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Abstract

A tournament on n agents is a complete oriented graph with the agents as vertices
and edges that describe the win-loss outcomes of the

(
n
2

)
matches played between

each pair of agents. The winner of a tournament is determined by a tournament
rule that maps tournaments to probability distributions over the agents. We want
these rules to be fair (i.e., choose a high-quality agent) and robust to strategic
manipulation. Prior work has shown that under minimally fair rules, manipulations
between two agents can be prevented when utility is nontransferable but not when
utility is completely transferable. We introduce a partially transferable utility model
that interpolates between these two extremes using an selfishness parameter λ. Our
model is that an agent may be willing to lose on purpose, sacrificing some of her own
chance of winning, but only if the colluding pair’s joint gain is more than λ times
the individual’s sacrifice.

We prove that no fair tournament rule can prevent manipulations when λ < 1.
We computationally solve for fair and manipulation-resistant tournament rules for
λ = 1 for up to 6 agents. We conjecture and leave as a major open problem that
such a tournament rule exists for all n. We analyze the trade-offs between relative
and absolute approximate strategyproofness for all rules previously studied in related
settings and derive as a corollary that all of these rules require λ = Ω(n) to be robust
to manipulation. We show that for stronger notions of fairness, non-manipulable
tournament rules are closely related to tournament rules that witness decreasing
gains from manipulation as the number of agents increases.

1 Introduction

A tournament on n agents is a complete oriented graph in which the agents are vertices and
an edge from agent i to agent j means “agent i defeats agent j”. These structures frequently
arise in sports as the outcome of

(
n
2

)
pairwise matches between n agents or teams. However,

tournaments can arise whenever the performance of every two agents is comparable (e.g.,
agents are candidates in an election and edges are pairwise majority votes).

A tournament rule maps a tournament to a probability distribution over the agents.
These probabilities encode the likelihood that each agent is declared the tournament winner,
or prescribe how to divide up a monetary reward [7]. While a tournament rule should be
fair in that it chooses some qualified agent who beats many other agents, it also should not
reward manipulations: for example, losing a match on purpose should not improve an agent’s
or their co-conspirator’s chances of winning the tournament. If the rule is manipulable,
then agents may act in ways that undermine the primary goal of choosing a highly qualified
winner. In fact, instances of these actions are not unheard of in sports. At the London 2012
Olympic Games, four women’s doubles teams were disqualified for attempting to throw their
final matches in the round-robin group stage in order to earn a more favorable seed in the
knockout stage of the tournament.

1Authors listed in alphabetical order.



Unfortunately, prior work has shown that fairness and non-manipulability are largely
incompatible. A prevailing notion of fairness studied by prior work [1, 2, 6, 9, 10] is Con-
dorcet consistency. A tournament rule is Condorcet consistent if, whenever one agent beats
all other agents, the undefeated agent wins the tournament with certainty.

Altman et al. [2] showed that any deterministic rule that satisfies this notion is susceptible
to pairwise manipulations. In other words, for any Condorcet-consistent rule, there exist
tournaments in which two agents can influence the choice of winner by colluding to reverse
the outcome of their match.

Altman and Kleinberg [1] extended this work to randomized rules that map tournaments
to probability distributions over agents. They showed that there exist Condorcet consis-
tent and pairwise non-manipulable rules when two agents collude only if one of them can
strictly improve her probability of winning at no cost to the other. Rules that are pairwise
non-manipulable under this assumption are said to be 2-Pareto non-manipulable (2-PNM).
However, no Condorcet consistent rule exists when utility is completely transferable—that
is, when two agents only care about the probability that at least one of them wins the
tournament. Instead, Altman and Kleinberg [1] demonstrated rules that are approximately
Condorcet consistent and pairwise non-manipulable in this setting, which the authors term
2-strongly non-manipulable (2-SNM). Another line of work [6, 9, 10] sought rules that were
fair and approximately 2-SNM.

Motivated by the fact that collusion and the deliberate throwing of matches in sports
occur less frequently than the negative results of prior work imply, we extend prior work
to the setting in which utility is partially transferable. These settings are natural: agents
value their own probability of winning and their collusion partner’s probability of winning in
some ratio. Agents are not completely altruistic to their partner (fully transferable utility)
nor completely selfish (non-transferable utility). Agents care about winning themselves and
will only sacrifice their own probability if it achieves a significant proportional gain for their
partner. We extend prior notions of non-manipulability by introducing a term that accounts
for the range of selfishness of agents. More specifically, we say a rule is 2-NMλ if no agent
can collude with another to improve her probability of winning by at least a λ+ 1 factor of
the decrease in probability witnessed by her collusion partner. In other words, in a model
where an agent won’t sacrifice herself unless her partner gains at least λ+1 times the amount
she loses, no pairwise collusion would occur under a 2-NMλ rule.

We show that this model connects the notions of Pareto and strong non-manipulability
by varying λ. Moreover, we conjecture that there exists a tournament rule that is monotone,
Condorcet consistent, and 2-NM1, implying that it is possible to prevent deliberate loss and
collusion, as long as each agent weighs her own probability of winning twice as much as
her opponents’. However, we show that none of the rules proposed in five previous papers
[1, 3, 6, 9, 10] satisfy this combination of conditions by demonstrating how these rules trade-
off between λ, our notion of relative approximate strategyproofness, and the established
notion of absolute approximate strategyproofness [9].

In a separate direction, we introduce another notion of fairness, termed dominant sub-
tournament consistency (DSTC), and show that several natural rules satisfy this condition.
Intuitively, a rule is DSTC if the addition of an agent that loses to the original agents does
not affect their probabilities. A closely related notion is top cycle consistency (TCC), which
requires the winner to come from the top cycle with certainty. We show that within these
notions of fairness, the problem of finding a rule that is 2-NMλ reduces to the problem of
finding a rule that witnesses gains from manipulation that vanishes as the number of agents
increases.



1.1 Related Work

For a broad discussion of recent developments on tournaments in computational social
choice, see Suksompong’s excellent survey [11]. We discuss work closely related to ours.

Altman and Kleinberg [1] and Altman, Procaccia, and Tennenholtz [2] were the first
to consider the question of strategic manipulations of tournaments by agents. Their main
conclusion is that Condorcet consistency and strong non-manipulability are directly at odds:
no tournament rule, even randomized ones, can satisfy both properties. Later, Schneider,
Schvartzman, and Weinberg [9] considered a relaxation of the problem: they sought tourna-
ment rules that are Condorcet consistent and are minimally manipulable. Their main result
is that the Randomized Single Bracket Elimination (RSEB) rule is 2-SNM-1/3, meaning
that the most probability that any pair can gain is 1/3, and this is optimal among all
Condorcet-consistent rules. This result was later strengthened to show that the Random-
ized King of the Hill (RKotH) rule is also 2-SNM-1/3 and cover consistent, a notion strictly
stronger than Condorcet consistent [10]. Recent discoveries include a rule that is 3-SNM-
31/60, meaning that the most probability that any coalition of three agents can gain is
31/60, the first explicit rule that is 3-SNM-α for α < 1 [5], and a different rule that is
3-SNM-1/2 [8]. Parallel lines of work have considered variations on this problem, including
probabilistic tournaments [6] and tournaments with prize vectors for multiple places rather
than only one prize for the winner [4].

2 Preliminaries

Definition 2.1 (Tournament). A tournament is a pair T = (A,≻T ) where A is a finite set
of agents and ≻T is a collection of ordered pairs of agents such that T constitutes a complete
oriented graph with vertices in A and edges in ≻T . Intuitively, T describes the outcomes
of the

(|A|
2

)
matches played between each pair of distinct agents. We write i ≻T j and say

that i defeats j in T if (i, j) ∈ ≻T . Let Tn denote the set of tournaments where [n] is the
set of agents.

