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Abstract

We report on some control problems for Euclidean elections. We prove that
Plurality-CCAC is NP-hard for 2D-Euclidean elections. Furthermore, we demon-
strate Approval-CCDV is NP-hard for 2D-Euclidean elections, and even in the case
when all the voters share the same approval radius. At last, we provide polynomial-
time algorithms for the Approval-CCDV and Approval-CCAV problems for the 1D-
Euclidean elections. We show different proofs of these facts, using different reduction
techniques.

This is a report concerning certain control problems with respect to both approval-based
and ranking-based elections with respect to one-dimensional and two-dimensional Euclidean
domains (defined and explained below). For a review of known results and state of the art
in the field of election control and bribery, we refer the reader to the work by P. Faliszewski
and J. Röthe in [2].

1 2D-Euclidean Elections

Elections. An election is a tuple E = (C, V ), where C = {c1, . . . , cm} and V =
{v1, . . . , vn} are, respectively, the set of candidates and the set of voters. We assume that
each voter v ∈ V has a linear preference order over the set of candidates �v and we identify
each voter with her preference order. Given a voter v and a candidate c, by posv(c) we
denote the position of c in v’s preference order, with the meaning that the candidate in the
top position in v’s order has position 1. Given an election E = (C, V ), under the Plurality
Rule, each candidate c ∈ C receives a score:

score(c) =
∑
v∈V

α1(posv(c)),

where α1 : N+ → R is a function defined as follows: α1(t) = 1 if t = 1, and α1(t) = 0,
if t > 1, and the winner of the election E = (C, V ) is the candidate that gets the highest
score.

The CONSTRUCTIVE CONTROL by ADDING CANDIDATES (CCAC) for Plurality
Rule (hence denoted as Plurality-CCAC) is the following computational problem:

Given an election (C ∪ D,V ), and a candidate p ∈ C, where C is the set of registered
candidates and D is the set of unregistered candidates, and a number k, which is a maximum
number of newly added candidates

Decide if there exists a subset D′ ⊆ D of size at most k such that in the election
(C ∪D′, V ) the candidate p is the winner under the Plurality Rule.

Given an election E = (C, V ), we say that the voters have tD-Euclidean preferences
(t ∈ N) if for each agent a ∈ C ∪ V (i.e., for each candidate and each voter) there exists
a point xa = (xa,1, . . . , xa,t) in Rt such that for every voter v ∈ V and for all candidates
ci, cj ∈ C it holds that:

if

√√√√ t∑
k=1

(xci,k − xv,k)2 ≤

√√√√ t∑
k=1

(xcj ,k − xv,k)2,



Figure 1: Construction of a penny graph.

then ci �v cj ,

i.e., the closer the (ideal point of the) candidate ci is to the (ideal point of the) voter v,
the higher ci is in v’s preference order. Intuitively, the point xa describes a’s ideal position
in a t-dimensional space of opinions.

In our NP-hardness proofs for the 2D Euclidean elections we use penny graphs. A penny
graph is defined by a set of unit disks, i.e., balls of diameter one in R2, such that no two
disks overlap (but they can touch). Each disk corresponds to a vertex and two vertices are
connected by an edge if their disks touch (i.e., if their centers are exactly at distance 1). A
graph is a penny graph if it has such a representation by unit disks (the name comes from
the analogy between the disks and pennies laying on a flat surface). All penny graphs are
planar. We will need the following algorithm of Valiant.

Lemma 1. [7]. There is a polynomial-time algorithm that given a planar graph with maxi-
mum degree at most 4 computes its embedding on the plane so that its vertices are at integer
coordinates and its edges are drawn with vertical and horizontal line segments.

The following construction has been used in [4] devoted to the analysis of Winner De-
termination in Approval Multiwinner Voting Rules for Euclidean Elections.

Recall that in the Vertex Cover problem (VC) we are given a graph G = (X,E) and
a positive integer r. We ask if there exists a vertex cover of G—i.e., a subset of vertices
U ⊆ X of size at most r such that each edge {x, y} ∈ E has an end in U , i.e., at least one
of the vertices x, y is in U . It is known that the problem is NP-hard for cubic planar graphs
[3]. Given an instance (G, r) of VC, where G is a cubic planar graph, we can construct an
instance of VC for penny graphs as follows (we use the construction of Cerioli et al. [2011,
Theorem 1.2]; we repeat it here as we need its specific properties).

