
Heuristics for Opinion Diffusion via Local

Elections
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Abstract

Most research on influence maximization considers a simple diffusion model, in which
binary information is being diffused (i.e., vertices – corresponding to agents – are
either active or passive). Here we consider a more involved model of opinion diffusion:
In our model, each vertex in the network has either approval-based or ordinal-based
initial opinions and we consider diffusion processes in which each vertex is influenced
by its neighborhood following a local election, according to certain “local” voting
rules. We are interested in externally changing the preferences of certain vertices (i.e.,
campaigning) in order to influence the resulting election, whose winner is decided
according to some “global” voting rule, operating after the diffusion converges. As
the corresponding combinatorial problem is computationally intractable in general,
and as we wish to incorporate probabilistic diffusion processes, we consider classic
heuristics adapted to our setting: A greedy heuristic and a local search heuristic.
We study their properties for plurality elections, approval elections, and ordinal
elections, and evaluate their quality experimentally.
The bottom line of our experiments is that the Greedy and Simulated Annealing
heuristics we propose perform reasonably well on both the real world and synthetic
instances. Moreover, examining our results in detail also shows how the different
parameters (ballot type, bribery type, graph structure, number of voters and can-
didates, etc.) influence the run time and quality of solutions. This knowledge can
guide further research and applications.

1 Introduction
Social networks are ubiquitous in our lives and, as such, they have extensive influence on the public opinion
in our society (see, e.g., [9]). In this paper we model a scenario in which an external agent wishes to change
the public opinion; say, to have its preferred candidate win in an upcoming election (one such classical
example is the 2016 US presidential elections [1]).

The situation we set out to study is complex as it consists of an interplay between several factors – a
social network, opinions, an external agent, and the public opinion. As a result, our high level modeling
contains the following ingredients:

A Social Network. There is a social network where each node initially possesses their own opinion. We
model this naturally as a labeled graph, in which each node corresponds to a voter and is labeled by her
opinion, and edges correspond to mutual influence of voters. Of course, there are many ways to formalize
human opinions; as we are interested in a setting in which there is an upcoming election to be held, we
model opinions as ballots. Importantly, we consider several ballot types, in particular, plurality ballots,
approval ballots, and ordinal ballots.

A Bribing Agent. There is an external agent that can influence some voters and cause them to change
their opinions. We model this through the well-established line of work considering campaigning or bribery
in elections (see, e.g., [12, 11, 14]).

A Diffusion Process. There is a process by which information propagates through the network, so that
some voters may further change their opinions as they are influenced by their neighbors. We model this
through a probabilistic diffusion process in which, repeatedly, voters look at the opinions of their neighbors
and may change their own opinion as a result (intuitively, if the opinions of their neighbors are significantly
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different than their own opinion). Such processes are studied quite extensively (see, e.g., [18, 22]), however
our modeling is different from some existing work and generalizes others: Technically, we introduce the
concept of a local voting rule that builds upon the neighboring opinions of a voter and returns a score for
each alternative, and use it to define a probability distribution for the altered opinion of the voter.

A Voting Rule. There is a mechanism that takes the eventual opinions of the voters and declares a
winner of the election. Such mechanisms are usually referred to as voting rules, and are a fundamental
structure studied in computational social choice [2, 10].

1.1 Our Contributions
Our first, conceptual contribution is our general model, that is able to capture the diffusion of complex
opinions; we then realize our model with plurality ballots, approval ballots, and ordinal ballots. Moreover,
as we use local voting rules in a stochastic way, our modeling is inherently stochastic; indeed, introducing
further probabilistic diffusion processes to more complex kinds of opinions is a main motivation of our work.

We then take the point of view of the bribing agent and ask whether such an agent can efficiently find a
bribery scheme that would maximize the chances of its preferred alternative winning the eventual election
and maximize its winning gap. Not surprisingly, the corresponding combinatorial problem is computation-
ally intractable in general. Thus, we describe several heuristic methods and evaluate their effectiveness
experimentally. Technically, we consider both standard heuristic approaches (in particular, Simulated An-
nealing) and heuristics that proved to be effective for related tasks of opinion diffusion (in particular, greedy
heuristics for Influence Maximization [20]).

