteful matching for deterministic and binary utilities.

j1 j2 j3 j4
N1 i1 1 0 0 1

i2 0 1 0 0
i3 0 0 1 0

N2 i4 1 0 0 1
i5 0 1 0 0
i6 0 0 1 0
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In the example in Table 3, the proof tactically uses the property that some agents have
zero utilities, which prevents some class to receive a new item under Algorithm 1. We can
show, even if all the utilities are positive, the round-robin algorithm may not produce a
CEF1 matching.

To this end, consider an instance described in Table 4. There are three rounds. In
the first round of the algorithm, class 1 selects an item j1 and matches it to agent i1
and class 2 selects item j2 which is matched to agent i4. In the second round, class 1
selects an item j4 and matches it to agent i2 and class 2 selects item j3 which is matched
to agent i5. In the third round, class 1 selects an item j5 and matches it to agent i3
and class 2 selects item j6 which is matched to agent i6. Thus, we obtain a matching
M = {{i1, j1}, {i2, j4}, {i3, j5}, {i4, j2}, {i5, j3}, {i6, j6}}. Note that in this example, the
ordering of items to be picked is uniquely determined, i.e., there is no tie when each class
selects an item. Observe that class 2 gets the value v2(M(N2)) = v2({j2, j3, j6}) = 5.1 and
envies class 1 as v2(M(N1)) = v2({j1, j4, j5}) = 13.1. Moreover, we have v2(M(N1)\{j1}) =
6 > v2(M(N2)) and hence the matching M does not satisfy CEF1.

Table 4: An example where the round-robin algorithm may not produce a CEF1 and non-
wasteful matching for deterministic utilities.

j1 j2 j3 j4 j5 j6
N1 i1 10 0.1 0.1 0.1 0.1 0.1

i2 0.1 4 0.1 4 0.1 0.1
i3 0.1 0.1 3 0.1 1 0.1

N2 i4 10 4 0.1 0.1 3 0.1
i5 0.1 0.1 1 3 0.1 0.1
i6 0.1 0.1 0.1 0.1 0.1 0.1

Note that if we do not impose non-wastefulness, one can always construct a CEE1 match-
ing, using the envy-graph algorithm by Lipton et al. [25]. As we explained in Section A,
our problem can be considered as a fair division problem with “meta” agents having assign-
ment valuations. Since the envy-cycle algorithm is guaranteed to produce a complete and
EF1 allocation for monotone valuations, one can apply the algorithm to this fair division
instance, create an EF1 allocation (A1, A2, . . . , Ak) of the items, and construct a matching
by taking a union of maximum matchings between Np and Ap in G for p ∈ [k]. However,
the resulting matching may not satisfy non-wastefulness as pointed out in [7].

D Uniqueness of a Maximum Weight Matching

In Section 3, we mentioned that, in each round r, the maximum weight matching of size r in
the bipartite graph between Np and Mp

r−1(Np)∪ Ipr is unique for all class p. Here, we show
it for completeness from a similar proof of the isolation lemma as that given by Spencer [35].
See also Lemma 11.5 in [17].

For proof, we consider a general bipartite graph. Let H = (L ∪ R,E) be a bipartite
graph of the set of vertices L ∪ R and the set of edges E. Here, we assume |L| ≥ |R|. The
weights of edges are drawn independently from a non-atomic distribution over [0, 1]. For
an edge e ∈ E, we denote the weight of edge e by w(e) ∈ [0, 1]. Here, let M be the set of
weighted matchings which cover R in H. For an edge e in E, we define s(e) by

s(e) = max
M ′∈M:e/∈M ′

w(M ′)− max
M ′∈M:e∈M ′

w(M ′ \ {e}),
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where w(M ′) denotes the weight of the matching M ′, i.e., w(M ′) =
∑

e∈M ′ w(e). This value
of s(e) does not depend on that of w(e). So, since the distribution, which generates w(e),
is non-atomic, we have

Pr[w(e) = s(e)] = 0,

and
Pr[w(e) = s(e) for some e in E] ≤

∑
e∈E

Pr[w(e) = s(e)] = 0.

Let M ′
1 and M ′

2 be two maximum weight matchings which cover R in H. Consider an
edge e ∈M ′

2 \M ′
1. Now, we have

w(M ′
1) = max

M ′∈M:e/∈M ′
w(M ′)

and
w(M ′

2)− ui(j) = max
M ′∈M:e∈M ′

w(M ′ \ {e}).

So, if w(M ′
1) = w(M ′

2), then w(e) = s(e). Let the event that there exist two maximum
weight matchings which cover R in H be E. Thus, we get

Pr[E] ≤ Pr[w(e) = s(e) for some e in E] = 0.

Therefore, we show that the maximum weight matching which cover R in H is unique almost
surely.

Similarly, we show, for all class p and for any round r, the maximum weight matching of
size r in the bipartite graph between Np and Mp

r−1(Np)∪ Ipr is unique almost surely. Then,
item jpr also uniquely determined almost surely.

E Omitted Proofs from Section 3.1

E.1 Proof of Claim 1

Claim 1. Under the same conditions as in Lemma 3, we have

E[vp(M(Np))] ≥ np −
1

α

np∑
r=1

1

r

r∑
r′=1

1

mp
r′ + 1

.

Proof of Claim 1. We consider the following two steps. In the first step, we show the equa-
tion (1) in Section 3.1, which is written again below:

E[vp(Mr(Np))]− E[vp(Mr−1(Np))] = 1− 1

r
lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)]. (1)

This describes that the expected difference can be written by the probability that the bundle
M̂r(Np) includes ĵ. To show the equation (1), we consider the maximum weight matching
version of Lemma 1.3 in Wästlund [41].

We denote the set of agents who join in the matching M̂r by {i1, i2, ..., ir} ⊆ Np. Now we
fix an agent i ∈ Np which is chosen uniformly at random from {i1, i2, ..., ir}. We condition

that ĵ does not participate in M̂r−1. Then, we consider the probability that added item ĵ
is chosen by class p in round r. Note that the probability that any other class selects item
ĵ is very small, so we can ignore it.

