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Abstract

Proportional Approval Voting (PAV) is a well-established voting rule for multi-winner
approval voting with strong fairness guarantees: it is one of very few natural rules to
satisfy the Extended Justified Representation axiom [19], and has optimal proportionality
degree [20]. These guarantees extend to the bounded local search version of this rule,
known as ε-ls-PAV, as long as ε ≤ n

k2 (where n is the number of voters and k is the target
committee size). In this work, we provide a detailed study of the family of rules ε-ls-PAV.
We show that for a suitable choice of ε (which still guarantees polynomial running time),
these rules exhibit many desirable properties, such as 2-approximation to FJR and core,
robustness to small changes, and linear-time verifiability. On the negative side, we show
that if ε can be arbitrarily small, the running time of ε-ls-PAV may be super-polynomial,
by proving a lower bound of Ω(klog k) for non-adversarial better response; this resolves
a question left open by [4]. To complement our lower bound, we provide an empirical
comparison of two variants of local search—better-response and best-response—on several
real-life data sets. Our experiments indicate that, in practice, better response exhibits
faster running time than best response.

1 Introduction

A student organization with 200 members has funding for three annual magazine subscriptions, to
be selected from a long list of equally-priced magazines. For simplicity, it has been decided to elicit
preferences by means of approval ballots; however, the aggregation rule is yet to be determined.
There are 102 students who are interested in sports, and all of them approve each of the three
sports magazines on the list (and nothing else). However, there is also a group of 80 students who
would all be interested in a subscription to The New Yorker, and it so happens that none of them
are interested in any of the sports magazines.

If the students are to aggregate their preferences by means of counting the number of approvals
for each magazine, the three sports magazines will get 102 votes each, while every other magazine
will get fewer than 100 votes. Hence, the organization will end up subscribing to the three sports
magazines, which seems unfair to the readers of The New Yorker, who constitute more than a third
of the members of the organization. Hence, more sophisticated ways of aggregating approval ballots
would be needed. In particular, the students may want to use a voting rule with the property that
all sufficiently large groups of voters with cohesive preferences (such as, in our example, the readers
of The New Yorker) obtain at least some representation.

There are many voting rules that use approval ballots, and a rich literature on group fairness in
approval-based multiwinner voting [14]. In particular, the idea that large cohesive groups of voters
should be represented in the winning set of alternatives (usually called a committee) is captured
by the family of justified representation axioms, which includes (from least demanding to most
demanding) justified representation (JR), proportional justified representation (PJR), extended
justified representation (EJR), full justified representation (FJR), and the core [3, 19, 17].

One particularly attractive and well-established rule in this context is Proportional Approval
Voting (PAV). This is an easy-to-explain voting rule that satisfies the fairly restrictive EJR axiom;
it is also optimal with respect to another measure of group fairness, namely, proportionality degree
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[20]. This rule proceeds by having voters assign scores to committees and selecting committees
with the highest sum of scores; the score that a voter i assigns to a committee W is 0 if i does not
approve any candidates in W and 1 + 1

2 + · · ·+ 1
j if i approves exactly j candidates in W . In our

example, PAV would favor a committee that contains two sports magazines and The New Yorker
over a committee that contains three sports magazines: the former would score 102 + 51 + 80
points, while the latter would score 102 + 51 + 34 points.

Unfortunately, while evaluating the PAV score of a given committee is easy, finding a committee
with the maximum score is an NP-hard search problem [1]. To circumvent this issue, Aziz et al.
[4] proposed a bounded local search version of this rule, which starts at an arbitrary committee
and performs a sequence of local improvement steps. More specifically, at each step their rule
checks whether the PAV score of the current committee can be improved by at least n

k2 (where n
is the number of voters and k is the target committee size) by exchanging a candidate currently
in the committee with one who is not. It performs some such swap if it exists (and moves on to
the next step), and it terminates when no n

k2 -improving swaps are available. Aziz et al. [4] show
that the final committee is guaranteed to provide EJR; on the other hand, as the maximum PAV
score of a size-k committee cannot exceed O(nk log k), the number of steps till convergence can be
bounded by a polynomial in n and k. Thus, the resulting rule, which we will refer to as n

k2 -ls-PAV,
is polynomial-time computable and provides EJR; indeed, historically, this is the first voting rule
to be shown to have both of these properties.

Soon thereafter, Peters and Skowron [15] proposed another rule that is both polynomial-time
computable and satisfies EJR, namely, the Method of Equal Shares (MES). This rule is intuitively
appealing and preserves its attractive axiomatic properties when extended to the more general
participatory budgeting setting [16]. Hence, n

k2 -ls-PAV has not received much attention in the
computational social choice literature (see, however, the recent work of Halpern et al. [13], which
considers this rule in an incomplete information scenario). The goal of our work is to argue that
n
k2 -ls-PAV—and, more broadly, the rules that are based on the same principle but may use an
arbitrary threshold ε in place of n

k2—form an appealing family of multiwinner voting rule, which
have desirable properties (some of which are not shared by MES), and therefore deserve further
attention. To make our case, we explore the axiomatic and computational properties of the rules
in this family for various values of ε.

Our Contribution We start by showing that n
k2 -ls-PAV provides a 2-approximation of the

stronger FJR property (and this bound is tight). Similarly, just like the PAV itself, n
k2 -ls-PAV

approximates the even more demanding core stability by a factor of 2 (again, this bound is tight).
We also show that using ε < n

k2 can be desirable: a smaller threshold makes ls-PAV more robust,
in the sense that, even upon deleting or adding roughly (1− ε) n

k2 voters, we retain proportionality
guarantees for the original instance. We also observe that n

k2 -ls-PAV has an attractive verifiability
property, as formulated by Cevallos and Stewart [8]: given an output of this rule, we can quickly
verify that it provides EJR and has optimal proportionality degree (even though it is NP-hard to
check whether an arbitrary committee provides EJR [3]). This property is particularly desirable in
the context of blockchain applications. Moreover, unlike the phragmms rule proposed by Cevallos
and Stewart [8], the verification procedure for n

k2 -ls-PAV does not require any auxiliary information.
Now, while setting ε = n

k2 guarantees both EJR and polynomial-time convergence, another
natural choice would be to set ε to a very small positive value (which we will denote by 0+), i.e.,
to perform a swap as long as it increases the PAV score. Clearly, all outputs of 0+-ls-PAV provide
EJR; moreover, as each swap increases the PAV score, the algorithm is guaranteed to terminate.
However, the argument showing polynomial-time convergence no longer applies. Indeed, Aziz et al.
[4] left it as an open problem whether 0+-ls-PAV converges after polynomially many steps. We
resolve this open problem in the negative. Specifically, for each k ≥ 0 we construct a multiwinner
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election with target committee size k, in which the number of voters is polynomial in k, that has
the property that 0+-ls-PAV may require Ω(klog k) steps until convergence. Our argument relies
on an elementary, yet complicated combinatorial construction. As a warmup, we also show that
n
k2 -ls-PAV has run-time ˜Θ(k2) in the worst case; the proof is simpler, but illustrates the main ideas
behind the more complex construction.

Importantly, our lower bound only applies to the ‘better response’ variant of local search, in
which the algorithm performs a swap as soon as it finds a pair of candidates such that swapping
them results in the desired improvement. A natural alternative is a ‘best response’ version of this
procedure, where, instead of performing the first suitable swap, the algorithm considers all pairs of
candidates and performs a swap that offers the maximum improvement in the PAV score. While
we conjecture that this variant of 0+-ls-PAV may still require a super-polynomial number of steps
to converge, we were unable to extend our proof to this case.

Note, however, that switching from better response to best response comes at a cost: when
looking for a better response, we may be lucky to find an improving swap after checking just a few
candidate pairs, whereas to find the best response, we need to consider all k(m−k) possible swaps
(where m is the total number of candidates). Thus, while we expect best response to converge
after a smaller number of iterations, each individual iteration is more costly.

We conclude the paper by exploring this trade-off empirically, using several real-life datasets.
We measure the performance of each algorithm on a given instance as the number of candidate
swaps it needs to consider before termination (this is a useful proxy for running time as long as we
do not have access to parallel processing hardware). Interestingly, on the datasets we investigate,
better response considers fewer swaps than best response. Hence, while our theoretical worst-case
results seem to suggest that best response may be preferable to better response, the empirical
results paint the opposite picture.

Related Work There is, by now, a very substantial literature on approval-based multiwinner
voting rules, their axiomatic properties, and algorithmic complexity [14]. In particular, while
the basic JR axiom is easy to satisfy, there are only a few polynomial-time computable rules
that satisfy the stronger axioms. Indeed, we are not aware of any polynomial-time computable
voting rules that satisfy FJR, and it is a well-known open problem whether each multiwinner
approval election has an outcome in the core. There are, however, a few voting rules with an
efficient winner determination algorithms that satisfy EJR or its slightly less demanding cousin
PJR, such as sequential Phragmén’s rule [5] and Maximin support method [9] (which satisfy PJR),
or Method of Equal Shares [15] (which satisfies EJR). Among these rules, MES is perhaps the most
attractive: it is polynomial-time computable, is relatively easy to explain to voters, and satisfies
EJR. Importantly, however, all these voting rules are based on entirely different principles than
PAV: they are all formulated in terms of voters sharing the ‘load’ caused by the candidates in the
committee. Hence, having a better understanding of PAV and its local search variants is important
for building our intuition about group fairness in approval voting.

2 Preliminaries

An approval election is a 4-tuple E = (N,C, (Ai)i∈N , k), where N = [n] is a set of voters, C is a
set of candidates, |C| = m, Ai ⊆ C is the ballot of voter i ∈ N , and k is a positive integer that
satisfies k ≤ m; we will refer to k as the target committee size. We associate the size of E with the
total size of the voters’ ballots: we write |E| =

∑
i∈N |Ai|. Subsets of C (not necessarily of size k)

are called committees. Let W denote the set of all subsets of C, and let W(k) denote the set of all
size-k subsets of C. If c ∈ Ai, we say that voter i approves candidate c, or c receives an approval
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from i. An approval-based multiwinner voting rule is a mapping that, given an approval election
(N,C, (Ai)i∈N , k), outputs a non-empty subset of W(k); the elements of this subset are referred
to as winning committees.

Proportionality Axioms We will now formulate several axioms that aim to capture the concept
of proportionality in approval-based multiwinner voting.

Given an approval election (N,C, (Ai)i∈N , k) and positive integers r ≤ ℓ ≤ k, we say that a
group of voters V ⊂ N is ℓ-large if |V | ≥ ℓ · n

k ; we say that V is (ℓ, r)-cohesive if there exists a set
of candidates S with |S| ≤ ℓ such that |Ai ∩ S| ≥ r for each i ∈ V .

Consider an election (N,C, (Ai)i∈N , k). We say that a committee W ∈ W provides

• proportional justified representation (PJR) if for each positive integer ℓ ≤ k and every ℓ-large
(ℓ, ℓ)-cohesive group of voters V it holds that |(∪i∈V Ai) ∩W | ≥ ℓ.

• extended justified representation (EJR) if for each positive integer ℓ ≤ k and every ℓ-large
(ℓ, ℓ)-cohesive group of voters V it holds that |Ai ∩W | ≥ ℓ for some i ∈ V .

• full justified representation (FJR) if for each pair of positive integers (ℓ, r) with r ≤ ℓ ≤ k
and every ℓ-large (ℓ, r)-cohesive group of voters V it holds that |Ai ∩W | ≥ r for some i ∈ V .

Furthermore, we say that W is in the core if there does not exist a group of voters V ⊆ N and a

set of candidates S such that |S| ≤ |V |
n · k and for each voter i ∈ V we have |Ai ∩ S| > |Ai ∩W |.