1.2 Related Work
Our work fits naturally within the growing literature on opinion diffusion in social choice [17]. In particular,
a recent paper [15] considers a similar setting that, while allowing some islands of computational tractability,
differs in that the diffusion process is deterministic. Another paper [6] considers bribery and opinion diffusion
for ordinal ballots, however their diffusion process is significantly different than ours and, in our opinion,
somewhat problematic. This is because in their diffusion process, only the preferred candidate potentially
moves up, but this means that the process depends on the point of view of the briber, while we hold that
any definition of diffusion in the context of campaigning or bribery needs to be oblivious to the bribing
agent(s). Other related works are the paper of Bredereck and Elkind [3] who consider a particular setting
and approach it from a theoretical point of view. Wilder and Vorobeychik [24] consider a diffusion process
related to the Linear Cascade model while we take an approach that is more in line with the Threshold
Voter model.

More generally, our work relates to the study on Influence Maximization [20] (and hence, also to Target
Set Selection [4]. These works usually deal with similar situations as we do, albeit in which the opinions are
rather simple, usually binary. For this setting, there is a greedy heuristic [20] that was later improved [21, 5],
which our greedy heuristics builds upon.

2 Formal Model
We describe the ingredients of our setting.

2.1 Opinion Graphs
We have a simple undirected graph G = (V,E), where each vertex corresponds to a voter. The vertices of
G are labeled by the ballot, such that the label of v ∈ V corresponds to the vote of the agent v.

In the elections we consider there is always an underlying set of alternatives A. We consider several
types of elections corresponding to the ballots a voter casts: plurality, approval, and ordinal. We identify a
voter with their ballot, thus: In plurality elections, each voter v ∈ V is some v ∈ A; in approval elections,
each voter v ∈ V is some v ⊆ A; and in ordinal elections, each voter v ∈ V is some v ∈ L(A), where
L(A) is the set of linear orders over A. (I.e., formally, V is a multisubset of A, 2A and L(A), for plurality,
approval, and ordinal ballots, respectively.) Then, v is the label of the vertex corresponding to voter v,
and such labeled graph is referred to as an opinion graph. Open neighborhood of a vertex v is defined as
N(v) = {u | vu ∈ E}. Similarly, closed neighborhood of a vertex v is defined as N [v] = N(v) ∪ {v}.

2.2 Bribery
We are interested in the problem of campaigning (also studied under the name bribery [11]) in our setting.
Thus, we assume an external agent (i.e., the briber), who has a given budget, and can perform certain
bribery operations on the voters, where a bribery operation operating on a certain voter v ∈ V causes v



to change her vote.2 We consider several bribery settings, differing by the cost of each possible bribery
operation:

� In simple bribery [13], the briber pays one coin to change the vote of a voter v to any vote the briber
wishes.

� In approval bribery [23], which is relevant only for approval elections, the briber pays one coin for
adding an alternative to the approval set of a vote v or removing an alternative from the approval
set of a vote v.

� In swap bribery [8], which is relevant for ordinal elections, the briber pays one coin for a single swap of
two consecutive alternatives in the vote of a voter v. We focus on a restricted variant, shift bribery [7],
in which the briber is only allowed to move the preferred candidate, and to only move them up.

In our setting we have an initial society graph, modeling the society before the briber bribes; then, the
society might change following the bribery operations of the briber, into a society after the bribery.

Remark 1. Technically we speak of bribery but conceptually our work relates to campaigning. One differ-
ence between the two is that in bribery one expects the bribed voter to stay loyal, but in campaigning, one
attempts to influence the voter more indirectly and thus does not expect loyalty. Our model still allows for
this definition of bribery by setting a high stubbornness parameter, defined below. That way, a bribed voter
remains loyal, but also influences their peers.

2.3 Diffusion Processes via Local Elections
We are interested in the propagation of opinions after the bribery happens. Specifically, we focus on
synchronous diffusion, where in each step of the diffusion all voters might change their labels simultaneously.
An asynchronous diffusion process, where in each step of the diffusion only one voter might change her label,
can be defined analogously. The specific way by which voters might change their labels is governed by two
parameters: A local voting rule RL, and a stubbornness parameter α ≥ 0.

