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Abstract

A group of n agents with numerical preferences for each other are to be assigned
to the n seats of a dining table. We study two natural topologies: circular (cycle)
tables and panel (path) tables. For a given seating arrangement, an agent’s utility
is the sum of its preference values towards its (at most two) direct neighbors. An
arrangement is envy-free if no agent strictly prefers someone else’s seat, and it is
stable if no two agents strictly prefer each other’s seats. We show that it is NP-
complete to decide whether an envy-free arrangement exists for both paths and
cycles, even with binary preferences. In contrast, under the assumption that agents
come from a bounded number of classes, for both topologies, we present polynomial-
time algorithms computing envy-free and stable arrangements, working even for
general preferences. Proving the hardness of computing stable arrangements seems
more difficult, as even constructing unstable instances can be challenging. To this
end, we propose a characterization of the existence of stable arrangements based on
the number of distinct values in the preference matrix and the number of classes of
agents. For two classes of agents, we show that stability can always be ensured, for
both paths and cycles. For cycles, we moreover show that binary preferences with
four classes of agents, as well as three-valued preferences with three classes of agents,
are sufficient to prevent the existence of a stable arrangement. For paths, the latter
still holds, while we argue that a path-stable arrangement always exists in the binary
case under the additional constraint that agents can only swap seats when sitting
at most two positions away. We moreover consider the swap dynamics and exhibit
instances where they do not converge, despite a stable arrangement existing.

1 Introduction
Your festive dinner table is ready, and the guests are arriving. As soon as your guests
take their assigned seats, two of them are unhappy about their neighbors and rather want
to switch seats. Alas, right after the switch, two other guests become upset, and then
pandemonium ensues! Could you have prevented all the social awkwardness by seating your
guests “correctly” from the get-go?

In this paper, we study the difficulty of finding a stable seating arrangement; i.e. one
where no two guests would switch seats. We focus on two natural seating situations: a
round table (cycle), and an expert panel (path). In either case, we assume guests only care
about having the best possible set of direct left and right neighbors. In certain cases, not
even a stable arrangement might make the cut, as a single guest envying the seat of another
could potentially lead to trouble. Therefore, we are also interested in finding envy-free
arrangements.

Formally, n guests have to be assigned bijectively to the n seats of a dining table: either
a path or a cycle graph. Guests express their preferences for the other guests numerically,
with higher numbers corresponding to a greater desire to sit next to the respective guest.
The utility of a guest g for a given seating arrangement is the sum of g’s preference values
towards g’s neighbors. A guest g envies another guest if g’s utility would strictly increase if
they swapped places. Two guests want to swap places whenever they envy each other. Our
goal is to compute a stable (no two guests want to swap) respectively envy-free (no guest
envies another) seating arrangement.

Besides the table topology, we conduct our study in terms of two natural parameters. The



No. of Classes
Bounded Unbounded

EF Poly NP-hard
STA Poly ?

(a) Complexity results for cycles. The hard-
ness result is shown in Theorem 1 and the
polynomial results in Theorem 5.

No. of Classes
Bounded Unbounded

EF Poly NP-hard
STA Poly ?

(b) Complexity results for paths. The hard-
ness result is shown in Theorem 2 and the
polynomial results in Theorem 4.

Table 1: Summary of our computational results on computing envy-free (EF) and stable
(STA) arrangements. We distinguish between two cases, depending on whether the total
number of guest classes is bounded by a constant or not. Our hardness results are for the
decision variants “does such an arrangement exist?” and hold even for binary preferences,
while our polynomial-time algorithms recover an envy-free/stable arrangement whenever
any exist, and work with no constraints on the preference values.

Values
Classes ≤ 2 3 4 ≥ 5

≤ 2 S ? U U
3 S U U U
≥ 4 S U U U

(a) Characterization results for cycles. The
bold entries, from left to right, are proven in
Theorem 6, Theorem 8 and Theorem 10.

Values
Classes ≤ 2 3 ≥ 4

≤ 2 S ? ?
3 S U U
≥ 4 S U U

(b) Characterization results for paths. The
bold entries, from left to right, are proven in
Theorem 7 and Theorem 9.

Table 2: Summary of our results characterizing the emergence of instability for different
combinations of constraints on the number of preference values and classes of guests. Our
stability (S) results mean that all instances satisfying the constraints admit a stable ar-
rangement, and hold for arbitrary preference values. Our constructions with no stable
arrangements (U) only use small non-negative values, often 0, 1, 2, . . . , and work for any
large enough number of agents. For the remaining unknown (?) entries, we do not know
whether any unstable instances exist.

first parameter is the number of numerical values guests can choose from when expressing
their preferences for other guests. An example of two-valued preferences would be when all
preference values are either zero or one (i.e., binary, also known as approval preferences),
in which case every guest has a list of “favorite” guests they want to sit next to, and is
indifferent towards the others. In contrast, if the values used are ±1; i.e., every guest either
likes or dislikes every other guest; then the preferences are still two-valued, but no longer
binary. Increasing the number of allowed values allows for finer-grained preferences.

Our second parameter is the number of different guest classes. In particular, dinner party
guests can often be put into certain categories, e.g., charmer, entertainer, diva, politico,
introvert, outsider. Each class has its own preferences towards other classes, e.g., outsiders
would prefer to sit next to a charmer, but not next to an introvert.

Our Contribution. We study the existence and computational complexity of finding
stable/envy-free arrangements on paths and cycles. Some of our results are quite surprising.
For instance, six people with binary preferences can always be stably seated at a round table,
while for five (or seven) guests some preferences are inherently unstable, and we better invite
(or uninvite) another guest. However, even for six people with binary preferences, for which
a stable arrangement always exists, the swap dynamics might still never converge to one.

Our computational results are summarized in Table 1. Notably, we prove that it is



NP-hard to decide whether an envy-free arrangement exists, for both paths and cycles,
even under binary preferences. For stability, on the other hand, even constructing unstable
instances can be rather challenging. Hoping to gain insight into the complexity of stability,
we study for which combinations of our two parameters, i.e., number of preference values
and guest classes, do stable arrangements always exist and for which combinations this is
not the case. Our results on this front are summarized in Table 2. For the case of paths, we
do not know whether unstable two-valued preferences exist, but an exhaustive search could
not produce unstable binary instances for n ≤ 7. However, we prove that binary preferences
always admit a stable arrangement on a path assuming that guests are only willing to swap
places with other guests that they are separated from by at most one seat.

Appendix. In the appendix, we supply the proofs omitted from the main text, as well as
supporting material referenced throughout. Moreover, we show that stability is a highly
fragile notion, being non-monotonic with respect to adding/removing guests. We also give
evidence that knowledge about stability on paths is unlikely to transfer to computing
cycle-stable arrangements. Finally, we use probabilistic tools to study the expected number
of stable arrangements of random binary preferences sampled from the Erdős-Rényi model.

Concurrent Work. In their recent work, to appear in IJCAI 2023, Ceylan, Chen and Roy
[10] tackle a list of problems similar to ours, also building on the model of Bodlaender et
al. [7, 6]. They prove that deciding the existence of envy-free arrangements is NP-hard under
binary preferences for both paths and cycles. Their reduction is however different from ours,
showing hardness even for symmetric preferences, at the expense of making the reduction
more complex. Moreover, they consider the complexity of deciding the existence of stable
arrangements for paths and cycles. While they do not provide an answer for the binary
case, they show that it is NP-complete for cycles with 4-valued non-negative preferences
and for paths with 6-valued unrestricted preferences. To the best of our knowledge, the
other results from their paper do not overlap with our findings.

2 Related Work
The algorithmic study of stability in collective decision-making has its roots in the seminal
paper of Gale and Shapley [12], introducing the now well-known Stable Marriage and Stable
Roommates problems. Classically, the former is presented as follows: an equal number of
men and women want to form couples such that no man and woman from different couples
strictly prefer each other over their current partners, in which case the matching is called
stable. The authors give the celebrated Gale-Shapley deferred acceptance algorithm showing
that a stable matching always exists and can be computed in linear time. Irving [14] later
extended the algorithm to also handle preferences with ties. The Stable Roommates problem
is the non-bipartite analog of Stable Marriage: an even number of students want to allocate
themselves into identical two-person rooms in a dormitory. A matching is stable if no two
students allocated to different rooms prefer each other over their current roommates. In
this setting, stable matchings might no longer exist, but a polynomial-time algorithm for
computing one if any exist is known [13]. However, when ties are also allowed, the problem
becomes NP-hard [16].

The seating arrangement problem that we study is, in fact, well-connected with Stable
Roommates. Instead of one table with n seats, the latter considers n/2 tables with two
seats each. However, there is another more subtle difference: in Stable Roommates, two
people unhappy with their current roommates can choose to move into any free room. This
is not possible if there are exactly n/2 rooms. Instead, the stability notion that we study
corresponds to the distinct notion of exchange-stability in the Stable Roommates model,



where unhappy students can agree to exchange roommates. Surprisingly, under exchange-
stability, finding a stable roommate allocation becomes NP-hard even without ties [9].