A voting rule is said to satisfy EJR/FJR/core stability if all committees in the output of this
rule provide the respective property.

Given an election (N,C, (Ai)i∈N , k), let Wcore be the set of all size-k committees that are in
the core; similarly, let WFJR, WEJR, and WPJR be the sets of all size-k committees that provide
FJR, EJR, or PJR, respectively. It can be shown that

Wcore ⊆ WFJR ⊆ WEJR ⊆ WPJR.

Moreover, it is known that for every election the sets WFJR, WEJR, and WPJR are non-empty.
Given an approval election (N,C, (Ai)i∈N , k) and a committee W , the satisfaction of voter i

from W is measured as |Ai∩W |, and the average satisfaction of a set of voters V ⊂ N is measured
as avsV (W ) = 1

|V |
∑

i∈V |Ai ∩W |.

Proportional Approval Voting and its Local Search Variant

PAV Given an approval election (N,C, (Ai)i∈N , k) and a committee W ⊆ C, we define the

PAV-satisfaction of voter i from W as sati(W ) =
∑|Ai∩W |

j=1
1
j . We extend this notation to sets

of voters by setting satV (W ) =
∑

i∈V sati(W ). The PAV score of W ⊆ C is then defined as
sat(W ) = satN (W ). The PAV rule outputs all committees in W(k) that maximize the PAV score.

Given a committee W , a pair of candidates c /∈ W , c′ ∈ W , and a set of voters V , we denote by
∆V (W, c, c′) the change in the PAV-satisfaction of V that is caused by swapping c with c′; we write
∆∗

V (W ) to denote the maximum increase in the PAV-satisfaction of V that can be accomplished
by such a swap.

∆V (W, c, c′) = satV (W ∪ {c} \ {c′})− satV (W ).

Overloading notation, we write ∆V (W, c) to denote the increase in the PAV-satisfaction of V that
results from adding c to W :

∆V (W, c) = satV (W ∪ {c})− satV (W ); ∆∗
V (W ) = max

c∈W,c′ /∈W
∆V (W, c, c′).

4



For readability, we omit V from the notation when V = N , i.e., we write ∆(W, c, c′) := ∆N (W, c, c′),
∆∗(W ) := ∆∗

N (W ), ∆(W, c) := ∆N (W, c).

Local Search PAV Given an approval election (N,C, (Ai)i∈N , k) and a starting committee
W ∈ W(k), the bounded local search version of PAV (defined by Aziz et al. [4]) proceeds in rounds.
In each round, it checks if there is a pair of candidates c ̸∈ W , c′ ∈ W such that ∆(W, c, c′) ≥ n

k2 ;
if yes, it updates the committee as W := W ∪ {c} \ {c′}. If no such swap exists, it terminates and
outputs W .

Building on this idea, we define a family of local search algorithms parameterized by a non-
negative real value ε ≥ 0 as follows.

ALGORITHM 1: ε-ls-PAV
Input: W : arbitrary initial committee
Output: W : final committee
while ∃c /∈W, c′ ∈W such that ∆(W, c, c′) ≥ ε do

W ← (W ∪ {c}) \ {c′}
end

In this language, the algorithm of Aziz et al. [4] is n
k2 -ls-PAV.

The ‘vanilla’ local search algorithm, which performs a swap as long as ∆(W, c, c′) > 0, can be
described as ε-ls-PAV for ε ≤ min{∆(W, c, c′) : W ∈ W(k), c ̸∈ W, c′ ∈ W,∆(W, c, c′) > 0}. It can
be shown that this condition can be satisfied by setting ε = lcm([k]), where for each S ⊂ N we
denote by lcm(S) the least common multiplier of the integers in S. In what follows, we denote this
value of ε by 0+. In the next section, we will see that values of ε other than n

k2 and 0+ may be of
interest, too.

Better Response and Best Response Algorithm 1 does not explicitly prescribe which pivoting
rule to use: if there are multiple pairs c ̸∈ W , c′ ∈ W with ∆(W, c, c′) ≥ ε, the algorithm may
perform any of these swaps. We consider two natural pivoting rules: better response processes
the pairs in (C \ W ) × W lexicographically with respect to fixed order and performs the first
suitable swap, while best response goes over all pairs in (C \W )×W to identify a swap (c, c′) with
∆(W, c, c′) = ∆∗(W ), and performs some such swap (as long as it satisfies ∆(W, c, c′) ≥ ε).

2.1 Verifiable and Robust Proportionality

Provided ε ≤ n
k2 , we know that ε-ls-PAV outputs a committee that guarantuees every (ℓ, ℓ)-cohesive

group average approval utility of more than ℓ − 1, which is tight and in particular implies that
it satisfies EJR. In Appendix A.1, we show that ε-ls-PAV approximates FJR and the core by a
factor of 2, and this is tight in both cases. In this section, we highlight two desirable properties of
multi-winner voting rules that ls-PAV satisfies effortlessly: The promise of proportionality, be it in
the form of average satisfaction of more than ℓ−1 for (ℓ, ℓ)-cohesive groups or the 2-core property,
is linear-time verifiable. On top of that, these guarantuees offer some level of robustness in the
presence of noisy elections.

2.1.1 Linear-time Verifiability

Some blockchain networks use multiwinner voting to appoint validators [7, 6, 11]. Validators are
special roles that nodes can take on: they have to validate transactions and receive a monetary
reward for doing so (or get punished for adversarial behavior). It is desirable to select valida-
tors (from the set of candidate nodes) in a proportional manner, both to increase voting nodes’
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satisfaction [12], and to avoid the centralization of power [10]. Unfortunately, many proportional
multiwinner rules are computationally hard [2] or else have prohibitively slow polynomial running
time and so nodes in the network with very limited computational resources such as an off-the-shelf
computer may not be able to simulate the outcome. The innovation of decentralized networks such
as blockchain networks is to eliminate the need for a central authority and so we cannot simply
resort to a trusted party that computes an outcome and promises that it is proportional by some
agreed-upon criterion. Instead, recent work by [8] proposes efficient verifiability as a solution. The
observation is that the (expensive) computational task of choosing the validators can be performed
by a non-trusted party (“off-chain”) as long as the proportionality of the proposed solution can be
efficiently checked by any node. Unfortunately, checking whether an arbitrary outcome satisfies
the EJR axiom (or even the weaker PJR axiom) is NP-hard even in the setting of multiwinner
voting [3, 4]. Cevallos and Stewart [8] propose an alternative approach. They argue that it suffices
to have an algorithm whose output can be easily verified: given a winning committee (and possi-
bly some auxiliary information), one should be able to quickly check that this committee satisfies
selected proportionality axioms, such as PJR or EJR . Ideally, the verification algorithm should
run in time linear in the input size (i.e., O(|E|)) and be parallelizable. Cervallos and Stewart
put forward a new multiwinner voting rule, which they call phragmms. This rule provides PJR,
and its output is linear-time verifiable with respect to PJR. In Appendix A.2 we argue that n

k2 -ls-
PAV is linear-time verifiable with respect to stronger proportionality guarantees. Moreover, unlike
phragmms, our verification algorithm does not use any auxiliary information.

2.1.2 Robustness

Having established that, for ε ≤ n
k2 , ε-ls-PAV satisfies EJR and approximates the core and FJR by

a factor of 2, we ask how robust these properties are to perturbations of the instance. E.g., suppose
that the input to the algorithm is not the true election: perhaps some votes went missing, or were
mistakenly added, or else contain errors. What can we say about our properties with respect to
the original unperturbed instance? It turns out that, by executing ε-ls-PAV with ε = λ n

k2 , where
λ < 1, we can allow some such errors without losing proportionality guarantees.

Let W be a committee output by n
sk2 -ls-PAV for some s > 1 on a set of voters V1, |V1| = n.

Then W satisfies ∆∗
V1
(W ) < n

sk2 . Suppose a new batch of voters V2 arrives. We now give conditions
on the size of V2 that imply that W still satisfies EJR and the 2-core property for V1∪V2 or V1 \V2.

Theorem 1. Consider two sets of voters V1, V2 and a committee W such that ∆∗
V1
(W ) < |V1|

sk2 for

some s > 1. If |V2| ≤ s−1
s(k2+1) · |V1| then ∆∗

V1⊔V2
(W ) ≤ |V1∪V2|

k2 and ∆∗
V1\V2

(W ) ≤ |V1\V2|
k2 .

Theorem 1 implies that any committee W that is in the output of n
sk2 -ls-PAV on V1 is also in

the output of n
k2 -ls-PAV on elections with sets of voters V1 ∪ V2 and V1 \ V2, and hence provides

EJR as well as other desirable properties for these elections.

3 Lower Bounds

Our main result in this section is Theorem 3, which shows that 0+-ls-PAV with better response
may make a super-polynomial number of swaps before it terminates. This formally confirms the
suspicion voiced in Aziz et al. [4]. The lower bound construction is somewhat complicated;

To showcase the ideas behind our main lower bound in Theorem 3, we initially focus on the
adversarial setting. We study lower bounds on the maximum length of a path in the directed graph
whose vertices are committees and a directed edge (W,W ′) exists whenever W ′ can be obtained
fromW via a swap andW ′ has PAV score at least n

k2 higher thanW . We call this adversarial better
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response because these are the swaps that an agent that points out improvements of the existing
state but acts adversarially might choose to show us. In this setting we prove a simpler result for
n
k2 -ls-PAV. Specifically, we next establish that the upper bound on the number of iterations of this
algorithm by [4] is tight up to a log k factor, by exhibiting an instance on which n

k2 -ls-PAV may
make Ω(k2) improvements before it reaches an equilibrium (recall that O(k2 log k) iterations are
sufficient for convergence).

3.1 Warm-up: Lower Bound for n
k2
-ls-PAV

Notation for the proof: Given a committee W , we say that a sequence of swaps X =
(a1, b2), (a2, b2), . . . , (as, bs) is valid if for each i ∈ [s] the committee Wi = W ∪ {b1, . . . bi−1} \
{a1, . . . ai−1} satisfies ai ∈ Wi, bi /∈ Wi. The length of sequence X is |X| = s. We define the
inverse (sequence) of X as X−1 = (bs, as), (bs−1, as−1), . . . , (b1, a1). Given two finite sequences of
swaps X and Y, we define their concatenation X⊕Y as the the sequence with prefix X followed by
suffix Y. For the proofs in this section it will be useful to have an arbitrarily large pool of ‘dummy’
candidates. We therefore define Dk = {d1, . . . , dk} so that Dk+1 = Dk ∪ {dk+1} and D0 = ∅.

Theorem 2. n
k2 -ls-PAV with adversarial better response requires Ω(k2) iterations in the worst

case.

Proof. Let t = ⌊k
4 ⌋. We define the election E = (N,C, (Ai)i∈N , k) as follows.

C = C1 ∪ C2 ∪Dk−2, C1 = {c11, . . . , c1t+1}, C2 = {c21, . . . , c2k};

N = V1 ∪ V2 ∪k
i=1 Si ∪ U where Vi = {vi1, . . . , vit}, i ∈ [2], |U | = ⌊k

2

4
− k

2
⌋, |Si| = t, i ∈ [k].

The approval sets of voters v1i and v2i are given by

Av1
i
= {c1i+1, . . . , c

1
t+1} ∪ {c2j ∈ C2 | j is even} and Av2

i
= {c11, . . . , c1i , } ∪ {c2j ∈ C2 | j is odd},

where 1 ≤ i ≤ t. Each of the t voters sj ∈ Si approves candidates Asj = {c2i , . . . , c2k}. Each u ∈ U
has approval set Au = Dk−2. Intuitively, voters in U are dummy voters and candidates Dk−2

are dummy candidates. The sequence of swaps we will exhibit only affects voters in N \ U and
candidates in C1 ∪ C2 and no other voters or candidates.