The local elections voting rule RL is a function that takes a certain collection of votes and returns a
score for each alternative a ∈ A. It is used as follows: In each step of the diffusion, each vertex v ∈ V
applies RL on a collection of votes obtained by taking the votes of all their neighbors, plus α-times their
own vote v. We refer to the set of votes obtained by taking the open neighborhood of v, plus α · d(v) copies
of v’s vote, as the local election. In particular, if α = 0, then the local election of v consists of her open
neighborhood (i.e., her opinion is disregarded); if α = 1, then the local election consists precisely of the
closed neighborhood; and if α = 5, then the local election consists of all neighbors of v plus 5 copies of v.

The scores reported by the local rule RL are used to define the probability distribution according to
which v changes her opinion. The definitions are specific to the different voting rules, and are given below.

Remark 2. The fact that the diffusion process is defined by the local election is a major extension of the
existing models. Indeed, a main motivation for our work was to enrich existing models of opinion diffusion
in social networks and push them closer to reality by considering various probabilistic processes.

2.3.1 A Diffusion Process for Plurality Elections

Here we use RL that returns the plurality score of each alternative. Then, we swap the voter’s label to an
alternative a with probability which is the score of a in the local election, divided by the number of votes
in the local election.

Example 1. Consider a voter v with open neighborhood {u1, u2}. Assume that v votes for (i.e., is labeled
with) alternative c while u1 and u2 vote for alternative d. If α = 0, then in the next timestep of a
synchoronous diffusion process, v would surely change her vote to d. In contrast, if α = 1 then v would
change her vote to d with probability 2/3, and with probability 1/3 would still vote for c.

2.3.2 A Diffusion Process for Approval elections

Here RL is a function that returns the approval score of each alternative. Then, for each alternative a /∈ v
(i.e., not currently approved by v), a is added to v with probability that equals the relative approval score of
a (the relative approval score of an alternative is the fraction of voters approving the alternative); similarly,
for each alternative a ∈ v (i.e., currently approved by v), we remove a from v with probability that is one
minus the relative approval score of a.

Example 2. Consider again a voter v with open neighborhood {u1, u2}. Assume v votes for {a, b} while
u1 and u2 each votes for {b, c}. If α = 1, then v would: definitely keep on approving b; with probability 2/3
would also approve c; and with probability 2/3 would cease approving a.

2For simplicity, we assume bribery operations always succeed. A relaxation of this assumption is left for
future work.



2.3.3 A Diffusion Process for Ordinal Elections

For ease of presentation, we describe our diffusion process for the case where RL is the Borda rule; the
description can be generalized to any ordinal voting rule that assigns scores to candidates (importantly, this
includes also rules such as Copeland and STV, which can be defined as such).

We proceed as follows: Denote by c1, . . . , cm the candidates ordered by decreasing Borda scores in the
local election centered at v; refer to this ordering as the Borda-order (in particular, the first candidate in
the Borda-order is the Borda winner). The process is iterative, where in iteration i we consider ci and do
as follows: We look at position j of ci in the ranking of v. Denote the ranking of v as a1, . . . , am; so, in
particular, aj = ci as ci is the jth candidate in v’s ranking. If j = 1 (i.e., if ci is ranked first by v), then
the iteration is complete. Otherwise, look at the Borda scores of aj and of aj−1 (i.e., the candidate ranked

by v just above ci), and denote by B(c) the Borda score of a candidate c. Now, define x =
B(aj)

B(aj−1)
, with

probability x
x+ 1

x

, swap aj and aj−1 (i.e., shift ci one position up in v’s ranking; otherwise (i.e., with the

complement probability), the iteration is complete.
So, intuitively, we go over the candidates in decreasing Borda scores and we bubble-up each candidate

with probability related to the Borda score of the candidate and the Borda score of the candidates in front
of it in v’s ranking. See full example in appendix A.

2.4 Election Results via Global Voting Rules
Intuitively, we wish to study the society after the bribery and after the diffusion process halts. However, as
the diffusion process is probabilistic and is not guaranteed to halt, let us consider the expected society at
infinity. Let the Markov chain of our process be a directed graph in which the starting node is the society
after bribery, and each node corresponds to a possible society reached during the diffusion process; we have
an arc from a node to another node with probability p if p is the probability of transitioning from one node
to the other. Then, imagining an infinite random walk in this network, we wish to study the distribution
of probabilities of where we end up, over all nodes. In particular, the resulting election is a probability
distribution over the set of votes (i.e., labels) at infinity (wrt. the diffusion steps). In the simple case in
which there is one absorbing node (i.e., a node with no outgoing edges), it means that the diffusion would
halt on a specific society. Finally, a global voting rule RG takes the society and returns a single alternative
as the winner.