One can also see our problem through the lens of coalition formation. In particular,
hedonic games [2] consider the formation of coalitions under the assumption that individuals
only care about members in their own coalition. Then, fixing the sizes of the coalitions allows
one to generalize from tables of size two and study stability more generally. Bilò et al. [5]
successfully employ this approach to show a number of attractive computational results
concerning exchange-stability. The main drawback of this approach, however, is that it
assumes that any two people sitting at the same table can communicate, which is not the
case for larger tables. Our approach takes the topology of the dining table into account.

Some previous works have also considered the topology of the dining table. Perhaps
closest to our paper is the model of Bodlaender et al. [7, 6], in which n individuals are to
be assigned to the n vertices of an undirected seating graph. The authors prove a number
of computational results regarding both envy-freeness and exchange-stability, among other
notions. However, we found some of the table topologies considered to be rather unnatural,
especially in hardness proofs (e.g., trees or unions of cliques and independent sets). Bullinger
and Suksompong [8] also conduct an algorithmic study of a similar problem, but with a
few key differences: (i) individuals are seated in the nodes of a graph, but there may be
more seats than people; (ii) for the stability notion, they principally consider jump-stability,
where unhappy people can choose to move to a free seat; (iii) individuals now contribute to
everyone’s utility, although their contribution decreases with distance.

Last but not least, studying stability in the context of Schelling games has recently
been a popular area of research [11, 1, 4, 15, 3]. In Schelling games, individuals belong to
a fixed number of classes. However, unlike in our model, agents from one class only care
about sitting next to others of their own class. This additional assumption often allows for
stronger results; e.g., in [3] the authors prove the existence of exchange-stable arrangements
on regular and almost regular topological graphs such as cycles and paths, and show that
the swap dynamics are guaranteed to converge in polynomial time on such topologies.

Overall, it seems that exchange-stability has been studied in the frameworks of both
hedonic and Schelling games. However, both approaches present some shortcomings: on
the one hand, Schelling games inherently consider a topology on which agents evolve, but,
being historically motivated by the study of segregation (e.g., ethnic, racial), they usually
restrict themselves to very simple preferences. On the other hand, works on hedonic games
are accustomed to considering diverse preferences. However, while multiple works have
introduced topological considerations, their analysis is usually restrained to graphs that can
be interpreted as non-overlapping coalitions, e.g., with multiple fully connected components.

3 Preliminaries
We write [n] = {1, . . . , n}. Given an undirected graph G = (V (G), E(G)), we write NG(v)
for the set of neighbors of vertex v ∈ V (G). When clear from context, oftentimes we will
simply write V,E and N(v) respectively.

The model we describe next is similar to the one in [7]. A group of n agents (guests) A
has to be seated at a dining table represented by an undirected graph G = (V,E), where
vertices correspond to seats. We will be interested in the cases of G being a cycle or a path.
We assume that |V | = n and that no two agents can be seated in the same place, from which
it also follows that all the seats have to be occupied. Agents have numerical preferences over
each other, corresponding to how much utility they gain from being seated next to other
agents. In particular, each agent i ∈ A has a preference over the other agents expressed as
a function pi : A \ {i} → R, where pi(j) denotes the utility gained by agent i when seating



next to j. Note that we do not assume symmetry; i.e., it might be that pi(j) 6= pj(i). We
denote by P = (pi)i∈A the collection of agent preferences, or preference profile, of the agents.
A number of different interpretations can be associated to P. In particular, we will usually
see P as a matrix P = (pij)i,j∈A, where pij = pi(j). Note that the diagonal entries are not
defined, so we will usually use the convention that pii = 0. Using the matrix notation, we
say that the preferences in P are binary when P ∈ {0, 1}n×n and k-valued if there exists
Γ ⊆ R, |Γ| = k, such that P ∈ Γn×n. Note that binary preferences are two-valued, but
two-valued preferences are not necessarily binary. Moreover, we will often represent binary
preferences as a directed graph, where a directed edge between two agents signifies that the
first agent approves of the second.

We define a class of agents to be a subset of indistinguishable agents C ⊆ A. More
formally, all agents in C share a common preference function pC : A → R and no agent
in A discriminates between two agents in C. Note that this implies that the lines and
columns of the preference matrix corresponding to agents in C are identical, if we adopt the
convention that diagonal terms inside a class are all equal but not necessarily null. We say
that preference profile P has k-classes, or is a k-class preference, if A can be partitioned
into k classes C1, . . . , Ck ⊆ A.

We define an arrangement of the agents on G to be a bijection π : A → V (G), i.e., an
assignment of each agent to a unique vertex of the seating graph (and vice-versa). For a given
arrangement π, we define for each agent i ∈ A its utility Ui(π) =

∑
v∈NG(π(i)) pi(π

−1(v))
to be the sum of agent i’s preferences towards its graph neighbors in the arrangement. We
say that agent i envies agent j whenever Ui(π) < Ui(π

′), where π′ is π with π(i) and π(j)
swapped. We further say that (i, j) is a blocking pair if both i envies j and j envies i;
i.e., they would both strictly increase their utility by exchanging seats. An arrangement
is envy-free if no two agents envy each other, and it is stable if it induces no blocking
pairs. Note that envy-freeness implies stability, but the converse is not necessarily true. By
extension, we call preference profile P stable (respectively envy-free) on G if there exists a
stable (respectively envy-free) arrangement π on G.

4 Envy-Freeness
It turns out to be relatively easy to construct preferences with no envy-free arrangements: for
paths, even if all agents like each other, the agents sitting at the endpoints will envy the
others; for cycles, add an agent despised by everyone, agents sitting next to it will envy
their peers. We now show that, furthermore, it is NP-hard to decide whether envy-free
arrangements exist, for both paths and cycles, even under binary preferences. We begin
with the case of cycles.

Theorem 1. For binary preferences, deciding whether an envy-free arrangement on a cycle
exists is NP-hard.

Proof. We proceed by reduction from Hamiltonian Cycle on directed graphs. Let G = (V,E)
be a directed graph such that, without loss of generality, V = [n]. If G has any vertices with
no outgoing edges, then map the input instance to a canonical no-instance, unless n = 1, in
which case we map to a canonical yes-instance. Hence, from now on assume that all vertices
have outgoing edges. For each vertex v ∈ V introduce three agents xv, yv, zv such that agent
xv only likes yv and dislikes everyone else, agent yv only likes zv and dislikes everyone else,
and agent zv likes agent xu for all u ∈ V such that (v, u) ∈ E, and dislikes everyone else.
We claim that the so-constructed preference profile P has an envy-free arrangement on a
cycle precisely when G has a Hamiltonian cycle. To show this, first assume without loss of
generality that 1 → 2 → . . . → n → 1 is a Hamiltonian cycle in G. Then, arranging agents



around the cycle in the order x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn is an envy-free arrangement.
To see why, notice that in this arrangement all agents get utility 1, so envy could only
potentially stem from an agent being able to swap places with another agent to get utility
2. To prove this is not possible, first notice that agents (xi)i∈[n] and (yi)i∈[n] each only
like one other agent, so they can never get a utility of more than 1 in any arrangement.
Moreover, no agent zi can get to a utility of 2 by a single swap because any two agents
they like are seated at least three positions away on the cycle. Conversely, assume that an
envy-free arrangement π exists. First, if xi is not seating next to yi in π, then xi could
improve by swapping to a place next to yi (also similarly for yi and zi). Therefore, in
arrangement π agent xi is seated next to yi and yi is seated next to zi. Moreover, consider
the other neighbor of zi in π. Since zi does not like yi, it follows that if zi also does not
like their other neighbor, then zi could strictly improve their utility by swapping next to
some agent they like, which is always possible because all vertices in G have outgoing edges.
Therefore, the other neighbor of zi has to be some agent that they like, hence being of the
form xj , where j 6= i. By construction, this means that (i, j) ∈ E. Putting together what
we know, we get that under π the agents are arranged around in the cycle in some order
xσ1

, yσ1
, zσ1

, xσ2
, yσ2

, zσ2
, . . . , xσn

, yσn
, zσn

, where σ is a permutation of the n agents such
that (σi, σi+1) ∈ E holds for i ∈ [n], assuming that addition is performed with wrap-around
such that n+ 1 = 1. Therefore, a Hamiltonian cycle σ1 → σ2 → . . .→ σn → σ1 exists in G.
This completes the reduction.

A similar proof can be used to show hardness for the case of paths. We outline the
changes required in the appendix.

Theorem 2. For binary preferences, deciding whether an envy-free arrangement on a path
exists is NP-hard.

Proving similar hardness results for stability would be highly desirable; we discuss some
steps towards achieving this in Section 6. Moreover, one might ask how does the number
of agent classes affect the computational complexity of our problems. In the next section,
we address this question precisely, showing that a bounded number of agent classes renders
the problems we consider computable in polynomial time, even for non-binary preferences.