Let us write vp(M̂r(Np)) by X and vp(M̂r(Np)) with conditioning {i, ĵ} ∈ M̂r by Yi. We
have, as λ → 0, X converges to vp(Mr(Np)) and E[Yi] converges to E[vp(Mr(Np))]. Now
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we proceed to show the equation (1). If the edges {i, ĵ} participate in the maximum weight
matching with r edges M̂r, then we have ui(ĵ)+Yi > X. This is because Yi is the weight of
the maximum weight matching with r−1 edges and ui(ĵ)+Yi is the weight of the maximum
weight matching with r edges, then ui(ĵ) + Yi is larger than X. From this discussion, we
get

Pr[(i, ĵ) ∈ M̂r] ≤ Pr[ui(ĵ) + Yi > X].

Conversely, if ui(ĵ) > X − Yi and no other edge from ĵ other than i has weight larger than
X − Yi, then the edge (i, ĵ) must participate in the maximum weight matching M̂r. Let E
denote an event that more than two edges adjacent to ĵ has edge weight more than X − Yi.
So, we have

Pr[{ui(ĵ) > X − Yi} ∩ E ] ≤ Pr[(i, ĵ) ∈ M̂r].

Recall that we assumed that edge weights of {i, ĵ} are drawn independently from the distri-
bution over (−∞, 1] whose density function is f(x) = λe−λ(1−x) for all i ∈ Np. From this,
the probability that the event E happens is smaller as λ is smaller as follows:

Pr[E ] ≤ n2
pEX,Yi [(1− e−λ(1−X+Yi))2] = o(λ).

So, the probability that E happens is O(λ2). From this, we get an equation:

Pr[ui(ĵ) > X − Yi] = Pr[(i, ĵ) ∈ M̂r] + o(λ). (7)

Next we calculate the probability Pr[ui(ĵ) + Yi > X] by the expectations of X and Yi. We
denote the distribution function whose density function is f(x) = λe−λ(1−x) by FD1−Exp

.

Here we have FD1−Exp(x) = e−λ(1−x). With conditioning X and Yi, we get

Pr[ui(ĵ) + Yi > X] = EX,Yi

[
1− FD1−Exp

(X − Yi)
]

= EX,Yi

[
1− e−λ(1−X+Yi)

]
.

From this, we have

d

dλ
Pr[ui(ĵ) + Yi > X] = EX,Yi [(1−X + Yi)e

−λ(1−X+Yi)]. (8)

Moreover, since it holds that limλ→0 E[X] = E [vp(Mr−1(Np))] and limλ→0 E[Yi] =
E [vp(Mr−1(Np))], we consider the limit of the right hand side of the equation above as

lim
λ→0

EX,Yi
[(1−X + Yi)e

−λ(1−X+Yi)] = 1− E [vp(Mr−1(Np))] + E [vp(Mr−1(Np))] . (9)
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Finally, from (7), (8) and (9), we get the equation (1) as follows:

1− 1

r
lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)]

= 1− 1

r
lim
λ→0

1

λ

i∗r∑
i=i∗1

Pr
[
(i, ĵ) ∈ M̂r

]

= 1− 1

r
lim
λ→0

1

λ

i∗r∑
i=i∗1

(
Pr[ui(ĵ) + Yi > X]− o(λ)

)

= 1− 1

r

i∗r∑
i=i∗1

lim
λ→0

1

λ
Pr[ui(ĵ) + Yi > X]

=
1

r

i∗r∑
i=i∗1

(E [vp(Mr(Np))]− E [vp(Mr−1(Np))])

= E [vp(Mr(Np))]− E [vp(Mr−1(Np))] .

This completes the first step.
In the second step, we show the inequality (2) in Section 3.1. We rewrite the inequality,

that is, for r = 1, 2, ..., np,

lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)] ≤

r∑
r′=1

1

α

1

mp
r′ + 1

. (2)

From here, we prove this inequality. Our proof strategy to get this inequality is similar
to the proof of Wästlund [40] but not same since we are now considering (α, β)-PDF-
bounded distributions. We first consider the probability that the added item ĵ participates
in the matching M̂r with conditioning ĵ does not participate in the matching M̂r−1. This
probability can be written by Pr[ĵ ∈ M̂r(Np) | ĵ /∈ M̂r−1(Np)] and is equal to Pr[ĵpr = ĵ].

Note that any other class q does not select the item ĵ since ui(ĵ) = −∞ for all i ∈ Nq and all

q ∈ [k]\{p}. In round r, class p selects an item from Îpr , whose size is |Îpr | = |Ipr |+1 = mp
r+1.

Assume that ĵ does not participate in the matching M̂r−1 and (i1, ..., ir−1) are agents in
Np that participate in M̂r−1. In round r, class p selects an item through making the maxi-

mum weight matching with r edges between Np and M̂r−1(Np)∪ Îpr . Note that (i1, ..., ir−1)

are also included in M̂r since the uniqueness of the maximum weight matching. This fact is
called the nesting lemma which is proved in Lemma 3 in Buck et al. [9]. Then, class p finds
some augmenting path. Here, for the augmenting path for the matching M̂r−1, we write the
new vertex in left side as ir and the new vertex in right side is ĵpr by its definition. Let ia
be the vertex in {i1, ..., ir−1} that is connected to ĵ in the augmenting path. Then we can
write the augmenting path by P = (ir, ..., ia, ĵ

p
r ). See Figure 1 in Section 3.1.

Now, we consider the probability that ĵpr just equals to ĵ. We consider conditioning
on (i) ia, (ii) the weights of all edges other than the edges {ia, j} (j ∈ Îpr ) and (iii) tr =
max{uia(j) | j ∈ Îpr }. From Lemmas 2 and 5 in Buck et al. [9], with these conditions, M̂p

r−1

is fixed and so is the path (ir, ..., ia). Then, the event that ĵpr just equals to ĵ is equivalent
to the event that ia chooses ĵ among Îpr , which also means that uia(ĵ) is a maximizer of
{uia(j) | j ∈ Îpr }. Here uia(j) (j ∈ Îpr ) are given from some conditioned distributions.
Note that other class does not affect this probability since they are independent. Then,
we consider the probability of uia(ĵ) = max{uia(j) | j ∈ Îpr }. Here, for each j ∈ Îpr \ {ĵ},
uia(j) is drawn from the conditioned D independently and uia(ĵ) is drawn from the reversed
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exponential distribution. Note that, when uia(ĵ) < 0, the probability that ĵ are selected in
round r is zero. Finally, we have