First, we use Lemma 1 to obtain a planar representation of G, where the vertices are
at integer coordinates and the edges consist of vertical and horizontal line segments (see
the left-hand side of Figure 1; note that in this figure the vertices have degrees at most
three, and not exactly three). Second, we multiply vertex coordinates by four, ensuring
that the lengths of the line segments forming the edges also are multiples of four. Third, for
each vertex v we put a unit disk centered at the position of v, and we replace all the line
segments forming the edges by sequences of consecutive unit disks (located on the integral
points within these lines; see the center of Figure 1). This way, each edge becomes a sequence
of 4t−1 disks, where t is an integer (possibly different for each edge). Finally, for each edge
we introduce a single local displacement, which consists of replacing the second disc that lies
on the edge with two tangent disks (it does not matter from which end we start counting
the disks); these two disks are also tangent to the disks on the two sides of the disk that we
replaced (see the right-hand side of Figure 1). Local displacements ensure that disks on the
edges come in multiples of four. All in all, we obtain a penny graph.

Let G′ be the penny graph that we constructed. Each vertex of G′ has either two or three
adjacent vertices. The vertices with two neighbors correspond to disks put on the edges and



we refer to them as intermediate. We call a vertex locally displaced if it corresponds to a
disk that was introduced as a result of a local displacement. Let L be the total number of
intermediate vertices. One can easily verify that G has a vertex cover of size r if and only
if G′ has a vertex cover of size r′ = r + L/2. We refer to the penny graphs obtained by this
construction as almost integral and we use the fact that VC is NP-hard for them.

Theorem 1. Deciding Plurality-CCAC is NP-hard, even if the voters have 2D-Euclidean
preferences.

Proof. The proof goes by reduction from the Vertex Cover problem for almost integral penny
graphs (where the graph is given by its geometric representation). Let (G, r) be an instance
of VC, where G is an almost integral penny graph and r is an integer.

Let n be the number of vertices in G and let m denote the number of edges in G. Let ε
be any positive real number from the interval (0, 1/4). We distinguish the following points
in R2 (we will use them as the ideal points of the agents):

Vertex Points: For each vertex xi, we have a vertex point located in the center of xi’s
disk,

Edge Points: For each edge e = {xi, xj} in G, we have a point in the middle of e, to
which we refer as eij (we view edges in G as straight, unit-length line segments).

Intermediate Points: For each edge {xi, xj} in G, we take the unit line segment xixj
and let qij and qji be points on the line xixj such that the distance of qij from the
vertex xi is ε and the distance of qji from the vertex xj is ε as well.

Given (G, r), we construct an instance of Plurality-CCAC for 2D-Euclidean Elections
consisting of an election E = (C ∪ D,V ) and a distinguished candidate p ∈ C, with the
following candidates and voters:

1. The set of registered candidates C consists of edge candidates and the distinguished
candidate: In each edge point eij we put one edge candidate, called cij , and we put
the distinguished candidate p in any point of the plane that makes her distant from
the graph G, i.e., we put p in any point p such that for any point x in the graph (where
we abuse notation and by ‘in the graph’ we mean that x is either a vertex or a point
lying on one of the edges of G)

d(p, x) > max({d(y, z) : y, z ∈ G}).

Together with the distinguished candidate p, there are thusm+1 registered candidates.

2. The set of unregistered candidates D consists of n candidates di (with their ideal
points) located in the vertex points xi.

3. We have the following three groups of voters

(a) The distinguished voters: exactly 13 voters located in the point p.

(b) The intermediate voters: exactly 8m voters located in the intermediate points
qij and qji - we put 4 voters in each point qij (u1ij , u

2
ij , u

3
ij , u

4
ij ,), so there are 8

intermediate voters on each edge of the graph)

(c) The edge voters: In each edge point eij we put six voters, v1ij , v
2
ij , . . . , v

6
ij .

Therefore, there are m′ = 1 +m+ n candidates and n′ = 13 + 14m voters. We let k to
be equal to r.



Now observe that in the election E′ = (C, V ), the distinguished candidate gets 13 votes,
whereas each registered edge candidate cij obtains exactly 14 votes - 8 votes from the
intermediate voters, each of which is in the distance 1/2 − ε from cij , and 6 votes from the
edge voters located at the same point as cij .

It remains to show that the reduction is correct. Let us assume that G is a “yes” instance
of VC. Take any vertex cover U of size r and define the corresponding subset D′ of the set
D of unregistered candidates to be DU = {di | xi ∈ U}, i.e., let DU consist of the vertex
candidates corresponding to the members of U .

