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Abstract

The Shapley value is one of the most important normative division schemes in cooperative
game theory, satisfying basic axioms. However, some allocation according to the Shapley
value may seem unfair to humans. In this paper, we develop an automatic method that gen-
erates intuitive explanations for a Shapley-based payoff allocation, which utilizes the basic
axioms. Given any coalitional game, our method decomposes it to sub-games, for which it
is easy to generate verbal explanations, and shows that the given game is composed of the
sub-games. Since the payoff allocation for each sub-game is perceived as fair, the Shapley-
based payoff allocation for the given game should seem fair as well. We run an experiment
with 630 human participants and show that when applying our method, humans perceive the
Shapley-based payoff allocation as more fair than the Shapley-based payoff allocation without
any explanation or with explanations generated by other methods.

1 Introduction
An important research question in cooperative game theory is that of fair division: if agents form
a coalition to achieve a common goal, how should they split the revenue or costs fairly? Various
notions of fairness have been proposed in the cooperative game theory literature, like the Nash-
Harsanyi bargaining solution [11, 12] or the nucleolus [23], but the Shapley value [24] has been
termed the most important normative division scheme in cooperative game theory [26]. The Shapley
value is based on the idea that the payoff of the game should be divided such that each agent’s share is
proportional to its contribution to the payoff. Specifically, the Shapley value is the average expected
marginal contribution of one agent to all possible subsets of agents. Indeed, the Shapley value is
considered fair since it is the only payoff allocation that satisfies the following four desirable axioms:
efficiency, symmetry, null player property and additivity [13] (see Section 3 for formal definitions).
These axioms admit strong normative and positive interpretations [4]. We note that there are several
equivalent sets of axioms that characterize the Shapley value [18].

While the axioms satisfied by the Shapley value seem necessary, humans presented with an
allocation according to the Shapley value may sometimes not observe it as fair (we experimentally
support this claim in Section 7) [5, 6]. For example, consider the following game with three agents:
r, l1, and l2, which is also known as the classical “glove game”. Agents l1 and l2 have a left-glove
and agent r has a right-glove. A pair of left and right gloves is worth $12, but a single glove is worth
nothing. If all agents collaborate, the Shapley value allocates $8 to agent r and only $2 to l1 and
$2 to l2. While it seems plausible that agent r should receive a higher payoff, a right-glove alone
is worth nothing and thus, it may seem unfair that the payoff for this agent is 4-times more than
each of the other agents. However, any other allocation would violate at least one of the axioms.
It is thus desirable to increase human acceptance of the allocation according to the Shapley value,
which can be achieved by providing explanations. In this paper, we develop an automatic method
that generates intuitive explanations for a Shapley-based payoff allocation.

There are many possible ways for generating explanations for a Shapley-based payoff allocation.
Indeed, Procaccia claimed that “the central role of axioms should be to help explain the mechanism’s
outcomes to participants” [22], and this direction has been successfully applied in the field of fair
division by the Spliddit website [8]. We follow this idea, and build our explanations on top of the
four axioms of the Shapley value.



Now, the essence of our explanation is that any game is decomposed into several sub-games
that their Shapley allocation is easier to perceive as fair. Specifically, any sub-games is built such
that all the agents are either null players or equivalent to one another, and the values are either
all non-negative or all non-positive. According to the null player axiom each agent who is a null
player should receive a payoff of 0, and according to the symmetry and efficiency axioms all other
agents should equally share the total outcome, and thus the Shapley allocation in each sub-game is
intuitively fair. For example, the “glove game” can be decomposed into few sub-games; in one of the
sub-games, agent r obtains a value of $12 when collaborating with l1, but not when collaborating
with l2. When all three agents collaborate, they obtain a value of $12. In this sub-game l2 is a null
player, and agents r and l1 are equivalent. Thus, the Shapley allocation of $6 to agent r, $6 to agent
l1 and $0 to agent l2 is intuitively fair. Finally, following the additivity axiom, since the Shapley
allocation of every sub-game is intuitively fair, and the sum of the Shapley allocations in each sub-
game is equal to the Shapley allocation in the original game, then the latter is easier to perceive as
fair. We note that this process follows the arguments in the proof of the uniqueness of the Shapley
value [24].