Pr
[
ĵ ∈ M̂p

r (Np)
∣∣ ĵ /∈ M̂p

r−1(Np) and max{uia(j) | j ∈ Îpr } = tr

]
= Pr

[
uia(ĵ) = max{uia(j) | j ∈ Îpr }

∣∣ max{uia(j) | j ∈ Îpr } = tr

]
=

Pr
[
uia(ĵ) = max{uia(j) | j ∈ Îpr }

∧
max{uia(j) | j ∈ Îpr } = tr

]
Pr
[
max{uia(j) | j ∈ Îpr } = tr

]
=

∫ tr
0

λe−λ(1−x)
∏

j∈Îp
r \{ĵ} Pr[uia(j) ≤ x] dx∫ tr

−∞ λe−λ(1−x)dx ·
∏

j∈Îp
r \{ĵ} Pr[uia(j) ≤ tr]

=

∫ tr
0

λe−λ(1−x)FD(x)
mp

rdx

e−λ(1−tr) · FD(tr)m
p
r

=

∫ tr
0

λe−λ(1−x)FD(x)
mp

rdx

e−λ(1−tr) · FD(tr)m
p
r

= λeλ(1−tr)

∫ tr

0

e−λ(1−x)

(
FD(x)

FD(tr)

)mp
r

dx.

From this, we can get

Pr
[
ĵ ∈ M̂p

r (Np)
∣∣ max{uia(j) | j ∈ Îpr } = tr

]
= 1−Pr

[
ĵ /∈ M̂p

r (Np)
∣∣ max{uia(j) | j ∈ Îpr } = tr

]
= 1−

r∏
r′=1

Pr
[
ĵ /∈ M̂p

r′(Np)
∣∣ ĵ /∈ M̂p

r′−1(Np) and max{uia(j) | j ∈ Îpr } = tr′
]

= 1−
r∏

r′=1

(
1−Pr

[
ĵ ∈ M̂p

r′(Np)
∣∣ ĵ /∈ M̂p

r′−1(Np) and max{uia(j) | j ∈ Îpr } = tr′
])

= 1−
r∏

r′=1

(
1− λeλ(1−tr′ )

∫ tr′

0

e−λ(1−x)

(
FD(x)

FD(tr′)

)mp

r′

dx

)

=

r∑
r′=1

λeλ(1−tr′ )

∫ tr′

0

e−λ(1−x)

(
FD(x)

FD(tr′)

)mp

r′

dx+ o(λ).

Moreover, from uniform convergence, we can get

lim
λ→0

1

λ
Pr
[
ĵ ∈ M̂p

r (Np)
∣∣ max{uia(j) | j ∈ Îpr } = tr

]
= lim

λ→0

r∑
r′=1

eλ(1−tr′ )

∫ tr′

0

e−λ(1−x)

(
FD(x)

FD(tr′)

)mp

r′

dx

=

r∑
r′=1

∫ tr′

0

(
FD(x)

FD(tr′)

)mp

r′

dx.

Let y = FD(x)
FD(tr′ )

. Here dy =
F ′

D(x)
FD(tr′ )

dx, where F ′
D denotes the FD’s derivative. Since D

is (α, β)-PDF-bounded, we have F ′
D(x) = fD(x) ≥ α. Also we have FD(x) ≤ 1 for all
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0 ≤ x ≤ 1. Then we can get∫ tr′

0

(
FD(x)

FD(tr′)

)mp

r′

dx =

∫ 1

0

ym
p

r′ · FD(tr′)

F ′
D(x)

dy

≤ 1

α

∫ 1

0

ym
p

r′dy

=
1

α
· 1

mp
r′ + 1

.

Therefore, we can remove the conditioning about tr and then

lim
λ→0

1

λ
Pr[ĵ ∈ M̂p

r (Np)] ≤
r∑

r′=1

1

α
· 1

mp
r′ + 1

.

This completes the second step.
Finally, from the first step and the second step, we can show Claim 1 as follows:

E[vp(M(Np))] =

np∑
r=1

(E[vp(Mr(Np))]− E[vp(Mr−1(Np))])

= np −
np∑
r=1

1

r
lim
λ→0

1

λ
Pr[ĵ ∈ M̂r(Np)]

≥ np −
np∑
r=1

1

r

r∑
r′=1

1

α

1

mp
r′ + 1

.

E.2 Proof of Claim 2

Claim 2. Under the same conditions in Lemma 3, we have

E[vp(M(Nq))] ≤ min(np, nq)−
min(np,nq)∑

r=1

α

β
(1− o(1))

1

r

r∑
r′=1

1

nq − r′ + 1
.

Proof of Claim 2. As defined in Section 3.2, we define Iu to be a bundle whose size is nq

which is selected uniformly at random from I. Here we analyze vp(Iu) instead of the expected
value of vp(M(Nq)). All edges weights between Np and Iu are drawn independently from
the distribution D. On the other hand, since items in M(Nq) are the ones which were not
selected by class p, all edges weights between Np and M(Nq) are drawn independently from
the distribution D conditioned from above. So, we have E[vp(M(Nq))] ≤ E[vp(Iu)] for all
class p.

Here the size of the maximum weight matching between Np and Iu is min(np, nq). For
r = 1, 2, ...,min(np, nq), let Iu,r be the set of items which participate in the maximum weight
matching with size r on the bipartite graph between Np and Iu. Let M

u
r (Np, Iu) denote the

maximum weight matching with r edges on the complete bipartite graph between Np and
Iu with edges randomly weighted from the distribution D.

Consider adding a new item ĵq to Iu and edges from ĵq to all agents in Np with randomly
weights from the distribution whose density function is f(x) = λe−λ(1−x) (x ∈ (−∞, 1]).
This is same process as the proof of Claim 1. Let M̂u

r (Np, Iu) denote the maximum weight

matching with r edges on the complete bipartite graph between Np and Iu ∪ {ĵq}.
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From the same discussion as the proof of (1), we have

E[vp(Iu,r)]− E[vp(Iu,r−1)] = 1− 1

r
lim
λ→0

1

λ
Pr[ĵq ∈ M̂u

r (Np, Iu)]. (10)

Now we consider the augmenting path algorithm to find a unique maximum weight
matching. In each round r = 1, 2, ...,min(np, nq), class p finds an augmenting path and

updates a matching between Np and Îu by selecting a new item from the remaining items.