In the election (C ∪DU , V ), the distinguished candidate p gets 13 votes again, each of
the newly added candidates di gets either:

• 8 votes from the intermediate voters u1ij , . . . , u
4
ij , u

1
it, . . . , u

4
it, in the case that the vertex

xi has 2 neighbors (xj and xt), in the graph G,

• 12 votes from the intermediate voters u1ij , . . . , u
4
ij , u

1
ti, . . . , u

4
it, u

1
il, . . . u

4
il,in the case

that the vertex xi has 3 neighbors (xj , xt, and x`) in the graph G.

Since U is a vertex cover of G, each registered edge candidate cij gets either:

• 6 votes from the edge voters located in the same edge point eij , if both of the vertices
xi, xj are members of U — in this case, both unregistered candidates di, dj get
registered or,

• 10 votes: 6 votes from the edge voters located in the same edge point eij , and 4
votes from the intermediate candidates uit or ujl, if only one of the vertices xi, xj is
a member of U — in this case, only one of the unregistered candidates di, dj , gets
registered and obtains the votes of 4 intermediate voters located within ε from her,

and since U is a vertex cover of G, these are the only possibilities - at least 4 votes have to
be taken away from each registered candidate cij by either di or dj , since at least one of the
points xi or xj has to enter the set U .

All in all, if there is a vertex cover U of size r in G, then adding r candidates from D
to the election (C, V ) results in p getting the highest Plurality score and making her the
unique winner of the election C ∪DU , V ).

For the other direction, assume that there is no size-r vertex cover of G. Then, for any
size-r set D′ ⊂ D of unregistered candidates there is at least one edge eij such that neither
xi nor xj are in the size-r set of vertices, therefore there must also be at least one registered
edge candidate cij such that she still obtains 14 votes, since neither di nor dj get registered.
Then, p cannot be even a non-unique winner of the election (C ∪ D′, V ), which ends the
proof.

We also consider control problems for other election rules. An approval-based election is
a pair E = (C, V ), where C = {c1, . . . , cm} and V = {v1, . . . , vn} are, respectively, the set
of candidates and the set of voters. For each voter v ∈ V , by A(v) we denote the approval
set of v, i.e., the set of those candidates that voter v finds acceptable. Conversely, by V (c)
we denote the set of voters who approve candidate c, i.e., V (c) = {v ∈ V | c ∈ A(v)}.

Given an approval-based election E, under the Approval Rule, each candidate c ∈ C
receives a score:

scoreE(c) = |{v ∈ V : c ∈ A(v)}|.

However, we note that whenever election E is clear from the context, we use a more concise
notation, that is, score(c). The winner of the election is the candidate that gets the highest
score.



The CONSTRUCTIVE CONTROL by DELETING VOTERS (CCDV) for Approval
Rule (hence denoted as Approval-CCDV) is the following computational problem:

Given an approval-based election (C, V ), and a candidate p ∈ C, Decide if there exists
a subset V ′ ⊆ V of size at most k such that in the election (C, V \ V ′) the candidate p is
the winner under the Approval Rule.

Given an approval-based election E = (C, V ), we say that the voters have tD-Euclidean
preferences (t ∈ N) if for each agent a ∈ C∪V (i.e., for each candidate and each voter) there
exists a point xa = (xa,1, . . . , xa,t) in Rt and a nonnegative real value ra ∈ R such that:

c ∈ A(v) ⇐⇒
√∑t

j=1(xc,j − xv,j)2 ≤ rc + rv.

For a candidate c ∈ C, rc can be seen as c’s charisma: It specifies which positions surrounding
his or her ideal one the candidate can accommodate credibly. For a voter v ∈ V , rv specifies
v’s willingness to compromise, i.e., the positions around his or her ideal one that the voter
still accepts. Two special cases of Euclidean Preferences are:

1. The voter range model (VR), where we require that all the candidates have radii equal
to zero.

2. The candidate range model (CR), where all the voters have radii equal to zero.

We refer to the full model as the voter/candidate range model (VCR).
We first prove the weak form of our theorem, giving a hardness result for the widest class

of election scenarios. We include it, since we believe the technique we employ to obtain it
is of its independent interest and might be useful to other researchers working on similar
problems.

Theorem 2. Deciding Approval-CCDV is NP-hard, even if the voters have 2D-Euclidean
preferences.

Proof. The proof goes by reduction from the Planar Exact 3-Hitting Set Problem.
Recall the Set Cover problem. Given a ground set U = {1, . . . , n}, a family F =

{F1, . . . , Fm} ⊆ P(U), and a positive integer k, decide if there exists a set J ⊆ {1, . . .m}
s.t. |J | ≤ k, and

⋃
j∈J Fj = U .