Practically, we do not directly present the axioms to the users. Instead, our algorithm, which
we termed X-SHAP, decomposes any coalitional game into several sub-games, and automatically
generates a brief verbal explanation that accompanies each sub-game. For example, recall the sub-
game of the “glove game” that we have previously mentioned. X-SHAP presents the sub-game to
the user, and generates the following verbal explanation:

“In this scenario, l2 does not contribute anything. r and l1 are identical and always
contribute the same. Therefore, the total revenue, which is $12, should be equally di-
vided between r and l1, and thus, the fair division is r : $6, l1 : $6, l2 : $0.”

Similarly, X-SHAP presents the other sub-games along with their explanations. X-SHAP final-
izes its explanation by stressing out that since the sum of all the sub-games is the original game, the
proposed division is fair as it is the sum of all the sub-games divisions.

In order to evaluate the performance of X-SHAP, we conducted a survey with human partic-
ipants. The survey examined six coalitional games, representing a variety of scenarios. Each of
the coalitional games was presented to the participants along with its Shapley payoff allocation as
a suggestion for dividing the payoff among the agents. Then, each scenario was accompanied by
one of the following: the complete explanations of X-SHAP, the decomposition into sub-games of
X-SHAP without their verbal explanations, a heuristic decomposition into sub-games, a heuristic
verbal explanation, a fixed general explanation of the benefits of the Shapley value, and no explana-
tion at all. The participants were asked to rate the proposed allocation by indicating to what extent
they agree or disagree that it is fair. Overall, 630 different people participated in the survey, each
answering two different coalitional games with different explanation types. The explanations that
were generated by X-SHAP achieved higher fairness ratings compared to the other explanations in
all the games examined. This indicates that humans perceive the Shapley payoff allocation fairer if
they receive X-SHAP’s explanations.

To summarize, the main contribution of this paper is that it provides the first successful automatic
method that generates customized explanations of the Shapley allocation for any coalitional game.

2 Related Works
Our work is related to the field of Explainable AI (XAI) [3, 9]. In a typical XAI setting, the goal
is to explain the output of an AI system to a human. This explanation is important for allowing the
human to trust the system, better understand, and to allow transparency of the system’s output [1].
Other XAI systems are designed to provide explanations, comprehensible by humans, for legal or
ethical reasons [7]. For example, an AI system for the medical domain might be required to explain



its choice for recommending the prescription of a specific drug [14]. Indeed, most of the work on
XAI concerned the explanation of a machine learning based model. In this paper, we develop a
system for explaining a solution concept that is based on a set of axioms. Our work can be also seen
as an instance of x-MASE [16], explainable decisions in multiagent environments.

The work that is closest to ours, albeit in the context of voting, is by Cailloux and Endriss [2].
They propose a logic-based system for providing justifications for the outcome of a voting rule.
They also develop an algorithm that automatically derives a justification for any outcome of the
Borda rule. The algorithm’s main idea is to decompose the preference profile into a sequence of
sub-profiles, and use one of six axioms for providing explanations for the sub-profiles and for their
combinations. This approach is further extended by Peters et al. [21], which investigate the required
length of the sequence of explanations. Our approach for explaining the Shapley allocation is also
based on axioms, and we also decompose the given coalitional game into a set of sub-games, which
together compose an explanation for the given coalitional game.

Another work that analyzes a decomposition of a coalitional game in relation with the Shapley
value is the paper by Stern and Tettenhorst [25]. They provide a new characterization of the Shapley
value, by showing that a coalitional game can be decomposed into sub-games, one sub-game for each
agent. They prove that the Shapley value equals the value of the grand coalition in each agent’s sub-
game. Similarly, de Clippel [4] provides a new axiomatization for the Shapley value by replacing the
additivity axiom with the difference formula (DF) axiom. The DF axiom requires that each agent’s
payoff can be obtained by subtracting two functions: one function depending on the values of all
sets that the agent belongs to, and the other depending on those that she does not belong to.

Spliddit [8] is a website implementing algorithms for various division tasks (e.g., rent division),
which also explains how the outcomes satisfy certain fairness requisites. While the website enables
users to compute the Shapley value in a ride-sharing context, it provides only a general explanation
that states the benefits of the Shapley value. Our work can thus serve as an extension for Spliddit by
providing customized explanations for the Shapley value.