Definition 2.2 (Tournament rule). A tournament rule on n agents r(n) : Tn → ∆n maps a
tournament to a probability distribution over the agents. A tournament rule r is a family
of tournament rules on n agents {r(n)}∞n=1. For T ∈ Tn, let r(T ) := r(n)(T ) and for i ∈ [n],
let ri(T ) := P [r(T ) = i] denote the probability that i wins T under r.

2.1 Fairness Properties

A desirable tournament rule should choose the most qualified agent as the winner of a
tournament. In line with this reasoning, we want a tournament rule to choose an undefeated
agent with probability 1 since this agent is clearly better than the rest of her opponents.

Definition 2.3 (Condorcet consistency). A tournament rule r is Condorcet consistent (CC)
if for all n ∈ N and T ∈ Tn, ri(T ) = 1 whenever there exists i ∈ [n] such that i ≻T j for all
j ∈ [n] \ {i}.

Note that Condorcet consistency is quite a minimal notion of fairness since it is binding
only when there is an agent that is clearly superior than the others. Unfortunately, it is
often the case that no such agent exists. The following notions of fairness seek to restrict
the subset of agents that should be named the winner in such cases by eliminating those
who are in some sense clearly worse than her opponents.

Definition 2.4 (Dominant sub-tournament). For S ⊆ [n] and a tournament T ∈ Tn, the
sub-tournament T [S] is the subgraph induced by S. T [S] is a dominant sub-tournament if
i ≻T j for all i ∈ S, j ∈ [n] \ S.



Definition 2.5 (Top cycle consistency). Given a tournament T , the top cycle TC(T ) is
the minimal dominant sub-tournament of T . The top cycle of a tournament always exists
and is unique. A tournament rule r is top cycle consistent (TCC) if ri(T ) = 0 for all n ∈ N,
T ∈ Tn, and i ∈ [n] \ TC(T ).

Top cycle consistency extends Condorcet consistency quite naturally: Condorcet consis-
tency requires that an undefeated agent be declared the winner, while top cycle consistency
requires this winner to come from the smallest undefeated subset. Moreover, since the agents
in the top cycle are undefeated by those outside of the top cycle, they are in some sense
better. On the other hand, no agent in the top cycle is clearly superior than the others since
every agent in the top cycle is defeated by another in the top cycle.

Definition 2.6 (Cover consistency). For i, j ∈ [n], we say i covers j if (1) i ≻T j and (2)
j ≻T k =⇒ i ≻T k for all k ∈ [n] \ {i, j}. Moreover, we say j is covered if there exists i
such that i covers j. A tournament rule r is cover consistent (CovC) if for all n ∈ N and
T ∈ Tn, rj(T ) = 0 whenever j is covered.

Cover consistency refines top cycle consistency by further restricting the set of potential
winners. If i covers j, then not only did i defeat j, but i also defeated everyone that j
defeated. Thus, covered agents are worse than the agents that cover them in some sense.

Definition 2.7 (Dominant sub-tournament consistency). A tournament rule r is dominant
sub-tournament consistent (DSTC) if ri(T [S]) = ri(T ) for all n ∈ N, T ∈ Tn, S ⊆ [n] such
that T [S] is a dominant sub-tournament of T , and i ∈ S.

Dominant sub-tournament consistency strengthens top cycle consistency in a different
direction than cover consistency. Rather than narrow down the set of potential winners,
dominant sub-tournament consistency requires that the probability of choosing a certain
member of the top cycle as the winner is the same as the probability of choosing her if
the agents outside the top cycle were removed. To the best of our knowledge, dominant
sub-tournament consistency has not been considered before in the tournament literature.

The following result formalizes the hierarchy of fairness conditions.

Proposition 2.8 (Fairness hierarchy). Any tournament rule that satisfies either cover con-
sistency or dominant sub-tournament consistency also satisfies top cycle consistency. More-
over, any top cycle consistent tournament rule is also Condorcet consistent.

Proof. Let T ∈ Tn and let r be a cover consistent tournament rule. Let j ̸∈ TC(T ) and
consider any i ∈ TC(T ). We show that i covers j. Since i ∈ TC(T ) and j ̸∈ TC(T ), i ≻T j.
Moreover, since j ̸∈ TC(T ), for all k ∈ [n] such that j ≻T k, k ̸∈ TC(T ). Thus, for all
such k, since i ∈ TC(T ) and k ̸∈ TC(T ), i ≻T k, so i covers j. Since r is cover consistent,
rj(T ) = 0. Our choice of j ̸∈ TC(T ) was arbitrary, so rj(T ) = 0 for all j ̸∈ TC(T ) and r is
top cycle consistent.

If r is dominant sub-tournament consistent, then since TC(T ) is the smallest dominant
sub-tournament of T , ri(T ) = 0 for all i ̸∈ TC(T ). Thus, r is top cycle consistent.

Now, let r be top cycle consistent. Note that whenever some agent i is undefeated in T ,
TC(T ) = {i}. Certainly, i dominates every j ∈ [n]\{i} and no proper subset of {i} satisfies
this property. Thus, ri(T ) = 1 and r is Condorcet consistent.

2.2 Non-Manipulability Properties

In addition to satisfying some notion of fairness, tournament rules should be robust to
manipulation. In this work, we consider manipulations where a single agent purposefully
loses her match against one of her opponents and manipulations where two agents collude
to reverse the outcome of their match.



Definition 2.9 (S-adjacent). Given S ⊆ [n], tournaments T, T ′ ∈ Tn are S-adjacent if
i ≻T j ⇐⇒ i ≻T ′ j for i ̸= j ∈ [n] \ S. In other words, T and T ′ are S-adjacent if they
coincide on every match except possibly those between agents in S.

When utilities are nontransferable, two agents are willing to collude only if one of them
can strictly improve her probability of winning at no cost to the other. Formally, distinct
agents i, j ∈ [n] collude from T to T ′ only if max{ri(T ′) − ri(T ), rj(T

′) − rj(T )} > 0
and min{ri(T ′) − ri(T ), rj(T

′) − rj(T )} ≥ 0. Thus, to incentivize agents against such
manipulations, a tournament rule must satisfy the following notion of non-manipulability.

Definition 2.10 (Pareto non-manipulability). A tournament rule r is 2-Pareto non-
manipulable (2-PNM) if for all i ̸= j ∈ [n] and {i, j}-adjacent T, T ′ ∈ Tn, either (1)
min{ri(T ′)− ri(T ), rj(T

′)− rj(T )} < 0 or (2) max{ri(T ′)− ri(T ), rj(T
′)− rj(T )} ≤ 0.

Altman and Kleinberg [1] give rules that are monotone, top cycle consistent, and 2-
PNM. The barrier to pairwise manipulation is much lower when utilities are completely
transferable since two agents only care about the probability that at least one of them wins
the tournament. In other words, i and j collude from T to T ′ only if ri(T

′) + rj(T
′) >

ri(T ) + rj(T ). Under this utility model, an agent may be willing to sacrifice and shift a
significant portion of her probability to her partner in crime. Thus, tournament rules must
satisfy a stronger notion of non-manipulability in this setting.

Definition 2.11 (Strong non-manipulability). A tournament rule r is 2-strongly non-
manipulable (2-SNM) if ri(T

′)+rj(T
′) ≤ ri(T )+rj(T ) for all i ̸= j ∈ [n] and {i, j}-adjacent

T, T ′ ∈ Tn.