5 Polynomial Solvability for k-Class Preferences
In this section, we show that deciding whether envy-free and stable arrangements exist for
a given preference profile can be achieved in polynomial time, for both paths and cycles,
assuming that the number of agent classes is bounded by a number k. Note that preferences
in this case are not constrained to being binary. By extension, our algorithms can also be
used to construct such arrangements whenever they exist.

We begin with the case of paths. For simplicity, we assume that n ≥ 3, as for n ≤ 2 any
arrangement is both stable and envy-free. Assume that the agent classes are identified by
the numbers 1, . . . , k and that n1, n2, . . . , nk are the number of agents of each class in our
preference profile, where n1 + . . .+nk = n. For ease of writing, we will see arrangements as
sequences s = (si)i∈[n], where si ∈ [k] and for any agent class j ∈ [k] the number of values
j in s is nj . Moreover, for brevity, we lift agent preferences to class preferences, in order
to give meaning to statements such as “class a likes class b.” To simplify the treatment of
agents sitting at the ends of the path, we introduce two agents of a dummy class 0 with
preference values 0 from and towards the other agents. We require the dummy agents to
sit at the two ends of the path; i.e., s0 = sn+1 = 0. In order to use a common framework
for stability and envy-freeness, we will define the concept of compatible triples of agent
classes, as follows. First, for envy-freeness, let a, b, c, d, e, f be agent classes, then we say



that triples (a, b, c) and (d, e, f) are long-range compatible if pb(a) + pb(c) ≥ pb(d) + pb(f)
and pe(d)+pe(f) ≥ pe(a)+pe(c); intuitively, neither b wants to swap with e, nor vice-versa.
Furthermore, for a, b, c, d agent classes, we say that triples (a, b, c) and (b, c, d) are short-
range compatible if pb(a) ≥ pb(d) and pc(d) ≥ pc(a); intuitively, if a, b, c, d are consecutive
in the arrangement, then neither b wants to swap with c, nor vice-versa. For stability, we
keep the same definitions but use “or” instead of “and.” Note that long-range and short-
range compatibility do not imply each other. We call an arrangement s compatible if for
all 1 ≤ i < j ≤ n the triplets (si−1, si, si+1) and (sj−1, sj , sj+1) are long-range compatible
when j − i > 1 and short-range compatible when j − i = 1. Note that arrangement s is
envy-free (resp. stable) if and only if it is compatible. In the following, we explain how to
decide the existence of a compatible arrangement.

Lemma 3. Deciding whether compatible arrangements exist can be achieved in poly-time.

Proof. We first present a nondeterministic algorithm (i.e., with guessing) that solves the
problem in polynomial time. The algorithm builds a compatible arrangement s one element
at a time. Initially, the algorithm sets s0 ← 0 and guesses the values of s1 and s2. Then,
at step i, for 3 ≤ i ≤ n + 1, the algorithm will guess si (except for i = n + 1, where
we enforce that si ← 0) and check whether (si−2, si−1, si) is short-range conflicting with
(si−3, si−2, si−1), rejecting if so. Moreover, the algorithm will check whether (si−2, si−1, si)
is long-range conflicting with any (sj−2, sj−1, sj) for 2 ≤ j ≤ i− 2, again rejecting if so. At
the end, the algorithm checks whether for each i ∈ [k] value i occurs in s exactly ni times,
accepting if so, and rejecting otherwise.

Alone, this algorithm only shows containment in NP, which is not a very attractive
result. Next, we show how the same algorithm can be implemented with only a constant
number of variables, explaining afterward why this implies our result. First, to simulate the
check at the end of the algorithm without requiring knowledge of the whole of s, it is enough
to maintain throughout the execution counts (xj)j∈[k] such that at step i in the algorithm
xj gives the number of positions 1 ≤ ` ≤ i such that s` = j. To simulate the short-range
compatibility check, it is enough that at step i we have knowledge of si−3, . . . , si. Finally,
for the long-range compatibility check, a more insightful idea is required. In particular, we
make the algorithm maintain throughout the execution counts ma,b,c for each triple (a, b, c)
of agent classes, such that at step i value ma,b,c gives the number of positions 2 ≤ ` ≤ i
such that (s`−2, s`−1, s`) = (a, b, c). Using this information, to check at step i whether
(si−2, si−1, si) long range conflicts with any (sj−2, sj−1, sj) for 2 ≤ j ≤ i − 2, it is enough
to temporarily decrease by one the values msi−3,si−2,si−1 and msi−2,si−1,si and then check
whether there exists a triple (a, b, c) of agent classes such that ma,b,c > 0 and (a, b, c) long-
range conflicts with (si−2, si−1, si). In total, at step i, the algorithm only needs to know
the values si−3, . . . , si, as well as (xj)j∈[k] and the counts ma,b,c for all triples (a, b, c) of
agent classes. Since k bounds the total number of agent classes, this is only a constant
number of variables. As each variable can be represented with O(log n) bits, it follows
that our nondeterministic algorithm uses only logarithmic space, implying containment in
the corresponding complexity class NL. It is well known that NL ⊆ P, from which our
conclusion follows. For readers less familiar with this result, we give a short overview of how
our algorithm can be converted into a deterministic polynomial-time algorithm, as follows.
Since our NL algorithm uses only logarithmic space, it follows that the space of algorithm
states that can be reached depending on the nondeterministic choices is of polynomial size,
as 2O(logn) is polynomial. Therefore, building a graph with vertices being states and oriented
edges corresponding to transitions between states, the problem reduces to deciding whether
an accepting state can be reached from the initial state, which can be done with any graph
search algorithm.



Theorem 4. Fix k in N. For k-class preferences, there are polynomial-time algorithms
computing an envy-free/stable arrangement on a path or reporting the nonexistence thereof.

For the case of cycles, a similar approach can be used, although with rather tedious, yet
minor tweaks, presented in the appendix.

Theorem 5. Fix k in N. For k-class preferences, there are polynomial-time algorithms
computing an envy-free/stable arrangement on a cycle or reporting the nonexistence thereof.

6 Stability
Previously, we showed that deciding whether envy-free arrangements exist is NP-hard. How-
ever, finding stable arrangements might be easier, as the requirement of stability is much
weaker than that of envy-freeness. A first step towards understanding the difficulty of the
problem is being able to construct instances where no stable arrangements exist; after all, a
problem where the answer is always “yes” cannot be NP-hard. In this section, we show how
to construct such unstable preferences. In fact, our analysis is more granular, considering
how different constraints on the number of agent classes as well as the number of different
values allowed in the preferences influence the existence of preferences making every arrange-
ment unstable on a path or a cycle. By doing so, we hope to develop a better understanding
of the necessary conditions for the disappearance of stability. In particular, we show that
two-class preferences always induce a stable arrangement, whereas three-valued three-class
preferences are sufficient to break stability on both paths and cycles for any n large enough.
For cycles, we moreover show that binary four-class preferences are also enough to break
stability for any n large enough, this construction turning out to be the trickiest. Table 2
summarises our results. Afterwards, we venture into the leftover case, which is stability on
paths under binary preferences. For this case, we were unable to construct any unstable
instances, and have proven their nonexistence for n ≤ 7. We conjecture this to be true
in general and prove a weaker version of this result, namely that a stable arrangement is
guaranteed to exist if agents can only swap seats when sitting at most two positions away
on the path.

6.1 Preferences with Two Classes of Agents
As a warm-up, note that when all agents come from a single class, any arrangement on any
given seating graph is stable. In the following, we extend this result to two classes of agents
for cycles and paths. We begin with cycles:

Theorem 6. Two-class preferences always induce a stable arrangement on a cycle.

Proof. Without loss of generality, the preferences can be assumed to be binary in the case
of two-class preferences on a cycle. Suppose there are two classes of agents, say Blues and
Reds. First, note that any blocking pair must consist of one Blue and one Red. Moreover,
note that any arrangement is stable whenever one of the classes likes the two classes equally.
Now, suppose this is not the case, meaning that each class has a preferred class to sit next
to. There are only two cases to consider:

If one class, say Blue, prefers its own class, then sit all Blues together and give the
remaining seats to Reds: all Blues but two, say B1 and B2, get maximum utility, and
neither B1 nor B2 can improve since no Red has more than one Blue neighbor. Hence no
Blue is part of a blocking pair, and the arrangement is stable.

If both classes prefer the opposite class, we may assume there are at least as many Reds
as Blues. Then we alternate between Reds and Blues for as long as there are Blues without a



n 3 4 5 6 7
Cycle 0 0 1 0 2
Path 0 0 0 0 0

Table 3: Number of non-isomorphic families of unstable binary preferences.

seat, then seat all the remaining Reds next to each other. Every Blue has maximum utility,
and cannot be part of a blocking pair, hence the arrangement is stable.

The following extends our result to the case of paths. The proof is largely similar, but
the case analysis becomes more involved, so we present it in the appendix.

Theorem 7. Two-class preferences always induce a stable arrangement on a path.