The Shapley value can also be applied for increasing interpretability of a machine learning
model. A common approach is SHAP [17]. For each prediction of any machine learning model,
SHAP can calculate a list of values expressing the contribution of each feature the model considers
to the prediction. It does so by simulating the behavior of the model to a coalitional game, where the
features are ”players” in the game and the predictions are the payoffs. In this setting, the problem
becomes calculating the contribution of each “player”, which can be done by calculating the average
of the marginal contributions across all permutations for each feature.

3 Definitions
A coalitional game is defined by a pair (N, v), where N is a finite set of n agents and v is a func-
tion that associates every subset of N , a coalition, with a real value that represents the collective
payoff its members can gain should they cooperate, i.e., v : 2N → R. The function v is called the
characteristic function. We assume that v always satisfies v(∅) = 0. A characteristic function v is
super-additive if for any pair of disjoint subsets S, T it holds that v(S ∪ T ) ≥ v(S) + v(T ), and it
is sub-additive if v(S ∪ T ) ≤ v(S) + v(T ).

The main assumption in cooperative game theory is that the grand coalition N , which consists
of all the agents, will form. A typical goal is then to allocate the value v(N) among the agents in
some fair way. A solution concept is a vector ϕ ∈ RN that represents the allocation to each agent
i ∈ N .

The Shapley value is a solution concept that assigns a payoff to each agent according to their
marginal contribution [24]. Formally, for each agent i,

Shi(N, v) =
∑

S⊆N |i∈S

(|S| − 1)!(n− |S|)!
n!

(v(S)− v(S \ {i})).



Shapley Value Axioms
The Shapley value is the only solution concept that simultaneously satisfies the following axioms
[13].

Definition 1 (efficiency). The sum of all agents’ payoff equals the grand coalition’s value. That is,∑
i∈N ϕi(N, v) = v(N).

Definition 2 (symmetry). Two agents i and j are said to be equivalent if for any coalition S ⊆ N
that contains neither i nor j, it holds that v(S ∪ {i}) = v(S ∪ {j}). The symmetry axiom requires
that equivalent agents receive the same payoff, i.e., ϕi(N, v) = ϕj(N, v).

Definition 3 (null player). Agent i is said to be a null player if for every coalition S ⊆ N \ {i}, it
holds that v(S ∪{i}) = v(S). The null player axiom requires that the payoff for the null player will
be 0, i.e., ϕi(N, v) = 0.

Definition 4 (additivity). Given two coalitional games (N, v) and (N,w), let v + w be a function,
v + w : 2N → R, such that for every S ⊆ N , (v + w)(S) = v(S) + w(S). The additivity
axiom requires that the allocation to every agent i ∈ N in the coalitional game (N, v +w) satisfies
ϕi(N, v + w) = ϕi(N, v) + ϕi(N,w).

4 Coalitional Games that are Easy to Explain
While automatically generating explanations for any coalitional game may seem as a complex task,
there exist coalitional games that it is possible to automatically generate compelling explanations
for them. In this subsection we define easy-to-explain (ETX) games and show how to generate
the appropriate explanations for them. In the next subsection, we use ETX games for generating
explanations for any coalitional game.

Definition 5 (clean). A coalitional game (N, v) is said to be clean, if v is super-additive and consists
of non-negative values only, or if v is sub-additive and consists of only non-positive values.

Intuitively, a clean game represents a “common” scenario. Namely, a clean game can be associ-
ated with either a monetary revenue scenario or a taxation scenario. If a coalitional game consists of
non-negative values only, then each coalition in this game may represent the collective revenue its
members gain should they cooperate. It is common to assume that in a revenue scenario a collabo-
ration is formed if all of the participating agents benefit from the collaboration. Therefore, a clean
game requires that this game should be super-additive so that the revenue of each coalition is at least
as much as the sum of any of its disjoint subsets. On the other hand, if the coalitional game consists
of non-positive values only, it can be associated with a taxation scenario, in which larger coalitions
induce higher taxes.

Definition 6 (easy-to-divide (ETD)). A coalitional game (N, v) is easy-to-divide if all the agents
that are not null-players are equivalent to each other.

The intuition behind this definition is as follows. Let (N, v) be an easy-to-divide coalitional
game, and let p be the number of null-players in (N, v). If we accept that a solution concept should
follow the efficiency, null-player and symmetry axioms, then it is easy to calculate the allocation
in an easy-to-divide game. Namely, all null-player agents receive a payoff of 0 and all of the other
agents receive a payoff of v(N)

(|N |−p) . Clearly, this is also the Shapley value for this game.