Prior work has shown that no Condorcet consistent tournament rule is 2-SNM. However,
despite this strong impossibility result, instances of collusion are relatively infrequent in
the real world, suggesting that settings in which utilities are completely transferable are
uncommon. On the other hand, instances of collusion are not unheard of, suggesting that
utility is neither always nontransferable.

In this paper, we consider a third utility model in which utilities are partially transferable:
distinct agents i and j collude from T to T ′ only if ri(T

′) + rj(T
′) > ri(T ) + rj(T ) +

λmax{ri(T ) − ri(T
′), rj(T ) − rj(T

′)}. One interpretation of this condition is that agents
would rather win the tournament themselves but are still willing to collude if the gain in
probability is significantly larger than each agent’s loss. Here, λ is a parameter that measures
how transferable utility is, with smaller λ corresponding to greater transferability. We will
later see how λ can be interpreted as agents’ level of selfishness. We now define a notion of
non-manipulability for this model.

Definition 2.12 (Non-manipulability for λ). A tournament rule r is 2-non-manipulable for
λ ≥ 0 (2-NMλ) if ri(T

′)+ rj(T
′) ≤ ri(T )+ rj(T )+λmax{ri(T )− ri(T

′), rj(T )− rj(T
′)} for

all i ̸= j ∈ [n] and {i, j}-adjacent T, T ′ ∈ Tn. We say r is 2-NM∞ if it is 2-NMλ as λ → ∞.

When λ = 0, our notion of non-manipulability coincides with strong non-manipulability.
We show that our notion coincides with Pareto non-manipulability when λ = +∞. Thus,
our notion of non-manipulability generalizes strong and Pareto non-manipulability while
connecting the two.

Proposition 2.13. A tournament rule is 2-PNM if and only if it is 2-NM∞.

As in previous work [9, 10], we are interested in approximately non-manipulable tourna-
ment rules; that is, rules under which no two agents can collude to gain in joint probability
more than α more than each agent’s loss (weighted by λ).



Definition 2.14 (2-non-manipulability up to α for λ). A tournament rule r is 2-non-
manipulable up to α for λ ≥ 0 (2-NMλ-α) if ri(T

′)+rj(T
′) ≤ ri(T )+rj(T )+λmax{ri(T )−

ri(T
′), rj(T )− rj(T

′)}+ α for all i ̸= j ∈ [n] and {i, j}-adjacent T, T ′ ∈ Tn.

In addition to being robust against pairwise manipulations, a tournament rule should
be robust to the intentional throwing of matches.

Definition 2.15 (Monotonicity). A tournament rule is monotone if ri(T ) ≥ ri(T
′) for all

i ̸= j ∈ [n] and {i, j}-adjacent tournaments T ̸= T ′ ∈ Tn such that i ≻T j.

Intuitively, monotonicity says that no agent should be able to improve her chances of
winning by deliberately losing one of her matches. Thus, agents have an incentive to win
each of their matches under monotone rules. Violations of this property should be seen as
quite severe.

Proposition 2.16. Let r be a 2-NMλ tournament rule for some λ > 0, then the following
two statements are equivalent.

1. r is monotone

2. For all i ̸= j ∈ [n] and {i, j}-adjacent T ̸= T ′ ∈ Tn such that i ≺T j, ri(T
′)− ri(T ) ≤

(λ+ 1)(rj(T )− rj(T
′))

Proposition 2.16 offers a natural interpretation of the parameter λ and the 2-NMλ prop-
erty for monotone tournament rules: λ is how much each agent weighs her own probability
of winning over her opponents’ and a tournament rule is 2-NMλ if switching the outcome
of a match does not increase the probability of winning for the new winner by more than a
λ + 1 factor the loss of the new loser. Note that Proposition 2.16 does not hold for λ = 0.
Indeed, monotonicity and 2-SNM are independent properties: neither implies the other.

3 Trade-off Between α and λ: Lower Bounds

3.1 A Universal Lower Bound

Theorem 3.1. No Condorcet consistent tournament rule is 2-NMλ-α for λ < 1− 3α.

Schneider et al. [9] showed a similar result that said no Condorcet consistent tournament
rule is 2-NM0-α for α < 1/3. The same lower bound construction yields Theorem 3.1. We
prove the theorem for monotone rules, but with the ideas presented here and some additional
casework, one can extend the result to non-monotone rules.

Proof. Suppose tournament rule r is CC and 2-NMλ-α, and consider any tournament T
on [n] in which 1 dominates 2, 2 dominates 3, and 3 in turn dominates 1. Note that any
two agents among {1, 2, 3} can collude so that one of them becomes undefeated. Since r is
monotone, Condorcet consistent, and 2-NMλ-α,

1− r2(T ) ≤ (λ+ 1)r1(T ) + α

1− r3(T ) ≤ (λ+ 1)r2(T ) + α

1− r1(T ) ≤ (λ+ 1)r3(T ) + α

Adding these three inequalities together and isolating λ yields

3(1−α)
r1(T )+r2(T )+r3(T ) − 2 ≤ λ

Since r1(T ) + r2(T ) + r3(T ) ≤ 1, this inequality imply that λ ≥ 1− 3α.



Figure 1: All non-isomorphic tournaments on 4 agents. The following conditions are nec-
essary and sufficient for a tournament rule on 4 agents r to be Condorcet-consistent and
2-NM1. In T1 and T2, r chooses 1 as the winner with probability 1. In T3, r chooses the
winner uniformly at random among 1, 2, and 4. In T4, r chooses the winner according
to a distribution that is a convex combination of
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Corollary 3.2. No Condorcet consistent tournament rule is 2-NMλ for λ < 1.

In fact, we believe this lower bound is tight. That is, we believe that there exists a
monotone and Condorcet consistent tournament rule that is 2-NM1. Thus, pairwise collusion
can be prevented without sacrificing fairness as long as agents prefer not to collude if their
sacrifice in probability is greater than the joint gain. Figure 1 shows such a rule for 4 agents.
Expressing and computationally solving the problem as a feasibility linear program show
that such rules exist for tournaments of up to 6 agents. Unfortunately, as the number of
tournaments on n agents grows exponentially with n, it became computationally difficult to
check whether such rules exist for tournaments of larger size.

Conjecture 3.3. There exists a monotone, Condorcet consistent, 2-NM1 tournament rule.

3.2 Lower Bounds For Specific Tournament Rules

We now consider several tournament rules, analyze their fairness properties, and examine
their trade-off between α and λ. Table 1 provides a summary of our findings. For rules that
have been previously analyzed in related settings, we cite the relevant references and list
what was known about them prior to this work (to the best of our knowledge). Interestingly,
the following tournament (and its variants) identified by Schneider et al. [9] is responsible
for all our trade-off lower bounds, suggesting that it is especially problematic.

Definition 3.4 (Superman-kryptonite tournament). The superman-kryptonite tournament
on [n] has i ≻ j whenever i < j except n ≻ 1. In other words, agent 1, the superman, defeats
all agents but agent n, the kryptonite, and agent n loses to all agents except agent 1.

Iterative Condorcet Rule [1]

The Iterative Condorcet Rule (ICR) chooses the undefeated agent if one exists. Otherwise,
eliminate an agent uniformly at random and repeat. Equivalently, ICR chooses an ordering
of the agents uniformly at random and eliminates agents in order until an agent undefeated
by the remaining agents exists.

Theorem 3.5. ICR is monotone, dominant sub-tournament consistent, and 2-PNM. ICR
is not cover consistent. If ICR satisfies 2-NMλ-α for some λ ≥ 0, then λ ≥ ( 12 − α)Ω(n2).



