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Abstract

In the celebrated stable-matching problem, there are two sets of agents M and W,
and the members of M only have preferences over the members of W and vice versa.
It is usually assumed that each member of M and W is a single entity. However, there
are many cases in which each member of M or W represents a team that consists of
several individuals with common interests. For example, students may need to be
matched to professors for their final projects, but each project is carried out by a
team of students. Thus, the students first form teams, and the matching is between
teams of students and professors.
When a team is considered as an agent from M or W, it needs to have a preference
order that represents it. A voting rule is a natural mechanism for aggregating the
preferences of the team members into a single preference order. In this paper, we
investigate the problem of strategic voting in the context of stable-matching of teams.
Specifically, we assume that members of each team use the Borda rule for generating
the preference order of the team. Then, the Gale-Shapley algorithm is used for
finding a stable-matching, where the set M is the proposing side. We show that the
single-voter manipulation problem can be solved in polynomial time, both when the
team is from M and when it is from W. We show that the coalitional manipulation
problem is computationally hard, but it can be solved approximately both when the
team is from M and when it is from W.

1 Introduction

Matching is the process in which agents from different sets are matched with each other.
The theory of matching originated with the seminal work of Gale and Shapley [9], and since
then intensive research has been conducted in this field. Notably, the theory of matching has
also been successfully applied to many real-world applications including college admissions
and school matching [1], matching residents to hospitals [17], and kidney exchange [18]. A
very common matching problem, which is also the problem that was studied by Gale and
Shapley in their original paper, is the stable-matching problem. In this problem there are
two equally sized disjoint sets of agents, M and W , and the members of M have preferences
over only the members of W , and vice versa. The goal is to find a stable bijection (i.e.,
matching) from the agents of M to the agents of W , where the stability requirement is
that no pair of agents prefers a match with each other over their matched partners. Many
works have analyzed this setting, and they assume that each member of the sets M and W
represents a single agent. However, there are many cases in which each member of M or W
represents more than one individual [14].

For example, suppose that teams of students need to be matched with professors who will
serve as their advisors in their final projects. It is common that students form their teams
based on friendship connections and common interests and then approach the professors.
Therefore, each team is considered to be a single agent for the matching process: the pro-
fessors may have different preferences regarding which team they would like to mentor, and
the teams may have preferences regarding which professor they would like as their mentor.
Clearly, even though the team is considered to be a single agent for the matching process,
it is still composed of several students, and they may have different opinions regarding the



appropriate mentor for their team. Thus, every team needs a mechanism that aggregates
the students’ opinions and outputs a single preference order that represents the team for
the matching process, and a voting rule is a natural candidate.

Indeed, voters might benefit from reporting rankings different from their true ones, and
this problem of manipulation also exists in the context of matching. For example, suppose
that there are 4 possible professors, denoted by p1, p2, p3 and p4 and 4 teams. Now, suppose
that one of the students, denoted r, who is a member of one of the teams, prefers p1 over
p2, p2 over p3, and p3 over p4. It is possible that r will gain an (unauthorized) access to the
preferences of the professors and to the preferences of the other teams. Since the matching
algorithm is usually publicly known, r might be able to reason that p3 is matched with his
team, but if r votes strategically and misreports his preferences then p2 will be matched
with his team.

In this paper, we investigate the problem of strategic voting in the context of stable-
matching of teams. We assume that the members of each team use the Borda rule as a
social welfare function (SWF), which outputs a complete preference order. This preference
order represents the team for the matching process. The agents then use the Gale-Shapley
(GS) algorithm for finding a stable-matching. In the GS algorithm, one set of agents makes
proposals to the other set of agents, and it is assumed that M is the proposing side and W
is the proposed-to side. The proposing side and proposed-to side are commonly referred to
as men and women, respectively. Note that the GS algorithm treats the men and women
differently. Therefore, every manipulation problem in the context of stable-matching has
two variants: one in which the teams are from the men’s side, and another one in which the
teams are from the women’s side. Moreover, we analyze both manipulation by a single voter
and coalitional manipulation. In a single voter manipulation, the goal is to find a preference
order for a single manipulator such that his team will be matched by the GS algorithm with
a specific preferred agent. In the coalitional manipulation setting, there are several voters
who collude and coordinate their votes so that an agreed upon agent will be matched with
their team.