Definition 7 (easy-to-explain (ETX)). A coalitional game (N, v) is easy-to-explain if it is clean and
easy-to-divide.



Clearly, a game that is easy-to-explain represents a common scenario (since the game is clean)
and it is easy to understand its payoff allocation (since the game is easy-to-divide).

Consider the following examples, which illustrate the ETX definition.

Example 1. Let N = {a, b, c}. There are five games, (1)-(5), with the following characteristic
functions:

Coalition (1) (2) (3) (4) (5)
{a} 1 0 1 0 1
{b} 0 0 2 0 1
{c} 0 0 0 0 0
{a, b} 1 -1 4 1 -1
{a, c} 1 0 2 1 1
{b, c} 0 0 2 0 1
{a, b, c} 1 -1 5 1 -1

Games (1) and (2) are ETX. Indeed, it is natural to assume that a fair division of the revenue in
game (1) assigns the total payoff to a, since b and c are null players. Similarly, a fair division of the
tax in game (2) assigns −0.5 to the two equivalent agents a and b. Games (3) and (4) are clean but
not ETD, and game (5) is ETD but not clean. Indeed, it is not straightforward to determine a fair
division in these games.

Now, given an ETX game, it is possible to automatically generate a verbal explanation for the
game based on the fact that the game is also ETD. Specifically, we need to find the equivalent agents
and the null players. Then, it is easy to generate an explanation that points out which agents do not
contribute to the outcome and which agents have an equal contribution and thus the total outcome
should be equally divided between them. The explanation should also consider whether the game
describes revenues or taxation. For example, if agents a and c are equivalent, agent b is a null-player,
the game describes revenues, and the total revenue is $300, it is possible to generate the following
explanation:

“In this scenario, b does not contribute anything. a and c are identical and always
contribute the same. Therefore, the total revenue, which is $300, should be equally
divided between a and b, and thus, the fair division is a : $150, b : $0, c : $150.”

5 X-SHAP
In this subsection we propose the X-SHAP algorithm, which given any coalitional game, automati-
cally decomposes the coalitional game into a number of ETX sub-games. Given the ETX sub-games,
X-SHAP automatically generates verbal explanations for each of them (as described in Section 4)
and presents the payoff allocations along with the explanations to human users. It is expected that
humans will find the Shapley value payoff to be fair in each of the ETX sub-games, and thus the
Shapley value for the given game, which is composed of the sub-games, should seem fair to humans
as well.

The X-SHAP algorithm works as follows. It receives a coalitional game (N, v) as an input and
provides a set X of characteristic functions that maintains the following two properties:

1. Each coalitional game (N, x), where x ∈ X , is easy-to-explain.

2. The sum of all the characteristic functions in X equals v. That is,
∑

x∈X x = v.

Note that since the Shapley value satisfies the additivity axiom, the sum of Shapley value payoffs
assigned to each agent i ∈ N in each characteristic function in X is equal to the Shapley value payoff



for i in (N, v). That is, ∀i ∈ N,
∑

x∈X Shi(N, x) = Shi(N, v). Once the set X is generated, we
generate verbal explanations for each of the sub-games.

Algorithm 1 describes the pseudo-code for X-SHAP. The algorithm iterates over all subsets
S ⊆ N in ascending order according to |S|. It maintains a characteristic function accum that
accumulates all the characteristic functions it builds in each iteration. For each subset S whose
value in v is different from its value in accum, X-SHAP adds the following characteristic function
x to X . For each subset of N , T , that contains S, x(T ) is set to the difference between v(S) and
accum(S).

Algorithm 1: X-SHAP
Input : A coalitional game (N, v).
Output: A set of characteristic functions X , along with their verbal explanations.