Table 1: Performance summary
Rule Monotone? Fairness 2-NMλ-α 2-NMλ-f(n)

ICR [1] Yes [1] DSTC λ ≥
(
1
2 − α

)
Ω(n2) f(n) ≥ 1/2

RVC [1] Yes [1] DSTC λ ≥
(
1
2 − α

)
Ω(n) f(n) ≥ 1/2

TCR [1] Yes [1] DSTC λ ≥ (1− α)Ω(n) f(n) ≥ 1
RSEB [9] Yes [9] TCC α ≥ 1/n f(n) ≥ ε(λ) > 0
RKotH [10] Yes [10] CovC [10], DSTC α ≥ 1/10 f(n) ≥ 1/10
RDM [6] Yes DSTC λ ≥

(
1− nα

2

)
Ω(n) f(n) ≥ λ−1

λ(2λ+1)

PR [3] ? DSTC α ≥ 1/13 f(n) ≥ 1/13
PRSL [3] ? DSTC λ ≥ (1− α)Ω(n) f(n) ≥ 1

Proof. [1] proved that the Iterative Condorcet Rule is monotone, top cycle consistent, and
2-PNM. ICR is DSTC because inserting a dummy agent who loses to the existing agents into
an ordering does not change the winner, so each agent wins the same proportion of orderings
they did before. ICR is not CovC since 2 covers 3 in the superman-kryptonite tournament
on {1, 2, 3, 4} (see T4 in Figure 1) yet 3 wins if the chosen permutation is (2, 1, 4, 3).

Let T denote the superman-kryptonite tournament on [n]. Under ICR, the superman
wins if and only if the kryptonite is chosen before her in the first n− 2 rounds, so r1(T ) =
1
2

(
1− 2

n(n−1)

)
= 1

2 −
1

n(n−1) . Meanwhile, the kryptonite wins if and only if neither her nor

the superman are chosen in the first n− 2 rounds, so rn(T ) =
2

n(n−1) . Thus, if ICR satisfies

2-NMλ-α, then λ ≥ 1−r1(T )−α
rn(T ) − 1 =

(
1
4 − α

2

)
n(n− 1)− 1/2.

Randomized Voting Caterpillar [1]

The Randomized Voting Caterpillar rule (RVC) begins by choosing an ordering of the agents
uniformly at random. In the first iteration, RVC eliminates the loser between the first and
second agents in the ordering. In each subsequent iteration until only one agent remains,
RVC eliminates the loser between the previous winner and the next agent in the ordering.

Theorem 3.6. RVC is monotone, dominant sub-tournament consistent, and 2-PNM. RVC
is not cover consistent. If RVC satisfies 2-NMλ-α for some λ ≥ 0, then λ ≥ ( 12 − α)Ω(n).

Proof. [1] proved that RVC is monotone, top cycle consistent, and 2-PNM. RVC is DSTC
but not CovC for the same reason as ICR. Now, let T denote the superman-kryptonite
tournament on [n]. Under RVC, the superman wins if and only if she comes after the
kryptonite in the chosen permutation and they are not the first two agents. Thus, r1(T ) =
1
2 − 1

n(n−1) . The kryptonite on the other hand wins if and only if she comes last in the

chosen permutation, so rn(T ) = 1/n. Thus, λ ≥ 1−r1(T )−α
rn(T ) − 1 =

(
1
2 − α

)
n− n−2

n−1 .

Top Cycle Rule [1]

The Top Cycle Rule (TCR) declares a uniformly random agent from the top cycle the victor.

Theorem 3.7. TCR is monotone, dominant sub-tournament consistent, and 2-PNM. TCR
is not cover consistent. If TCR satisfies 2-NMλ-α for some λ ≥ 0, then λ ≥ (1− α)Ω(n).

Proof. [1] proved that TCR is monotone, top cycle consistent, and 2-PNM. TCR is DSTC
because the addition of an agent that loses to all existing agents does not change the top cy-
cle. TCR is not CovC since 2 covers 3 in the superman-kryptonite tournament on {1, 2, 3, 4}
(see T4 in Figure 1) but 3 is in the top cycle, so she wins with positive probability.



Figure 2: The tournaments that lead to our lower bounds for specific tournament rules. T1

is the superman-kryptonite tournament (here, on 5 players) that leads to most of our lower
bounds. T2 is the tournament that leads to the α ≥ 1/10 lower bound for RKotH. T3 is the
tournament (here, on 5 players) that leads to our lower bound for PRSL.

Let T denote the superman-kryptonite tournament on [n]. Under TCR, both the su-
perman and kryptonite win with probability 1

n since all agents are in the top cycle. Thus,

λ ≥ 1−r1(T )−α
rn(T ) − 1 = (1− α)n− 2.

Random Single Elimination Bracket [9]

A single elimination bracket is a complete binary tree whose leaves are labeled by a per-
mutation of the agents. Each node is labeled by the winner of the match between its two
children. The winner of the bracket is the agent labeling the root node. The Randomized
Single Elimination Bracket rule (RSEB) introduces 2⌈logn⌉ − n dummy agents who lose to
the existing agents, chooses a bracket uniformly at random, and declares the winner of this
bracket the winner of the tournament.

Theorem 3.8. RSEB is monotone, top cycle consistent, and 2-NM0-1/3. RSEB is neither
dominant sub-tournament nor cover consistent. If RSEB satisfies 2-NMλ-α for some λ ≥ 0,
then α ≥ 1/n. That is, RSEB is always pairwise manipulable regardless of λ.

Proof. [9] proved that RSEB is monotone, Condorcet consistent, and 2-NM0-1/3. RSEB
satisfies TCC since for any agent to win, she must eventually face an agent in the top cycle.
To see how RSEB violates DSTC and CovC, consider the 8-agent tournament T in which

1 ≻T 2, 2 ≻T 3, 3 ≻T 4, 4 ≻T 1, 1 ≻T 3, 2 ≻T 4

and i ≻T j for all i ∈ {1, 2, 3, 4}, j ∈ {5, 6, 7, 8}. Note that 2 covers 3 in T yet 3 can win
the bracket whose leaves are labeled by the permutation (1, 2, 4, 5, 3, 6, 7, 8). Moreover, the
sub-tournament induced by the first four agents is a dominant sub-tournament. Observe
that 4 never wins a bracket in the sub-tournament T [{1, 2, 3, 4}], but in T , 4 can win the
bracket whose leaves are labeled by the permutation (1, 2, 3, 5, 4, 6, 7, 8).

Let T denote the superman kryptonite tournament on [n] where n ≥ 4. Observe that
r1(T ) = 1− 1/n since the superman loses if and only if she is paired with the kryptonite in
the first round of the bracket. Moreover, rn(T ) = 0 since the winner of a bracket must win
at least ⌈log2 n⌉ matches. If the superman and kryptonite collude to make the superman
the Condorcet winner, then the superman gains 1/n in probability, while the kryptonite’s
probability of winning remains the same, so α ≥ 1/n.



Randomized King of the Hill [10]

The Randomized King of the Hill rule (RKotH) chooses the undefeated agent if one ex-
ists. Otherwise, choose an agent uniformly at random, eliminate her and the agents she
dominates, and repeat. Equivalently, RKotH chooses an ordering of the agents uniformly
at random and in each round until an agent undefeated by the remaining agents exists,
eliminates the next non-eliminated agent and the agents she dominates.

Theorem 3.9. RKotH is monotone, both dominant sub-tournament and cover consistent,
and 2-NM0-1/3. If RKotH satisfies 2-NMλ-α for some λ ≥ 0, then α ≥ 1/10. That is,
RKotH is always pairwise manipulable regardless of λ.