An instance of Exact Cover by 3-Sets problem, X3C is a special case of an instance
of Set-Cover. Given a ground set U with the property that |U | is divisible by 3, a family
F = {F1, . . . , Fm} ⊆ P(U) s.t. ∀i ≤ m |Fi| = 3 and k = |U |/3, the problem is to decide if
there exists a set J ⊆ {1, . . .m} s.t. |J | = k, and

⋃
j∈J Fj = U .

An instance of the Planar Exact Cover by 3-Sets (Planar-X3C) problem consists of a
bipartite planar graph G = (X ∪ S, E), where X = {x1, . . . , x3k}, S = {S1, . . . , Sm}, and
every element in S is connected to exactly 3 elements in X. The problem is to decide if there
is a subset S ′ ⊂ S of size k s.t. every element of X is connected to exactly one element of
S ′.

The following modification of Planar-X3C was used in [5]. We follow the modification
to apply it to our investigation. The modified version of Planar-X3C, the so-called Planar-
X3C∗, there are additional geometric constraints imposed on graph G from the Planar-X3C.
Namely, when embedded on the plane, the graph has the following properties:

1. For every x ∈ X, Si, Sj ∈ S s.t. x ∈ Si \ Sj it holds that d(x, Si) < d(x, Sj).

2. For every x, x′ ∈ X, Si ∈ S s.t. x ∈ Si but x′ 6∈ Si, it holds that d(x, Si) < d(x′, Si).

3. For every x ∈ X, Si, Sj ∈ S s.t. x ∈ Si ∩ Sj it holds that d(x, Si) < 2d(x, Sj).



4. For every x, x′ ∈ X, Si ∈ S s.t. x, x′ ∈ Si, it holds that d(x, Si) < 2d(x′, Si).

5. For every two elements x, x′ that belong to the same set Si ∈ S, the angle (x, Si, x) is
between π

3 and 5π
6 .

6. Every 3 elements that share a set induce a triangle, and the triangles do not overlap.

Last, but not least, recall the Exact 3-Hitting Set (X3HS) problem. Given a ground
set U with the property that |U | is divisible by 3, a family F = {F1, . . . , Fm} ⊆ P(U) s.t.
∀i ∈ [m] |Fi| = 3, and k = |U |/3, the problem is to decide if there exists a subset U ′ of U of
size k such that for each i ∈ [m] |Fi ∩ U ′| = 1.

The problem of X3HS is polynomially equivalent to X3C, and Planar-X3HS and Planar-
X3HS∗, which are analogously defined for planar graphs and planar graphs with geometric
constraints, are polynomially equivalent to Planar-X3C, and Planar-X3C∗, correspondingly.

Since Planar-X3C∗ was shown to be NP-hard, the corresponding Planar-X3HS∗ problem
is NP-hard as well.

We thus reduce from Planar-X3HS∗. Let I = (G = (X ∪ S, E), k) be an instance of
Planar-X3HS∗. Let n = 3k be the number of vertices in G, and let m denote the number of
edges in G. Without loss of generality, we may assume that m > 2k.

We distinguish the following points in R2 that, in the embedding of G on the plane,
correspond to elements if I (we will use them again as the ideal points of the agents):

Vertex Points: For each vertex xi, we have a point in the location of the vertex.

Set Points: For each set Sj in S, we have a point in the location of the set.

Given (G, k), we construct an instance of Approval-CCDV for 2D-Euclidean Elections
consisting of an election E = (C, V ) and a distinguished candidate p ∈ C, with the following
candidates and voters:

1. The set of candidates C consists of set candidates and the distinguished candidate: In
each set point Sj we put one set candidate, called cj , and we put the distinguished
candidate p in any point of the plane that makes her distant from the graph G, i.e.,
we put p in any point p such that for any point x in the graph:

d(p, x) > max({d(y, z) : y, z ∈ G}).

Together with the distinguished candidate p, there are thus m+ 1 candidates.

2. We have the following two groups of voters

(a) The distinguished voters: exactly 5 voters located in the point p.

(b) The vertex voters: exactly 6k voters located in the vertex points xi - we put 2
voters in each point xi (v1i , v

2
i ). For each i, consider the set Bi = {Sj : xi ∈ Sj},

and define vi’s approval radius as ri = maxSj∈Bi d(xi, Sj).

There are thus exactly m + 1 candidates and 6k + 5 voters. Each vertex voter vαi , for
α ∈ {1, 2} approves of exatly deg(xi) candidates. Observe that, by construction, each set
candidate Sj obtains exactly six votes: one from each point v1i and v2i , for all three points
xi with xi ∈ Sj . By the geometric constraints imposed on the instance of Planar-X3HS∗,
the preferences of the voters satisfy the Euclidean condition.