In round r, let denote the remaining items by Îu,r. Here |Îu,r| = nq− r+1. Also, we denote

by ĵqr an item which is selected by class p in round r when we consider Iu ∪ {ĵq} instead of
Iu.

Then, as like we did in the proof of Claim 1, we consider the augmenting path by
P = (iqr, ..., i

q
a, ĵ

q
r ). We condition on (i) iqa, (ii) the weights of all edges other than the edges

{iqa, j} (j ∈ Îu,r) and (iii) tqr = max{uiqa(j) | j ∈ Îu,r}. Then, we have

Pr
[
ĵq ∈ M̂u

r (Np, Iu)
∣∣ max{uiqa(j) | j ∈ Îu,r} = tqr

]
=

r∑
r′=1

λeλ(1−tqr)

∫ tq
r′

0

e−λ(1−x)

(
FD(x)

FD(t
p
r′)

)nq−r′

dx+ o(λ).

From this,

Pr
[
ĵq ∈ M̂u

r (Np, Iu)
]
= Etqr

[
Pr
[
ĵq ∈ M̂u

r (Np, Iu)
∣∣ max{uiqa(j) | j ∈ Îu,r} = tqr

]]
= Etqr

[
r∑

r′=1

λeλ(1−tqr)

∫ tq
r′

0

e−λ(1−x)

(
FD(x)

FD(t
p
r′)

)nq−r′

dx

]
+ o(λ).

So, we get

1

r
lim
λ→0

1

λ
Pr
[
ĵq ∈ M̂u

r (Np, Iu)
]
= Etqr

[
1

r

r∑
r′=1

∫ tq
r′

0

(
FD(x)

FD(t
p
r′)

)nq−r′

dx

]

= Etqr

[
1

r

r∑
r′=1

∫ 1

0

FD(t
q
r′)

F ′
D(x)

ynq−r′dy

]

≥ Etqr

[
1

r

r∑
r′=1

FD(t
q
r′)

β
· 1

nq − r′ + 1

]

≥ Etqr

[
α

β
· 1
r

r∑
r′=1

tqr′

nq − r′ + 1

]

=
α

β
· 1
r

r∑
r′=1

Etqr [t
q
r′ ]

nq − r′ + 1
.

Here we use FD(x) =
∫ x

0
fD(x)dx ≥

∫ x

0
αdx ≥ αx and 1/F ′

D(x) ≥ 1/β for all 0 ≤ x ≤ 1.
From (c) in Lemma 4 described in Section 3.2 and shown in Appendix F.3, no edge of

weight at most 1− cu
(logmin(np,nq))

2

min(np,nq)
appears in the maximum weight perfect matching with

high probability. From this and Lemma 8 in Frieze [13], we can show that no edge of weight

at most 1 − cu
(logmin(np,nq))

2

min(np,nq)
appears in the maximum weight matching with r edges for

all r = 1, 2, ...,min(np, nq) with high probability. In each round r + 1, the edge {iqq, ĵqr} is
employed in the maximum weight matching with r + 1 edges between Np and Iu ∪ {ĵq}.
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If ĵq ̸= ĵ, we can say that the edge {iqq, jqr} is employed in the maximum weight matching
with r + 1 edges between Np and Iu. Therefore, we have, with high probability, for all
r = 1, 2, ...,min(np, nq), there exists a constant cu > 0 such that

tqr ≥ 1− cu
(logmin(np, nq))

2

min(np, nq)
.

From Markov’s inequality, we have, for all r = 1, 2, ...,min(np, nq),

Etqr [t
q
r′ ] ≥

(
1− cu

(logmin(np, nq))
2

min(np, nq)

)
·Pr

[
tqr′ ≥ 1− cu

(logmin(np, nq))
2

min(np, nq)

]
≥
(
1− cu

(logmin(np, nq))
2

min(np, nq)

)
· (1− o(1))

= 1− o(1).

Here, we use the condition (c). That is, since there exists a constant C > 0 such that
n2/3 ≤ C · minp′(np′) ≤ C · min(np, nq) if we ignore the logarithm factor in the condition

(c), 1− cu
(logmin(np,nq))

2

min(np,nq)
= 1− o(1). Then, we have

1

r
lim
λ→0

1

λ
Pr
[
ĵq ∈ M̂u

r (Np, Iu)
]
≥ α

β
(1− o(1))

1

r

r∑
r′=1

1

nq − r′ + 1
.

From this and (10), we get

E[vp(M(Nq))] ≤ E[vp(Iu)]

=

min(np,nq)∑
r=1

E [vp(Iu,r)− vp(Iu,r−1)]

= min(np, nq)−
min(np,nq)∑

r=1

1

r
lim
λ→0

1

λ
Pr
[
ĵq ∈ M̂u

r (Np, Iu)
]

≤ min(np, nq)−
min(np,nq)∑

r=1

α

β
(1− o(1))

1

r

r∑
r′=1

1

nq − r′ + 1
.

E.3 Proof of Lemma 3

Lemma 3. Suppose that D is (α, β)-PDF-bounded and k ·maxp∈[k](np + 1) ≤ m. Then we
have

E[vp(M(Np))]− E[vp(M(Nq))] ≥ np −min(np, nq) +

(
α

β
− 1

αk

)
min(np, nq)

nq
− o(1).

Proof of Lemma 3. First, we consider the lower bound on the number of remaining items
when class p selects a new item in round r; mp

r . We have mp
r = |Ipr | ≥ m−(r−1) ·k−(p−1)

since the number of items already taken when class p chooses an item in round r is at most
(r − 1) · k + (p− 1). From the assumption k · (nq + 1) ≤ m for all class p, we get

mp
r′ + 1 ≥ m− (r′ − 1) · k − (p− 1) + 1

≥ k · (nq + 1)− (r′ − 1) · k − p+ 2

≥ (nq − r′ + 1)k.
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Then, from inequalities in Claims 1 and 2, we have,

E[vp(M(Np))]− E[vp(M(Nq))]

≥ np −
1

α

np∑
r=1

1

r

r∑
r′=1

1

mp
r′ + 1

−min(np, nq) +

min(np,nq)∑
r=1

α

β
(1− o(1))

1

r

r∑
r′=1

1

nq − r′ + 1

≥ np −min(np, nq) +
α

β

min(np,nq)∑
r=1

1

r

r∑
r′=1

1

nq − r′ + 1
− 1

α

np∑
r=1

1

r

r∑
r′=1

1

mp
r′ + 1

− o(1)

≥ np −min(np, nq) +
α

β

min(np,nq)∑
r=1

1

r

r∑
r′=1

1

nq − r′ + 1
− 1

αk

np∑
r=1

1

r

r∑
r′=1

1

nq − r′ + 1
− o(1).