1 X ← ∅
2 Let accum, x be characteristic functions on N
3 Initialize accum to 0 for any subset
4 for i← 1 to |N | do
5 for every S ⊆ N , such that |S| = i do
6 Initialize x to 0 for any subset
7 if v(S) ̸= accum(S) then
8 for every T ⊇ S do
9 x(T )← v(S)− accum(S)

10 X ← X ∪ {x}
11 accum← accum+ x

12 Generate a verbal explanation for each x ∈ X
13 return X along with the verbal explanations

The number of characteristic functions in X is at most the number of subsets in N , which is,
in fact, the size of the input. Denote M = 2|N | and n = |N |. A naive implementation of X-
SHAP is O(M2). however, by using the following approach, we can reduce the complexity to
O(M log2 3) ≈ O(M1.58). For every subset S ⊆ N we can get all its supersets T ⊇ S by adding
S to every subset of N \ S. Now, the number of subsets with i agents is

(
n
i

)
, and the number of

supersets of every such subset is 2n−i. Hence, the complexity of X-SHAP is:

n∑
i=1

(
n

i

)
2n−i =

n∑
i=1

(
n

n− i

)
2n−i =

n−1∑
k=0

(
n

k

)
2k =

n∑
k=0

(
n

k

)
2k1n−k − 2n.

According to the binomial expansion formula, (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k, and thus,

n∑
k=0

(
n

k

)
2k1n−k − 2n = (2 + 1)n −M = 3n −M = 3log2 M −M = O(M log2 3).

Consider the following example, which illustrates the output that is generated by the X-SHAP
algorithm.

Example 2. Consider the following coalitional game (N, v), in which N = {a, b, c}, and v asso-
ciates to every subset of N the following values:



{a} 0
{b} 0
{c} 100
{a, b} 300
{a, c} 200
{b, c} 100
{a, b, c} 500

The Shapley payoff allocation for each of the agents in this game is Sha(N, v) =
200, Shb(N, v) = 150 and Shc(N, v) = 150. It is not intuitive that this payoff allocation is in-
deed fair. For this input, X-SHAP outputs a set X with the following characteristic functions:

Coalition (1) (2) (3)
{a} 0 0 0
{b} 0 0 0
{c} 100 0 0
{a, b} 0 300 0
{a, c} 100 0 100
{b, c} 100 0 0
{a, b, c} 100 300 100

Each of these functions is ETX and their sum equals v, i.e.,
∑

x∈X x = v. The Shapley payoff
allocation for each of the coalitional games (N, x), where x ∈ X is:

Agent (1) (2) (3)
Sha 0 150 50
Shb 0 150 0
Shc 100 0 50

In addition, X-SHAP provides the following verbal explanation for each sub-game.

(1) “In this scenario, a and b do not contribute anything. The entire revenue is contributed by c
alone. Therefore, the total revenue, which is $100, should solely go to c, and thus, the fair
division is a : $0, b : $0, c : $100.”

(2) “In this scenario, c does not contribute anything. a and b are identical and always contribute
the same. Therefore, the total revenue, which is $300, should be equally divided between a
and b, and thus, the fair division is a : $150, b : $150, c : $0.”

(3) “In this scenario, b does not contribute anything. a and c are identical and always contribute
the same. Therefore, the total revenue, which is $100, should be equally divided between a
and c, and thus, the fair division is a : $50, b : $0, c : $50.”

Given these payoff allocations and their verbal explanations, it is quite likely that human users
will accept each of them as fair. The sum of all the payoff allocations of each agent is indeed equal
to the shapely value of the original game (N, v), i.e. ∀i ∈ N,

∑
x∈X Shi(N, x) = Shi(N, v).

X-SHAP Properties
We now prove that the set X of characteristic functions that is returned by Algorithm 1 maintains
the required properties.

Theorem 1. Each coalitional game (N, x), where x ∈ X , is easy-to-explain.



Proof. Given a characteristic function x ∈ X , it corresponds to a subset S ⊆ N . X-SHAP con-
structs x such that it assigns a non-zero value, val, for every T ⊇ S, and a zero value otherwise.
Therefore, for any agent i /∈ S and for every subset P ⊆ N \ {i}, it holds that x(P ∪ {i}) = x(P ).
That is, every agent i /∈ S is a null player. On the other hand, every agent i ∈ S is not a null player,
since x(S \ {i}) = 0 but x(S) = val ̸= 0. In addition, for every two agents i, j ∈ S and any subset
P ⊆ N \ {i, j}, it holds that x(P ∪ {i}) = x(P ∪ {j}). That is, every two agents i, j ∈ S are
equivalent. Therefore, the coalitional game (N, x) is ETD. Finally, for every pair of disjoint subsets
P1, P2, these are the possible cases:

• P1, P2 ⊉ S, and thus v(P1) = v(P2) = 0. Now, if val is positive then v(P1 ∪ P2) ≥
v(P1) + v(P2), and if val is negative then v(P1 ∪ P2) ≤ v(P1) + v(P2).