Note that a path of size n is equivalent to a cycle of size n+ 1 where an agent with null
preferences is added. This explains why the case of paths is harder to study than the one of
cycles, as it corresponds to having one more class of agents and potentially one more value
(zero). A similar approach could perhaps be used to handle the case of three classes under
binary preferences, but the number of cases to consider would be noticeably larger.

6.2 Three-Valued Preferences with Three Classes of Agents
We now consider the case of three-valued preferences using only three classes. In particular,
we show the existence of three-class three-valued preferences such that no arrangement on
a cycle or a path is stable.

Theorem 8. For n ≥ 4, there exist three-class three-valued preferences such that all ar-
rangements on a cycle are unstable.

Proof. Consider three classes of agents: Alice, Bob, and n−2 of Bob’s friends. The story goes
as follows: Alice and Bob broke up. Alice does not want to hear about Bob and would hence
prefer to sit next to any of his friends rather than Bob. On the other hand, Bob wants
to win her back, so he would above all want to sit next to Alice. Finally, Bob’s friends
prefer first Bob, then the other friends, and finally Alice. To show that these preferences
are unstable on a cycle, there are two cases to consider: either sit Alice and Bob next to
each other, or separately.

In the first case, Alice and her second neighbor, who is one of Bob’s friends, would
exchange seats. After the switch, Alice is better as she no longer sits next to Bob, and the
friend is better because he sits next to Bob.

In the second case, Bob and one of Alice’s neighbors would exchange seats. Bob is better
because he now sits next to Alice. To see that the neighbor, who is one of Bob’s friends, is
also better, distinguish two sub-cases: if the friend sits right between Alice and Bob, then
he is better because he now no longer sits next to Alice, while if this is not the case, he is
better because before he was sitting next to Alice and a friend, while now he is sitting next
to two friends.

Unfortunately, the proof of Theorem 8 does not directly transfer to paths; e.g., for n = 5,
path arrangements (F, F, B, A, F) or (B, F, F, A, F) are stable. It is possible to use the
same construction for paths by introducing negative values in the preferences. Negative
preferences are however not necessary to make every arrangement unstable: we show that
three-valued non-negative preferences are enough for n large enough. We summarize both
of these results in the following.
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Figure 1: The three non-isomorphic families of binary unstable preferences for n ≤ 7.

Theorem 9. For n ≥ 4, there exist three-valued three-class preferences such that all ar-
rangements on a path are unstable. For n ≥ 12, this holds even for non-negative values.

6.3 Two-Valued Preferences
It remains to study what happens for two-valued preferences with three or more classes of
agents. We will actually study binary preferences, i.e., values zero and one, but, at least
for cycles, this is without loss of generality (on paths, extremities artificially introduce a
comparison with zero, changing the behavior for negative preferences). We exhausted all
binary preferences for n ≤ 7 using a Z3 Python solver (see Appendix G), hoping to find
unstable ones and generalize from them. Table 3 summarizes our findings. For paths, no
unstable preferences were found, while for cycles, unstable preferences were found for n = 5
and n = 7, with one and, respectively, two non-isomorphic families of unstable preferences.
Examples of such preferences from each family P5,P(1)

7 and P(2)
7 are illustrated in Figure 1.

Analyzing why P5 is unstable turns out to be quite complex (see Appendix B), and,
as of our current understanding, its instability seems to be more of a “small size artefact”
than anything else. In contrast, with their highly regular structure, the two instances with
n = 7 seem more promising. In particular, profile P(2)

7 exhibits only four classes, denoted
by A,B,C,D in Figure 1c. In the following, we show that P(2)

7 can be extended to unstable
preferences of any size n ≥ 7.

Theorem 10. For n ≥ 7, there exist binary preferences using four classes such that no
arrangement on a cycle is stable.

Proof. For n ≥ 7, we consider four classes A, B, C and D, as well as their respective
members a, b1, b2, c and d1, . . . , dn−4. Similarly to Figure 1c, we suppose that: (i) a only
likes c; (ii) b1 and b2 both only like a and c; disliking each other; (iii) c only likes members
of D; (iv) members of D all like each other, as well as b1 and b2, only disliking a and c. We
show in the appendix why such preferences induce no stable arrangement on a cycle.

For the case of paths, on the other hand, we could not find any unstable preferences
with n ≤ 7. In the next section we show that, in fact, binary preferences cannot be unstable
on paths under the additional assumption that agents only trade places with other agents
sitting at most two positions away on the path.

6.3.1 Stability of Binary Preferences on Paths

In this section, we work under the additional assumption that two agents can never swap
seats when they are more than two positions away on the path, no matter how much it



would increase their utilities. This can be thought of as a practical constraint: once the
agents are seated, each agent knows which other agents they envy, but finding out whether
envy is reciprocal would be too cumbersome if the other agent is seated very far away. For
this setup, we prove that the swap dynamics always converge, so a stable arrangement can
be found by starting with an arbitrary arrangement and swapping blocking pairs until the
arrangement becomes stable. This can be seen as a generalization of a result from [4], where
agents only have preference for others of their kind and swaps are only with adjacent agents.
To begin, for any arrangement π define the utilitarian social welfare W (π) =

∑
i∈A Ui(π).

Moreover, to each arrangement π we associate a sequence S(π) of length n−1 with elements
in {0, 1, 2, 3}, constructed as follows. Let xi and xi+1 be the agents sitting at positions i and
i+1 on the path: if they do not like each other, then S(π)i = 0, if they both like each other,
then S(π)i = 3, if only xi likes xi+1, then S(π)i = 1, otherwise S(π)i = 2. To prove that
the swap dynamics converge, we define the potential Φ(π) = (W (π), S(π)), where sequences
are compared lexicographically, and prove that swaps always strictly increase the potential.
The following two lemmas show this for swaps at distances one and two, respectively.

Lemma 11. Let π be an arrangement where agents a and b form a blocking pair and are
seated in adjacent seats. Let π′ be π with a and b’s seats swapped. Then, Φ(π) > Φ(π′).

Proof. When n ≤ 2, there are no blocking pairs, so assume n ≥ 3. First, notice that
swapping the places of a and b keeps a and b adjacent, from which the swap changes the
utility of any agent by at most one. Since a and b’s utilities have to increase, they have
to each change by exactly one. Moreover, note that neither a nor b can be seated at the
ends of the table, as otherwise swapping would make one of them lose a neighbor while
keeping the other one, hence not increasing their utility. Hence, assume that x is the other
neighbor of a and y is the other neighbor of b; i.e., x, a, b, y are seated in order consecutively
on the path, at positions say i, . . . , i + 3. If either Ux(π′) ≥ Ux(π) or Uy(π′) ≥ Uy(π), it
follows that W (π′) −W (π) = Ux(π′) − Ux(π) + Uy(π′) − Uy(π) + 2 ≥ 1, so Φ(π′) > Φ(π).
Otherwise, we know that Ux(π′)−Ux(π) = Uy(π′)−Uy(π) = −1, from whichW (π) = W (π′).
Together with Ua(π′) − Ua(π) = Ub(π

′) − Ub(π) = 1, this means that preferences satisfy
a → y → b → x → a, where an arrow u → v means that agent u likes v but not the other
way around. Therefore, S(π)i = 1 and S(π′)i = 2. Since S(π) and S(π′) only differ at
positions i, . . . , i+ 2, this means that S(π′) > S(π), so Φ(π′) > Φ(π), as required.

Lemma 12. Let π be an arrangement where agents a and b form a blocking pair and are
seated two seats away. Let π′ be π with a and b’s seats swapped. Then, Φ(π) > Φ(π′).

Proof. The same argument works, except that now we consider five agents x, a, z, b, y seated
at positions i, . . . , i + 4. This is because agent z remains a common neighbor to a and b
when swapping places, and can, essentially, be ignored.

Therefore, since the potential is upper-bounded, we get that the swap dynamics have to
converge. One might now rightfully ask whether convergence is guaranteed to take polyno-
mial time. While we could neither prove nor disprove this, in Appendix C we give evidence
of why exponential time might be required. Moreover, note that for cycles convergence is
not guaranteed even for swaps at distance at most two; e.g., P5 in Figure 1a, where any two
agents are seated at most two seats away anyway. For paths, on the other hand, one could
hope that the result generalizes beyond distance at most two. However, this is not the case,
even when stable arrangements exist, as we show next.

Lemma 13. Consider the four-agent preference profile P4 in Figure 2a. A path stable
arrangement exists, yet swap dynamics started from certain arrangements cannot converge.
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Figure 2: Binary four-agent preferences P4 with path stable arrangement π∗ = (a, b, c, d) but
where the swap dynamics necessarily alternate between π1 = (a, d, b, c) and π2 = (c, d, b, a)
when started in either of them.

Note that this result generalizes to an arbitrary number of agents n ≥ 4 by adding n− 4
dummy agents to P4 liking nobody and being liked by nobody and seating them at positions
5, . . . , n on the path. Hence, non-convergence for distance ≤ 3 is not a small-n artifact.