In the case of np ≤ nq, we have

E[vp(M(Np))]− E[vp(M(Nq))] =

(
α

β
− 1

αk

) np∑
r=1

1

r

r∑
r′=1

1

nq − r′ + 1
− o(1)

≥
(
α

β
− 1

αk

) np∑
r=1

1

r

r∑
r′=1

1

nq
− o(1)

=

(
α

β
− 1

αk

)
np

nq
− o(1).

In the case of np > nq, we have

E[vp(M(Np))]− E[vp(M(Nq))]

= np − nq +

(
α

β
− 1

αk

) nq∑
r=1

1

r

r∑
r′=1

1

nq − r′ + 1
− 1

αk

np∑
r=nq

1

r

r∑
r′=1

1

nq − r′ + 1
− o(1)

≥ np − nq +

(
α

β
− 1

αk

) np∑
r=1

1

r

r∑
r′=1

1

nq
− o(1)

≥ np − nq +
α

β
− 1

αk
− o(1).

The extra parts are summarized in o(1).
Finally, we can get

E[vp(M(Np))]− E[vp(M(Nq))] ≥ np −min(np, nq) +

(
α

β
− 1

αk

)
min(np, nq)

nq
− o(1).

F Omitted Proofs from Section 3.2

F.1 Proof of Lemma 5

Lemma 5. Consider the complete bipartite graph H∗ with left vertices L and right vertices
R with |L| ≥ |R| = a and its saturated matching M ′. Suppose that H = (L ∪ R,EH) is
a θ-expanding subgraph of H∗ for some constant θ > 1. Then, for any vertex i ∈ L that
participates in M ′, there exists an alternating cycle C of length ℓ = Oa(log a) in H∗ such
that C includes i, uses an edge in H when it goes from a left vertex to a right vertex, and
uses an edge in M ′ when it goes from a right vertex to a left vertex.
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Proof of Lemma 5. Fix i ∈ L. We define a sequence of sets (St)t≥0 as follows. First, we set
S0 = {i}. Recall that ΓH(S0) ⊆ R is the neighborhood of S0 in H. Let S1 be the set of
vertices in L which are matched to some vertex in ΓH(S0) under matching M ′. Here, we
have |S1| = |ΓH(S0)| since M ′ is a saturated matching in H∗ and |L| ≥ |R|, implying that
all vertices in R appear in matching M ′. Similarly, for t ≥ 2, we let St ⊆ L be the set of
vertices which are matched to some vertex in ΓH(St−1) ⊆ R under matching M ′. By the
same argument, we have |St| = |ΓH(St−1)| for every t ≥ 2.

It is not difficult to see that St \ St−1 is the set of vertices in L such that there exists
an alternating cycle C of length 2t from i that uses an edge in H when C goes from left to
right and uses an edge in M ′ when C goes from right to left.

From the first inequality in the definition of a θ-expanding bipartite graph (Definition
4), for every t ≥ 0, if |St| ≤ a

2 , then θ|St| ≤ |ΓH(St)| = |St+1|. This means that the size of
St increases by a factor of θ until it exceeds a

2 . Thus, for t ≥ 1 with |St−1| ≤ a
2 , we have

θt−1 = θt−1|S0| ≤ · · · ≤ θ|St−1| ≤ |Γ(St−1)| = |St|.

Let t1 be the first time when the size of St becomes strictly larger than a
2 . Observe that

t1 ≤
⌈
log(a/2)
log θ

⌉
+ 2 since θ

log(a/2)
log θ +1−1 ≥ a

2 and θ > 1.

Now consider t ≥ t1 with |St| > a
2 . Recall that from the second inequality of Definition

4, if |St| > a
2 , then a− |ΓH(St)| ≤ 1

θ (a− |St|). Thus, for t ≥ t1 with |St| > a
2 ,

a− |St+1| = a− |ΓH(St)| ≤
1

θ
(a− |St|),

where the first equality holds since |St+1| = |ΓH(St)|. This means that the difference
between the number of right vertices and |St| decreases by a factor of 1

θ as long as |St| > a
2 .

Observe further that |St+1| > a
2 if |St| > a

2 since by the above inequality and by θ > 1, we
get

a− |St+1| ≤
1

θ
(a− |St|) <

1

θ

(
a− a

2

)
<

a

2
,

which implies |St+1| > a
2 . Now, let t2 =

⌈
log a

2/ log θ
⌉
+ 1. Applying the second inequality

of Definition 4 repeatedly for t = t1, t1 + 1, . . . , t1 + t2 − 1, we get

a− |St1+t2 | ≤
1

θt2
(a− |St1 |) ≤

1

θ
· θ− log a

2 / log θ · a
2
=

1

θ
< 1.

This means that |St1+t2 | = a and St1+t2 includes all the vertices in L which participate in
matching M ′. Thus, i ∈ St1+t2 . Therefore, we find a desired alternating cycle of length
ℓ = t1 + t2 = Oa(log a).

F.2 Proof of Lemma 6

Lemma 6. Let H∗ be a heavy θ-expanding complete bipartite graph with left vertices L
and right vertices R with |L| ≥ |R| = a and with edge weights w where w(i, j) ∈ (0, 1] for
every edge {i, j}. Then, the weights of all edges in a maximum weight matching in H∗ are

1−Oa

(
(log a)2

a

)
.