• Without loss of generality, P1 ⊇ S but P2 ⊉ S. We get that v(P1) = val but v(P2) = 0. In
addition, since P1 ∪ P2 ⊇ S, v(P1 ∪ P2) = val = v(P1) + v(P2).

Therefore, if val is positive then x is super-additive and if val is negative then x is sub-additive.
That is, (N, x) is clean, and since (N, x) is also ETD it is ETX.

Theorem 2. The sum of all the characteristic functions in X equals v. That is,
∑

x∈X x = v.

Proof. The algorithm iterates over all S ⊆ N . At the end of an iteration in which S ⊆ N is
considered, accum(S) equals v(S). This is because either accum(S) already equals v(S) or x(S)
is set to v(S) − accum(S) in line 9, and after line 11 accum(S) becomes v(S). After considering
S the algorithm does not consider any S′ ⊆ S, and thus all following iterations do not change
accum(S). Finally, according to the algorithm construction, accum holds the sum of all functions
x ∈ X when the algorithm terminates. Hence,

∑
x∈X x = accum = v.

We note that a characteristic function x ∈ X , that correspond to some coalition S ⊆ N , may
contain negative values even if v consists of only non-negative values. This situation will occur when
the sum of all the characteristic functions constructed before x is higher than v(S). We show that
any procedure that decomposes a coalitional game with a non-negative characteristic function into a
number of ETX sub-games, cannot avoid using sub-games with a negative characteristic function.

Theorem 3. There exist coalitional games with non-negative characteristic functions such that any
decomposition into ETX sub-games results in at least one sub-game with negative characteristic
function.

Proof. Consider the following coalitional game (N, v), which is the classical “glove game”, in
which N = {a, b, c} and for every S ⊆ N ,

v(S) =

{
1 S ∈ {{a, b}, {a, c}, {a, b, c}}
0 else.

Assume towards contradiction that (N, v) can be decomposed into ETX sub-games, such that none
of their characteristic functions consist of negative values. Let X be the set of these characteristic
functions, and let X+

S ⊆ X , where S ⊆ N , be the set of all the characteristic functions in X that
assign a value greater than 0 for the coalition S. That is, for each x ∈ X+

S , x(S) > 0. Since∑
x∈X x({a, b}) = v({a, b}) = 1, and every x ∈ X does not consist of negative values, it should

hold that
∑

x∈X+
{a,b}

x({a, b}) = 1. Since each x ∈ X+
{a,b} does not consist of negative values and

each sub-game is clean, then by definition x is super-additive; therefore,
∑

x∈X+
{a,b}

x({a, b, c}) ≥
1. Furthermore, since v({a, b, c}) = 1 and x is non-negative, it must hold that∑

x∈X+
{a,b}

x({a, b, c}) = 1. Similarly, for the set X+
{a,c},

∑
x∈X+

{a,c}
x({a, b, c}) = 1.



Now, for any x ∈ X+
{a,b} it must hold that x ∈ X+

{a,c}, otherwise, if there is x′ ∈ X+
{a,b} such that

x′({a, c}) = 0 then
∑

x∈X+
{a,c}

x({a, b, c}) + x′({a, b, c}) > 1. Finally, since v({a}) = v({b}) =
v({b, c}) = 0 and every x ∈ X+

{a,b} is non-negative, x({a}) = x({b}) = x({b, c}) = 0. However,
x({a, b}) > 0 and thus a and b are not null players in the sub-game (N, x), but x({c} ∪ {a}) =
x({a, c}) > 0 and x({c} ∪ {b}) = x({b, c}) = 0. That is, a and b are not equivalent and thus the
sub-game (N, x) is not ETX, which is a contradiction.

6 Experimental Design
We begin our evaluation by validating the concept of ETX. To that end, we first ran a survey on
Mechanical Turk [20]. The participants were first given an appropriate background on coalitional
games in general and instructions specific to the survey. To verify that the participants read and
understood the instructions, each participant was required to correctly answer a short quiz with four
questions in order to proceed. The participants were then presented with an ETX game in which
the agents were referred to as entities, and the values of the characteristic function were referred to
as revenues. The game was composed of three entities, marked as a, b, c, and the participants were
presented with a table of revenues of the entities when they are alone and when they collaborate
with each other. Then, each participant was presented with one of the following possible payoff
allocation: 1. The Shapley payoff allocation. 2. The inverse allocation. In this allocation, the agents
that are null players equally share the total revenue and all the other agents receive a payoff of $0.