Set-up Consider n
k2 -ls-PAV on the above instance with an initial committee

W0 = Dk−2 ∪ {c11, c21}.

Since each swap must increase the PAV-score by at least n
k2 , we bound its value:

n = |V1|+ |V2|+
k∑

i=1

|Si|+ |U | =
⌊
k

4

⌋
+

⌊
k

4

⌋
+ k ×

⌊
k

4

⌋
+

⌊
k2

4
− k

2

⌋
≤ k2

2
=⇒ n

k2
≤ 1

2
.

For the purpose of this proof, we will call a swap (a, b) a good swap for W if ∆(W,a, b) ≥ n
k2 , or

simply a good swap if W is clear from context. So every valid swap that increases the PAV score
by at least 1

2 (recall that ∆(W,a, b) ≥ 1
2 ) is a good swap.

Sequence of Swaps Define Y = ⊕t
i=1(c

1
i , c

1
i+1). We aim to show that

X = ⊕k−1
i=1 Y

(−1)i−1

⊕ (c2i , c
2
i+1)
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is a sequence of Ω(k2) good swaps, each swap increasing the PAV-score by at least 1
2 . That

|X| = Ω(k2) follows since |Y| = |Y−1| = t and each of the k − 1 such Y’s and Y−1’s is followed
by an additional single swap, and so |X| = (k − 1) · (t+ 1) = Ω(k2).

To show that X is a sequence of good swaps for initial committee W0, we split up the analysis
into the following four cases.

1. For committee W = Dk−2 ∪ {c1i } ∪ {c2j}, if j is odd and i ≤ t, (c1i , c
1
i+1) is a good swap

2. For committee W = Dk−2 ∪ {c1i } ∪ {c2j}, if j is even and i > 1, (c1i , c
1
i−1) is a good swap.

3. For committee W = Dk−2 ∪ {c1t+1} ∪ {c2j}, if j < k is odd, (c2j , c
2
j+1) is a good swap.

4. For committee W = Dk−2 ∪ {c11} ∪ {c2j}, if j < k is even, (c2j , c
2
j+1) is a good swap.

Once we have proven the above four items, it will follow that X is a sequence of good swaps:
From item 1, if W = Dk−2 ∪ {c11} ∪ {c2j} and j is odd, then Y is a sequence of good swaps.

Furthermore, the sequence of swaps Y results in a committee W = Dk−2∪{c1t+1}∪{c2j} satisfying

the condition in item 3, so if j < k, then (c2j , c
2
j+1) is a good swap. This results in a committee

W = Dk−2 ∪ {c1t+1} ∪ {c2j+1} satisfying the condition in item 2. This implies that Y−1 is a

sequence of good swaps, resulting in committee W = Dk−2 ∪ {c11} ∪ {c2j+1}. This committee in

turn is as described in item 3, so if j + 1 < k, then (c2j+1, c
2
j+2) a good swap. This results in W =

Dk−2∪{c11}∪{c2j+2}, which again satisfies the condition in item 1. Thus, sinceW0 = Dk−2∪{c11, c21}
is as in item 1, using the previous chain of arguments we conclude that the sequence X is a sequence
of good swaps.

Consider the first case, i.e., the committee W = Dk−2∪{c1i }∪{c2j} where j is odd and 1 ≤ i ≤ t.

Note that v2i approves c1i and not c1i+1, and conversely for v1i , while every other voter either approves
both or neither of c1i and c1i+1. Neither v1i nor v2i approve any candidates in Dk−2. Further, the
remaining committee members are W \Dk−2 = {c1i , c2j} where j is odd, so by construction both

of these are approved by v2i and none by v1i , implying that |Av2
i
∩W | = 2 and |Av1

i
∩W | = 0. We

conclude that (c1i , c
1
i+1) is a good swap because ∆(W, c1i , c

1
i+1) = +1− 1

2 = 1
2 .

For the second case, consider W = Dk−2 ∪{c1i }∪ {c2j}, where 1 < i ≤ t+1 and j, 1 ≤ j ≤ k, is

even. Since |Av1
i−1

∩W | = 2, while |Av2
i−1

∩W | = 0 and every other voter approves either both of c1i−1

and c1i or neither of them, by the same argument as above it holds that ∆(W, c1i , c
1
i−1) = +1− 1

2 = 1
2 .

For the third case, consider W = Dk−2 ∪ {c1t+1} ∪ {c2i } where i < k is odd. Each voter in Si+1

approves c2i+1 and not c2i . Every voter v2j , 1 ≤ j ≤ t, approves c2i , but not c
2
i+1, while every voter

v1j , 1,≤ j ≤ t, approves c2i+1 and not c2i . By construction, the remaining voters (i.e. the voter in

Sj , j ̸= i + 1, and the voters in U) approve either both of c2i and c2i+1 or neither. For s ∈ Si+1,
their satisfaction is |As∩W | = 0, while for every 1 ≤ j ≤ t, |Av1

j
∩W | = 1 as v1j for every 1 ≤ j ≤ t

approves only c1t+1 in W , and |Av2
j
∩W | = 1, because v2j approves only c2i as i is odd. So

∆(W, c2i , c
2
i+1) = +|Si+1|+

1

2
· |V1| − |V2| = t+

t

2
− t =

t

2
≥ 1

2
,

provided k and hence t is large enough. This shows that (c2i , c
2
i+1) is a good swap. Again by

an analogous argument we can show that if i < k is even and W = Dk−2 ∪ {c11} ∪ {c2i } then
∆(W, c2i , c

2
i+1) ≥ 1

2 since the instance is symmetric. This concludes the proof.
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Figure 1: This example illustrates the sequence of swaps in the proof of Theorem ?? via a small
example. Each one of the 4 × 5 grids represent committees: Each of the 12 cells represents a
candidate and the 4 coloured cells represent candidates that are in the committee. The candidates
in column i are ci,1, ci,2, ci,3, ordered from top to bottom. We omit the dummy candidates in this
depiction and let k′ = 4 and t + 1 = 3, as larger t is necessary for the sequence length in the
proof only. An arrow indicates the swap that will take place from the current committee to the
next committee. The top left initial committee is {c1,3, c2,3, c3,3, c4,1} and the bottom right final
committee is {c1,3, c2,3, c3,3, c4,3}.

3.2 Main result

We now state our main result.

Theorem 3. 0+-ls-PAV with better response needs Ω(klog k) iterations in the worst case.

The proof this lower bound is in many ways similar to the proof of Theorem 2. The full proof
of Theorem 3 can be found in Appendix B, but we give an overview along with intuition for the
proof in this section.
We will construct election E along with a committee W of size k along with a sequence of good
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swaps of super-polynomial length Ω(klog k). As we will show, 0+-ls-PAV executes this sequence
when initialized on W . Just as in the proof of Theorem 2, this sequence of swaps will leave most
members of the initial committee untouched. Most of the action will take place in a small minority
of committee positions, namely in the first k1 = O(log k) committee spots, while the candidates in
the remaining committee spots stay in place throughout the whole sequence of swaps. Each of the
first k1 committee spots, i.e. committee spot i, 1 ≤ i ≤ k1 is assigned its own set of of candidates
Ci. Intuitively, a candidate in Ci (inhabiting position i) will only ever be replaced by another
candidate from Ci in our constructed sequence.

Furthermore, each of these committee positions has their corresponding voters and between
different committee positions, the voters are initially very unequally satisfied; Voters in the first
one are most happy and voters corresponding to later committee positions are increasingly unhappy.
The sequence of swaps will again start off by making the most happy voters happier and then move
on to less happy voters, making them better off. Thereby it will undo all the work it has done so
far and will have to repeat it.
Consider Figure 1. Each individual board in Figure 1 represents a committee. The Figure should be
read left to right and top to bottom, where the next board/ committee results from the previous one
if certain swaps are made. More precisely, within a board each square corresponds to a candidate,
and the candidates in the column numbered 1 are the candidates C1, the candidates in column 2 are
the candidates C2 and so on. The colored squares mark the candidates that are in the committee
and arrows between squares indicate swaps between candidates. The result of the swap(s) can be
seen in the following board.
The reader may not yet observe any pattern in Figure 1 and should revisit it after having read the
proof of Theorem 18. However, for now we use Figure 1 to illustrate how we build up our instance
in several steps, creating increasingly larger building blocks. Observe that swaps only occur along
a column (corresponding to candidates Ci for some i) in Figure 1, consistent with the previously
mentioned property of our construction that swaps can only replace candidates in Ci by other
candidates in Ci.

1. Zooming in on a single swap, the voters responsible for this swap form the atomic building
block of our construction. This building block, Election E(j, k) is given in Section B.1. In
Lemma 14 we show that the corresponding swap increases the PAV-score by exactly

δ(j, k) =
j!∏j

i=0(k − i)
.

2. Zooming out to just the ith column, the Election responsible for the dynamics along the ith
column Et(j, k) (here t+ 1 is the number of candidates in Ci). We discuss how to construct
it from E(j, k) in Section B.2.

3. Finally, the entire board (roughly and for a small example) corresponds to the entire election
E, constructed in Section B.3, out of the building blocks Et(j, k). However j is carefully
picked to depend on i where i is the corresponding column or spot in the committee.

With the constructed election E in hand, in Section B.4 we exhibit an initial committee and a
sequence of positive swaps of length superpolynomial in k, so that 0+-ls-PAV under adversarial
better response executes said sequence of swaps. Finally in Section B.5 we show how to modify
the instance to show that even with a fixed pivoting rule ls-PAV may make super-polynomially
many swaps, by showing that a large subset of the swap sequence from Theorem 18 preserves the
pivoting rule.
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4 Better Response vs Best Response: Empirical Analysis

We have seen that, in the worst case, 0+-ls-PAV with better response may require a number
of iterations that is super-polynomial in the committee size. Intuitively, best response short-
cuts the search, and may therefore require fewer iterations. On the other hand, best response
necessarily considers k(m−k) swaps in each iteration, while better response may be able to identify
a sufficiently good swap after considering just a few candidate pairs. Thus, it is not clear which
of these pivoting rules should be prefered in practice. In this section, we take an experimental
approach and compare better and best response on various data sets available from PrefLib1. As
a proxy for running time, we consider the number of evaluations of the quantity ∆(W, c, c′) during
the execution of each algorithm. For simplicity, in all our experiments, we choose a committee
with the maximum number of approvals (i.e., W ∈ argmax

∑
i∈N |Ai ∩W |) as our starting point.

AAMAS 2015 / 2016 Bidding Data This pair of datasets contains the bids of reviewers
over papers from the 2015 and 2016 editions of Autonomous Agents and Multi-agent Systems
Conference. Inclusion in these datasets was explicitly opt-in. The 2015 dataset contains 9,817
bids of 201 reviewers on 613 papers; this represents about 40% of the actual 22, 360 bids of 281
reviewers over 670 papers. The 2016 dataset contains 161 out of 393 reviewers with bids over 442
out of 550 papers. The bidding language for these conferences consisted of four options for each
paper: ‘yes’, ‘maybe’, ‘no’, and ‘conflict’. We merge answers categories ‘yes’ and ‘maybe’ to get
an approval vote, so a voter approves a paper if and only if she selected ‘yes’ or ‘maybe’.