Proof of Lemma 6. Let M∗ be a maximum weight matching in the bipartite graph H∗.
Since H∗ is a complete bipartite graph and |L| ≥ |R|, all vertices in R are incident to
some edge in M∗. Let H = (L ∪ R,EH) be a θ-expanding bipartite subgraph such that
{i, j} ∈ EH ⇔ w(i, j) ≥ 1 − za−1 log a, where z > 0 is a constant. Consider any i ∈ L
that participates in M∗, i.e., i is incident to some edge in M∗. From Lemma 5, there exists
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an alternating cycle C of M∗ such that C = (i1 = i,M∗(i2), i2, . . . ,M
∗(iℓ), iℓ,M

∗(i1), i1),
ℓ = Oa(log a), and {it,M∗(it+1)} ∈ EH for every t = 1, 2, . . . , ℓ.

Now, we construct a new matching M ′ from M∗ by replacing the edges in C ∩M∗ with
those in C ∩H, namely,

M ′ = (M∗ \ {{i1,M∗(i1)}, . . . , {iℓ,M∗(iℓ)}}) ∪ {{i1,M∗(i2)}, . . . , {iℓ,M∗(i1)}}.

Then, since M∗ is a maximum weight matching in the bipartite graph H, the sum of the
edge weights inM∗ is at least that inM ′. Also sinceM ′(i′) = M∗(i′) for every i′ /∈ {i1, ..., iℓ}
that participates in the matching M ′, we have

∑ℓ
t=1 w(it,M

∗(it)) ≥
∑ℓ

t=1 w(it,M
′(it)).

Recall w(i, j) ≤ 1 for all i and j, which implies that
∑ℓ

t=2 w(it,M
∗(it)) ≤ ℓ− 1. Thus,

w(i,M∗(i)) ≥
ℓ∑

t=1

w(it,M
∗(it))− ℓ+ 1

≥
ℓ∑

t=1

w(it,M
′(it))− ℓ+ 1

≥ ℓ ·
(
1− z · log a

a

)
− ℓ+ 1

= 1− ℓ · z · log a
a

.

Since ℓ = Oa (log a), we get w(i,M∗(i)) = 1−Oa

(
(log a)2

a

)
.

F.3 Proof of Lemma 4

We first introduce the Chernoff bound, which can be used to bound the tails of the distri-
bution for sums of independent random variables.

Lemma 7 (Chernoff bound). Given independent random variables X1, X2, ..., Xd on [0, 1].

Let X =
∑d

i=1 Xi. Then, for all ε > 0, we have the followings:

(i) Pr[X ≥ (1 + ε)E[X]] ≤ exp

(
−2ε2E[X]2

d

)
,

(ii) Pr[X ≤ (1− ε)E[X]] ≤ exp

(
−ε2E[X]2

d

)
.

Lemma 4 (No light edge lemma). Suppose that distributions are (α, β)-PDF-bounded. With
high probability, we have the followings:

(a) No edge of weight at most 1− cp
(lognp)

2

np
appears in the matching Mp. Here cp > 0 is

a constant.

(b) No edge of weight at most 1−cq (logmin(np,nq))
2

min(np,nq)
appears in a maximum weight matching

in the bipartite subgraph of G induced by Np and M(Nq) with edge weights ui(j) for
i ∈ Np and j ∈M(Nq). Here cq > 0 are sufficiently large constant.

(c) No edge of weight at most 1−cu (logmin(np,nq))
2

min(np,nq)
appears in a maximum weight matching

in the complete bipartite graph between Np and Iu with edge weights drawn from D
independently. Here cu > 0 is a constant.
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Proof of Lemma 4. First we show the third part (c) in Lemma 4 for reasons of simplicity
of proof. Recall that the bundle Iu denotes a bundle whose size is nq which is uniformly
at random selected from I. Consider the randomly weighted complete bipartite graph Hu

composed of Np and Iu. The weight of edge {i, j} (i ∈ Np, j ∈ Iu) can be considered as it
is drawn independently from D since Iu is selected uniformly at random. If we can show
that Hu is heavy 2-expanding bipartite graph, we can say that there is no light edge in
the maximum weight matching on Hu from Lemma 6. In the proof, we consider two case
np > nq and np ≤ nq.

First, we consider the case np > nq. Set c1 is the sufficiently large constant. For all i ∈ Np

and all j ∈ Iu, we have Pr
[
ui(j) ≥ 1− c1

lognq

nq

]
≥ αc1

lognq

nq
since D is (α, β)-PDF-bounded.

Consider S ⊆ Np with 1 ≤ |S|. Let ΓHu
(S) = {j ∈ Iu | ui(j) ≥ 1− c1

lognq

nq
for some i ∈ S}

and ρ = Pr [j ∈ ΓHu
(S)] for j ∈ Iu. Then we have 1−ρ ≤

(
1− αc1

lognq

nq

)|S|
. Note that this

definition of ΓHu
(S) is slightly different from that in Section 3.2. Here we only consider the

edges in the subgraph in the definition of ΓHu
(S). Also, from the independence, |ΓHu

(S)|
is distributed as the binomial distribution Bin(nq, ρ).

Now our goal is to show that the complete bipartite graph Hu is heavy 2-expanding
bipartite graph with high probability. So, we show that Γ(S) defined above satisfies the two
conditions in Definition 4 with high probability. For the proofs, we use Chernoff bound.

In the case of |S| ≤ nq

2αc1 lognq
, we have

E [|ΓHu
(S)|] = nqρ

≥ nq

(
1−

(
1− αc1

log nq

nq

)|S|
)

≥ nq

(
1− exp

(
−αc1

log nq

nq
|S|
))

≥
(
1− e−1

)
αc1|S|

nq

nq
log nq

≥ αc1
2

log nq|S|.

Here we use two inequalities: (1−t)x ≤ e−tx for x ≥ 1 and 0 ≤ t ≤ 1 and, 1−e−x ≥ (1−e−1)x

for 0 ≤ x ≤ 1. Here, since |S| ≤ nq

2αc1 lognq
, we have αc1

lognq

nq
|S| ≤ 1

2 ≤ 1. Then, by Chernoff
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bound, we obtain

Pr [∃S : |ΓHu
(S)| < 2|S|] ≤ Pr

[
∃S : |ΓHu

(S)| < 1

2
E[|ΓHu

(S)|]
]

≤
∑

S⊆Np:|S|≤ nq
2cp log nq

(
np

|S|

)
·Pr

[
|ΓHu(S)| ≤

1

2
E[|ΓHu(S)|]

]

≤
∑

S⊆Np:|S|≤ nq
2cp log nq

n|S|
p · exp

(
−E[|ΓHu

(S)|]
8

)

≤

nq
2αc1 log nq∑

s=1

ns
p · exp

(
−αc1s log nq

16

)

≤

nq
2αc1 log nq∑

s=1

ns
pn

−αc1
16 s

q

≤

nq
2αc1 log nq∑

s=1

(log nq)
− 5

2 sn
( 5

2−
αc1
16 )s

q .