We begin by studying manipulation from the men’s side, and show that the single voter
manipulation problem can be solved in polynomial time. We then analyze the coalitional
manipulation problem, and show that the problem is computationally hard. However, we
provide a polynomial-time algorithm with the following guarantee: given a manipulable in-
stance with |R| manipulators, the algorithm finds a successful manipulation with at most
one additional manipulator. We then study manipulation from the women’s side. Manipu-
lation here is more involved, and we propose different algorithms, but with almost the same
computational complexity as in manipulation from the men’s side. That is, the single voter
manipulation problem can be solved in polynomial time, and the coalitional manipulation
problem is computationally hard. Indeed, we provide a polynomial-time algorithm with
the following guarantee: given a manipulable instance with |R| manipulators, the algorithm
finds a successful manipulation with at most two additional manipulators.

The contribution of this work is twofold. First, it provides an analysis of a voting
manipulation in the context of stable-matching of teams, a problem that has not been
investigated to date. Second, our work concerns the manipulation of Borda as an SWF,
which has scarcely been investigated.

2 Related Work

The computational analysis of voting manipulation has been vastly studied in different
settings. We refer the reader to the survey provided by Faliszewski and Procaccia [8], and
the more recent survey by Conitzer and Walsh [4]. However, most of the works on voting



manipulation analyze the problem with no actual context, and where a voting rule is used
to output one winning candidate or a set of tied winning candidates (i.e., a social choice
function). In this work, we investigate manipulation of Borda as a SWF, which outputs a
complete preference order of the candidates, and analyze it within the context of stable-
matching.

Indeed, there are a few papers that investigate the manipulation of SWFs. The first
work that directly deals with the manipulation of SWF was by Bossert and Storcken [3],
who assumed that a voter prefers one order over another if the former is closer to her own
preferences than the latter according to the Kemeny distance. Bossert and Sprumont [2]
assumed that a voter prefers one order over another if the former is strictly between the
latter and the voter’s own preferences. Built on this definition, their work studies three
classes of SWF that are not prone to manipulation (i.e., strategy-proof). Dogan and Lainé
[6] characterized the conditions to be imposed on SWFs so that if we extend the preferences
of the voters to preferences over orders in specific ways, the SWFs will not be prone to
manipulation. Our work also investigates the manipulation of SWF, but we analyze the
SWF in the specific context of stable-matching. Therefore, unlike all of the above works,
the preferences of the manipulators are well-defined and no additional assumptions are
needed. The work that is closest to ours is that of Schmerler and Hazon [19]. They assume
that a positional scoring rule is used as a SWF, and study the manipulation of the SWF in
the context of negotiation.

The strategic aspects of the GS algorithm have previously been studied in the literature.
It was first shown that reporting the true preferences is a weakly dominant strategy for men,
but women may have an incentive to misreport their preferences [7, 16, 10]. Teo et al. [22]
provided a polynomial-time algorithm for computing the optimal manipulation by a woman.
Shen et al. [21] generalized this result to manipulation by a coalition of women. For the
proposing side, Dubins and Freedman [7] investigated the strategic actions of a coalition
of men, and proved that there is no manipulation that is a strict improvement for every
member of the coalition. Huang [13] studied manipulation that is a weak improvement for
every member of a coalition of men. Hosseini et al. [11] introduced a new type of strategic
action: manipulation through an accomplice. In this manipulation, a man misreports his
preferences in behalf of a woman, and Hosseini et al. provided a polynomial time algorithm
for computing an optimal accomplice manipulation, and they further generalized this model
in [12]. All of these works consider the manipulation of the GS algorithm, while we study
the manipulation of Borda as a SWF. Indeed, the output of the SWF is used (as part of the
input) for the GS algorithm. As an alternative to the GS algorithm, Pini et al. [15] show
how voting rules which are NP-hard to manipulate can be used to build stable-matching
procedures, which are themselves NP-hard to manipulate.