7 Conclusions and Future Work
We studied envy-freeness and exchange-stability on paths and cycles. For both topologies,
we showed that finding envy-free/stable arrangements can be achieved in polynomial time
when the number of agent classes is bounded, while for envy-freeness the problem becomes
NP-hard without this restriction, even for binary preferences. For stability, it would be
interesting to see if such an NP-hardness result can still be proven; we believe this to be
the case, but were unable to do so. In part, this is because of the difficulty of constructing
unstable instances. As a step towards understanding such preferences, we proved that
instability may emerge from simple preferences with few different values and classes of
agents. In particular, the construction of binary preferences unstable on a cycle turned out
to be the trickiest. We are still unsure whether binary preferences unstable on a path exist.
We, however, partially answer this in the negative by showing that the swap dynamics are
guaranteed to converge if agents can only swap places with other agents seated close enough
to them. Without this assumption, convergence might not be ensured even when stable
arrangements exist, so a different approach would be required to prove existence. It would
also be interesting to know if unstable preferences are exceptions or the norm. We give a
probabilistic treatment of this question for random preference digraphs of average degree
O(
√
n) in the appendix. As an avenue for future research, it would be attractive to consider

other kinds of tables commonly used in practice, the most relevant being the one shaped as
a 2× n grid, with guests on either side facing each other.
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A Omitted Proofs
In this appendix, we provide the proofs omitted in the main text of the paper.

A.1 Proofs Omitted From Section 4
In this section, we prove Theorem 2, which we restate below for convenience.

Theorem 2. For binary preferences, deciding whether an envy-free arrangement on a path
exists is NP-hard.

Proof. We proceed similarly as for Theorem 1, this time reducing from Hamiltonian Path
on directed graphs. To make the reduction work, we require the additional stipulation that
the input graph G has a vertex with no outgoing edges, which we assume without loss of
generality to be vertex n. Note that this preserves NP-hardness. Moreover, we will now
only check that vertices v ∈ V \ {n} have outgoing edges. Otherwise, the construction
of preference profile P stays the same. To show that if G has a Hamiltonian path, then
there exists an envy-free arrangement on a path, the same argument as above can be used.
To show that an envy-free arrangement on a path implies the existence of a Hamiltonian
path, the argument stays similar to the previous one but requires some minor tweaks. In
particular, for agent zn, and only for them, it holds that they do not necessarily need a
second neighbor other than yn, because they like no other agents, so they will be happy
with a utility of 0, obtained by sitting at one of the ends of the path. The analysis for the
other agents stays the same, as they do require a second neighbor to get a utility of 1, and
hence cannot sit at the ends.

A.2 Proofs Omitted From Section 5
In this section, we prove Theorem 5, which we restate below for convenience.

Theorem 5. For k-class preferences, there are polynomial-time algorithms computing an
envy-free/stable arrangement on a cycle or reporting the nonexistence thereof.

Proof. The proof idea stays similar to that for paths, first designing a nondeterministic
logarithmic space algorithm deciding whether a compatible arrangement exists and then
lifting this to one running in deterministic polynomial time. Since cycles no longer have
endpoints, the definition of compatible arrangements needs adjusting. First, instead of
introducing a dummy agent class 0 and placing it at positions 0 and n+1 in s, we now make
s0 stand for sn, and sn+1 stand for s1; i.e., s0 = sn and sn+1 = s1. Moreover, arrangement s
is now called compatible if for all 1 ≤ i < j ≤ n the triplets (si−1, si, si+1) and (sj−1, sj , sj+1)
are short-range compatible when i and j are adjacent on the cycle, i.e., (j − i) ∈ {1, n− 1},
and long-range compatible otherwise. Note, therefore, that the pair (i, j) = (1, n) is the
only pair for which the required check differs from the path case: previously the check
was for long-range compatibility, while now it is for short-range compatibility. This time,
instead of beginning the algorithm by guessing the values of s1 and s2, we instead begin it
by guessing the values of s0, s1 and s2. The algorithm then proceeds as before. However,
when the value i = n is reached, naturally, no guessing takes place, as sn has already
been guessed, but all other computations execute as before. Moreover, when i = n + 1 is
reached, it is even trickier; not only do we not have to guess sn+1 = s1, but also the check
performed has to be altered. In particular, instead of checking whether (sn−1, sn, s1) is long-
range compatible with (sn, s1, s2), the check now has to be for short-range compatibility.
Checking for short-range compatibility can easily be incorporated, so it remains to show
how to ensure that the two triplets are not also tested for long-range compatibility like in



the previous implementation. This is done as follows: instead of temporarily decreasing the
values msi−3,si−2,si−1 and msi−2,si−1,si by one and then checking (si−2, si−1, si) against the
counts in m, we now do the same but also decrease msn,s1,s2 by one. We stress that these
rather tedious modifications are only applied for i = n + 1. The modified algorithm needs
to store s1 and s2 throughout its execution in addition to the state it already stored, but
this does not impact the logarithmic space bound, completing the proof.

A.3 Proofs Omitted From Section 6.1
In this section, we prove Theorem 7, which we restate below for convenience.

Theorem 7. Two-class preferences always induce a stable arrangement on a path.

Proof. The introduction of agents sitting at the two endpoints calls for a more careful
analysis:

• If one class, say Blue, likes everyone equally.

Then Blues either prefer to be on the edge or in the middle of the path (depending on
the sign of their constant preference). If they prefer edges, seating two Blues on the
edges makes the arrangement stable; otherwise, sitting all Blues in the middle ensures
stability.

Those two solutions are not available if and only if there is a single agent in one of the
two classes: in that case, ensuring that this agent gets maximal utility stabilizes the
whole arrangement.

• If Blues and Reds prefer the same class, say Blues.

The reasoning from the previous proof still holds, as long as no Blue sits at an ex-
tremity. This would happen if and only if there is a unique Red: ensuring maximum
utility for that one agent would then give stability.

• If Blues and Reds both strictly prefer the opposite kind, alternate Blues and Reds
starting from the most numerous class, say Blue. Suppose:

– Preferences for the opposite kind are positive for both. Whenever there is strictly
more of one class than the other, the reasoning from the previous proof still holds.
In case of equality, only the Blue and Red at both extremities could want to
swap: it is not the case, as they would exchange a “different colour” neighbor for
a “same colour” one.

– Preferences for the opposite kind are negative for both. Now at most two agents
have maximum utility: the Blue extremal one, and the Red extremal one if there
are as many Reds as Blues. If both have maximum utility, the others cannot
improve, and the arrangement is stable. The arrangement is still stable if there
are strictly more Blues than Reds, as the extremal Blues could only agree to
swap between two Reds. As only Blues are sitting between two Reds, this cannot
happen.

– Preference of Blues for Reds is negative, but Reds for Blues is positive. Then
non-extremal Blues would envy the extremal Red, which would envy them back if
and only if the preference of Reds towards Reds is strictly positive. In this latter
case, proceed to the exchange: Blues in the middle can only improve by switching
with an extremal Blue, which would never be accepted. This new arrangement
is therefore stable.



• If Blues and Reds both strictly prefer their own kind, sit all Blues on one side and all
Reds on the other. Let Bout be the extremal Blue, Bin be the only Blue with both
a Blue and a Red neighbor Rin , and let Rout be the extremal Red. As previously,
(Bin , Rin) is never a blocking pair. Suppose:

– Preferences for their own kind are positive for both. We verify that (Bin , Rout)
is not a blocking pair, as Bin would lose his only Blue neighbor. By symmetry,
the only remaining possible blocking pair is (Bout , Rout): it is also not a blocking
pair since both would only gain an “opposite colour” neighbor.

– Preferences for their own kind are negative for both. Both Bout and Rout have
maximum utility, hence Bout an Rout are not part of a blocking pair. Other
Blues except Bin can only improve their utility by moving to an extremity, i.e.,
by switching with Rout or Bout , both being impossible. The only remaining
possibility (Bin , Rin) is also not a blocking pair. Therefore, the arrangement is
stable.

– Preference of Blues for Blues is negative, but that of Reds for Reds is positive.
Note that all Reds but Rin and Rout have maximum utility, hence cannot be part
of a blocking pair. Moreover, since Bout has maximum utility, Rin could only
switch with Blues having at least one blue neighbor, so it cannot improve. If
Reds dislike Blues, Rout is also unable to improve, and the arrangement is stable.
On the contrary, suppose Reds strictly like Blues, and consider the arrangement
obtained after exchanging Rout and Bin : now both extremal Reds have the second
highest utility, and cannot improve since no Blue is sitting between two Reds, so
the arrangement is stable.

Hence, it is always possible to sit two classes in a stable manner on a path.

A.4 Proofs Omitted From Section 6.2
In this section, we prove Theorem 9, which we restate below for convenience.

Theorem 9. For n ≥ 4, there exist three-valued three-class preferences such that all ar-
rangements on a path are unstable. For n ≥ 12, this can be achieved with non-negative
values.

We will prove the two parts as separate lemmas, as follows. We begin with the simpler
construction, which uses negative preference values, but is otherwise essentially identical to
that used in the proof of Theorem 8.

Lemma 14. For n ≥ 4, there exist three-valued three-class preferences such that all ar-
rangements on a path are unstable.