We use the condition (c′): np ≤ n
3/2
q (log nq)

−5/2. Since the constant c1 > 0 is sufficiently
large, 5

2 −
αc1
16 < 0. Then, as nq → ∞, the probability that there exists S ⊆ Np such that

|ΓHu
(S)| < 2|S| approaches 0. From the condition (d), nq → ∞ as n → ∞. So, we prove

that |ΓHu
(S)| ≥ 2|S| for all S ⊆ Np such that |S| ≤ nq

10αc1 lognq
with high probability.

In the case of
nq

2αc1 lognq
< |S| ≤ nq

2 , we have

Pr [∃S ⊆ Np : |ΓHu(S)| < 2|S|]

≤

nq
2∑

s=
nq

10αc1 log nq

Pr [∃S ⊆ Np : |S| = s, |ΓHu
(S)| ≤ 2s− 1]

=

nq
2∑

s=
nq

2αc1 log nq

Pr [∃S ⊆ Np, T ⊆ Iu : |S| = s, |T | = 2s− 1, |ΓHu
(S)| ⊆ T ]

≤

nq
2∑

s=
nq

2αc1 log nq

∑
∃S⊆Np,T⊆Iu

|S|=s,|T |=2s−1

∏
i∈Np,j∈Iu

Pr [{i, j} /∈ E]

≤

nq
2∑

s=
nq

2αc1 log nq

(
np

s

)
·
(

nq

2s− 1

)
·
(
αc1

log nq

nq

)s(nq−2s+1)

≤

nq
2∑

s=
nq

2αc1 log nq

ns
p · n2s−1

q ·
(
1

2

)s(nq−2s+1)

≤

nq
2∑

s=
nq

2αc1 log nq

n
7
2 s−1
q (log nq)

−5/2 ·
(
1

2

)s(nq−2s+1)
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Here, we use the condition (c′): np ≤ n
3/2
q (log nq)

−5/2. From simple calculation, we conclude
the probability that there exists S ⊆ Np such that |Γ(S)| < 2|S| approaches 0 as nq → ∞
from the inequality above.

In the case of
nq

2 < |S|, we have 1 − ρ ≤
(
1− αc1

lognq

nq

)|S|
≤
(
1− αc1

lognq

nq

)nq
2 ≤

exp
(
−αc1 lognq

2

)
= n

−αc1
2

q . Moreover, we have
(np

|S|
)
≤
( np

np/2

)
≤ (2e)np/2. Let t = nq − |S|

and so

Pr

[
∃S : nq − |ΓHu

(S)| > 1

2
(nq − |S|)

]
≤

np
2∑

t=1

(
np

t

)
·
(
nq

t/2

)
· (1− ρ)nq−np+t/2

≤ np · (2e)np/2 · (2e)nq/2 ·
(
n
−αc1

2
q

)nq−np+
np
4

.

So, as nq →∞, the probability that there exists S ⊆ Np such that nq−|Γ(S)| > 1
2 (nq − |S|)

approaches 0. Finally, in the case of np > nq, we can show the complete bipartite graph
between Np and Iu with edge weights drawn from D independently is heavy 2-expanding.
Moreover, from Lemma 6, we conclude that, with high probability, no edge of weight at most
1−Onq

((log nq)
2/nq) appears in the maximum weight matching on the complete bipartite

graph between Np and Iu.
Next, we consider the case of np ≤ nq. In this case, we also consider the complete

bipartite graph Hu between Iu and Np. We see Iu to be the left-hand vertex set and
Np to be the right-hand vertex set. Consider S ⊆ Iu and ΓHu(S) := {i ∈ Np | ui(j) ≥
1− c1

lognp

np
for some j ∈ S}. Since D is (α, β)-PDF-bounded, we also have

Pr

[
ui(j) ≥ 1− c1

log np

np

]
≥ αc1

log np

np
.

From the same discussion as in the case of np > nq, we can show that the complete bipartite
graph between Np and Iu with edge weights drawn from D independently is also heavy 2-
expanding in the the case of np ≤ nq. Furthermore, we can show that, with high probability,
all weights of edges in the maximum weight matching on the complete bipartite graph are
1−Onp

((log np)
2/np).

Thus, with high probability, there exists a constant cu > 0 such that no edge of weight

at most 1− cu
logmin(np,nq)

2

min(np,nq)
appears in the maximum weight matching between Np and Iu.

Next, we show the first part (a) in Lemma 4. We consider the weight of the edges in
Mp. By the algorithm, Mp is the maximum weight matching on the complete bipartite
graph between Np and M(Np). Here |Np| = |M(Np)| = np. Let c2 > 0 a sufficiently large
constant. By the construction of the matching Mp in which class p selects only their favorite
items, and D is (α, β)-PDF-bounded, we have, for all p and for all i ∈ Np,

Pr

[
ui(j) ≥ 1− c2

log np

np

∣∣∣∣ j ∈M(Np)

]
≥ Pr

[
ui(j) ≥ 1− c2

log np

np

]
≥ αc2

log np

np
.

From this, with conditioning j ∈M(Np), we can use the same technique as that we used in
the proof of the third part (c) in Lemma 4. Then we can show that the complete bipartite
graph between Np and M(Np) is heavy 2-expanding. From Lemma 6, with high probability,

there exists a constant cp > 0 such that no edges of weights at most 1− cp
lognp

np
in Mp.

Finally, we show the second part (b) in Lemma 4 The weight of the edge {i, j} is ui(j).
Since the size of Np and the size of M(Nq) are different, we need to consider two cases:
np ≤ nq and np > nq as like we did in the proof of the third part (c).
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We first consider the case np ≤ nq. In this case, class p selects items before class q does.
Let c3 be a large constant such that c3 ≥ 2 · cp > 0. Like we did in the case of Np and Mp,
we consider bounding from below the probability that, for i ∈ Np and j ∈ M(Nq), ui(j) is
larger than 1− c3 · log np/np with conditioning j ∈M(Nq). However we have several careful
points.