3 Preliminaries

We assume that there are two equally sized disjoint sets of agents, M and W . Let k =
|M | = |W |. The members of M have preferences over only the members of W , and vice
versa. The preference of each m ∈M , denoted by �m, is a strict total order over the agents
in W . The preference profile �M is a vector (�m1

,�m2
, . . . ,�mk

). The preference order
�w and the preference profile �W are defined analogously. We will refer to the agents of M
as men and to the agents of W as women.

A matching is a mapping µ : M ∪W → M ∪W , such that µ(m) ∈ W for all m ∈ M ,
µ(w) ∈ M for all w ∈ W , and µ(m) = w if and only if µ(w) = m. A stable-matching is
a matching in which there is no blocking pair. That is, there is no man m and woman w
such that w �m µ(m) and m �w µ(w). The GS algorithm finds a stable-matching, and



it works as follows. There are multiple rounds, and each round is composed of a proposal
phase followed by a rejection phase. In a proposal phase, each unmatched man proposes to
his favorite woman from among those who have not yet rejected him (regardless of whether
the woman is already matched). In the rejection phase, each woman tentatively accepts her
favorite proposal and rejects all of the other proposals. The algorithm terminates when no
further proposals can be made. Let o(w) be the set of men that proposed to w in one of the
rounds of the GS algorithm.

In our setting, (at least) one of the agents of M (W ) is a team that runs an election for
determining its preferences. That is, there is a man m̂ (woman ŵ), which is associated with
a set of voters, V . The preference of each v ∈ V , denoted by `v, is a strict total order over
W (M). The preference profile L is a vector of the preference orders for each v ∈ V . The
voters use the Borda rule as a SWF, denoted by F , which is a mapping of the set of all
preference profiles to a single strict preference order. Specifically, in the Borda rule, each
voter v awards the candidate that is placed in the top-most position in `v a score of k − 1,
the candidate in the second-highest position in `v a score of k−2, etc. Then, for the output
of F , the candidate with the highest aggregated score is placed in the top-most position,
the candidate with the second-highest score is placed in the second-highest position, etc.
Since ties are possible, we assume that a lexicographical tie-breaking rule is used. Note that
the output of F is the preference order of m̂ (ŵ). That is, �m̂= F(L), and �ŵ is defined
analogously.

Recall that the GS algorithm finds a stable matching, given �M and �W . Given a man
m ∈M , let �M−m be the preference profile of all of the men besides m, and �W−w is defined
analogously. We consider a setting in which the input for the GS algorithm is �M−m̂,�m̂,
and �W , and thus µ(m̂) is the spouse that is the match of m̂ according to the output of
the GS algorithm. We also consider a setting in which the input for the GS algorithm is
�W−ŵ,�ŵ and �M , and thus µ(ŵ) is the spouse that is the match of ŵ according to the
output of the GS algorithm. In some circumstances, we would like to examine the output of
the GS algorithm for different possible preference orders that represent a man m ∈M . We
denote by µx(m,�) the spouse that is the match of m when the input for the GS algorithm
is �M−m, � (instead of �m), and �W . We define µx(w,�) and ox(w,�) similarly.

We study the setting in which there exists a manipulator r among the voters associated
with a man m̂ (woman ŵ), and his (her) preference order is `r. The preference order that
represents m̂ (ŵ) is thus F(L ∪ {`r}). We also study the setting in which there is a set of
R manipulators, their preference profile is LR = {`1, `2, . . . , `|R|}, and the preference order
that represents m̂ (ŵ) is thus F(L ∪ LR). For clarity purposes we slightly abuse notation,
and write µ(m̂, `r) for denoting the spouse that is the match of m̂ according to the output of
the GS algorithm, given that its input is �M−m̂,F(L∪ {`r}), and �W . We define µ(ŵ, `r),
o(ŵ, `r), µ(m̂,LR), µ(ŵ,LR) and o(ŵ,LR) similarly.