Now, let k′ = 2k. We claim that there exists a hitting set of size at most k in G if and
only if it is possible to delete at most k′ = 2k voters so that p becomes a unique winner in
the constructed election.



To see this, first assume (G, k) is a “yes” instance of Planar-X3HS∗. Thus, it is possible
to find a set H = {xi1 , . . . , xik} of k vertices in the graph G, such that for each j ∈ [m],
the set Sj contains exactly one of the members of H, i.e., ∀i ∈ [m] |Sj ∩ H| = 1. Let us
delete the 2k voters corresponding to the vertices from H, i.e., delete all the voters from the
set: V ′ = {vαi : xi ∈ H;α ∈ {1, 2}}. Since H is a hitting set for G, each set candidate loses
exactly two votes thanks to deletion of the voters from V ′. In effect, the score of each set
candidate is now equal to 4, which makes p still having score equal to 5, the unique winner
of the election.

For the other direction, assume (G, k) is a “no” instance of Planar-X3HS∗. This means
that for any k-size set H of vertices of G, there exists a set Sj ∈ S such that it has an empty
intersection with H. This implies that for any 2k-size set of voters V ′ ⊆ V , there has to be
a set candidate cj such that in the election (C, V \ V ′) he obtains at least five votes.

We prove two variants of the stronger hardness result concerning the CCDV problem
for Approval-based elections, for two versions of the control problem. In the first one, let’s
call it the unique-winner model, we are asked if it is possible to delete voters in such a
way that the designated candidate p becomes the unique winner of the election, i.e., having
strictly more votes than any other candidate. For the other one, which we refer to as the
non-unique-winner model, we ask if it is possible to make the candidate p be in the set
of (possibly tied) winners of the election. i.e., delete voters in such a way that no other
candidate has strictly more votes than p. The proofs of NP-hardness for both of versions
differ slightly, so we include the arguments for both of the theorems.

Theorem 3. Deciding Approval-CCDV is NP-hard for the non-unique winner model, even
if the voters have 2D-Euclidean preferences in the VR model and all the approval radii of
the voters are identical.

Proof. The proof goes again by reduction from the Vertex Cover problem for almost integral
penny graphs (where the graph is given by its geometric representation). Let (G, r) be an
instance of VC, where G is an almost integral penny graph and r is an integer. Let ε be any
positive real number strictly smaller than 1/4.

Let n be the number of vertices in G and let m denote the number of edges in G. Without
loss of generality, we assume that m > 2r. We distinguish the following points in R2 (we
will use them again as the ideal points of the agents):

Vertex Points: For each vertex xi, we have a vertex point located in the center of xi’s
disk,

Edge Points: For each edge e = {xi, xj} in G, we have a point in the middle of e, to
which we refer as eij (we view edges in G as straight, unit-length line segments).

Given (G, r), we construct an instance of Approval-CCDV for 2D-Euclidean Elections
consisting of an approval-based election E = (C, V ) and a distinguished candidate p ∈ C,
with the following candidates and voters:

1. The set of candidates C consists of edge candidates and the distinguished candidate: In
each edge point eij we put one edge candidate, called cij , and we put the distinguished
candidate p in any point of the plane that makes her distant from the graph G, i.e.,
we put p in any point p such that for any point x in the graph:

d(p, x) > max({d(y, z) : y, z ∈ G}).

Together with the distinguished candidate p, there are thusm+1 registered candidates.



2. We have the following two groups of voters

(a) The distinguished voter: exactly 1 voter located in the point p.

(b) The vertex voters: exactly 1 voter located in each point xi (vi) with the approval
radii equal to 1/2.

Let the approval radii of all voters be equal to 1/2.

Each voter approves of either one candidate (the voters located in the point p), two candi-
dates (the vertex voters corresponding to the vertices of G of degree equal to two), or three
candidates (the vertex voters corresponding to the vertices of G of degree equal to three).

Therefore, there are m′ = m+ 1 candidates and n′ = 1 + n voters. We let k to be equal
to r.

Now observe that in the election E′ = (C, V ), the distinguished candidate gets 1 vote,
whereas each candidate cij obtains exactly 2 votes. Namely, each cij gets one vote from
each of the vertex voters vi, and vj .

It remains to show that the reduction is correct. Let us assume that G is a “yes” instance
of VC. Take any vertex cover U of size r and define the corresponding set of voters V ′ to
be V ′ = {vi : xi ∈ U}, i.e., let V ′ consist of the vertex voters corresponding to the members
of U . Delete the voters V ′ from V and consider the election (C, V \ V ′).