Recall that jqr ∈M(Nq) is an item which is chosen by class q at round r in the algorithm.
Since jqr was not selected by class p at same round r, the utility of jqr for all i ∈ Np is bounded
as ui(j

q
r ) ≤ tr. Then we have, for all i ∈ Np,

Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∣∣∣∣ jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
ui(j

q
r ) ≤ tr

]
,

where ui(j
q
r ) is generated from D. From the first part (a) in Lemma 4, we have tr ≥

1− cp
(lognp)

2

np
. Then, for all i ∈ Np and for r = 1, 2, ..., np, we have

Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
ui(j

q
r ) ≤ tr

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
ui(j

q
r ) ≤ 1− cp

(log np)
2

np

]
= Pr

[
1− c3

(log np)
2

np
≤ ui(j

q
r ) ≤ 1− cp

(log np)
2

np

]
≥ α(c3 − cp)

(log np)
2

np

≥ αcp
(log np)

2

np
.

We use here the density function fD(x) of D is lower bounded by α · x. Therefore, we get

Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∣∣∣∣ jqr ∈M(Nq)

]
≥ αcp

(log np)
2

np
.

Moreover, for r = np + 1, ..., nq, similarly we have

Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∣∣∣∣ jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log np)
2

np

∧
ui(j

q
r ) ≤ tnp

]
≥ αcp

(log np)
2

np
.

From these, we can use same technique to that in the proof of the third part (c) in Lemma 4
and then we can show that, in the case of np ≤ nq, the complete bipartite graph between
Np and M(Nq) is heavy 2-expanding bipartite graph with high probability. Therefore,
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with high probability, there exists a constant cq > 0 such that no edge of weight at most
1 − cq((log np)

2/np) appears in the maximum weight matching on the complete bipartite
graph between Np and M(Nq).

Second, we consider the case of np > nq. In this case class q chooses items before class
p does. Here we consider the fact that item jqr ∈M(Nq) with r ≥ 1 is not selected by class
p in round r − 1. Then the weight of edge {i, jqr} for i ∈ Np are conditioned as the weight
is less than tr−1. From the discussion which is similar which we consider the bound on tqr
in the proof of Claim 2, we get tr−1 ≥ 1− cp

(lognp)
2

np
. Let c3 be a large constant such that

c3 ≥ 2 · cp. Then, for all i ∈ Np and for each r = 2, 3, ..., nq,

Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∣∣∣∣ jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∧
jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∧
ui(j

q
r ) ≤ tr−1

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∧
ui(j

q
r ) ≤ 1− cp

(log np)
2

np

]
≥ Pr

[
1− c3

(log nq)
2

nq
≤ X ≤ 1− cp

(log np)
2

np

]
≥ α

(
c3

(log nq)
2

nq
− cp

(log np)
2

np

)
≥ αcp

(log nq)
2

nq
.

Moreover, for r = 1,

Pr

[
ui(j

q
1) ≥ 1− c3

(log nq)
2

nq

∣∣∣∣ jq1 ∈M(Nq)

]
≥ Pr

[
ui(j

q
1) ≥ 1− c3

(log nq)
2

nq

∧
jq1 ∈M(Nq)

]
= Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

]
≥ αc3

(log nq)
2

nq
,

and, for r = nq + 1, ..., np,

Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∣∣∣∣ jqr ∈M(Nq)

]
≥ Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∧
jqr ∈M(Nq)

]
= Pr

[
ui(j

q
r ) ≥ 1− c3

(log nq)
2

nq

∧
ui(j

q
r ) ≤ tnq

]
≥ αc3

(log nq)
2

nq
.

From these, similarly we can show that the complete bipartite graph between Np andM(Nq)
is heavy 2-expanding bipartite graph with high probability in the case of np > nq. Hence, in
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this case, with high probability, there exists a constant cq > 0 such that no edge of weight
at most 1 − cq((log nq)

2/nq) appears in the maximum weight matching on the complete
bipartite graph between Np and M(Nq).

Finally, with high probability, there exists a constant cq > 0 such that no edge of weight

at most 1 − cq
logmin(np,nq)

2

min(np,nq)
appears in the maximum weight matching between Np and

M(Nq).

G Omitted Proofs from Section 3.3

G.1 Proofs of (c′) and (d)

In the proof of Theorem 1 in Section 3.3, we have used the following facts (c′) there ex-
ists a constant c′ > 0 such that, for all p, q ∈ [k], max(np, nq) ≤ c′ · min(np, nq)

3/2 ·
(logmin(np, nq))

−5/2, and (d) np →∞ as n→∞ for all p ∈ [k].
Here, we prove these facts by assuming the condition (c) in Theorem 1, namely, there

exists a constant c > 0 such that n ≤ c ·minp(np)
3/2 · (logminp(np))

−5/2.

• We first prove (c′). From the condition (c), for all p, q ∈ [k], we have max(np, nq) ≤ n ≤
c · (minp′ np′)3/2 · (logminp′ np′)−5/2. Also, for all p, q ∈ [k], we have c · (minp′ np′)3/2 ·
(logminp′ np′)−5/2 ≤ c ·min(np, nq)

3/2 ·(logmin(np, nq))
−5/2 since the function f(x) =

x3/2(log x)−5/2 is monotonically increasing for sufficiently large x. Thus, combining
these, we get, for all p, q ∈ [k], max(np, nq) ≤ c ·min(np, nq)

3/2 · (logmin(np, nq))
−5/2.

• Second, we show (d). Observe that n ≤ c · (minp np)
3/2 · (logminp np)

−5/2 and that
the function f(x) = x3/2(log x)−5/2 has a unique inflection point x∗ = e5/3 where
f(x) is monotonically decreasing for x ≤ x∗ and monotonically increasing for x ≥ x∗.
If n approaches infinity, there are two cases: minp np goes to infinity, or goes to 0;
however, the latter case is impossible since minp np is at least one. Thus, minp np →∞
as n→∞. Hence, for all p ∈ [k], np →∞ as n→∞.
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