Proof. We consider the same instance of preferences as in the proof of Theorem 8, with
minor modifications: now Bob’s friends strictly dislike Alice, and Alice strictly dislikes Bob
(strictly negative preferences). One can also make Bob strictly dislike everyone but Alice
to achieve three-valued preferences, it is however not necessary for instability. See Figure 3
for an instance of such preferences. The analysis from Theorem 8 still stands, so we only
need to study edge cases. Suppose Alice and Bob are sitting next to each other: since Alice
now dislikes Bob, she would rather sit anywhere else than next to Bob, even if it is at one
of the two extremities. Besides, even if Alice herself is at an extremity, there would always
be someone agreeing to exchange with her: Bob’s friend at the other extremity of the table
(not a neighbor of Bob since n ≥ 4). Now, suppose Alice and Bob are sitting apart. Bob
would still want to sit next to Alice, even if it means being at the extremity of the table.



P =


∗ −1 1 . . . 1
1 ∗ −1 . . . −1
−1 2 1 . . . 1
. . . . . . . . . . . . . . .
−1 2 1 . . . 1


Figure 3: Possible instance of preferences for the proof of Lemma 14, with the ordering
(Alice, Bob, Friends . . . ).

P =



0 0 0 0 1 . . . 1
1 0 0 0 0 . . . 0
1 0 0 0 0 . . . 0
1 0 0 0 0 . . . 0
0 3 3 3 1 . . . 1
. . . . . . . . . . . . . . . . . . . . .
0 3 3 3 1 . . . 1


Figure 4: Possible instance of preferences for the proof of Lemma 15, with the ordering
(Alice, 1st Bob, 2nd Bob, 3rd Bob, Friends . . . ).

Moreover, since his friends now dislike Alice, they would rather sit anywhere else than next
to her, even if this means sitting at one end of the table. Alice’s neighbor would therefore
always agree to swap seats with Bob.

To prove the version with non-negative preference values, the idea from the proof of
Theorem 8 can still be used, but this time more insight is required. Most notably, we will
make two copies of Bob. We explain the details below.

Lemma 15. For n ≥ 12, there exist three-class three-valued non-negative preferences such
that all arrangements on a path are unstable.

Proof. We consider the same instance of preferences as in the proof of Theorem 8, with the
following modifications: we make two copies of Bob, and we suppose there are at least eight
friends. Alice likes everyone but the Bobs, the Bobs only like Alice, the friends like the Bobs
the most and Alice the least. We furthermore suppose that friends would rather be next
to one Bob than between two other friends. Figure 4 displays a possible instance of such
preferences.

Suppose one of the Bobs is sitting next to Alice. Since there are at least eight different
friends, at least one of them is neither sitting beside a Bob nor at an extremity of the table.
Indeed, at most five friends are sitting next to Bobs (since Alice sits next to one of them),
and two more friends can be sitting at an extremity. Hence, Alice and this friend would
both agree to switch places since it is always worth it for a friend to move beside a Bob,
even if this means sitting at an extremity.

Now, suppose no Bob is sitting next to Alice. Since there are three Bobs, at least one of
them is not sitting at an extremity, say B1. The only case where one of Alice’s neighbors
would not agree to switch with B1 is if it was already sitting next to another Bob, say B2;
moreover, the only reason for him not to switch with B2 is if B2 is sitting at the extremity
of the table. Hence, the seating arrangement is of the form (B2, F, A, F, . . . , B1, . . .).
Alice is not sitting at an extremity, therefore possesses a second friend as a neighbor, and
that second friend would agree to swap with at least one of the two remaining Bobs.



A.5 Proofs Omitted From Section 6.3
In this section, we complete the proof of Theorem 10 (restated below for convenience) by
proving that the constructed preferences induce no arrangement stable on a cycle.

Theorem 10. For n ≥ 7, there exist binary preferences using four classes such that no
arrangement on a cycle is stable.

Proof (continued). We now show that all arrangements on a cycle are unstable for our
preference profile, by considering every possible local arrangement around c and showing
that they all induce a blocking pair.

• If the local arrangement around c consists of (b1, c, b2), then c has utility 0 and
would agree to swap with anyone having a neighbor in D. Since D contains strictly
more than two agents, one of the di neighbor of a has another member of D as a
neighbor. Performing a swap with c would increase its utility from 1 to 2, while c
would improve to utility 1: it is a blocking pair.

• If it consists of (b1, c, a), c has again utility 0 and would switch with whoever has a
neighbor in D. In particular, if the local arrangement is (b1, c, a, b2), then (b1, c) is
a blocking pair, as b1 second neighbor is in D. If it is (b2, b1, c, a), then (b2, c) is a
blocking pair, as b2’s second neighbor is in D. Otherwise, the local arrangement must
be (di, b1, c, a, dj), and (b2, c) forms once again a blocking pair. The same reasoning
naturally holds for local arrangements of the form (b2, c, a).

• If the local arrangement around c consists of (di, c, a), then at least one member
of B, say b1, is no neighbor of a and has utility 0. In that case, both di and b1 can
increase their utility by exchanging seats.

• At last, if it consists of (di, c, b1) or (di, c, dj), then agent a has utility 0, and di can
always increase its utility by switching with a. Indeed, if a was his neighbor, he would
exchange c for a member of D∪B while retaining a as a neighbor; otherwise he would
exchange c for a for a second neighbor in D∪B. Since moving close to c would always
increase a’s utility, (di, a) is a blocking pair. The same reasoning of course holds for
local arrangements of the form (di, c, b2).

A.6 Proofs Omitted From Section 6.3.1
In this section, we prove Lemma 13, which we restate below for convenience.

Lemma 13. Consider the four-agent preference profile P4 in Figure 2a. A path stable
arrangement exists, yet swap dynamics started from certain arrangements cannot converge.

Proof. Let π∗ be the arrangement (a, b, c, d). Since each agent approves of exactly one
other agent, they can never get utility strictly greater than one. Since only d does not
achieve utility one in π∗, it is stable. Moreover, consider arrangements π1 = (a, d, b, c)
and π2 = (c, d, b, a). The only blocking pair in π1 is (a, c) as both b and d have utility
one. Exchanging them leads to arrangement π2. Similarly, in π2, the only blocking pair is
(b, d). Exchanging them gives π1 back, up to reversal of the seat numbers. Hence, the swap
dynamics cannot converge. See Figure 2b for an illustration.
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Figure 5: Graphical proof of the instability of P5.

B Stability Analysis of Profile P5

In this appendix, we briefly analyze the stability of profile P5 from Figure 1a, which is the
only preference profile with n = 5 that is unstable on a cycle. Despite our best efforts, there
does not seem to be an easy explanation for the emergence of instability in this case.

Lemma 16. Binary preferences P5 induce no stable arrangements on a cycle.

Proof. Figure 5 provides a graphical proof of the instability of P5. Each of the twelve possible
cyclic arrangements is displayed and a blocking pair is shown in red. The outgoing edges of
the nodes participating in the blocking pairs are shown in blue for effortless verification.

C Evidence for Exponential Convergence
In this section, we revisit the potential function used to prove convergence of the swap
dynamics in Section 6.3.1. In essence, we show that each increase in potential might be very
small, leading to an exponential number of increases. Note, however, that we do not exhibit
preference instances where such exponential behavior can be observed. Moreover, we also
do not exclude the possibility that the function can be shown to increase enough with each
swap on average when the dynamics are carried out. What we show, instead, is that there
is an exponentially long chain of potential values such that between any two consecutive
values in the chain there are preferences for which the transition could occur by exchanging
a blocking pair.

Lemma 17. The potential argument alone cannot guarantee polynomial time convergence
of swap dynamics.

Proof. We first consider sequences of the auxiliary potential S(π) with values in {1, 2} and
study the effect of exchanges at distances one and two that keep the social welfare constant.
To simplify notations, we map S(π) ∈ {1, 2}n−1 to Sb(π) ∈ {0, 1}n−1 by subtracting one.



Performing an exchange at distance one while keeping the social welfare constant corre-
sponds to the following modification of a subsequence of Sb(π): 0x1→ 1x0, where x ∈ {0, 1}
(see Figure 6). Indeed, an exchange at distance one modifies the utility of at most four peo-
ple, hence modifies a subsequence of length at most three of the auxiliary potential, the
latter being defined not on vertices but edges; we call this operation f3.

f3 : 0x1→ 1x0

Similarly, we define the operation corresponding to exchanging at distance two that keeps
the social welfare constant: it maps the subsequence of Sb(π) of length four 0xy1 to 1yx0.
For the same reason as above, we call this operator f4.

f4 : 0xy1→ 1yx0

In the following, we denote by "Apply fi at position j" the application of fi on the
subsequence of indices [j, j + i].