AI Conference Bidding Data We also consider three datasets that contain the bidding data
from other computer science conferences. They contain the bids of all reviewers (apart from a small
number of opt-outs) over a subset of papers at the conference. We will refer to the three individual
datasets as ‘CS bidding data 1’,‘CS bidding data 2’ and ‘CS bidding data 3’. ‘CS bidding data 1’
contains 31 voters and 54 candidates. ‘CS bidding data 2’ contains 24 voters and 52 candidates.
‘CS bidding data 3’ contains 146 voters and 176 candidates. The committee size is not part of the
input, so we vary it from 1 to 10 or 30, depending on the instance size.

Across our experiments we observe that for larger elections, better response outperforms best
response. As we see in Figures 3a, on the AAMAS 2015 data set, the number of swaps considered
by the best response is up to 6 times larger than the number of swaps considered by the better
response. Further, as we increase the committee size from 3 up to 30, for the better response
the increase (if any) in the number of swaps considered is very slow. In contrast, for the best
response the number of swaps considered increases over 5-fold in both AAMAS datasets. For the
medium-size CS conferences, this effect is not as strong: though better response is consistently
faster, increasing very slowly with k, for larger committee sizes there appears to be a decreasing
trend for best response. However, in the range that we consider, best response is still slower.

5 Conclusion

We have shown that ε-ls-PAV rules have many desirable proportionality properties, even if ε is
large enough to ensure polynomial runtime. On the other hand, while smaller ε provides additional
robustness, decreasing it all the way to 0+ comes at a cost in terms of the worst-case running time.

More broadly, we believe that ε-ls-PAV is an important element of our toolbox for designing
multiwinner voting rules, as it provides flexibility not shared by iterative rules. Indeed, it can
adapt quickly when the input election is modified: even if the changes are too large to be captured

1https://www.preflib.org/
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(a) Number of swaps ls-PAV considers
on AAMAS 2015 bidding data

(b) Number of swaps ls-PAV considers
on AAMAS 2016 bidding data

(c) Number of swaps ls-PAV
considers on CS bidding data 3

(d) Number of swaps ls-PAV
considers on CS bidding data 2

(e) Number of swaps ls-PAV
considers on CS bidding data 1

Figure 2: 0+-ls-PAV with best response vs. 0+-ls-PAV with better response. On the x-axis, we
vary the committee size, and on the y-axis we display the number of swaps considered.

by our robustness result, we can still re-start the local search and expect it to converge in a few
iterations, whereas MES would have to be re-started from scratch. Furthermore, for large enough
ε, we can expect that the local search will converge quickly in most cases, and hence the final
committee will be similar to the initial committee. Hence, if we choose the initial committee using
application-specific criteria, and then run ε-ls-PAV to ensure proportionality, we can hope to keep
some or the original desiderata. Proving formal guarantuees of this nature is an interesting future
direction. We leave open whether the run-time of 0+-ls-PAV with best response has polynomial
run-time or not.
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with incomplete votes. In Proceedings of AAAI’23, 2023.

[14] M. Lackner and P. Skowron. Approval-based committee voting. Springer, 2023.

[15] D. Peters and P. Skowron. Proportionality and the limits of welfarism. In Proceedings of ACM
EC’20, pages 793–794, 2020.
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A Omitted proofs from Section A.1

A.1 Proportionality Guarantees

Recall that FJR is a stronger property than EJR: it guarantees representation to cohesive groups
under a much weaker notion of cohesiveness. It is currently not known whether any polynomial-
time computable multiwinner voting rule satisfies FJR. We will now argue that ε-ls-PAV with
ε ≤ n

k2 satisfies FJR in an approximate sense.
Throughout this section, let W be a committee in the output of ε-ls-PAV for ε ≤ n

k2 . We will
use the following lemma by Halpern et al. [13].

Lemma 4 ([13], Lemma 3.6). For c /∈ W , it holds that maxc′∈W
∆(W,c,c′)

n ≥ 1
k

(
(k + 1)∆(W,c)

n − 1
)
.

As W is an output of ε-ls-PAV with ε ≤ n
k2 , for each c ̸∈ W we have maxc′∈W ∆(W, c, c′) < n

k2 .

Hence, Lemma 4 implies that 1
k > (k + 1)∆(W,c)

n − 1, or, simplifying, ∆(W, c) < n
k .

Our next lemma has a useful interpretation. If a candidate c is popular, but is not in W , then
we can ‘justify’ this with the fact that the supporters of c are, on average, sufficiently satisfied. This
lemma (the proof, as well as all other omitted proofs, can be found in the appendix) generalizes
and simplifies Theorem 1 in the work of Aziz et al. [4].

Lemma 5. If there exists a set of voters V such that (∩i∈V Ai) \W ̸= ∅ and |V | ≥ sn
k for some

s > 0 then avsV (W ) > s− 1.

Proof of Lemma 5. Consider a set of voters V satisfying the statement of the lemma for some s > 0,
and let c be some candidate in (∩i∈V Ai) \ W . We have the following sequence of (in)equalities,
where the first transition follows from Lemma 4 and the third transition follows from the inequality
between the arithmetic mean and the harmonic mean:

n

k
> ∆(W, c) ≥

∑
i∈V

1

wi + 1
≥ |V |2∑

i∈V (wi + 1)
=

|V |
avsV (W ) + 1

≥ sn

k
· 1

avsV (W ) + 1
.

Rearranging the terms, we obtain avsV (W ) > s− 1.

Suppose there exists a set of candidates S, |S| ≤ ℓ, and an ℓ-large group of voters V such that
members of V approve at least r members from S on average

Proposition 6. Consider an ℓ-large set of voters V and a set of candidates S ⊂ C with |S| ≤ ℓ
for some ℓ > 0. Suppose that S and V satisfy r + 1 > avsV (S) ≥ r for some integer r ≤ ℓ. Let
S′ = {c ∈ S : |{i ∈ V : c ∈ Ai}| ≥ rn

k }. Then S′ ̸= ∅, and either S′ ⊆ W or there exists a voter
i ∈ V such that |Ai ∩W | ≥ r.

Proof. Suppose that S′ = ∅, i.e., |{i ∈ V : c ∈ Ai}| < rn
k for each c ∈ S. Then

avsV (S) =
1

|V |
∑
i∈V

∑
c∈S

1c∈Ai =
∑
c∈S

1

|V |
∑
i∈V

1c∈Ai <
|S|
|V |

· rn
k

≤ r,

a contradiction (here, 1X takes value 1 if condition X is true and 0 otherwise).
Suppose S′ ̸⊆ W . Consider a candidate c ∈ S′ \W . This candidate is approved by at least rn

k
voters in V . Applying Lemma 5 to V , we conclude avsV (W ) > r− 1 and hence by the pigeonhole
principle |Ai ∩W | > r − 1 for some i ∈ V . As |Ai ∩W | is an integer, we have |Ai ∩W | ≥ r.
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Lemma 5 is also used in the proof of the following result, which shows that we can always
guarantee more than r

2 − 1 representatives for every (ℓ, r)-cohesive group. We can interpret this
result as saying that W provides a nearly 2-approximation to FJR. Our result extends to a slightly
more general definition of a cohesive group: Rather than requiring that every voter approves at
least r candidates from S, all we need is that S receives at least r · |V | approvals from V in total.

Theorem 7. Consider an ℓ-large set of voters V and a set of candidates S ⊂ C with |S| ≤ ℓ for
some ℓ > 0. Suppose that

∑
i∈V |Ai ∩ S| ≥ r · |V |. Then |Ai ∩W | > r

2 − 1 for some i ∈ V .

Proof. Suppose |Ai∩W | ≤ r
2 −1 for all i ∈ V . In total, voters in V allocate at least |V |r approvals

to candidates in S. If at most |V |( r2 − 1) of these approvals go to candidates in W , the number of
approvals allocated by V to candidates in S \W is at least

|V |r − |V |
(r
2
− 1

)
= |V |

(r
2
+ 1

)
.

In particular, there is a candidate c in S \W that has at least

|V |( r2 + 1)

|S \W |
≥

|V | r2
|S|

≥ ℓn

kℓ
· r
2
=

r

2
· n
k

supporters in V . Denote this set of voters by V ′ ⊂ V . By Lemma 5 it follows that avsV ′(W ) > r
2−1,

and so by the pigeonhole principle we have |Ai ∩W | > r
2 − 1 for some i ∈ V , a contradiction.

We show that this bound is tight, by exhibiting an instance with a group of voters V , |V | ≥ sn
k ,

and a set of candidates S of size s < k, such that every voter in V approves at least r members of
S, but only r

2 (where r is even) members of the PAV-committee.

Theorem 8. PAV (and therefore ε-ls-PAV) may output a committee in which every member of
an (ℓ, r)-cohesive group of voters has at most r

2 representatives.

Proof of Theorem 8. Let r be an even integer that we will lower bound later. Let ℓ = r2 and
k = ℓ2 and in particular k > ℓ > r. The set of voters will have size n = 2k(k − r

2 )(ℓ −
r
2 )(r + 2).

We construct an election with a set of voters N = N1 ∪ N2, where |N1| = ℓn
k and |N2| = (k−ℓ)n

k ,
and a set of candidates C = C1 ∪ C2 ∪ C3, where |C1| = r

2 , |C2| = ℓ− r
2 , |C3| = k − r

2 .
All voters in N1 approve of all candidates in C1. In addition, each voter in N1 approves r

2
candidates from C2 do that votes are spread as evenly as possible, i.e. each candidate in C2

receives at most ⌈ |N1|· r2
|C2| ⌉ = ⌈ s· r2

ℓ− r
2
· nk ⌉ approvals. Observe in particular that N1 is an (ℓ, r)-cohesive

group since |N1| = ℓn
k , every voter approves in N1 and at least r voters in C1∪C2 and |C1∪C2| = ℓ.

The voters in N2 are split into |C3| = k − r
2 disjoint groups that differ in size by at most 1,

with each group approving a distinct candidate in C3.
We claim that every committee output by PAV contains all candidates in C1. Indeed, the

marginal contribution of a candidate in C1 to any committee not containing her is at least |N1| · 2r ,
while each candidate in C3 receives at most ⌈ |N2|

k− r
2
⌉ ≤ |N2|

k− r
2
+ 1 approvals and

|N1| ·
2

r
>

|N2|
k − r

2

+ 1 ⇐⇒ 2 · ℓ
r

>
(k − ℓ)

k − r
2

+
k

n
(1)

⇐⇒ 2ℓk − rℓ > rk − rℓ+
r(k − r

2 )k

n
⇐⇒ 2ℓk > rk +

r(k − r
2 )k

n
(2)

which clearly holds since ℓ > r and n = 2k(k − r
2 )(ℓ−

r
2 )(r + 2) > r(k − r

2 )k.
However, we show next that PAV would choose every candidate in C3 over any candidate in C2

16



with our choice of ℓ = r2 and k = r4. First every candidate in C2 is approved by at most
|N1|· r2
ℓ− r

2
+1

voters in N1 and each of these adds no more than 1
r
2+1 to the PAV score. Each candidate in C3

receives at least |N2|
k− r

2
− 1 approvals

(
|N1|
ℓ− r

2

· r
2
+ 1) · 1

r
2 + 1

<
|N2|
k − r

2

− 1

⇐⇒ |N1|
ℓ− r

2

·
r
2

r
2 + 1

+
1

r
2 + 1

<
|N2|
k − r

2

− 1

⇐⇒ |N1|
ℓ− r

2

·
r
2

r
2 + 1

+
r
2 + 2
r
2 + 1

<
|N2|
k − r

2

⇐⇒ ℓ

ℓ− r
2

· 1
2
r + 1

+
r
2 + 2
r
2 + 1

· k
n
<

k − ℓ

k − r
2

⇐⇒ ℓ

ℓ− r
2

· r

r + 2
+

r
2 + 2
r
2 + 1

· k
n
<

k − ℓ

k − r
2

⇐⇒ ℓr

ℓ− r
2

+
r
2 + 2
r
2 + 1

· k
n
· (r + 2) < (r + 2)

k − ℓ

k − r
2

⇐⇒ ℓr(k − r

2
)ℓ+

r
2 + 2
r
2 + 1

·
k(k − r

2 )(ℓ−
r
2 )

n
· (r + 2) < (r + 2)(k − ℓ)(ℓ− r

2
)

and since
r
2+2
r
2+1 < 2 we have

r
2+2
r
2+1 · k(k− r

2 )(ℓ−
r
2 )(r+2)

n < 2 · k(k− r
2 )(ℓ−

r
2 )(r+2)

n = 1, it suffices to show

that

ℓr(k − r

2
)ℓ+ 1 < (r + 2)(k − ℓ)(ℓ− r

2
)

⇐⇒ ℓr(k − r

2
)ℓ+ 1 < (rk + 2k − rℓ− 2ℓ)(ℓ− r

2
)

⇐⇒ rℓk − ℓr2

2
+ 1 < rℓk + 2kℓ− ℓ2r − 2ℓ2 − k

r2

2
− kr +

ℓr2

2
+ ℓr

⇐⇒ k
r2

2
+ kr + ℓ2r + 2ℓ2 + 1 < 2kℓ+ ℓr2 + ℓr

⇐⇒ r6

2
+ 2r5 + 2r4 + 1 < 2r6 + r4 + r3,

which clearly holds for sufficiently large r.
This examples shows that the committee output by PAV is W = C1 ∪ C3. The voters N1 are
(ℓ, r)-cohesive, but each voter in N1 approves exactly r

2 committee members.