We consider a society stable from the perspective of our problem if the winner of the election is unlikely
to change. We ran a sample of simulations for a large number of diffusion steps to determine a number
k of steps after which the likelihood of a change of winner becomes reasonably small. Our finding is that
after 20 diffusion steps, the proportion of instances in which the winner changes is at most 0.2%, and the
trend is clearly decreasing. For figure illustrating see full version [16]. Because modeling a diffusion step
is computationally expensive, we will assume from now on that, with respect to who wins the election, the
society is close enough to the state of the Markov chain at infinity after 20 steps.

2.5 Optimization Goals
In general, we would like to understand the effect of different bribery actions on the resulting winner. Since
the process is stochastic, we define two measures of success:

Definition 1 (PoW). Given a society after bribery and diffusion, the PoW (Probability of Winning) is the
probability mass on the Markov chain nodes in which p wins.

Definition 2 (MoV). Given a society after bribery and diffusion, the MoV (Margin of Victory) is the
expected MoV of p, defined for a specific society as follows: If p wins, then the MoV is the difference
between the score of p and the score of the runner-up (so, in particular, positive); if p loses, then the MoV
is the difference between the score of p and the score of the winner (so, in particular, negative).

To conclude, a specific model is characterized by:

1. A ballot type – Plurality, Approval, or Ordinal;

2. A bribery type – Simple bribery, Approval bribery, or Swap bribery;

3. A local voting rule RL – Plurality, Approval, or Borda/Copeland;

4. A stubbornness parameter α;

5. A global voting rule RG – Plurality, Approval, or Borda/Copeland;

For such models, we consider two computational problems, corresponding to optimizing either the PoW or
the MoV. The input for both problems – referred to as Optimal-PoW and Optimal-MoV, respectively –
contains an opinion graph G , preferred winner p and a budget of b coins; Optimal-PoW or Optimal-MoV
asks for finding a bribery scheme costing at most b that maximizes the PoW or MoV for p, respectively.



3 Computing Optimal Bribery Schemes
Not surprisingly, the problems we set out to solve are NP-hard. In fact, even if there is no graph at all, our
problems are intractable in general, since they reduce to bribery in elections [11] when there is no graph,
and it is known, e.g., that bribery is hard for approval elections [12, Theorem 4.2]. Our setting is drastically
more involved as we also consider a graph and a stochastic diffusion process operating on it.

3.1 Heuristic Methods
As our problems are generally intractable, our aim is to evaluate the possibility of efficiently solving them
by heuristic methods. We report on computational simulations performed on their implementations. In
particular, we use two heuristic algorithms. While there are indeed many other possibilities of heuristic
algorithms one might consider, here we concentrate on two classic methods that proved to be useful in the
setting of influence maximization (see below). Note that, interestingly, the heuristics we consider are, in a
sense, oblivious to the specifics of the diffusion process considered; that is, their specific operation does not
depend on the specifics of the problem we consider (e.g., the ballot type and other problem parameters).

Greedy. Our first heuristic approach is an adaptation of an algorithm considered for Influence Max-
imization [20] that works as follows: We iterate for b times where in each iteration we bribe the vertex
that, if bribed, would increase the probability of p winning after the diffusion. Notice that computing the
probability of p winning after the diffusion is a non-trivial sub-problem. In our simulations we handle this
issue as follows: We perform 50 independent runs of the diffusion process using Monte Carlo, where in
each run we perform 20 diffusion steps. Then we use the average over the 50 runs as an estimation of this
probability.

Simulated Annealing. Our second heuristic approach is a local search algorithm that is an adaptation
of an algorithm considered for Influence Maximization [19] that works as follows: With budget b, we start
by selecting b vertices and bribe them, each by one coin (e.g., for plurality elections this corresponds to
selecting an initial solution uniformly at random). Then, we estimate the probability of p winning after
the diffusion, again using 50 iterations of Monte Carlo. Then, in each iteration of local improvement, we
select one of the currently-bribed voters and one of her neighbors, and instead of bribing her, we bribe the
neighbor. If this small change to the current solution increases the probability of p winning (as estimated by
our Monte Carlo repetitions), then we keep this local improvement; otherwise, with increasing probability,
we reject it and consider a different local improvement.