Since U is a vertex cover of G, each edge is incident to at least one vertex xi from U .
Therefore, each edge candidate receives at most 1 votes. This is so, since at least two voters
corresponding to an element of U xi is incident to got deleted.

All in all, if there is a vertex cover U of size at most r in G, deleting the corresponding 2r
voters results in p getting the highest Approval score equal to 1 and becoming a non-unique
winner.

For the other direction, suppose there is no vertex cover of G of size at most r. This
means that for any size-r set U ⊆ X of vertices in G there is at least one edge eij such that
neither xi nor xj are in U . Therefore, for any size-r set V ′ ⊆ V of voters that can be deleted
there must be at least one candidate Cij such that she still obtains at least 2 votes, so p
cannot be even a non-unique winner of the election (C, V \ V ′). This completes the proof.

As announced, a modification of the proof gives also:

Theorem 4. Deciding Approval-CCDV is NP-hard for the unique winner model, even if
the voters have 2D-Euclidean preferences in the VR model and all the approval radii of the
voters are identical.

Proof. We follow exactly the construction above, and modify one detail. Instead of one dis-
tinguished voter, we put exactly 2 voters located in the point of the distinguished candidate
p, and we keep all the other voters.

The rest of the proof remains the same. If (G, r) is a “yes” instance of the Vertex Cover,
then all the edge candidates obtain at most 1 vote after deleting the voters corresponding
to the vetices of the vertex cover, and p becomes the unique winner.

If there is no vertex cover of size at most r of G, then for any choice of k = r voters
to be deleted, there will always be an edge candidate such that he or she still obtains 2
votes from the vertex candidates. Therefore, in this case, the candidate p will not become
a unique winner of the election, wchich completes the proof.



2 1D-Euclidean Elections

Definition 1. In the 1D-VCR model, every agent a is represented by their point xa and
radius ra. We define a’s range beginning and range end as:

b(a) = xa − ra,

e(a) = xa + ra.

Definition 2. Having an approval election E and two candidates a and b. Under the
approval-voting scoring rule, we say that:

scoreDelta(a, b) = score(a)− score(b).

2.1 Approval-CCDV

In this section we describe our algorithm and consider all the caveats. Let us consider
the problem of Approval-CCDV. The input consists of a VCR election E = (C, V ), a
distinguished candidate p ∈ C, and a maximum number of voter deletions k. First, we
discuss some concepts and observations, that will help us explain the algorithm. We use the
representation of an agent in a VCR election by his or hers range beginning and end (see
Definition 1). Next, for p to become a unique winner, we need to defeat every candidate
that has at least as many votes as p. We call this subset of candidates a set of opponents,
formally:

C̃ = {c ∈ C \ {p}| scoreDelta(c, p) ≥ 0}.

Another observation is that we never delete a voter who approves of p. Clearly, it would
not bring us any closer to a solution. Thus, when deleting voters, we consider only the ones
from the set:

V
′′

= {v ∈ V | p /∈ A(v)}.

Our algorithm is a greedy one. It repeats the following steps until p becomes a unique
winner, or it fails by exceeding the maximum number of voter deletions k. First, we find

Figure 2: A 1D-VCR election for the Approval-CCDV problem. The candidates are labeled
with ci (expect for the preferred candidate p), and the voters with vi. We use colors to
distinguish some key groups of agents. That is, p is in green, and voters that approve of him
or her (we never delete them) are in light-blue color. Additionally, all the initial opponents
are in red.



a candidate that we will try to defeat. Then, to achieve this goal, we decide which voters
to delete. After each iteration, we recompute approvals and the set of opponents C̃. We
describe these steps in detail below:

1. Choosing opponents. The only candidates that we consider are from the set of
opponents C̃. We pick the leftmost candidate, that is, the one with the minimal
beginning of the range, b(c) (we break ties arbitrarily). We refer to the selected

candidate as cL. This strategy together with recalculating C̃ after each iteration,
ensures that we perform only the necessary steps to find a solution.

2. Deleting voters. Having currently processed opponent cL. We consider only the
voters who approve of him or her, i.e., V̂ = {v ∈ V ′′| cL ∈ A(v)}. To defeat cL, we

need to delete scoreDelta(cL, p) + 1 voters from V̂ . If |V̂ | < scoreDelta(cL, p) + 1,
then we fail (it is impossible to delete enough voters to defeat cL). We proceed with
deleting the rightmost voters, that is, the ones with the maximum end of the range
e(v) (we break ties arbitrarily). We believe that this is an optimal strategy, because
choosing the rightmost voter maximizes the number of other opponents who might be
contained inside each voter’s range. Furthermore, it is perfectly safe to do so for two
reasons: The first one is our leftmost candidate picking strategy. At this point any
opponent to the left of cL would have already been defeated. The second reason is
related to the special case of contained candidates that we discuss in detail in Section
2.2.