Recall the notion of the core, as defined in Section 2. Its approximate version is defined as
follows (see, e.g., [15]). For α ≥ 1, we say that a committee W is in the α-core if there does not

exist a coalition of voters V ⊂ N and a set of candidates S such that |S|
k ≤ |V |

n and for each voter
i ∈ V it holds that |Ai ∩ S| > max{α · |Ai ∩ W |, 1}. A voting rule has the α-core property if it
always outputs a committee in the α-core. Peters and Skowron [15] show that PAV has the 2-core
property. We will now show that this result extends to ε-ls-PAV with ε ≤ n

k2 ; our proof is more
succinct than the one in the original paper.

Theorem 9. For every ε ≤ n
k2 the voting rule ε-ls-PAV has the 2-core property.
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Proof. Let W be a committee in the output of ε-ls-PAV with ε ≤ n
k2 . Suppose there exists a set

of voters V and a set of candidates S with |V | ≥ |S| · n
k such that for every i ∈ V it holds that

|Ai ∩ S| > 2|Ai ∩W |, or, equivalently, |Ai ∩ S| ≥ 2|Ai ∩W |+ 1. Then∑
c∈S\W

∆(W, c) ≥
∑
i∈V

|Ai ∩ S| − |Ai ∩W |
|Ai ∩W |+ 1

≥
∑
i∈V

2|Ai ∩W |+ 1 + |Ai ∩W |)
|Ai ∩W |+ 1

= |V |.

Hence, by the pigeonhole principle, there is a candidate c ∈ S\W with ∆(W, c) ≥ |V |
|S\W | ≥

|V |
|S| ≥

n
k .

By Lemma 4, it follows that W cannot be an outcome of ε-ls-PAV with ε ≤ n
k2 , a contradiction.

A.2 Verifiability

We first note that O(k|E|)-time verifiability with respect to EJR (and any other property implied
by the condition of Lemma 10 in this section) follows from the definition of this rule and the fact
that every output of n

k2 -ls-PAV provides EJR. To get O(|E|) verifiability, consider the following
verification algorithm, which takes as input a committee W in the output of n

k2 -ls-PAV. In time
O(|E|), we compute |Ai ∩W | for all i ∈ V in one sweep: Iterating over the at most |E| approval
pairs (i, c) where i ∈ V and c ∈ Ai ∩ W , we add 1 to the current satisfaction score of i. Next,
iterating over approval pairs (i, c′) where i ∈ V and c′ ∈ Ai \W , we add 1

|Ai∩W |+1 to the current

(lower bound) estimate for ∆(W, c′) (where c′ /∈ W ). If this estimate exceeds n
k for any c′, we

reject, else accept.
By Lemma 4, for an output of n

k2 -ls-PAV, the verification algorithm never rejects. Now, suppose
the verification algorithm accepts. Then W provides EJR, as implied by the following lemma of
Halpern et al. [13].

Lemma 10 ([13], Lemma 3.5). If a committee W satisfies maxc∈C ∆(W, c) < n
k then it provides

EJR.

Similarly, our verification algorithm can be used to check that a committee guarantuees (ℓ, ℓ)-
cohesive group average satisfaction at least ℓ − 1 [4]or is in the 2-core. The former case follows
since it is included in the complete statement of Lemma 3.5 in [13]. The latter follows by the proof
of Theorem 9.

A.3 Robustness

Proof of Theorem 1. By assumption, we have

|V2| ≤
s− 1

s

|V1|
k2 + 1

≤ s− 1

s

|V1|
k2 − 1

.

We can rewrite this as
s− 1

s
· |V1| ≥ (k2 − 1) · |V2|,

or, equivalently, as
1− s

sk2
· |V1| ≤

(
1

k2
− 1

)
· |V2|.

This can be further rewritten as

|V1|
sk2

+ |V2| ≤
|V1|
k2

+
|V2|
k2

.
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As V1 satisfies ∆∗
V1
(W ) < |V1|

sk2 , using the easy fact that ∆∗
V (W ) ≤ |V |, we obtain

∆∗
V1⊔V2

(W ) ≤ ∆∗
V1
(W ) + ∆∗

V2
(W ) <

|V1|
sk2

+ |V2| ≤
|V1|
k2

+
|V2|
k2

=
|V1 ∪ V2|

k2
.

To bound ∆∗
V1\V2

(W ), we define ∆V (W ) = minc∈W,c′ /∈W satV (W ∪{c′}\{c})−satV (W ). Using

the easy fact that −∆V (W ) ≤ |V |, we obtain

∆∗
V1\V2

(W ) ≤ ∆∗
V1
(W )−∆V2

(W ) <
|V1|
sk2

+ |V2| ≤
|V1|
sk2

+
s− 1

s

|V1|
k2 + 1

=
k2|V1|+ |V1|+ sk2|V1| − k2|V1|

sk2(k2 + 1)
=

sk2|V1|+ s|V1|
sk2(k2 + 1)

− s|V1| − |V1|
sk2(k2 + 1)

≤ |V1| − |V2|
k2

.

To complete the proof, it remains to observe that |V1 \ V2| = |V1| − |V2|.

A.4 Candidate Monotonicity

Given a (committee) election E = (N,C, (Ai)i∈N , k), we write Ei+X to denote the election E
where voter i additionally approves the candidates from X.

Definition 11 (Support monotonicity, [18]). A committee election rule R satisfies support mono-
tonicity if for every election instance E, i ∈ N , and candidate set X ⊂ C it holds that

1. if X ⊂ W for all W ∈ R(E) then X ⊂ W ′ for all W ′ ∈ R(Ei+X) and

2. if X ⊂ W for some W ∈ R(E) then X ⊂ W ′ for some W ′ ∈ R(Ei+X).

Rules that satisfy this axiom only for singleton sets X are said to satisfy candidate monotonicity.
We show that if arbitrary initialization of the committee is taken, then local search PAV does not
satisfy candidate monotonicity. To put it simply, a committee W may be a local maximum with
respect to its PAV-score, however if an existing voter additionally approves a ∈ W , it is possible
that local search PAV outputs a committee W ′ that does not contain a. Arguably, that means
the committee containing a was bad in the first place. We note that our example holds even if
best response is used. It is an interesting future direction to check if candidate monotonicity for
additional voters holds.

Proposition 12. 0+-ls-PAV does not satisfy candidate monotonicity with arbitrary initialization
with best response.

Proof. Consider an election with k = 5 and C = {a, b, c, d, e, f, g}. We define S(c) to be the set of
voters (”supporters”) who approve c ∈ C as the candidate point of view will be more helpful for
the purpose of this proof. Then the approvals are defined as follows:

S(a) = {a1, . . . , a4}, i ≥ 2

S(f) = {f1, f2, a1, b1, x1, x2}
S(z) = {x1, . . . , x4, z1, z2, z3}, z ∈ {b, c, d, e}

S(g) = {g1, . . . g4}

We claim that the committee W1 = {a, b, c, d, e} is a local optimum. We first show that no
swap (z, g), z ∈ W is good. Note that

sat(W1)− sat(W1 \ {z}) = 4 · 1
4
+ 3 · 1 = 4
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for z ∈ {b, c, d, e} ⊂ W1. Similarly, sat(W1)− sat(W1 \ {a}) = 4 · 1 = 4. So replacing one of these
with g whose set of supporters has size 4 and is disjoint from ∪c∈WS(c), does not change the PAV
score.
Case: Swap (b, f).
Observe that S(b)∩ S(f) = {x1, x2, b1}, so subtracting these, the loss from removing b is 2.5 from
x3, x4, b2, b3 in the case of b), the marginal gain from adding f is 2.5, 2 from f1,f2, 0.5 from a1.
So ∆(W1, b, f) = 0 and (b, f) does not increase the PAV score.
Case: Swap (z, f), where z ∈ {c, d, e}
Note that S(z) ∩ S(f), so subtracting these, the loss from removing x would be 3.5 from
x3, x4, z1, z2, z3, the gain from adding f is 3, 2 from f1,f2, 0.5 from a1 and 0.5 from b1. So
∆(W1, x, f) = −0.5 and hence (z, f) is not a good swap.
Case swap (a, f):
Since S(a) ∩ S(f) = {a1}, the loss from removing a is 3, and the gain from adding f is 3, 2 from
f1, f2 and 0.5 from x1, x2 and 0.5 from b1. So ∆(W1, z, f) = 0 and also (z, f) is not a good swap.
We conclude that W1 is a local maximum.

Now suppose a is additionally supported by x3 so S(a) = {a1, . . . , a4, x3}. Again consider
the initial committee W1 as above. We claim that (b, f), (a, g) is a sequence of good best response
swaps. Note that neither f nor g is approved by x3, their contribution to each swap score
calculated above does not change. The marginal loss suffered from removing z ∈ {b, c, d, e}
changes by − 1

5 +
1
4 as satx3

(W1) = 5 under the modified instance. Hence the previously calculated
scores all increase by 1

20 and in particular (b, f) is a (non-unique) best-response swap.

The new committee is W2 = {a, f, c, d, e}. Due to the presence of f , the loss from remov-
ing a decreases since f is also supported by a1: In particular ∆(W1, a, g) = 0 + 1 − 0.5 − 1

4 = 1
4

since the contribution of a1 changes from, −1 to −0.5 while x3 adds − 1
4 , so overall a loss of 1

4 .
Mean while g′s marginal gain remains 4, making (a, g) a good swap. To argue that it is a best
response, not that the removal of b has increased the contribution of c, d, e to the score of the
committee W2 compared to W , so since the supports are disjoint ∆(z, g) < 0 for z ∈ {c, d, e}.
Similarly ∆(b, z) < 0 since b and z are clones apart from the fact that b1 also approves f ∈ W2.
Finally, ∆(W2, a, b) = −3− 1

2 + 1
4 + 2 · 1

5 + 2 + 1
2 = −1 + 13

20 < 0. So now (a, g) is the unique best
response to W2.
We claim that the committee W3 = {c, d, e, f, g} is a local maximum. Clearly (g, a) is not
a good swap. Since ∆(W1, z, g) ≤ 0, also ∆(W2, z, a) ≤ 0, z ∈ W1 \ {a}, as otherwise
(a, g)(z, a) is a sequence of good swaps making (z, g) a good swap. Since ∆(W1, a, b) < 0
we can conclude that ∆(W2, g, b) < 0, as otherwise (a, g)(g, b) was a good sequence of swaps
for W1 and therefore (a, b) was a good swap. Furthermore, ∆(W1, z, b) = ∆(W2, z, b) ≤ 0
for z ∈ {c, d, e} since the addition of g does not affect this score due to disjoint supports,
while the removal of a does not either as S(a) ∩ S(z) = S(a) ∩ S(b) = {x3}. Finally,
∆(f, b) = −3(f1, f2, a1) + 2(b2, b3) + 2 · 1

4 (x2, x4) = −0.5 < 0. So we conclude that W3 is indeed a
local maximum for the modified instance and it does not contain a.