The participants were asked to rate the proposed payoff allocation by indicating to what extent
they agree or disagree that it is fair. The participants could choose one of seven options on a Likert
scale [15], between “strongly agree” (7) to “strongly disagree” (1), with the middle being “neither
agree nor disagree” (4). Likert scale is commonly used in research and surveys to measure attitude,
providing a range of responses to a given question or statement. We used two ETX games: the first
two ETX games in the set X from Example 2 (as shown in columns (1) and (2) there). Each payoff
allocation was presented to 30 different participants for each of the two ETX games. Overall, we
had 120 participants in this initial experiment, and the reward for each participant was $0.3.

In our main experiment, we evaluated the explanation generated by X-SHAP. We ran a similar
survey on Mechanical Turk, in which the participants were presented with a coalitional game and
the Shapley payoff allocation. Then, each participant was presented with one of the following:

1. X-SHAP’s complete explanation. Participants were able to switch between all the sub-games
so that they could examine each sub-game individually. For each sub-game they were pre-
sented with its allocation according to the Shapley value with a brief verbal explanation. Fi-
nally, as shown in Figure 1, each participant was shown how the sum of all the sub-games and
their Shapley value allocation equal to the original game and its Shapley value.

2. X-SHAP’s decomposition into sub-games without their verbal explanations.

3. Sub-game decomposition: A heuristic decomposition of the game into sub-games, so that for
each subset whose value in the original game is different from 0, there is a sub-game where
this subset gets its original value and all other subsets get the value 0. The graphical user
interface was identical to that of X-SHAP’s.

4. Marginal contribution: A verbal explanation describing the largest marginal contribution of
each agent

5. Fixed: A fixed general explanation of the Shapley value that was taken from the Spliddit
website [8]; it states that the allocation is based on the marginal contribution of each agent to
each possible coalition.



6. No explanation at all.

Figure 1: Screenshot from the survey of the X-SHAP explanation.

The participants were asked to rate the proposed payoff allocation on a Likert scale, as in the
initial experiment. The participants were then presented with a different coalitional game along
with its Shapley payoff allocation accompanied by one of the above-mentioned explanation types
(different from the explanation type received for the first scenario). They were again asked to rate
the proposed payoff allocation.

Table 1 specifies the coalitional games that we used for the survey. In each of these games
(N, v), N = {a, b, c}, and all revenues are non-negative. The Shapley payoff allocation for each of
the scenarios appears in Table 2.

Table 1: The coalitional games that we used for the survey.

Coalition (1) (2) (3) (4) (5) (6)
{a} 200 0 0 0 100 300
{b} 200 100 0 0 200 0
{c} 100 200 100 0 300 500
{a, b} 400 300 300 300 200 500
{a, c} 600 400 200 300 300 100
{b, c} 600 300 100 0 300 200
{a, b, c} 800 700 500 300 350 600

We chose these coalitional games as they represent a variety of scenarios: in game (1) all the
values are greater than zero, and agents a and b are equivalent. In game (2) the value of {a} is zero
and a and b are not equivalent, but the Shapley payoff for a and b is nevertheless identical. In game
(3) the value of {a} and {b} is zero, there are no equivalent agents, but the Shapley payoff for b and
c is nevertheless identical. In game (4) the value of {a}, {b} and {c} is zero, yet only b and c are



Table 2: The Shapley payoff allocation for each of the scenarios from Table 1.

Agent (1) (2) (3) (4) (5) (6)
Sha 250 200 200 200 50 250
Shb 250 200 150 50 100 150
Shc 300 300 150 50 200 200

equivalent agents. Note also that game (4) is the glove game mentioned above. The characteristic
functions in games (1)-(4) are super-additive. This attribute is common since if two (or more) agents
collaborate, they are expected to gain more than each would have gained by herself. Yet, we also
tested two less common scenarios: In game (5) the characteristic function is sub-additive, while in
game (6) the characteristic function is neither super-additive nor sub-additive.