Proof. [10] proved that RKotH is monotone, CovC, and 2-NM0-1/3. RKotH is DSTC for
the same reason as ICR and RVC: inserting a dummy agent who loses to the existing agents
into an ordering does not change the winner, so each agent wins the same proportion of
orderings they did before.

Now, consider the tournament T ∈ T5 in which i ≻T j whenever i < j, except both
4, 5 ≻T 1. Note that since RKotH is cover consistent and 4 covers 5, we have that r5(T ) = 0.
Meanwhile, r1(T ) = 2/5 since 1 wins if and only if the agent who is chosen first is not among
1, 4, and 5. If 1 and 5 reverse the outcome of their match, then in the resulting tournament
T ′, 1 will win with probability 1/2 since by DSTC, we can restrict our attention to the
sub-tournament T ′[{1, 2, 3, 4}] and 1 wins in this sub-tournament if and only if the agent
who is chosen first is not among 1 and 4. Meanwhile 5 remains covered in T ′. Thus, the
superman gains 1/10 in probability, while the kryptonite’s probability of winning remains
the same, so α ≥ 1/10. Since RKotH is DSTC, this problematic tournament on five agents
remains problematic when there are more agents.

Randomized Death Match [6]

The Randomized Death Match rule (RDM) chooses a pair of agents uniformly at random,
eliminates the loser, and repeats.

Theorem 3.10. RDM is monotone, dominant sub-tournament consistent, and 2-NM0-
1/3. RDM is not cover consistent. If RDM satisfies 2-NMλ-α for some λ ≥ 0, then
λ ≥ (1− nα/2)Ω(n).

Proof. [6] proved that RDM is Condorcet consistent and 2-NM0-1/3. RDM is monotone
since for any deterministic sequence of matches, an agent gets at least as far as she did in
the original tournament if she wins an additional match and is DSTC because inserting a
match involving a dummy agent who loses to the existing agents into a sequence of matches
does not change the winner of the tournament. RDM is not CovC since 2 covers 3 in the
superman-kryptonite tournament on {1, 2, 3, 4} (see T4 in Figure 1) but 3 wins if (1, 2) is
the first pair chosen, (1, 4) is the second, and (3, 4) is the last.

Let T denote the superman-kryptonite tournament on [n]. Under RDM, the kryptonite
wins if and only if she is not chosen in the first n − 2 rounds, so rn(T ) = 2

n(n−1) . Note

that the superman loses if and only if she is paired with the kryptonite in some round. The

probability that this event occurs if 2/n, so r1(T ) = 1−2/n. Therefore, λ ≥ 1−r1(T )−α
rn(T ) −1 =(

1− nα
2

)
(n− 1)− 1.



PageRank [3]

The PageRank rule randomly chooses an agent from the top cycle according to the solution
of the following system of linear equations:

∀ i ∈ TC(T ), ri(T ) =
∑

j∈TC(T ):i≻T j
1

|{k:j≺T k}|rj(T )∑
i∈TC(T ) ri(T ) = 1

Note that PR is well-defined since the top cycle is strongly connected, so the stationary
distribution is indeed unique. PageRank’s recursive definition is natural for tournaments:
an agent has high PageRank if she beats many other agents with high PageRank.

Theorem 3.11. PR is dominant sub-tournament but not cover consistent. If PR satisfies
2-NMλ-α, then α ≥ 1/13. That is, PR is always pairwise manipulable regardless of λ.

Proof. PR is DSTC by definition. It is not CovC for the same reason as TCR: it assigns
positive probability to all members of the top cycle. Now, consider the superman-kryptonite
tournament T on {1, 2, 3, 4}. The associated system of linear equations is

r1(T ) = r2(T ) +
1
2r3(T )

r2(T ) =
1
2r3(T ) +

1
2r4(T )

r3(T ) =
1
2r4(T )

r4(T ) = r1(T )

r1(T ) + r2(T ) + r3(T ) + r4(T ) = 1

The solution to this system is

r1(T ) = 4/13, r2(T ) = 3/13, r3(T ) = 2/13, r4(T ) = 4/13

Consider the manipulation between teams 1 and 3. This manipulation simply “rotates” the
original tournament clockwise. Thus, letting T ′ denote the resulting tournament,

r1(T
′) = 4/13, r2(T

′) = 4/13, r3(T
′) = 3/13, r4(T

′) = 2/13

Note that 3 gains 1/13 in probability, while 1’s probability of winning remains the same, so
α ≥ 1/13. Since PR is DSTC, the superman-kryptonite tournament on {1, 2, 3, 4} remains
problematic when there are more agents.

PageRank with Self Loops [3]

Another natural instantiation of PageRank as a tournament rule is the PageRank with Self-
Loops rule (PRSL), which randomly chooses an agent from the top cycle according to the
solution of the following system of linear equations:

∀ i ∈ TC(T ), ri(T ) =
∑

j∈TC(T ):i⪰T j
1

|{k:j⪯T k}|rj(T )∑
i∈TC(T ) ri(T ) = 1

Theorem 3.12. PRSL is dominant sub-tournament but not cover consistent. If PRSL
satisfies 2-NMλ-α, then λ ≥ (1− α)Ω(n).

Proof. PRSL is DSTC and is not CovC for the same reasons as PR. Now, consider the
following tournament on n = 2k+1 agents, denoted 0, 1, . . . , n− 1. Have agent n− 1 defeat
agent n − 2. Have agents 0, 1, . . . , n − 3 lose to agent n − 2 and defeat agent n − 1. For



i = 0, . . . , n− 3, have agent i defeat agents (i+ 1) mod (n− 2), . . . , (i+ k − 1) mod (n− 2)
and lose to agents (i− 1) mod (n− 2), . . . , (i−k+1) mod (n− 2). Since agents 0, . . . , n− 3
are indistinguishable from each other (in particular, they will have the same mean return
time), r0(T ) = · · · = rn−3(T ). Thus, it suffices to consider the following reduced system:

rn−2(T ) =
1
2rn−2(T ) +

2
n+1

∑n−3
i=0 ri(T ) =

1
2rn−2(T ) +

2(n−2)
n+1 r0(T )

rn−1(T ) =
1
2rn−2(T ) +

1
n−1rn−1(T )

(n− 2)r0(T ) + rn−2(T ) + rn−1(T ) =
∑n−1

i=0 ri(T ) = 1

The solution is

r0(T ) = · · · = rn−3(T ) =
n+1

2(n−1)

(
2(n−2)
n−1 + (n−2)(n+1)

2(n−1) + 1
)−1

rn−2(T ) =
2(n−2)
n−1

(
2(n−2)
n−1 + (n−2)(n+1)

2(n−1) + 1
)−1

rn−1(T ) =
(

2(n−2)
n−1 + (n−2)(n+1)

2(n−1) + 1
)−1

To conclude, note that if agents n−2 and n−1 were to manipulate, then agent n−2 would
become the Condorcet winner in the resulting tournament T ′. Thus, if PR-SL is 2-NMλ,
then

λ ≥ 1−rn−2(T )−α
rn−1(T ) − 1 ≥ (1−α)(n−2)(n+1)

2(n−1) − 3α

4 Reductions

In a separate direction, we consider fair tournament rules that for fixed λ become increasingly
non-manipulable with the number of agents; that is, rules that satisfy 2-NMλ-f(n) where
n is the number of agents and f is a non-negative, non-increasing function. Under stronger
notions of fairness, it turns out this problem is just as hard as finding rules that satisfy
2-NMλ-limn→∞ f(n).

Theorem 4.1. Let λ ≥ 0 and f ≥ 0 be a non-increasing function such that f(n)
n→∞→ α.