B Proof of Theorem 3

Having given an informal overview of the proof of Theorem 3 in Section 3, we now move on to
its formal justification. We will build up our instance in several steps, creating increasingly larger
building blocks. We now introduce a family of elections which forms the smallest building block
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of our instance.

B.1 Election E(j, k)

We now introduce a family of elections which forms the smallest building block of our instance. For
committee size k ∈ N, we will inductively (on j) construct an election F (j, k) = (N,C, (Ai)i∈N , k)
with |N | = 2j , j < k and C = Dk−1 ∪ {a, b}. We will frequently say an election E has structure
X if it is isomorphic to (Election) X. We first describe how to construct F (j, k) iteratively.

Construction 1 [Election F (j, k)] Let k ∈ N satisfying k ≥ j + 1. So in particular, since
j ≥ 1, also k ≥ 2. For j = 1, let F (j, k) = ([2], C, (Ai)i∈N , k) where C = Dk−1 ∪ {a, b},
A1 = Dk−1 ∪ {a} and A2 = Dk−2 ∪ {b}.
For j > 1 (and k ≥ j + 1), F (j, k) is constructed as follows. Consider Elections
F (j − 1, k) = (N1, C1, (Ai)i∈N1

, k) and F (j − 1, k − 1) = (N2, C2, (Ai)i∈N2
, k − 1), where

N1 ∩ N2 = ∅ (so we relabel the voters to be distinct) and where C1 = Dk−1 ∪ {a1, b1} and
C2 = Dk−2 ∪ {a2, b2}. Furthermore, we identify a1 = b2 and b1 = a2, which means that
C1 = C2 ∪ {dk−1}. Setting a := a2 and b := b2, we obtain F (j, k) = (N,C, (Ai)i∈N , k), where
N = N1 ∪N2 and C = C1.

Observe that the number of voters in F (j, k) (for any k ≥ 1) is exactly 2j ; this follows
easily from induction since the set of voters in election F (1, k) has size 2, and for j > 1, elections
F (j − 1, k) and F (j − 1, k− 1) have disjoint sets of voters each of size 2j−1. Furthermore, observe
that F (j − 1, k) can be obtained from F (j − 1, k − 1) by an approval from voter v to candidate
dl if previously l − 1 was the maximum such that v approved dℓ−1. This gives a natural bijection
between voters in F (j − 1, k − 1) and voters in F (j − 1, k).

Construction 2 [Election E(j, k)] Election E(j, k) is of the same spirit as F (j, k); We in-
troduce two new candidates x and y, and add approvals from v ∈ N1 to x and v ∈ N2 to y, and
further we delete an approval from each voter in v ∈ N1 to the dummy candidate with the largest
index in Av.
Formally, consider F (j − 1, k − 1) = (N1, C1, (Ai)i∈N1

, k) (this is in contrast to F (j − 1, k) in the
previous construction) and F (j−1, k−1) = (N2, C2, (Ai)i∈N2

, k) and define (N,C, (A′
i)i∈N1∪N2

, k)
where N = N1 ∪ N2 and C = Dk−2 ∪ {x, y} ∪ {a, b}, again identifying a1 = b2 and b1 = a2
(a1, b2 ∈ C1 and a2, b2 ∈ C2). Now A′

v = Av ∪ {x} if v ∈ N1 and A′
v = Av ∪ {y} if v ∈ N2. Let

s : N1 7→ N2 be the natural bijection (between the two subelections E(j− 1, k− 1) and E(j− 1, k)
that E(j, k) consists of). We make the following two simple observations.

Proposition 13. Let k ≥ j + 2 ≥ 3. In E(j, k), the following hold

1. Av ∩D = As(v) ∩D = Dj, 1 < j ≤ k − 1.

2. v approves a ∈ C (b ∈ C resp.) if and only if s(v) approves b ∈ C (a ∈ C resp.).

Consider the committee W = Dk−2 ∪ {x} ∪ {a}. With respect to committee W , the election
E(j, k) satisfies two important properties that we will need in the proof of Theorem ?? and we
state them in the following lemma. To make the lemma easier to use, we define δ : N×N 7→ R by

δ(j, k) =
j!∏j

i=0(k − i)
=

j∑
i=0

(−1)i+1

k − i

(
j

i

)
Lemma 14. Let j < k. Election E(j, k) satisfies that
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1. ∆(W,a, b) = δ(j, k), and

2. for every voter in v ∈ N has satv(W ) ≥ k − (j + 1).

Proof. To prove the claim for E(j, k), it suffices to prove the claim for F (j, k) with W = Dk−1∪{a}
as dk−1 is a clone (approved by the same voters) of x which it replaces while y does not affect
∆(W,a, b) since y /∈ W . We prove both claims by induction on j.

Base case: For j = 1, sat1(W ) = k and sat2(W ) = k− 2, since voter 1 approves all members of
W , while voter 2 approves everyone but dk−1 and a. So (2) holds. For (1) observe that

∆(W,a, b) = +
1

k − 1
− 1

k
=

1

k(k − 1)
= δ(1, k).

Inductive Step: Let j ≥ 1 and suppose the statements of the Lemma holds for j and arbitrary
k. Consider elections F (j, k) and F (j, k − 1) with F (j, k) = (N1, C1, (Ai)i∈N1

, k) and F (j, k −
1) = (N2, C2, (Ai)i∈N2

, k − 1). By construction, N1 ∩ N2 = ∅. Let W1 = Dk−1 ∪ {a1} and
W2 = Dk−2 ∪ {a2}. Applying the inductive hypothesis to F (j, k) with committee W1 and to
F (j, k − 1) with committee W2, we see that

∆N1
(W1, a1, b1) = δ(j, k) =

j!∏j
i=0(k − i)

and

∆N2
(W2, a2, b2) = δ(j, k − 1) =

j!∏j
i=0(k − 1− i)

.

As in the construction of F (j + 1, k) in Section B.1 we can obtain election F (j + 1, k) =
(N,C, (Ai)i∈N1∪N2 , k) with = N1 ∪N2 and a = a2 = b1 and b = b2 = a1 from elections F (j, k) and
F (j, k − 1). We observe that for W = D ∪ {a}.

∆N1
(W,a, b) = ∆N1

(W, b1, a1) = −∆N1
(W1, a1, b1) = − j!∏j

i=0(k − i)
and (3)

∆N2
(W,a, b) = ∆N2

(W2, a2, b2) =
j!∏j

i=0(k − 1− i)
(4)

We conclude that in election F (j + 1, k) for committee W ,

∆N (W,a, b) = ∆N1
(W,a, b) + ∆N2

(W,a, b) =

− j!∏j
i=0(k − i)

+
j!∏j

i=0(k − 1− i)
=

(k − (k − 1− j))j!∏j+1
i=0 (k − i)

=
(j + 1)!∏j+1
i=0 (k − i)

= δ(j + 1, k),

using Equalities 3 and 4. This concludes the proof of (1). To see (2), note that by the inductive
hypothesis in election F (j, k), voters v ∈ N1 satisfy satv(W1) ≥ k − (j + 1). To obtain W1 from
W , we replace a with b and so we can conclude that in the worst case v ∈ N1 approves one less
member of W than of W1 and so satv(W ) ≥ k−1− (j+1) = k− (j+2). Voters v ∈ N2 in election
F (j, k − 1) satisfy satv(W2) ≥ k − 1 − (j + 1) by the inductive hypothesis and since W2 ⊂ W ,
satv(W ) ≥ k − 1− (j + 1) = k − (j + 2). We conclude that therefore in election F (j + 1, k), every
v ∈ N has satisfaction satv(W ) ≥ k − (j + 2), as desired.
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Observe that by construction of the election E(j, k) exactly half of the voters approve a (and
not b) and half of the voters approve b and not a.

Corollary 15. Consider W = Dk−2 ∪ {x, a}. Then ∆(W,a, b) = δ(j, k) and (a, b) is a good swap.
If W = Dk−1 ∪ {y, b}, then ∆(W, b, a) = δ(j, k) and (b, a) is a good swap.

B.2 Level up: Election Et(j, k)

Construction 3 [Election Et(j, k)]. Let t ∈ N. Consider for each i, 1 ≤ i ≤ t,
Ei = (Ni, Ci, (Al)l∈Ni

, k) where Ei has structure E(j, k) with Ci = Dk−2 ∪ {ai, bi} ∪ {xi, yi}. For
each i, 1 ≤ i < t, we identify bi = ai+1, so that ∪t

i=1Ci = {a1, . . . , at, bt}. Furthermore, we identify
xi and yi+1 as well as yi and xi+1, where i < t and we write x = x1 = y2 = . . . = yt−1 = xt

and y = y1 = x2 = . . . = xt−1 = yt. We relabel a1, . . . , at, bt as c1, c1 . . . ct+1 and write C =
{c1, c2 . . . , ct+1, x, y}. For each v ∈ Ni we define

A′
v = Av ∪ {ci+1, . . . , ct+1 | cl ∈ Av, l > i} ∪ {c1, . . . , ci | cl ∈ A(v), l ≤ i}.

This means that from the point of view of a voter v ∈ Ni, the candidates c1, . . . ci are clones: she
either approves all or none of them, and similarly ci+1, . . . , ct+1 are clones for v. Finally, define
Et(j, k) = (N,Dk−2 ∪ C, (A′

l)l∈N , k) where N = ∪t
i=1Ni. Since each E(j, k) is an election with 2j

voters we observe the following.

Proposition 16. The number of voters in Et(j, k) is t2j.

Consider an election E with structure Et(j, k) and voters ∪t
i=1Ni as in the above construction.

Since in election Ei with structure E(j, k), each voter v in Ni approves exactly one out of ai and
bi, in Et(j, k), v also approves exactly one of ci and ci+1. So by the above construction in F t(j, k),
voter v either approves exactly c1, . . . , ci out of C or she approves exactly ci+1, . . . , ct+1 in C. In
particular, in election Et(j, k) a swap (ci, ci+1) or (ci+1, ci) only changes the satisfaction of voters
in Ni ⊂ N .
We can therefore make some useful observations on good swaps with respect to the committee
W = {d1, . . . , dk−2, z, ci} where z ∈ {x, y} in election Et(j, k).

Proposition 17. 1. If W1 = Dk−2 ∪ {x, c1}, then (c1, c2), (c2, c3), . . . , (ct, ct+1) is a sequence
of good swaps, increasing the PAV-score by

∑t
i=1 ∆(W1, ci, ci+1) = tδ(j, k).

2. If W2 = Dk−2 ∪ {y, ct+1}, then (ct+1, ct), (ct, ct−1), . . . , (c2, c1) is a sequence of good swap,
increasing the PAV-score by

∑t
i=1 ∆(W2, ci, ci+1) = tδ(j, k).