Let s(c, `v) be the score of candidate c from `v. Similarly, let s(c,L) be the total score
of candidate c from L, i.e., s(c,L) =

∑
v∈V s(c, `v). Similarly, s(c,L, `r) =

∑
v∈V s(c, `v) +

s(c, `r), and s(c,L,LR) =
∑
v∈V s(c, `v) +

∑
r∈R s(c, `r). Since we use a lexicographical

tie-breaking rule, we write that (c, `) > (c′, `′) if s(c, `) > s(c′, `′) or s(c, `) = s(c′, `′)
but c is preferred over c′ according to the lexicographical tie-breaking rule. We define
(c,L, `) > (c′,L, `′) and (c,L,LR) > (c′,L,L′R) similarly. Note that due to space constraints,
almost all of the proofs are deferred to the full version of the paper [20].

4 Men’s Side

We begin by considering the variant in which a specific voter, or a coalition of voters,
are associated with an agent m̂, and they would like to manipulate the election so that a



preferred spouse w∗ will be the match of m̂.

4.1 Single Manipulator

With a single manipulator, the Manipulation in the context of Matching from the Men’s
side (MnM-m) is defined as follows:

Definition 1 (MnM-m). We are given a man m̂, the preference profile L of the honest
voters that associate with m̂, the preference profile �M−m̂, the preference profile �W , a
specific manipulator r, and a preferred woman w∗ ∈W . We are asked whether a preference
order `r exists such that µ(m̂, `r) = w∗.

We show that MnM-m can be decided in polynomial time by Algorithm 1, which works
as follows. The algorithm begins by verifying that a preference order exists for m̂, which
makes w∗ the match of m̂. It thus iteratively builds a temporary preference order for m̂,
�x in lines 4-7. Moreover, during the iterations in lines 4-7 the algorithm identifies a set B,
which is the set of women that might prevent w∗ from being m̂’s match. Specifically, �x, is
initialized as the original preference order of m̂, �m̂. In each iteration, the algorithm finds
the woman b, which is the match of m̂ given that �x is the preference order of m̂. If b is
placed higher than w∗ in �x, then b is added to the set B, it is placed in �x immediately
below w∗, and the algorithm proceeds to the next iteration (using the updated �x).

Now, if b = µx(m̂,�x) is positioned lower than w∗ in �x, then no preference order
exists that makes w∗ the match of m̂, and the algorithm returns false. If b = w∗, then
the algorithm proceeds to build the preference order for the manipulator, `r. Clearly, w∗ is
placed in the top-most position in `r. Then, the algorithm places all the women that are
not in B in the highest available positions. Finally, the algorithm places all the women from
B in the lowest positions in `r, and they are placed in a reverse order with regard to their
order in F(L).

ALGORITHM 1: Manipulation by a single voter from the men’s side

1 B ← ∅
2 set �x to be �m̂

3 b← µx(m̂,�x)
4 while b �x w

∗ do
5 add b to B
6 move b in �x immediately below w∗

7 b← µx(m̂,�x)

8 if b 6= w∗ then
9 return false

// phase 1:

10 `r ← empty preference order
11 place w∗ in the highest position in `r
12 for each w ∈W \ (B ∪ {w∗}) do
13 place w in the next highest available position in `r

// phase 2:

14 while B 6= ∅ do
15 b← the least preferred woman from B according to F(L)
16 place b in the highest available position in `r
17 remove b from B

18 if µ(m̂, `r) = w∗ then
19 return `r
20 return false



For proving the correctness of Algorithm 1 we use the following known results:

Theorem 1 (due to [16]). In the Gale-Shapley matching procedure which always yields the
optimal stable outcome for the set of the men agents, M , truthful revelation is a dominant
strategy for all the agents in that set.

Lemma 1 (due to [13]). For man m, his preference list is composed of
(PL(m), µ(m), PR(m)), where PL(m) and PR(m) are respectively those women ranking
higher and lower than µ(m). Let A ⊆ W and let πr(A) be a random permutation from
all |A|! sets. For a subset of men S ⊆M , if every member m ∈ S submits a falsified list of
the form (πr(PL(m)), µ(m), πr(PR(m))), then µ(m) stays m’s match.