Based on those two operators, we further define the operator f8 mapping the sequence
of length 8 (0, 0, 0, 0, 0, 0, 0, 1) to (1, 0, 0, 0, 0, 0, 0, 0). It consists of the following operations:

1. Apply f3 at position 6: (0, 0, 0, 0, 0, 0, 0, 1)→ (0, 0, 0, 0, 0, 1, 1, 0).

2. Apply f4 at position 3: (0, 0, 0, 0, 0, 1, 1, 0)→ (0, 0, 1, 1, 1, 0, 1, 0).

3. Apply f4 at position 2: (0, 0, 1, 1, 1, 0, 1, 0)→ (0, 1, 0, 0, 0, 0, 1, 0).

4. Apply f4 at position 4: (0, 1, 0, 0, 0, 0, 1, 0)→ (0, 1, 0, 1, 1, 1, 0, 0).

5. Apply f4 at position 3: (0, 1, 0, 1, 1, 1, 0, 0)→ (0, 1, 1, 0, 0, 0, 0, 0).

6. Apply f3 at position 1: (0, 1, 1, 0, 0, 0, 0, 0)→ (1, 0, 0, 0, 0, 0, 0, 0).

For k ≥ 3, we then recursively define the operators f3k−1 mapping the sequence of length
3k − 1 (0, . . . , 0, 1) to (1, 0, . . . , 0) through the following operations:

1. Apply f3 at position 3(k − 1): (0, . . . , 0, 1)→ (0, . . . , 0, 1, 1, 0).

2. Apply f3(k−1)−1 at position 2: (0, . . . , 0, 1, 1, 0)→ (0, 1, 0 . . . , 0, 1, 0).

3. Apply f3(k−1)−1 at position 3: (0, 1, 0 . . . , 0, 1, 0)→ (0, 1, 1, 0, . . . , 0).

4. Apply f3 at position 1: (0, 1, 1, 0, . . . , 0)→ (1, 0, . . . , 0).

Note that this definition of f3(k+1)−1 indeed ensures it acts on a subsequence of length
3k − 1 + 3. Moreover, it is correctly initialized since f8 is defined independently.

Noting that operator f3k−1 contains more than 2k−1 uses of f3 and f4 for all k ≥ 3
concludes the proof.

D Non-Monotonicity of Stability
In this section, we show that stability is non-monotonic, i.e., adding agents to a given
instance can both introduce or destroy stability. For instance, consider preferences P5 in
Figure 1a. On a cycle, all binary preferences with either four or six agents possess a stable
arrangement, implying that adding a fifth agent could destroy stability while adding a sixth
agent would restore it. We now show that this phenomenon can occur for all values n ≥ 7:
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Figure 6: Change of Sb(π) after an exchange at distance one preserving the social welfare.

Theorem 18. For all n ≥ 7, adding an agent can both destroy stability or restore it.

Proof. We first prove that for n ≥ 7 adding an agent can break stability. Consider the
preferences of size n+ 1 in Theorem 10: we show that removing one agent creates a stable
arrangement. Indeed, remove agent a and consider sitting c between b1 and b2: everyone
but c has maximum utility (since b1 and b2 love only one person, they cannot get utilities
higher than 1), hence c cannot exchange seats with anyone and the arrangement is stable.

We now prove that for n ≥ 7 adding an agent can create stability. Consider the prefer-
ences of size n in Theorem 10, and add one extra agent b3 ∈ B; i.e., which only likes a and
c and is only liked by the members of D. Consider placing b1, c, b2, a, b3 consecutively on
the cycle in this order: agent b2 and all members of D have utility 2, hence only b1, b3 or c
can be part of a blocking pair. However, b1 and b3 both have utility one and would therefore
only exchange for a seat with utility 2: there exists only one such seat, currently held by b2,
who has maximum utility and would hence not agree to swap places. As a result, neither
b1 nor b3 are part of a blocking pair, so the arrangement is stable.

E Blockwise-Diagonal Preferences
In this section, we show that, even when the preferences of the agents are, in a certain
sense, highly decomposable, knowledge about the stability of the subparts is unlikely to
help us to find stable arrangements for the instance as a whole. In essence, we show why
non-monotonicity can make reasoning about stability rather challenging, even in reasonably
simple cases. To make the previous statements precise, we introduce the concept of agent
components, as follows.

Definition 19. We say that a set of agents C ⊆ A is isolated if for all a ∈ C and b ∈ A\ C,
it holds that pa(b) = pa(b) = 0. Set C is called a component if none of its proper subsets are
isolated.

Note also that components and classes are two different notions: agents in the same
component may not have the exact same preferences, but instead are limited to only caring
about agents in their component. Assume that the set of agents A is partitioned into
components A = C1 ∪ . . . ∪ Ck (this partition always exists and is unique).1 The preference
matrix can then be represented, after a potential reordering of the agents, as a blockwise-
diagonal matrix. When the partition into components is non-trivial; i.e., k > 1; intuitively,
finding an arrangement that is stable for such preferences should be easier than for general

1This is because the components correspond to the connected components of the undirected graph with
vertex set A and edges (a, b) for any two distinct agents such that either ua(b) 6= 0 or ub(a) 6= 0.



ones: first, find a stable arrangement on a path for each component, and then join all those
paths to obtain a stable arrangement on a cycle (or on a path). While this method is indeed
guaranteed to produce a stable arrangement whenever each component admits a path stable
arrangement (at least for non-negative preference values), we will actually show that there
are many instances where a stable arrangement exists but can not be produced by this
approach. Before showing this, we need a technical lemma for cycles, stated next.

Lemma 20. Let π be an arrangement where each agent sits between two agents from dif-
ferent components. If for any two distinct components Ci and Cj there is at most one pair
of agents (a, b) ∈ Ci × Cj such that a and b are neighbors in π, then π is stable on a cycle.

Proof. First, notice that in such an arrangement all agents get utility zero. Let a 6= b be
two agents. We want to show that they do not form a blocking pair. Assume i, j ∈ [k] are
such that a ∈ Ci and b ∈ Cj . If i = j, then by assumption a would also have utility zero
when seating in b’s seat, so (a, b) is not a blocking pair. Now, assume i 6= j. Let a` and ar
denote the two neighbors of a on π; we define b` and br similarly. Suppose a and b wanted
to switch place: this means a would have strictly positive utility at b’s seat, and b would
have strictly positive utility at a’s seat. Assuming a and b are not neighbors, this means
that {a`, ar} ∩ Cj 6= ∅ and {b`, br} ∩ Ci 6= ∅. Let a′ and b′ be such that a′ ∈ {a`, ar} ∩ Cj
and b′ ∈ {b`, br} ∩ Ci. Since (a, a′) and (b′, b) are both in Ci × Cj and are distinct pairs of
adjacent agents in π, this contradicts the hypothesis. Furthermore, if a and b are neighbors,
then b envying a implies that a’s second neighbor is also in Cj , from which the pairs of
agents formed by a and its neighbors similarly contradict the hypothesis. Therefore, the
arrangement is stable.

Armed as such, we now show that any preference profile inducing no stable arrangements
on a path can be used to construct preferences whose components all resemble this profile
and yet the joint profile admits an arrangement that is stable on a cycle. In other words,
even when a profile decomposes non-trivially into components, knowledge about the stability
of the components does not necessarily help in resolving the stability of the instance as a
whole.

Theorem 21. Let Ppath ∈ {0, 1}`×` be a one-component preference profile such that no sta-
ble arrangement on a path exists. Then, there exists a preference profile P whose components
all resemble Ppath admitting a stable arrangement on a cycle.

Proof. We construct a larger blockwise-diagonal preference matrix P ∈ {0, 1}k×k by copying
Ppath a number k = 2`+ 1 of times:

P =


P(1)
path 0

P(2)
path

. . .

0 P(k)
path


Note that P(1)

path , . . . ,P
(k)
path naturally gives a partition into components C1, . . . , Ck; more-

over, the choice of Ppath immediately gives that all C1, . . . , Ck are unstable on paths.
We now construct a cycle stable arrangement for P. Since k is odd, graph Kk, which is

the undirected clique graph of size k, possesses an Euler tour T where each vertex is visited
` times. We construct the arrangement π (more precisely π−1) on the cycle by replacing
every occurrence of i in T by an agent ai ∈ Ci, without repetition, starting for example from
seat one. For the π we have just constructed, it then holds that the conditions to apply
Lemma 20 are satisfied since the Euler Tour traverses each edge in Kk precisely once. By
the lemma, π is a cycle stable arrangement of P.



F Stability of Random Binary Preferences
In this chapter, we conduct a study of stability using probabilistic tools. In particular, we
employ the Lovász Local Lemma:

Lemma 22 (Lovász Local Lemma). Let A1, A2, . . . , Ak be a sequence of events such that
each event occurs with probability at most p and is independent of all but at most d other
events. If epd < 1, then the probability that none of the events occurs P

(
∩ki=1Ai

)
is greater

than or equal to
(

1− 1
d+1

)k
.

We now give a lower bound on the expected number of arrangements stable on a cycle
when the preference graph is sampled from the Erdős-Rényi model G(n, p) with average
node degree either O(

√
n) or n−O(

√
n).