A DSTC tournament rule is 2-NMλ-f(n) if and only if it is 2-NMλ-α.

The idea behind the proof is as follows: by DSTC, the gains from manipulation in a
tournament T on n agents are exactly the same as the gains from manipulation among these
agents in a larger tournament on n′ > n agents in which T is a dominant subtournament.
Thus, the gains from manipulation in T are in fact at most f(n′) for all n′ > n and hence,
at most limn′→∞ f(n′). A similar but weaker result holds for top cycle consistent rules.

Theorem 4.2. Let λ ≥ 1 and f ≥ 0 be a non-increasing function such that f(n)
n→∞→ α.

There exist a TCC tournament rule satisfying 2-NMλ-f(n) if and only if there exists a TCC
tournament rule satisfying 2-NMλ-α.

The proof is similar to that of Theorem 4.1. However, because we do not have DSTC,
we cannot directly relate the gains from manipulation in tournaments on n agents to those
in tournaments on n′ > n agents. Nonetheless, we can define a tournament rule on n agents
as the limit point of a sequence of tournament rules on n′ agents for all n′ > n. The gains
from manipulation under this limit point will then be at most limn′→∞ f(n′).

Theorem 4.3. If ICR, RVC, TCR, RKotH, PR, or PRSL satisfy 2-NMλ-f(n) for some
fixed λ ≥ 1 and some non-increasing function f ≥ 0, then f ≥ Ω(1). If RDM satisfies this
property, then f ≥ Ω(1/λ). If RSEB satisfies this property, then f ≥ ε(λ) where ε(λ) is
some strictly positive function of λ.



5 Acknowledgements

This work was carried out while one of the authors, Eric Xue, was a participant in the 2021
DIMACS REU program at Rutgers University, supported by NSF grant CCF-1852215,
under the supervision of Ariel Schvartzman (who at the time was affiliated with DIMACS)
and David Pennock.

References

[1] Alon Altman and Robert Kleinberg. Nonmanipulable randomized tournament selec-
tions. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI’10, page 686–690. AAAI Press, 2010.

[2] Alon Altman, Ariel D. Procaccia, and Moshe Tennenholtz. Nonmanipulable selec-
tions from a tournament. In Proceedings of the 21st International Jont Conference on
Artifical Intelligence, IJCAI’09, page 27–32, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[3] Felix Brandt and Felix Fischer. Pagerank as a weak tournament solution. In Xiaotie
Deng and Fan Chung Graham, editors, Internet and Network Economics, pages 300–
305, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-77105-0.

[4] Emily Dale, Jessica Fielding, Hari Ramakrishnan, Sacheth Sathyanarayanan, and
S. Matthew Weinberg. Approximately strategyproof tournament rules with multi-
ple prizes. In David M. Pennock, Ilya Segal, and Sven Seuken, editors, EC ’22:
The 23rd ACM Conference on Economics and Computation, Boulder, CO, USA, July
11 - 15, 2022, pages 1082–1100. ACM, 2022. doi: 10.1145/3490486.3538242. URL
https://doi.org/10.1145/3490486.3538242.

[5] Atanas Dinev and S. Matthew Weinberg. Tight bounds on 3-team manipulations
in randomized death match. In Kristoffer Arnsfelt Hansen, Tracy Xiao Liu, and
Azarakhsh Malekian, editors, Web and Internet Economics - 18th International Confer-
ence, WINE 2022, Troy, NY, USA, December 12-15, 2022, Proceedings, volume 13778
of Lecture Notes in Computer Science, pages 273–291. Springer, 2022. doi: 10.1007/
978-3-031-22832-2\ 16. URL https://doi.org/10.1007/978-3-031-22832-2\_16.

[6] Kimberly Ding and S. Matthew Weinberg. Approximately Strategyproof Tourna-
ment Rules in the Probabilistic Setting. In James R. Lee, editor, 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 14:1–14:20, Dagstuhl, Germany,
2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-177-1. doi:
10.4230/LIPIcs.ITCS.2021.14. URL https://drops.dagstuhl.de/opus/volltexte/

2021/13553.
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A Omitted Proofs

Proof of Proposition 2.13. Suppose tournament rule r is not 2-PNM. There exist distinct
agents i, j ∈ [n] and a pair of {i, j}-adjacent tournaments T ̸= T ′ ∈ Tn such that ri(T

′) −
ri(T ) > 0 and rj(T

′)− rj(T ) ≥ 0. Thus,

ri(T
′) + rj(T

′)− ri(T )− rj(T ) > 0 ≥ lim
λ→∞

λmax{ri(T )− ri(T
′), rj(T )− rj(T

′)}

so r is not 2-NM∞.
Conversely, take r to be 2-PNM, so for all distinct agents i, j ∈ [n] and {i, j}-adjacent

T ̸= T ′ ∈ Tn, either (1) min{ri(T ′)− ri(T ), rj(T
′)− rj(T )} < 0, in which case

ri(T
′) + rj(T

′)− ri(T )− rj(T ) < +∞ = lim
λ→∞

λmax{ri(T )− ri(T
′), rj(T )− rj(T

′)}



or (2) max{ri(T ′)− ri(T ), rj(T
′)− rj(T )} ≤ 0, in which case

ri(T
′) + rj(T

′)− ri(T )− rj(T ) ≤ 0 ≤ lim
λ→∞

λmax{ri(T )− ri(T
′), rj(T )− rj(T

′)}

Thus, r is 2-NM∞.

Proof of Proposition 2.16. Let T ̸= T ′ ∈ Tn be {i, j}-adjacent tournaments such that i ≺T

j, and suppose r is monotone. Then, by monotonicity, ri(T )− ri(T
′) ≤ 0 ≤ rj(T )− rj(T

′),
so

ri(T
′)−ri(T ) ≤ rj(T )−rj(T

′)+λmax{ri(T )−ri(T
′), rj(T )−rj(T

′)} = (λ+1)(rj(T )−rj(T
′))

where the inequality follows from the fact that r is 2-NMλ.
Now, suppose the second statement holds. Applying the second statement twice yields

ri(T
′)− ri(T ) ≤ (λ+ 1)(rj(T )− rj(T

′))

rj(T )− rj(T
′) ≤ (λ+ 1)(ri(T

′)− ri(T ))

Multiplying the second inequality by λ + 1, adding the result to the first inequality, and
simplifying yields

λ(λ+ 2)(ri(T
′)− ri(T )) ≥ 0

Since λ > 0, this inequality implies ri(T
′) ≥ ri(T ).

Proof of Theorem 4.1. The backward implication is trivial, so we focus on the forward im-
plication. Suppose a DSTC tournament rule r is not 2-NMλ-α so that there exist ε > 0,
m ∈ N, distinct agents i, j ∈ [m], and a pair of {i, j}-adjacent tournaments T ̸= T ′ ∈ Tm
such that

ri(T
′) + rj(T

′)− ri(T )− rj(T )− λmax{ri(T )− ri(T
′), rj(T )− rj(T

′)} ≥ α+ ε

Since f(n)
n→∞→ α, there exists n > m such that f(n) < α+ ε. Now, consider a tournament

Tn ∈ Tn in which T is a dominant sub-tournament. Let T ′
n denote the tournament {i, j}-

adjacent to Tn such that T ′
n ̸= Tn. Since r satisfies DSTC,

ri (T
′
n) + rj (T

′
n)− ri (Tn)− rj (Tn)− λmax {ri (Tn)− ri (T

′
n) , rj (Tn)− rj (T

′
n)} ≥ α+ ε

> f(n)

so r is not 2-NMλ-f(n).