3. If W3 = Dk−2 ∪ {x, ct+1} then ∆(W3, x, y) = −tδ(j, k).

4. If W4 = Dk−2 ∪ {y, c1}, then ∆(W4, y, x) = −tδ(j, k).

Proof. Item 1 and 2 follow from by applying Corollary 15 for each i ∈ [t]: We previously ar-
gued that the swaps (ci, ci+1) or (ci+1, ci) only change the satisfaction of voters Ni ⊂ N . Fur-
thermore cj , j ̸= i, i + 1 are neither in the committee at any point of the sequence, so we may
ignore them: But restricting Et(j, k) to Ni and candidates {d1, . . . , dk−1, x, y, ci+1, xi+1} recov-
ers an election isomorphic to E(j, k) so that we can apply Corollary 15 t times to see that∑t

i=1 ∆(W1, ci, ci+1) = tδ(j, k) and
∑t

i=1 ∆(W2, ci, ci+1) = tδ(j, k). For items 3 and 4, note
that by symmetry ∆(W3, x, y) = ∆(W4, y, x) and furthermore

t∑
i=1

∆(W1, ci, ci+1) + ∆(W3, x, y) +

t∑
i=1

∆(W2, ci, ci+1) + ∆(W4, y, x) = 0,

(as by executing this sequence of swaps we end up where we started, namely with committee W1,
implying that ∆(W4, y, x) = ∆(W3, x, y) = −tδ(j, k)
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B.3 Final Election Instance E

Let k be the desired committee size. Let k1 = ⌊log k⌋ and k2 = k − k1. We will construct
an election instance E = (N,C, (Ai)i∈N , k) together with an initial committee W0 such that if
we run 0-ls-PAV on E with initial committeeW0, it makes a super-polynomial in k number of swaps.

Constructing the Instance/Election We will now show how to construct the election
E and committee W0. Informally, Election E will be the result of combining k1 elections of the
form Et(j, k2) with some modification of the approvals. More formally, let t ≥ k be even and as
small as possible and for each i, 1 ≤ i ≤ k1 consider

Ei = (Ni, Ci ∪Dk2
, (Ai)l∈Ni

, k2 + 2) with structure Et(2k1 − 2(i− 1), k2 + 2) (5)

where Ni = Ni,1 ⊔Ni,2 (partition into sibling sets) (6)

and Ci = {ci,1, . . . , ci,t+1, xi, yi}. (7)

Note that the committee size above is k2 + 2 so that the corresponding committee as discussed in
the previous section can containDk2

as well as exactly one of xi, yi and exactly one of ci,1, . . . , ci,t+1.

We define E by merging these elections in the natural way, with the caveat that we additionally
modify some approvals: Furthermore we remove all candidates xi, yi and, intuitively, instead let
the candidates in Ci+1 \ {xi+1, yi+1} take on the roles of xi and yi for voters Ni. Let i < k1. In
election E voters in Ni who approve xi in Ei instead approve of all ci+1,j where j is odd. Similarly,
in election E voters in N2 approve of ci+1,j whenever j is even if they approve yi in Ei.

Formally, let

E = (N,C, (A′
i)i∈N , k1 + k2) where N = ∪k1

i=1Ni, C = Dk2
∪ ∪k1

i=1Ci and for v ∈ Ni :

A′
v = Av ∪ {ci+1,j | j is odd , xi ∈ Av} ∪ {ci+1,j | j is even, yi ∈ Av} \ {yi, xi}

We justify why the election E has size polynomial in k. From Proposition 16, it follows that
|Ni| ≤ t2⌊log k⌋ ≤ k(k + 1) and so |N | =

∑k1

i=1 |Ni| = O(poly(k)). Furthermore, the number of
alternatives is |C| = k − 1 + k1 · t ≤ 2k log k.

B.4 Adversarial Better Response

We prove a lower bound of Ω(klog(k)) on the maximum length of a path in the directed graph
whose vertices are committees and a directed edge (W,W ′) exists whenever W ′ can be obtained
from W via a swap and W ′ has higher PAV score than W . We call it adversarial because these are
the swaps that an agent that points out improvements of the existing state but acts adversarially
might choose to show us.

Notation for intermediate Committees In the following we consider committees as or-
dered k-tuples, as it will be useful to number the committee positions. We will only consider
committees of the form

(a1, a2, . . . , ak1 , d1, d2, . . . , dk2)

where ai ∈ Ci \Dk2
, 1 ≤ i ≤ k1, so in particular every committee in the following will be of this

form. We will refer to ai as the Ci-candidate of the committee, i.e. the candidate in committee
position i, and say that the Ci-candidate has odd (resp. even) index if i is odd (resp. even).
Our super-polynomial swap sequence will exclusively contain swaps of the form (a, b) where
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a, b ∈ Ci \Dk2 for some 1 ≤ i ≤ k1. Note the committee that results from this swap sequence may
not be a valid stable point of 0+-ls-PAV, but then we may simply append any sequence of good
swaps that does result in an output of 0+-ls-PAV.

Given a committee W of the form above, we will say that voters Ni, where i < k1, are stable if

1. W contains ci,1 and ci+1,j where j is even or

2. W contains ci,t+1 and ci+1,j and j is odd.

The justification for this definition is that as a consequence of Proposition 17 in this case we have
that no swap (a, b) with a, b ∈ Ci is a good swap. For Nk1

we will say it is stable only if candidate
ck1,t is on the committee. We no define the initial committee for out swap sequence as

W0 = (c1,t+1, c2,t+1, . . . , ck1−1,t+1, ck1,1, d1, . . . dk2)

so |W0| = k1 + k2. Note that in W0, all of the voter groups Ni, i < k1 are stable and Nk1 is
unstable. We will exhibit a sequence of good swaps which results in the final committee

(c1,t+1, c2,t+1, . . . , ck1,t+1, d1, . . . , dk2
)

where all voters groups Ni are stable since t+1 is odd. We will call Ni−1 the predecessor group of
Ni. We will say a swap sequence destabilises Ni if prior to the execution it was stable and upon
the execution Ni was no longer stable.

Sequence of super-polynomial length We define the sequence of swaps

Yi = ⊕t
j=1(ci,j , ci,j+1) for 1 ≤ i ≤ k1.

Let X1
1 = Y1 and X0

1 = Y−1
1

X0
i = ⊕t

j=1(ci,t−j+2, ci,t−j+1)X
j−1 mod 2
i−1 and .

X1
i = ⊕t

j=1(ci,j , ci,j+1)X
j−1 mod 2
i−1 for i > 1

Our goal in this proof is to show that 0-ls-PAV will perform the sequence of swaps Xk1 when
run on election E with initial committee W0. That is, Xk1 is a sequence of good swaps. Once
we have shown that, since the length of |Xl

i|, l ∈ {0, 1} is t(|Xl
i−1| + 1) and |Xl

1| = t ≥ k this

implies that X1
k1

has length Ω(tk1) = Ω(klog k), giving us the desired sequence of good swaps with
super-polynomial length in k.

Theorem 18. 0+-ls-PAV with adversarial better response needs Ω(klog k) iterations in the worst
case.

Proof. To show that the sequence X1
k1

is a sequence of good swaps, we use induction i < k to show
the following. Suppose the groups of voters N1, . . . Ni−1 are stable and Ni is the group of voters
with smallest index that is not stable (so if i = 1, simply N1 is not stable). We want to prove
inductively, that in this case one of the swap sequences X1

i and X0
i is good.

To prove the claim for i we split into two cases: Consider committee W of the form

W = (c1,t+1, . . . ci−1,t+1, ci,j , ci+1,j′ , . . . ak1−1, ak1
, d1, . . . , dk2

)

where j = 1 and j′ is odd or j = t+ 1 and j′ is even. As before al ∈ Cl \Dk2
, k1 ≥ l > i+ 1. We

show that in the former case, i.e. if the Ci+1-candidate in W has odd index, then X1
i is a sequence
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of good swaps and in the latter case, i.e. if the Ci+1-candidate in W has even index, then X0
i is a

sequence of good swaps.
We prove the claim inductively on i. Suppose N1 is not stable. If c1,1 ∈ W , then since only

voters in C1 approve candidates in C1, applying Proposition 17 the swap sequence

X1
1 = (c1,1, c1,2), . . . , (c1,t−1, c1,t+1)

is a sequence of good swaps, increasing the PAV score by tδ(⌈log(k)⌉, k). If c1,t ∈ W , then by
stability also c2,j ∈ W where j is even. In this case, also by Proposition 17,

X0
1 = (c1,t+1, c1,t−1), . . . , (c1,2, c1,1)

is a sequence of good swaps.

Now suppose i > 1 and Ni is unstable and the voters N1, . . . Ni−1 are stable. We will
consider two cases, and in both we show that there is a good swap involving the Ci candidate that
destabilises the group Ni−1, allowing us to apply the inductive hypothesis.
Consider first the case where

W = (c1,t+1, . . . ci−1,t+1, ci,j , ci+1,j′ , . . . , , ak1
, d1, . . . , dk2

)

where j ≤ t and both j and j′ are odd. We prove that ci,j , ci,j+1 is a good swap, i.e.
∆(W, ci,j , ci,j+1) > 0. From Lemma 14, it follows that ∆Ni

(W, ci,j , ci,j+1) = δ(⌊log(k)⌋−2(i−1), k).
Furthermore, by construction of E, none of the groups Nj , j /∈ {i, i−1} approve either of ci,j , ci,j+1

so that ∆Nj (W, ci,j , ci,j+1) = 0. So showing that (ci,j , ci,j+1) is a good swap therefore boils down
to showing that

∆N (W, ci,j , ci,j+1) = ∆Ni−1⊔Ni
(W, ci,j , ci,j+1)

= δ(2⌊log(k)⌋ − 2(i− 1)), k2 + 2)− tδ(2⌊log(k)⌋ − 2(i− 2)), k2 + 2) > 0.

We do this in the following lemma.

Lemma 19. δ(⌊log(k)⌋ − 2(i− 1)), k2 + 2) > tδ(⌊log(k)⌋ − 2(i− 2)), k2 + 2)

Proof. By construction 2(i− 1) ≤ 2⌈log(k)⌉. Also, t ≤ k + 1 and for large enough k, we see that

t
(2⌊log k⌋ − 2(i− 2))!∏2⌊log k⌋−2(i−2)
i=0 k2 + 2− i

<
(2⌊log k⌋ − 2(i− 1))!∏2⌊log k⌋−2(i−1)
i=0 k2 + 2− i

(8)

⇐⇒ t(2⌊log k⌋ − 2(i− 2))(2⌊log k⌋ − 2i+ 1) < (k2 + 2− 2⌊log k⌋+ 2(i− 2))(k2 + 2− 2⌊log k⌋+ 2i− 3),
(9)

so since the leading term on the LHS is O(k log2 k) as t ≤ k + 1 and the leading term on the RHS
is Ω(k2), the inequality holds for sufficiently large k.

So (ci,j , ci,j+1) is a good swap and results in the committee

W = (c1,t, . . . ci−1,t, ci,j+1, ci+1,j′ , . . . ak1−1, ak1
, d1, . . . , dk2

)

which is not stable for Ni−1 as the Ci candidate has even index j+1. By the inductive hypothesis
X0

i−1 is a sequence of good swaps and the results in the committee

(c1,t, . . . , ci−2,t, ci−1,1, ci,j+1, ci+1,j′ , . . . ak1−1, ak1
, d1, . . . , dk2

).
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Now suppose the current committee is

W = (c1,t, . . . , ci−2,t, ci−1,1, ci,j , ci+1,j′ , . . . ak1−1, ak1
, d1, . . . , dk2

)

where j ≤ t is even and j′ is odd. The argument that ∆N (W, ci,j , ci,j+1) > 0 is the same as before;
∆N (W, ci,j , ci,j+1) = ∆Ni−1∪Ni

(W, ci,j , ci,j+1)
= δ(2⌊log(k)⌋ − 2(i− 1)), k2 + 2)− tδ(log(k)− 2(i− 2)), k) > 0 by Lemma 19. So we move to the
committee

W = (c1,t, . . . , ci−2,tci−1,1, ci,j+1, ci+1,j′ , . . . ak1−1, ak1 , d1, . . . , dk2).