Theorem 23. Suppose a binary preference graph P is drawn at random using the Erdős-
Rényi model G(n, p) with p ≤ Cn−1/2, where C = (96e)−1/2.
Then, the expected number of stable arrangements on a cycle is at least:

1

2
(n− 1)! exp

(
−n(n− 1)

2n− 3

)
.

The same results holds for p ≥ 1− Cn−1/2.

Proof. Let S =
∑
π Sπ be the random variable counting the stable arrangements on a cycle

for preference P, where Sπ = 1 if arrangement π is stable and 0 otherwise. Since all
permutations of P follow the same distribution, all Sπ have the same expectation and we
only need to consider the identity arrangement π = id .
For i, j ∈ [n], event Lij corresponds to the i

th
agent liking the j

th
one, event Eij to the i

th

agent envying the j
th

one, and event Bij to agents (i, j) forming a blocking pair. Finally,
let the random variable Ui denote the utility of the i

th
agent. First, note that events Eij

and Ekl are independent for all i 6= k; from which Pr(Eij) = Pr(Eji). We therefore get:

Pr(Bij) = Pr(Eij ∩ Eji)
= Pr(Eij)Pr(Eji)

= Pr(Eij)
2

(1)

By symmetry, we only have to calculate (Pr(E1j))2≤j≤n.
If j ∈ {2, 3}:

Pr(E1j) = Pr
(
E1j | L1n

)
Pr
(
L1n

)
= p(1− p)

If j ∈ {n− 1, n}:
Pr(E1j) = Pr

(
E1j | L12

)
Pr
(
L12

)
= p(1− p)

If 3 < j < n− 1:

Pr(E1j) = Pr (E1j | U1 = 0)Pr(U1 = 0) + Pr (E1j | U1 = 1)Pr(U1 = 1)

= (2p(1− p) + p2)(1− p)2 + p22p(1− p)

Together with Equation (1), we subsequently get that:

Pr(Bij) =

{
p2(1− p)2 if |i− j| ≤ 2(
2p3(1− p) + 2p(1− p)3 + p2(1− p)2

)2 otherwise.
(2)



Now, consider the family of events (Bij)1≤i<j≤n. Note that each even Bij is independent of
events Bkl where {i, j}∩ {k, l} = ∅, but dependent of events with which it shares an index,
so Bij depends on at most d = 2(n− 2) other events. Therefore, when Pr(Bij) < 1

2e(n−2) ,
Lemma 22 gives:

E[Sπ] = Pr(Sπ = 1) ≥
(

1− 1

2n− 3

)n(n−1)
2

≥ exp

(
−n(n− 1)

2n− 3

) (3)

By linearity of expectation, we finally get:

E[S] ≥ 1

2
(n− 1)! exp

(
−n(n− 1)

2n− 3

)
(4)

It is only left to verify that Pr(Bij) ≤ 1
2e(n−2) . Note that Bij has at most six terms all

strictly smaller than 8p2. Hence, for p ≤ 1√
96en

≤ 1√
96e(n− 2)

, we have:

Pr(Bij) < 6× 8p2

≤ 48

96e(n− 2)
=

1

2e(n− 2)

Comparison with 6× 8(1− p)2 instead gives the result for p ≥ 1− 1√
96en

.

In practice, our result implies that, for random preferences of average out-degree at
most O(

√
n), a naive approach sampling arrangements uniformly at random on average

determines a stable arrangement using exponentially fewer samples than the theoretically
required (n− 1)!/2.

G Z3 Solver for Binary Preferences
In this section, we describe the Z3 Solver2 employed in Section 6.3 to check whether all
binary preferences for n ≤ 7 are stable on paths and cycles. We only describe the case of
cycles, as for paths it is enough to add one additional agent with null preferences from and
toward all other agents.

Listing 1 shows the main body of the solver. In line 8, we introduce a function associating
the boolean “i likes j” to each pair (i, j). In line 14, we define an array of n integers encoding
the index of the agent placed in each seat; lines 17 to 24 constrain this array to be a
permutation representing one of the (n− 1)!/2 cycles. In lines 15, 16, and 26 we implement
the main constraint: all arrangements on a cycle must induce a blocking pair.

Note that all simultaneous permutations of rows and columns of a solution are themselves
solutions, as this corresponds to relabeling the agents. Therefore, it is desirable for efficiency
to implement some kind of symmetry breaking. We do this in Listing 2 by requiring that
the agents are sorted by the number of agents they approve of, breaking ties by the number
of agents that approve them.

Finally, Listing 3 shows how to check whether agent-pair (i, j) is a blocking. Note that
adjacent and non-adjacent seats require different treatments, and so lead to different logical
expressions.

2https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3


Finally, note that Z3 returns either “Unsatisfiable” when no solutions exist, or “Satis-
fiable” and one solution otherwise. Finding all possible solutions is therefore rather te-
dious: after finding a solution, to get another one, we need to add a constraint that “the
preferences are not these ones.” This detail is omitted for brevity.

1 from z3 import *
2

3 N = 7
4

5 def UnstableCounterExample():
6 s = Solver()
7 # Pref(i, j): bool("Agent i likes agent j").
8 Pref = Function('Pref', IntSort(), IntSort(), BoolSort())
9 # Constrains Pref(i, i) = False.

10 s.add([Not(Pref(i, i)) for i in range(N)])
11 # Symmetry breaking on Pref.
12 s.add(SymBreakSumRowCol(Pref))
13 # Seat i is taken by agent Arr[i].
14 Arr = [Int(f"Arr_{i}") for i in range(N)]
15 s.add(ForAll(
16 Arr, Implies(
17 # Seat 0 is taken by agent 0.
18 And(Arr[0] == 0,
19 # Arr is a permutation.
20 And([Arr[i] > 0 for i in range(1, N)]),
21 And([Arr[i] < N for i in range(1, N)]),
22 Distinct([Arr[i] for i in range(N)]),
23 # Symmetry breaking on Arr.
24 Arr[1] < Arr[N - 1]),
25 # Agents at seats (i, j) form a blocking pair.
26 Or([isBlockingPair(Pref, Arr, i, j) for i in range(1, N) for j in range(i)]))))
27 SolveAndPrint(s)
28

29 def SolveAndPrint(s):
30 print("Solving", s)
31 val = s.check()
32 if val == sat:
33 print("Satisfiable", s.model())
34 elif val == unsat:
35 print("Unsatisfiable")
36 else:
37 print("Unknown")
38

39 UnstableCounterExample()

Listing 1: Main body of the solver.



1 def SymBreakSumRowCol(pref):
2 """Returns True iff rows of pref have increasing sums, and in case of
3 equality, the sums on the corresponding columns are increasing."""
4 sums_row = [Sum([pref(i, j) for j in range(N)]) for i in range(N)]
5 sums_col = [Sum([pref(i, j) for i in range(N)]) for j in range(N)]
6 # First order on the sums of the rows.
7 sum_row_ord = And([sums_row[i] <= sums_row[i + 1] for i in range(N - 1)])
8 # Then order on the sums of the columns.
9 sum_col_ord = And([Implies(sums_row[i] == sums_row[i + 1], sums_col[i] <= sums_col[i])

10 for i in range(N - 1)])
11 return And(sum_row_ord, sum_col_ord)

Listing 2: Symmetry breaking of preferences.

1 def isBlockingPair(pref, arr, i, j):
2 """Returns True if agents at seats i and j form a blocking pair.
3 We suppose 0 <= j < i <= N - 1."""
4 if j == i - 1: # Seats i and j adjacent.
5 blockpair = And(Not(pref(arr[i], arr[(i + 1) % N])), pref(arr[i], arr[(j - 1 + N) % N]),
6 # Agent at seat i envies agent at seat j.
7 Not(pref(arr[j], arr[(j - 1 + N) % N])), pref(arr[j], arr[(i + 1) % N]))
8 # Agent at seat j envies agent at seat i.
9 return blockpair

10 if j == 0 and i == N - 1: # Seats i and j adjacent.
11 blockpair = And(Not(pref(arr[i], arr[(i - 1 + N) % N])), pref(arr[i], arr[(j + 1) % N]),
12 # Agent at seat i envies agent at seat j.
13 Not(pref(arr[j], arr[(j + 1) % N])), pref(arr[j], arr[(i - 1 + N) % N]))
14 # Agent at seat j envies agent at seat i.
15 return blockpair
16 else: # Seats i and j non adjacent.
17 blockpair = And(Sum(pref(arr[i], arr[(i - 1 + N) % N]), pref(arr[i], arr[(i + 1) % N]))
18 < Sum(pref(arr[i], arr[(j - 1 + N) % N]), pref(arr[i], arr[(j + 1) % N])),
19 # Agent at seat i envies agent at seat j.
20 Sum(pref(arr[j], arr[(j - 1 + N) % N]), pref(arr[j], arr[(j + 1) % N]))
21 < Sum(pref(arr[j], arr[(i - 1 + N) % N]), pref(arr[j], arr[(i + 1) % N])))
22 # Agent at seat j envies agent at seat i.
23 return blockpair

Listing 3: Testing for a blocking pair.
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