Proof of Theorem 4.2. Again, the backward implication is trivial, so we focus on the forward
implication. Suppose a tournament rule r satisfies TCC and 2-NMλ-f(n). Fix the number of
agents m. We will construct a tournament rule on m agents s(m) that is TCC and 2-NMλ-α.

For each n ∈ N, define a tournament rule on m agents wm,n as follows. For all i ∈
[m], T ∈ Tm, define

wm,n
i (T ) := ri (Tn)

where Tn ∈ Tn is a tournament in which T is a dominant sub-tournament. Note that
TC(Tn) = TC(T ) ⊆ T , so wm,n(T ) ∈ ∆m and since r is TCC and 2-NMλ-f(n), w

m,n is as
well.

Now, since [m] × Tm is a finite set and each coordinate of ((wm,n(T ))T∈Tm
)
∞
n=1 is

bounded, there exists a convergent subsequence ((wm,nk(T ))T∈Tm
)
∞
k=1. Define s(m)(T ) =

limk→∞ wnk(T ) for all T ∈ Tm. By construction, s(m)(T ) ∈ ∆m for all T ∈ Tm and s(m) is



TCC. Moreover, s(m) satisfies 2-NMλ-α: for any distinct agents i, j ∈ [m] and {i, j}-adjacent
tournaments T, T ′ ∈ Tm,

s
(m)
i (T ′) + s

(m)
j (T ′)− s

(m)
i (T )− s

(m)
j (T )− λmax{s(m)

i (T )− s
(m)
i (T ′), s

(m)
j (T )− s

(m)
j (T ′)}

= lim
k→∞

(wm,n
i (T ′) + wm,n

j (T ′)− wm,n
i (T )− wm,n

j (T )

− λmax{wm,n
i (T )− wm,n

i (T ′), wm,n
j (T )− wm,n

j (T ′)})
≤ lim

k→∞
f(nk) = α

Carrying out this procedure for all m ∈ N yields a TCC and 2-NMλ-α tournament rule
s := {s(m)}∞m=1.

Proof of Theorem 4.3. The results for all rules except RDM and RSEB follow as direct con-
sequences of Theorems 3.5, 3.6, 3.7, 3.9, 3.11, and 3.12. To see the result for RDM, consider
the superman kryptonite tournament T on [2λ + 1] and the distinct {1, n}-adjacent tour-
nament T ′ (in which the superman is now the Condorcet winner). Using the probabilities
computed in Theorem 3.10, f(2λ+1) ≥ 1−r1(T )−(λ+1)rj(T ) =

2
2λ+1−

λ+1
λ(2λ+1) =

λ−1
λ(2λ+1) .

Since RDM is DSTC, this problematic tournament remains problematic when n ≥ 2λ+ 1.
The idea behind the proof of the result for RSEB is to assume by way of contradiction

that RSEB satisfies 2-NMλ-f(n) for some fixed λ ≥ 0 and some f(n)
n→∞→ 0 and then show

that the tournament rule that results from applying the limiting process in Theorem 4.2
to RSEB actually requires that λ grow with n in order to be 2-NMλ, which contradicts
Theorem 4.2. We give the details in Section A.1 of the appendix.

A.1 Gains From Manipulation Under RSEB Do Not Vanish

In what follows, let r denote the RSEB tournament rule and for a given tournament T , let
Tn ∈ Tn denote a tournament in which T is a dominant sub-tournament. We prove the
following result.

Theorem A.1. If RSEB is 2-NMλ-f(n) for some fixed λ ≥ 1 and some non-increasing
function f ≥ 0, then f ≥ ε(λ) where ε(λ) is some strictly positive function of λ.

Suppose by way of contradiction that RSEB is 2-NMλ-f(n) for some fixed λ ≥ 0 and
some non-increasing function f ≥ 0 such that f(n) → 0 as n → ∞. Fix n = 2h. Since
RSEB is TCC and assumed to be 2-NMλ-f(n), following the logic in Theorem 4.2, we can
find a convergent subsequence ((r1(T2mj ), . . . , rn(T2mj )))∞j=1 such that the limit point s(n)

is 2-NMλ.
Now, let T ∈ Tn be the superman kryptonite tournament on n = 2h agents and let T ′

denote the distinct tournament that is {1, n}-adjacent to T . Since s(n) is 2-NMλ,

0 ≥ 1− s
(n)
1 (T )− λs(n)n (T ) ≥ lim

j→∞
(1− r1(T2mj )− λrn(T2mj ))

≥ 1

3n
− λ

2n−1 − 1
(Lemmas A.3 and A.5)

Thus,

λ ≥ 2n−1 − 1

3n

Since our choice of convergent subsequence was arbitrary, this inequality holds for all limit
points s(n). Carrying out this analysis for all n = 2h, we get that any tournament rule



s that arises from carrying out the limiting procedure from the proof of Theorem 4.2 on
RSEB requires that λ grows exponentially in the number of agents in order to be 2-NMλ,
contradicting Theorem 4.2. Thus, RSEB is not 2NMλ-f(n) for a fixed λ ≥ 0 and f(n) → 0
as n → ∞.

Lemma A.2. Let n = 2h and let T ∈ Tn be the superman-kryptonite tournament on n
agents. For all m ≥ h+ 1,

rn(T2m) =
2(
2m

2m−1

) [( 2m − n

2m−1 − 1

)
+

(
2m − n

2m−1 − n

)
rn(T2m−1)

]
where T2m ∈ T2m is some tournament in which T is a dominant subtournament.

Proof. For any tournament S, consider the following approach for computing ri(S). For a
given partition of [n] into two equal sets A and B in which i ∈ A, the probability that i
wins a bracket in which the players on one side are in A and the players on the other are in
B is

ri(S|A)
∑

k:i≻Sk

rk(S|B)

where S|A is the tournament subgraph of S induced by the players in A. In other words, the
probability that i wins such a bracket is the probability that she wins her side of the bracket
times the probability that someone she can beat the winner of the other side. Randomizing
over all such partitions,

ri(S) =
2(
n

n/2

) ∑
A,B

(
ri(S|A)

∑
k:i≻Sk

rk(S|B)

)

Now, to prove the recurrence relation, we consider several cases of partitions. If n ∈ A,
while [n−1] ⊆ B, then rn(T2m |A) = r1(T2m |B) = 1 since n can defeat all the dummy players
on her side of the bracket, and 2 only loses to n, who is on the other side of the bracket. If
[n] ⊆ A, then rn(T2m |A) = rn(T2m−1) and

∑
k:n≻T k rk(T |B) = 1 since n can defeat all the

dummy players on the other side. If n ∈ A, 1 ∈ B, and there exists i ∈ A ∩ [n − 1], then
rn(T |A) = 0 since n will have to face someone she loses to before the finals. Otherwise,
1, n ∈ A and there exists i ∈ B∩ [n−1]. In this case,

∑
k:n≻T k rk(T |B) = 0 since the winner

of the B side of the bracket will be someone n loses to. Thus,

rn(T2m) =
2(
2m

2m−1

)
 ∑

n∈A,[n−1]⊆B

1 +
∑
[n]∈A

rn(T2m−1)


The number of partitions up to symmetry such that n ∈ A, [n − 1] ⊆ B is

(
2m−n

2m−1−1

)
(fix

n ∈ A and choose the remaining 2m−1 − 1 players from outside of [n]), and the number of

partitions such that [n] ⊆ A is
(
2m−n
2m−1

)
(fix [n] ⊆ A and choose the remaining 2m−1 − n

players from outside of [n]). The recurrence relation now follows.

Lemma A.3. Let n = 2h and let T ∈ Tn be the superman-kryptonite tournament on n
agents. For all m ≥ h+ 1,

rn (T2m) ≤ 1

2n−1 − 1

where T2m ∈ T2m is some tournament in which T is a dominant subtournament.