Each of the six explanation types was presented to 35 different participants for each of the six
scenarios. Overall, we had 630 participants in the main experiment, each answering two different
scenarios with different explanations. The reward for each participant was $0.5. In total, i.e., in both
the initial and the main experiments, the average age of the participants was 39 with 453 males and
284 females; 13 participants chose not to specify their gender. We set a requirement on Mechanical
Turk that the approval rate of the works must be at least 99% and did not require the Turkers to be
masters.

7 Results
In our initial experiment, we validate the concept of ETX with two ETX games. The average fairness
rating of the Shapley allocation was 5.76 and 5.83, which is significantly greater (p < 0.0001) than
with the inverse allocations, in which it was only 2.5 and 2.13. This validates our assumption that
Shapley allocation for ETX games are perceived as fair. We use these results as an indication of the
maximum and minimum average fairness rating that can be obtained in our setting.

In our main experiment, we evaluate the explanations generated by X-SHAP. The results, pre-
sented in Figure 2, were obtained by averaging over the ratings of the participants. As depicted by the
figure, the explanations that were generated by X-SHAP (with or without the verbal explanations)
outperformed all other explanations in terms of fairness rating in all the scenarios examined. That
is, the human participants perceive the payoff allocation fairer if they receive the explanations that
are generated by X-SHAP. Overall, the average fairness rating in scenarios in which the X-SHAP
explanation was provided is 5.32, which is very close to the average rating of the Shapley allocation
in the ETX games. We note that other explanation-types occasionally obtained low ratings, which
indicate that the Shapley allocation may be perceived as unfair.

For checking the statistical significance, we ran repeated measures ANOVA test, which considers
both the scenario and the type of explanation. The ANOVA test lead to statistically significant dif-
ferences (p < 0.01) between X-SHAP and all other types of explanations (except X-SHAP without
verbal explanations). Indeed, analyzing the outcomes of the Likert scale, and the use of paramet-
ric tests to analyze ordinal data in general, has been subject to an active and ongoing debate [19].
We thus conducted also a non-parametric test, an ordinal logistic regression analysis, which is used
to assess the difference between two methods with ordinal values, such as ratings and pain level
reporting [10]. The ordinal logistic regression analysis also demonstrated the significance of the
results.

We note that the explanations that were generated by X-SHAP for scenarios (4)-(6) yielded
a lower average of fairness rating compared to the explanations for scenarios (1)-(3). A possible
reason is that while scenarios (1)-(3) include only characteristic functions with positive values, in



Figure 2: Average rating of fairness for all explanation types in each of the six scenarios. Error bars
present the standard error. The average appears in parentheses.

scenarios (4)-(6) the explanations include characteristic functions with positive values along with
characteristic functions with negative values. The combination of positive and negative characteristic
functions in one explanation may be confusing. However, this phenomenon cannot be avoided
according to theorem 3. Nevertheless, the interaction effect between the scenario and the type of
explanation is non-statistically significant. We also note that Scenario (6) has the lowest average
fairness rating for X-SHAP. A possible reason is that its characteristic function is neither super-
additive nor sub-additive, and thus, represents a less intuitive scenario.

8 Conclusions and Future Work
The Shapley value is termed the most important normative division scheme in cooperative game the-
ory. However, in some scenarios, its payoff allocation may seem unfair to humans. We provided the
first automatic method that generates customized explanations for the Shapley value. Our approach
does not directly use psychological insights regarding the perception of fairness by humans. Instead,
we utilize known mathematical axioms, and show that they can be used for increasing the rating of
fairness of the Shapley allocation.

Recall that the number of sub-games that X-SHAP shows to the user depends on the scenario
and the number of agents. Therefore, in games with many agents, X-SHAP may be required to
present its users with hundreds of sub-games, each game consisting of all subsets of the agents. In
future work, we intend to address this issue and propose three complementary approaches.

First, instead of presenting all the coalitions of a sub-game, X-SHAP can alternatively state
that a specific coalition and any coalition containing it receive some payoff. Furthermore, instead of
presenting all sub-games, X-SHAP can present for a user only the sub-games in which she receives a
non-zero payoff. Moreover, X-SHAP can present the explanations in an interactive process, in which
a user is provided with evidences (i.e., sub-games) until she is convinced that the provided allocation
is fair. This interactive process requires presenting the stronger evidence earlier during the process;
this raises several interesting questions related to human perception of fairness. Alternatively, the
sub-games can be provided only upon requests from the user. That is, the user will ask to see all
sub-games where the payoff for a specific agent or coalition is not zero.
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