4 Simulations
We implemented the heuristics described above and evaluated them in various settings. The main goal of
the simulations was to understand the possibility of computing optimal briberies in practice and to better
identify the problem parameters that make finding optimal bribery schemes hard. Below we describe our
experimental design for plurality elections, approval elections, and ordinal elections.

4.1 Experimental Design
First, let us describe our input graphs. We use both synthetic and real world data.

Synthetic graphs. We use the following models:

� G(n, p) – We generate input graphs from G(n, p), as follows: For a given number n of vertices and a
value 0 ≤ p ≤ 1, we first create n independent vertices. Then, for each pair of vertices, independently
and uniformly at random, we flip a coin and with probability p put an edge between them. After we
generate the G(n, p) graph as just described, we assign labels to its vertices; we do so uniformly at
random (thus, effectively, the resulting election behaves according to the Impartial Culture model).

� k-k-clusters – We create k subgraphs, each a G(n/k, p1) graph with some p1. Then, for each pair
of vertices u, v which are from different subgraphs, we put an edge with probability p2 < p1, in-
dependently and uniformly at random. This model creates the graph together with the labels as
follows:

– For plurality elections – The label of the vertices in the jth subgraph (j ∈ [k]) is j.

– For approval elections – Make k random ballots and label them with b1, . . . , bk. Denote bj the
cluster Vj ’s “base ballot”. Set 0 < α < 1. Label each vertex Vj with an α-pertubation of bj ,
where α-pertubation of a ballot b is defined as follows. Take each candidate approved in ballot b
and make it a not-approval with probability α, and take each candidate not approved in ballot
b and make it an approval with probability α.



– For ordinal elections – Make k random ballots and label them with b1, . . . , bk. Donate bj the
cluster Vj ’s ”base ballot” Just like in approval elections. Set 0 < α < 1. Label each vertex Vj
with an α-pertubation of bj . α-pertubation of a ballot b = b1, b2, . . . defined as follows. Begin
with a blank ranking r (this is the ballot we are creating). For i from 1 to m: insert bi into r
at position j ≤ i with probability αi−j/(1 + α+ . . .+ αi−1).

Intuitively, while the G(n, p) model creates uniform graphs, the k-k-clusters model creates random
graphs that aim at mimicking communities.

Real-world Graphs. We use graphs from the email-Eu-core network3, referred to below as real-world
network graph. Vertices in this graph correspond to real people, and there is a directed edge from one vertex
to another if the person corresponding to the head of the directed edge sent at least one email to the person
corresponding to the tail of the directed edge.

4.1.1 Metrics.

We evaluate the heuristic algorithms described above by estimating the PoW and the MoV (see Definitions 1
and 2). To estimate PoW (MoV) we perform 50 Monte Carlo iterations to estimate the probability that p
wins (the expected margin of victory of p) after the bribery operations performed by the heuristic algorithm
and after 20 iterations of the diffusion process (recall 2.4 and the discussion above of why 20 iterations are
a reasonable proxy to the stable state). Recall that the higher the PoW (MoV) the better. Furthermore,
we report on the running times of our heuristics.

4.1.2 Model settings

summary of the various inputs for the model, as mentioned above, with the parameter settings:

� Voting rule – Plurality, Approval, Borda or Copeland.

� Graph type – G(n, p), 5-k-clusters or Real-world Graphs.

� Budget – Supposedly, each coin can bribe a single node, there are b coins to use for bribery. We
experimented with amounts between 5 and 50.

� Number of candidates – The number of candidates that are running for election is also expressed as
m. We experimented with leaps of 5 between range of 5 to 50.

� Number of voters – The number of voters, also expressed as n. For G(n, p) and 5-k-clusters we
experimented with leaps of 100 between range of 100 to 1500 and also 1005, the values are fixed on
1005 nodes for Real-world Graphs.

4.2 Results
Our main results are threefold:

� When plurality election is used in the diffusion process and MoV is optimized at the cost of a
slower run time, then Simulated Annealing performs the best.