Proof. We show by induction that rn(T2m) ≤
∑m−h

k=1
1

2k(n−1) . For our base case, consider
m = h+1, i.e., 2m = 2n. Note that the kryptonite n cannot win in the superman kryptonite
tournament of size n, so rn(Tn) = 0. Thus,

rn(T2n) =
2(
2n
n

)( n

n− 1

)
=

n!n!

(2n− 1)!

=
(n− 1)!∏n−1

k=1(2n− k)

=
(n− 1)!

2n−1
∏n−1

k=1(n− k/2)

=
1

2n−1

n−1∏
k=1

n− k

n− k/2
≤ 1

2n−1

as desired.
Now, suppose that rn(T2m−1) ≤

∑m−h−1
k=1

1
2k(n−1) , and consider rn(T2m). For notational

convenience, let N := 2m−1. Observe that

2(
2N
N

)(2N − n

N − 1

)
=

2N !N !

(2N)!
· (2N − n)!

(N − 1)!(N − n+ 1)!

=

∏n−2
k=0(N − k)∏n−1
k=1(2N − k)

=
1

2n−1

n−1∏
k=1

N − k + 1

N − k/2
≤ 1

2n−1

The last line comes from the fact that N
N−1/2 · N−3

N−2 ≤ 1, and the rest of the terms in the

product are ≤ 1. Moreover,

2(
2N
N

)(2N − n

N − n

)
=

2N !N !

(2N)!
· (2N − n)!

(N − n)!N !

=

∏n−1
k=1(N − k)∏n−1
k=1(2N − k)

=
1

2n−1

n−1∏
k=1

N − k

N − k/2
≤ 1

2n−1

Thus,

rn(T2m) =
2(
2m

2m−1

) [( 2m − n

2m−1 − 1

)
+

(
2m − n

2m−1 − n

)
rn(T2m−1)

]
≤ 1

2n−1
+

rn(T2m−1)

2n−1

=
1

2n−1
+

m−h−1∑
k=1

1

2(k+1)(n−1)
(inductive hypothesis)

=

m−h∑
k=1

1

2k(n−1)



as desired. We conclude by remarking that
∑∞

k=1
1

2k(n−1) = 1
2n−1−1 .

Lemma A.4. Let n = 2h. There exists ℓ such that
∑ℓ

k=1(1−
1
2k
)n−2 1

2k
≥ 1

3n .

Proof. Consider the series
∑∞

k=1(1−
1
2k
)n−1 1

2k
. The partial sums in this series are increasing

and upper bounded by
∑∞

k=1
1
2k

= 1, so the series converges. Define f(x) := (1− 1
2x )

n−1 1
2x .

f ′(x) =
ln(2)(1− 1/2x)n(n− 2x)

(2x − 1)2

Thus, f is strictly increasing on [0, h] and strictly decreasing on [h,∞]. Moreover, f achieves
a local maximum at h. Therefore,(

1− 1

2h

)n−1
1

2h
+

∞∑
k=1

(
1− 1

2k

)n−1
1

2k
≥
∫ ∞

0

f(x) dx

=

[
(1− 1/2x)n

n ln(2)

]∞
0

=
1

n ln(2)

so
∞∑
k=1

(
1− 1

2k

)n−1
1

2k
≥ 1

n ln(2)
−
(
1− 1

n

)n−1
1

n
≥ 1

n ln(2)
− 1

n

Since 1−ln(2)
n ln(2) > 1

3n , there exists ℓ such that
ℓ∑

k=1

(1− 1
2k
)n−2 1

2k
>

ℓ∑
k=1

(1− 1
2k
)n−1 1

2k
≥ 1

3n .

Lemma A.5. Let n = 2h. Let T ∈ Tn be the superman-kryptonite tournament on n
agents and let T2m ∈ T2m be some tournament in which T is a dominant subtournament. If
(r1(T2mi ))∞i=1 is a convergent (sub)sequence, then

lim
i→∞

1− r1(T2mi ) ≥
1

3n

Proof. Note that 1− r1(T2m) is the probability that the superman (in T ) loses T2m . Since
the superman loses if and only if she encounters the kryptonite in some round, for m ≥ h+1,

1− r1(T2m) =

m−1∑
k=0

(
2m−2h

2k−1

)(
2m−1
2k

)
To see why this expression is correct, observe that(

2m−2h

2k−1

)(
2m−1
2k

)
is the probability that the superman encounters the kryptonite in round k + 1. Given
the seed position of the superman, there is exactly one subtree of height k + 1 that the
kryptonite must be seeded into in order to have a chance of facing the superman in round
k + 1. Moreover, the kryptonite faces the superman in the desired round if and only if the
remaining 2k − 1 players in this subtree are dummy players. Thus, the probability that the



kryptonite reaches round k is the probability that the 2k players in this subtree consist of
the kryptonite and 2k − 1 dummy players. Now, re-index to get

1− r1(T2m) =

m∑
k=1

(
2m−2h

2m−k−1

)(
2m−1
2m−k

)
Now, consider a term in the sum.(

2m−2h

2m−k−1

)(
2m−1
2m−k

) =
(2m − 2h)!

( 2
m

2k
− 1)!( 2

m(2k−1)
2k

− 2h + 1)!
·
( 2

m

2k
)!( 2

m(2k−1)
2k

− 1)!

(2m − 1)!

=

2h−2∏
j=1

2m(2k−1)
2k

− j

2m − j
·

2m

2k

2m − 2h + 1

=

(
2k − 1

2k

)2h−2
1

2k

2h−2∏
j=1

2m − 2kj
(2k−1)

2m − j
· 2m

2m − 2h + 1

Thus,

lim
m→∞

(
2m−2h

2m−k−1

)(
2m−1
2m−k

) =

(
2k − 1

2k

)n−2
1

2k
=

(
1− 1

2k

)n−2
1

2k
(n = 2h)

Now, let ε > 0 be given. By Lemma A.4, there exists ℓ such that

ℓ∑
k=1

(1− 1

2k
)n−2 1

2k
≥ 1

3n

Fix ℓ. Since for each 1 ≤ k ≤ ℓ,

lim
m→∞

(
2m−2h

2m−k−1

)(
2m−1
2m−k

) =

(
1− 1

2k

)n−2
1

2k

there exists Mk ≥ ℓ such that for all m ≥ Mk,∣∣∣∣∣
(
2m−2h

2m−k−1

)(
2m−1
2m−k

) − (1− 1

2k
)n−2 1

2k

∣∣∣∣∣ < ε

ℓ

Let M := max1≤k≤ℓ Mk, so that for all m ≥ M ,∣∣∣∣∣
ℓ∑

k=1

(
2m−2h

2m−k−1

)(
2m−1
2m−k

) −
ℓ∑

k=1

(1− 1

2k
)n−2 1

2k

∣∣∣∣∣ ≤
ℓ∑

k=1

∣∣∣∣∣
(
2m−2h

2m−k−1

)(
2m−1
2m−k

) − (1− 1

2k
)n−2 1

2k

∣∣∣∣∣
<

ℓ∑
k=1

ε

ℓ
= ε

Thus,

lim
i→∞

1− r1(T2mi ) = lim
i→∞

mi∑
k=1

(
2mi−2h

2mi−k−1

)(
2mi−1
2mi−k

) ≥ lim
m→∞

ℓ∑
k=1

(
2m−2h

2m−k−1

)(
2m−1
2m−k

) =

ℓ∑
k=1

(1− 1

2k
)n−2 1

2k
≥ 1

3n