We illustrate the algorithm in Example 1, which describes an election from Figure 2.

Example 1. Let us discuss an instance of the Approval-CCDV problem. We consider the
VCR election from Figure 2, the designated candidate p with 3 votes (i.e., {v6, v7, v8}) and

the set of opponents C̃ = {c2, c3, c4}. We proceed to find the smallest number of voters that
we need to delete for p to win the election. First, we choose the leftmost opponent c2. We
need to delete two voters (scoreDelta(c2, p) + 1). We pick the rightmost voters v4 and v3.
Now, an important observation is that by removing v4 we defeated the next opponent c3. We
finish this iteration, and recompute approvals and the set C̃. The only opponent left is c4,
and we just need to delete one voter. We pick v10 (in this case it would not matter if we
chose v9). We succeed, p is the winner, and in total we removed three voters, i.e, v4, v3 and
v10.

2.2 Special Case of Contained Candidates

In the VCR model it is possible that some candidates have their interval fully contained
inside another candidate’s interval (see Figure 3). If so, every voter who would approve
the smaller candidate (i.e., the internal one) would also approve the larger one (i.e., the
external one), but not necessarily the other way round. For this case, our algorithm’s
strategy of choosing rightmost voters to delete, might seem suboptimal at first glance. We
define additional terminology and symbols to help us explain why we do not have to worry
about this issue.

Definition 3. Consider an instance of the CCDV problem, with an approval election E, a
set of candidates C, and the designated candidate p. We extend the representation of the
score difference between two candidates (see Definition 2). For each candidate c ∈ C \ {p}
we represent a number of voter deletions required for p to defeat c with:

∆(c) = score(c)− score(p) + 1.



Figure 3: A 1D-VCR election with two candidates contained inside each other’s ranges. The
larger one cE (external), and the smaller one cI (internal). Furthermore, voters from the

set V̂ , are divided into two groups, i.e., V̂E = {v4, v5} a subset of voters who approve of

cE but not cI , and a subset of remaining voters V̂I = {v1, v2, v3}. Because we discuss the
CCDV problem, there is also the preferred candidate p and his voters.

Definition 4. Consider an election E, where a candidate is contained inside another one.
The two candidates are cE and cI , where the range of cI is contained in that of cE. The
voters who approve of cE or cI are in the set V̂ . We divide the voters into two groups.
First, a subset of voters who approve of cE but not cI :

V̂E = {v ∈ V̂ | cE ∈ A(v) ∧ cI /∈ A(V )},

and the remaining ones:
V̂I = V̂ \ V̂E .

We know the size of these subsets based on the approval scores of each candidate:

|V̂E | = score(cE)− score(cI),

|V̂I | = |V̂ | − |V̂E |.

Let us consider an instance of the Approval-CCDV problem, with an election that has this
special case. We keep in mind that the internal candidate cI might not even be a dangerous
candidate at all (i.e., ∆(cI) ≤ 0). For p to defeat cE we need to delete ∆(cE) voters, and to
defeat cI (independently of cE), we need to delete ∆(cI) voters (see Definition 3). Now we
show that in the process of defeating the larger candidate we always automatically defeat
the smaller one. Using simple transformations in Equation 1 we show that:

∆(cE) = score(cE)− score(p) + 1 =

|V̂E |+ score(cI)− score(p) + 1 = |V̂E |+ ∆(cI).
(1)

It means that to defeat cE we have no other choice but to delete at least ∆(cI) voters from

V̂I . The remaining |V̂E | voters can be deleted from any of the subsets (i.e., either V̂E or V̂I).
This will result in defeating both cE and cI (automatically).

Theorem 5. The 1D-VCR Approval-CCDV algorithm finds an optimal solution in polyno-
mial time.



Proof. Let S be the solution found by the algorithm and let S∗ be an optimal solution to
the problem, that is, a minimal-size set of removed voters. We consider every dangerous
candidate c ∈ C̃. They are ordered by their range’s beginnings, ascending (i.e., left to right).
We choose the first candidate in this order, for whom there is a voter vr ∈ S − S∗. When
vr was added to S, it was the rightmost voter (max e(vr)). Since S∗ is optimal, then there
must be some voter vx ∈ S∗−S, such that vx approves the first candidate and e(vx) ≤ e(vr),
because vr is the rightmost voter. Let the set S∗′ = S∗−{vx}∪{vr} be S∗ but substituting
vr for vx. We know that S∗′ is a correct solution, because the approval set of the voter vr
contains at least as many candidates as the approval set of the voter vx. Since |S∗′| = |S∗|,
and we can repeat the just-described process, we conclude that S∗′ is a minimal-size set of
removed voters.