� When approval election is used in the diffusion process and the available budget is relatively high
then again Simulated Annealing performs the best with regards to all studied objectives, namely, it
achieves higher PoW, higher MoV, and shorter run time than Greedy.

� When ordinal election is used in the diffusion process then Greedy and Simulated Annealing perform
about the same though Greedy takes longer time to run. A significant factor in the run time is the
choice of an ordinal rule, since computations for Borda are easier than computations for Copeland
and indeed runs with Copeland as the ordinal rule tend to last ten times longer than runs with Borda
as the ordinal rule. However, for Copeland, significantly higher MoV in the real world network graph
and slightly higher PoW in both synthetic and real world network graphs is achieved.

More specifically, we compare the Greedy heuristic method performance with that of Simulated Anneal-
ing on the different optimization goal and the different diffusion processes (see full version [16] for additional
details).

� In plurality and approval elections, the Simulated Annealing heuristic achieve better MoV and PoW
than the Greedy heuristic as the budget increases, in particular with real world graph (See Figure 2).
For ordinal elections, however, we were mostly unable to find a correlation.

� The impact of the number of candidates and voters on the Greedy and Simulated Annealing
heuristics is not significant.

3http://snap.stanford.edu/data/email-Eu-core.html
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� With high budgets, the Simulated Annealing heuristic performs better in terms of the PoW run
time, because it finds the maximum point quickly.

� The greedy heuristic performs and scales better in terms of the MoV run time. The Simulated
Annealing heuristic took longer to execute in most cases, and there was not always a clear correlation
(see Figure 2).

Several more in-depth observations of the impact of the various parameters in our analysis are:

1. We found that the PoW and the MoV performance of both the Greedy and the Simulated Annealing
heuristics are positively correlated with the budget increase. This makes intuitive sense: the more
money, the better the outcome. This observation is true for the diffusion processes of plurality,
approval, and Borda in the real world graph (slightly) and Copeland in G(n, p) and the real world
graph. However we could not find correlation for Borda in G(n, p) and the 5-clusters graphs and
Copeland in 5-clusters graph. We can see that even with a small number of candidates, there is a
correlation to the budget; however, as the number of candidates grows, the budget becomes irrelevant.
The intuitive reason is the implementations of the ordinal bribe and diffusion operations; the bribe
increases the candidate’s rank by one place only, while the diffusion favors high-ranking candidates,
so the diffusion process may often change the ranking back down (see full version [16] for additional
details). While the Greedy heuristic run time is also positively correlated with the budget increase
with respect to the diffusion processes, the Simulated Annealing heuristic’s run time is not correlated
with the budget increase with respect to the plurality, approval, and ordinal diffusion processes. The
intuitive reason is that, while the Greedy heuristic performs more iterations as the budget increases,
Simulated Annealing operates by local improvement, irrespective of the budget.

2. We find that the Simulated Annealing heuristic takes less time to run than the Greedy heuristic
for PoW, especially with high budgets with a large number of candidates and voters in any type of
election. However, the MoV Simulated Annealing heuristic performs slower than the Greedy heuristic
when used with a plurality or approval diffusion process. This is true for execution with the ordinal
diffusion process only when budgets are relatively small.

3. The MoV performance of the Simulated Annealing heuristic is higher than that of the Greedy heuristic
when measured as a function of the number of voters in terms of plurality and approval diffusion
processes. In terms of the ordinal diffusion process, however, the Simulated Annealing heuristic’s
MoV performance is similar to that of Greedy.

4. The MoV performance of Simulated Annealing is similar to that of Greedy as a function of the number
of candidates in terms of plurality, approval, and ordinal diffusion processes.

5. We found negative correlation between the number of voters and PoW performance for both heuristics
with respect to all three diffusion processes. One exception to the above is no correlation between
the number of voters and PoW performance using the Greedy heuristic for Copeland G(n, p) and
5-clusters graphs.

The full details of our observations and graphs comparison are summarized in appendix B including
Tables 1. Due to space limitation some of the plots supporting our findings are omitted.

5 Outlook
We proposed a general model for diffusion of opinions in social networks and considered heuristics that
optimize over bribery schemes for several realizations of the model. Our model is general enough to incorpo-
rate various diffusion processes, including different ballot types and quite complex stochastic elements. We
performed simulations to evaluate the performance of heuristic solutions that solve the task at hand; while
our task is theoretically computationally intractable, our simulations are quite encouraging, in the sense
that they reach good results in reasonable time. We also highlighted several parameter factors affecting the
quality of the heuristics. We briefly discuss some avenues for future research.