However in this case j + 1 is odd and so by the inductive hypothesis X1
i−1 is a sequence of good

swaps and resulting in the committee

(c1,t, . . . ci−1,t, ci,j+1, ci+1,j′ , . . . ak1−1, ak1
, d1, . . . , dk2

).

Note that in the resulting committees Ni is unstable, and we can keep repeating our argument
until the Ci candidate has index t. This proves that if j = 1 (and j′ is odd), then the sequence of
swaps

X1
i = ⊕t−1

j=1(ci,j , ci,j+1)X
j−1 mod 2
i−1

is a sequence of good swaps resulting in the committee

W = (c1,t, c2,t, . . . , ci,t, ci+1,j′ , . . . , d1, . . . , dk−1).

The case that j′ is even can be shown similarly. In particular, consider the committee

W = (c1,t, . . . ci−1,t, ci,j , ci+1,j′ , . . . , , ak1
, d1, . . . , dk2

)

where j > 0 is odd and j′ is even. Again, the swap (ci,j , ci,j−1) is a good swap and destabilises the
voters Ni−1: Since by construction only voters in Ni and Ni−1 can distinguish ci,j and ci,j−1

∆(W, ci,j , ci,j−1) = ∆Ni−1⊔Ni
(W, ci,j , ci,j−1)

and so we can apply Proposition 17 and Corollary 15 to the induced instances together with Lemma
19 to conclude that ∆(W, ci,j , ci,j−1) = δ(⌊log(k)⌋−2(i−1)), k2+2)−tδ(⌊log(k)⌋−2(i−2)), k2+2) >
0. Then, by the inductive hypothesis the sequence of swaps X1

i−1 is a good sequence of swaps.
If instead, the committee initially is

W = (c1,t, . . . ci−1,1, ci,j , ci+1,j′ , . . . , , ak1
, d1, . . . , dk2

)

where j > 0 is even and j′ are even, then by an analogous argument the swap (ci,j , ci,j−1) is good
and destabilises Ni−1, so by the inductive hypothesis X0

i−1 is a sequence of good swaps.
Finally, note that Lemma 19 also applies to i = k1, meaning that if we have a committee W

with ck1,i ∈ W, i ≤ t+1 which is stable for N1, . . . , Nk1−1 the swap (ck1,j , ck1,j+1) is good. If i+1
is even, we just proved that the sequence of swaps X0

k1−1 is a sequence of good swap and if i+1 is

odd, then by the inductive hypothesis X0
k1−1 is a sequence of good swaps. This proves that indeed

X1
k1

is a sequence of good swaps for initial committee W0 and we are done.

B.5 Beyond adversarial better response: Extension to a fixed pivoting
rule

We adapt our proof of Theorem 18 to a natural non-adversarial setting: An intuitive method
to select swaps is consider some fixed ordering on the candidates C = {c1, . . . , cm}, for example

27



c1 < . . . < cm. Then to select a good swap (c′, c) we search over the candidates in C \W to find
a candidate c to add to the committee. For each such c we search over candidates in W to find c′

so that (c′, c) is a good swap. In each search over a subset of C we respect the order <. In other
words we consider a lexicographic ordering on pairs (c, c′) (where c is to be added and c′ is to be
removed from the committee) induced by the order <.

Theorem 3. 0+-ls-PAV with better response needs Ω(klog k) iterations in the worst case.

Proof. Consider election E the proof of Theorem 18 and the linear order < on the set of candidates
that satisfies

ci,j < ci,j+1, ci,j < d1 < . . . , dk2
and ci,j < ci+1,j′ .

We will slightly modify E by adding O(poly(k)) voters. In particular, these voters cannot distin-
guish between the candidates within a set Ci, so that any swaps involving two candidates in Ci are
unaffected by these new voters. Their purpose is to prevent swaps (a, b) where a ∈ Ci∪Dk2

, b ∈ Cj ,
j ̸= i from being executed by ls-PAV with the lexicographic pivoting rule. We observe the trivial
fact that c ∈ W, c′ /∈ W =⇒ ∆(W, c, c′) ≤ n = O(poly(k)), where n is the number of voters in E.
Assuming for now we have such a bound, we add voters ∪k

i=1Vi with |Vi| = ⌈2n⌉. All the voters
in Vi approve of all candidates in Ci for 1 ≤ i ≤ k1, while voters in Vi, i > k1 approve di−k1

. Let
ci ∈ Ci, cj ∈ Cj and i ̸= j and assume ci ∈ W where W is the result of the execution of some
prefix of the swap sequence X1

k1
. This means that W contains exactly one candidate from Ci,

namely ci, and exactly one candidate from Cj but not cj . We observe that

∆Vi∪Vj (W, ci, cj) = −⌈2n⌉+ 1

2
⌈2n⌉ = −⌈2n⌉

2
≤ −n,

so

∆N∪k
l=1Vl

(W, ci, cj) = ∆N (W, ci, cj) + ∆Vi∪Vj
(W, ci, cj) ≤ n− n = 0,

implying that (as a result of the presence of the additional voters) the swap (ci, cj) is not a good
swap. Similarly for i > k1,

∆N∪k
l=1Vi

(W,di, cj) = ∆N (W,di, cj) + ∆Vi∪Vj
(W,di, cj) ≤ n− n = 0,

so (di, cj) is not a good swap for W . Finally, note that | ∪k
i=1 Vi| = k⌈2n⌉, so clearly the modified

instance still has size poly(k).

We will now argue that 0+-ls-PAV will execute a swap sequence of superpolynomial length
on this modified instance. We claim 0+-ls-PAV will not execute the same swaps X1

k1

but instead shortcuts this sequence of swaps. More formally, we say that a subsequence
(a1, a2)(a2, a3), . . . , (al−2, al−1), (al−1, al) is shortcut, if in the new sequence it is replaced by the
new subsequence (a1, al). We write

(a1, a2)(a2, a3), . . . , (al−2, al−1), (al−1, al)
replace−−−−−→ (a1, al).

We will argue that this type of short cutting does not happen too much, so that even with the
better response pivoting rule the number of iterations remains superpolynomial. Moreover, the set
of intermediate committees obtained by executing any prefix of the swap sequence are a subset of
the set of intermediate committees obtained in X1

k1
.

To obtain the new sequence of swaps we shortcut subsequences in X1
k1

as follows:
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We iterate from l = k1 to l = 1 and for a subsequence X0
l of X1

k1
update the sequence via

X0
l

replace−−−−−→ (cl,t+1, cl,1)

Proceeding this way, once we replace a subsequence R = X0
i with the single swap (ci,t+1, ci,1),

R is not the subsequence of sequence of the form X0
l , l > i, as by design of the procedure X0

l

was already replaced earlier in the process. We call the sequence obtained from X1
i by replacing

sequences in this manner Z1
i . Formally,

Z1
i = ⊕t

j=1(ci,j , ci,j+1)Z
j−1 mod 2
i−1 for i > 1

where Z0
i−1 = (ci,t+1, ci,1) and Z1

1 = X1
1. To conclude our argument, we need to show the following

two items.

1. 0+-ls-PAV executes Z1
k1

on E when using better response with the fixed order < and

2. Z1
k1

has superpolynomial length.

For item 1, note first that all swaps in Z1
k1

are of the form (a, b) with a, b ∈ Ci for some i ∈ [k1].

Indeed, we previously showed that for any committee W resulting from executing a prefix of X1
k1

any swaps of the form

1. (ci, cj), ci ∈ Ci and cj ∈ Cj , i ̸= j

2. (di, cj), cj ∈ Cj , i ̸= j,

can not increase the PAV score. Moreover, we also argued that any committee W that results
from executing a prefix of Z1

k1
is also a committee resulting from executing some prefix of the swap

sequence X1
k1
, and hence the claim translates to the new swap sequence Z1

k1
. It remains to prove

that for committee W resulting from the execution of some prefix of Z1
k1
, the following holds: If

the next swap is (a, b), a, b in Ci, then no other swap (c, d) that lexicographically preceeds (a, b) is
a good swap. With this in mind, the important point to observe for any swap (a, b) in X1

k1
where

a, b ∈ Ci, then the committee W resulting from the prefix in X1
k1

preceeding (a, b) is stable for any

Nj , j < i. This stability implies that no swap (c, d), c, d ∈ Cj is good. Z1
k1

inherits this property

since it inherits the intermediate committees from X1
k1
. Furthermore, by construction of Z1

k1
, (a, b)

is either (ci,j , ci,j+1) for some j or (ci,t+1, ci,1). The latter is clearly lexicographically minimal. For
the former observe that since (ci,j , ci,j+1) is good, this implies that voters Ni are unstable with i
minimum, so either i = k1 or else ci+1,p ∈ W where p is odd. So any swap (ci,j , ci,l), l < j, is bad.
This concludes the proof of item 1.

To prove item (2), we now show that X1
k1

still has length Ω(k⌊log(k)⌋−1). Consider X1
2 (which

is not the subsequence of any X0
l , l > 2). Under the lexicographic pivoting rule, the sequence

X0
1 following a swap (c2,j , c2,j+1) where j is odd gets replaced with the single swap (c1,t+1, c1,1),

but at least half the swaps remain intact. So |Z1
2| ≥ 1

2 |X
1
2| = t2

2 . Similarly, |Z1
i+1| = | ⊕t

j=1

(ci,j , ci,j+1)Z
j−1 mod 2
i | ≥ t

2 |Z
1
i | (remember that t is even) so that |Z1

k1
| ≥ t

2

k1−2|Z1
2| ≥ t

2

k1−2 t2

2 =

Ω( t2
k1) = Ω(kk1−1) since t ≥ k.

C Further Material for Section 4

We can run the same experiments for n
k2 -ls-PAV. In the case of n

k2 -ls-PAV we can use the termi-
nation condition from Lemma 4, which can be evaluated in time O(|E|). Halpern et al. [13] use
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(a) Number of swaps n
k2 -ls-PAV considers

on AAMAS 2015 bidding data
(b) Number of swaps n

k2 -ls-PAV considers
on AAMAS 2016 bidding data

(c) Number of swaps n
k2 -ls-PAV

considers on CS bidding data 3
(d) Number of swaps n

k2 -ls-PAV
considers on CS bidding data 2

(e) Number of swaps n
k2 -ls-PAV

considers on CS bidding data 1

Figure 3: n
k2 -ls-PAV with best response and n

k2 -ls-PAV with better response on various Computer
Science conference bidding data. On the x-axis, we vary the committee size and on the y-axis we
display the number of swaps considered by n

k2 -ls-PAV.

best response, i.e., they find the candidate that has the largest marginal contribution to the com-
mittee and then remove the candidate in the committee so as to maximize the PAV score resulting
from this swap. However, one can also consider a better response version. Specifically, we define
better response as first searching for the first candidate outside the committee that increases the
PAV-score by at least n

k , then for the first candidate in the committee such that the overall swap
increases the committee score by at least n

k2 . The experiments are analogous to those in Section 4
and are displayed in Figure 3, where best response is denoted as ‘bb’ and better response is denoted
as ‘fb’. We can see that also in this case better response tends to be faster under our choice of
initialization, but the difference is much less pronounced than for 0+-ls-PAV.
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