2.3 Improving Approval-CCDV Algorithm

We can simplify our Approval-CCDV algorithm and make the special case of contained
candidates more intuitive. To do so we modify the strategy of choosing oponents in the
algorithm. We continue to pick the leftmost candidate, however, instead of choosing the one
with the minimal beginning of the range, we choose the one with minimal end of the range,
e(c). This way we make sure, that if there is a contained (internal) candidate it is going to
be processed before the external one.

2.4 Approval-CCAV

We extended the strategy from [6] for CR elections. Let us consider a problem of Approval-
CCAV. The input consists of a VCR election E = (C, V ), a set of unregistered voters U , a
distinguished candidate p, and a maximum number of voter additions k. We assume that
the election (C, V ∪ U) has the VCR property, and that every voter in U approves of p
(adding a voter who does not approve of p would be counterproductive). First, we form a
new election E′ = (C, V ∪ U), that is, we add all unregistered voters to the election. If p
in not a winner then it is impossible for him or her to become a winner (after adding all
U -voters, current score of p is the highest he or she can obtain). Now, we have to remove
k′ = max(‖U‖ − k, 0) of U -voters, so that, we do not exceed k voters addition limit when
we form E′. After we remove k′ voters, the score of p will decrease to score(p) − k′. To
preserve p’s victory we have to ensure that each candidate c ∈ C \ {p} has a score lower
than score(p) − k′. We can reformulate this problem to solving Approval-CCDV instance,
and then we can utilize the previous algorithm (Section 2.1).

Let us consider an election formed from only newly added voters E′′ = (C,U), we have
to delete exactly k′ voters in such a way that every candidate c ∈ C \ {p} has a score

lower than scoreE′(p)− k′. The Approval-CCDV algorithm considers a set of opponents C̃
(i.e., candidates with score higher or equal to p’s), and defeats them one by one. To do so
the algorithm deletes scoreDelta(c, p) + 1 voters. Now, to solve Approval-CCAV, for each
candidate c ∈ C we define

∆(c) = scoreE′(c)− (scoreE′(p)− k′) + 1,

intuitively ∆(c) is a number of U -voters who approve of c that we need to delete from E′′.
Next we simply redefine the set of opponents to

C̃ = {c ∈ C \ {p}|∆(c) ≥ 0}.

The Approval-CCDV algorithm will ensure that every candidate has at most (scoreE′(p)−
k′)−1 approvals (by deleting ∆(c) voters for each opponent), and it will not exceed k′ voter
deletions (if it deletes fewer voters, then we can choose remaining ones arbitrarily).
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cent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of
Computational Social Choice, pages 146–168. Cambridge University Press, 2016. doi: 10.
1017/CBO9781107446984.008. URL https://doi.org/10.1017/CBO9781107446984.

008.

[3] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977. ISSN 00361399. URL
http://www.jstor.org/stable/2100192.

[4] Michal Tomasz Godziszewski, Pawel Batko, Piotr Skowron, and Piotr Faliszewski. An
analysis of approval-based committee rules for 2d-euclidean elections. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on
Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pages 5448–5455. AAAI Press, 2021. URL https://ojs.aaai.org/index.

php/AAAI/article/view/16686.

[5] Yoad Lewenberg, Omer Lev, and Jeffrey S. Rosenschein. Divide and conquer: Using geo-
graphic manipulation to win district-based elections. In Kate Larson, Michael Winikoff,
Sanmay Das, and Edmund H. Durfee, editors, Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May
8-12, 2017, pages 624–632. ACM, 2017. URL http://dl.acm.org/citation.cfm?id=

3091215.

[6] K. Magiera and Piotr Faliszewski. How hard is control in single-crossing elections?
Frontiers in Artificial Intelligence and Applications, 263:579–584, 01 2014. doi: 10.
3233/978-1-61499-419-0-579.

[7] L. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Com-
puters, 30(2):135–140, February 1981. ISSN 0018-9340.

Micha l Tomasz Godziszewski
University of Warsaw
Warsaw, Poland
Email: mtgodziszewski@gmail.com

Jan Sznajd
CERN, Geneva
Kraków, Poland
Email: jan.sznajd@gmail.com