5.0.1 Improved Heuristics

A natural future direction is to design better heuristic solutions, in particular such that are oblivious to the
specific type of diffusion; E.g., local search heuristics with better initial solutions, other greedy approaches,
as well as methods based on general solvers would be natural to try.

5.0.2 Other Settings

While we considered plurality, approval, and ordinal elections, it is natural to also consider utility-based
elections and elections with cumulative ballots. Furthermore, there are other natural ways to treat the
diffusion of complex opinions, most notably ordinal opinions. Fitting real-world data to various modeling
choices would be an interesting future direction.
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A Diffusion Process for Ordinal Elections - Example
Example 3. Consider voter v with open neighborhood {u1, u2}. Assume v has stubbornness α = 1 and
she votes for (x, y, z) while u1 votes for (y, z, x) and u2 votes for (z, y, x). Then the Borda score4 would
give x = 5, y = 7 and z = 6 and v’s local Borda election will result with c = (y, z, x). The first iteration

over c would then be: i = 1, ci = y, j = 2. With probability
7
5

7
5
+ 1

7
5

= 0.66 candidate y will be bubbled up

resulting with v voting for (y, x, z). If the first iteration resulted in v voting for (y, x, z), then the second

iteration over c would be: i = 2, ci = z, j = 3. With probability
6
5

6
5
+ 1

6
5

= 0.59 candidate z will be bubbled up

resulting with v voting for (y, z, x). If the second iteration resulted in v voting for (y, z, x), then the third

iteration over c would be: i = 3, ci = x, j = 3. With probability
5
6

5
6
+ 1

5
6

= 0.4 candidate x will be bubbled up,

and with probability 0.6 v’s vote will not change from the last iteration and will remain (y, z, x). With the
highest probability after all three iterations v’s vote is identical to c’s result, i.e., the Borda local election.

Now consider Copeland as RL and v, u1, u2 vote in the same way above. According to Copeland
tournament y beats x, z beats x, and y beats z, and so y has two outgoing arcs and z has one outgoing arc.
In order to avoid division by zero, we normalize the scores by adding 1. Then the Copeland score would give
x = 1, y = 3, and z = 2, and the Copeland v’s local election will result with c = (y, z, x). The first iteration

over c would be then: i = 1, ci = y, j = 2. With probability
3
1

3
1
+ 1

3
1

= 0.9 candidate y will be bubbled up

resulting with v voting for (y, x, z). Then the second iteration over c would be: i = 2, ci = z, j = 3. With

probability
2
1

2
1
+ 1

2
1

= 0.8 candidate z will be bubbled up resulting with v voting for (y, z, x). Then, finally,

the third iteration over c would be: i = 3, ci = x, j = 3. With probability
1
2

1
2
+ 1

1
2

= 0.2 candidate x will be

bubbled up, and with probability 0.8 v’s vote will not change from the last iteration and will remain (y, z, x).

B Performance summary
Results comparing the various graph types are shown in Figure 2. The main insight is that, for plurality
elections, the Simulated Annealing heuristic outperforms the Greedy heuristic in terms of MoV and PoW
in the different types of graphs, but at a significantly higher time cost.

For graph comparisons with our observations see full version [16].

4To avoid division by zero, we define the Borda score of a candidate ranked as jth to be |A| − j + 1
instead of |A| − j, although the latter is more common. These definitions are mathematically equivalent.
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Figure 1: A summary of the performance of the Greedy and Simulated Annealing heuristics
with respect to each other in the different scenarios of plurality and approval (top) ordinal
Borda and Copeland (bottom) diffusion processes, optimization goal, and input parameters.
Correlation calculated based on Pearson correlation coefficient.



Figure 2: Results for comparing the Greedy and SA heuristics in plurality elections on 3
different graphs and labels. The leftmost (middle, rightmost) shows the results for PoW
(respectively, MoV, running time) as a function of the budget b; The green (blue, purple)
represents the real-world network graph, i.e., email-Eu-core network (respectively, G(n, p),
and k-clusters graph where k=5 (named in the plot 5-connected).
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