An immediate corollary of Theorem 1 is the following.

Corollary 1. Given a man m with his preference order �m, let wm = µ(m). Let �′m be a
preference order for m such that if wm �m w then wm �′m w. Then, wm is also the match
of m with the preference order �′m, i.e., µx(m,�′m) = wm.

We begin the analysis of Algorithm 1 by showing that it is possible to verify (in polyno-
mial time) whether a preference order exists for m̂, which makes w∗ the match of m̂. We
do so by showing that it is sufficient to check whether w∗ = µx(m̂,�x), where �x is the
preference order that is built by Algorithm 1 in lines 4-7.

Lemma 2. A preference order �t for m̂ exists such that w∗ = µx(m̂,�t) if and only if
w∗ = µx(m̂,�x).

That is, if Algorithm 1 returns false in line 9 then there is no preference order for m̂ that
makes w∗ the match of m̂ (and thus no manipulation is possible for r).

We now show that the set B, which is identified by the algorithm in lines 4-7, is a set of
woman that might prevent w∗ from being m̂’s match.

Lemma 3. Given a preference order �t for m̂, if there exists b ∈ B such that b �t w∗ then
µx(m̂,�t) 6= w∗.

That is, Algorithm 1 should place the women from B in the lowest position in `r and
w∗ in the highest position in `r, so that w∗ will be preferred over every woman b ∈ B in
F(L ∪ {`r}).

Theorem 2. Algorithm 1 correctly decides the MnM-m problem in polynomial time.

4.2 Coalitional Manipulation

We now study manipulation by a coalition of voters. The coalitional manipulation in the
context of matching from the men’s side is defined as follows:

Definition 2 (coalitional MnM-m). We are given a man m̂, the preference profile L of
the honest voters that associate with m̂, the preference profile �M−m̂, the preference profile
�W , a coalition of manipulators R, and a preferred woman w∗ ∈W . We are asked whether
a preference profile LR exists such that µ(m̂,LR) = w∗.

We show that the coalitional MnM-m problem is computationally hard, even with two
manipulators. The reduction is from the Permutation Sum problem (as defined by Davies
et al. [5]) that is NP -complete [24].

Definition 3 (Permutation Sum). Given q integers X1 ≤ . . . ≤ Xq where
∑q
i=1Xi =

q(q + 1), do two permutations σ and π of 1 to q exist such that σ(i) + π(i) = Xi for all
1 ≤ i ≤ q?



Theorem 3. Coalitional MnM-m is NP-Complete.

Even though coalitional MnM-m is NP -complete, it might still be possible to develop
an efficient heuristic algorithm that finds a successful coalitional manipulation. We use
Algorithm 2, which is a generalization of Algorithm 1, that works as follows. Similar to

ALGORITHM 2: Manipulation by a coalition of voters from the men’s side

1 B ← ∅
2 set �x to be �m̂

3 b← µx(m̂,�x)
4 while b �x w

∗ do
5 add b to B
6 place b in �x immediately below w∗

7 b← µx(m̂,�x)

8 if b 6= w∗ then
9 return false

10 for each r ∈ R do
11 `r ← empty preference order
12 place w∗ in the highest position in `r
13 for each w ∈W \ (B ∪ {w∗}) do
14 place w in the next highest available position in `r
15 B′ ← B
16 while B′ 6= ∅ do
17 b← the least preferred woman from B′ according to F(L ∪ LR)
18 place b in the highest available position in `r
19 remove b from B′

20 add `r to LR

21 if µ(m̂) = w∗ then
22 return LR

23 return false

Algorithm 1, Algorithm 2 identifies a set B, which is the set of women that might prevent
w∗ from being m̂’s match. In addition, it verifies that a preference order for m̂ exists, which
makes w∗ the match of m̂. Then, Algorithm 2 proceeds to build the preference order of
every manipulator r ∈ R similarly to how Algorithm 1 builds the preference order for the
single manipulator. Indeed, Algorithm 2 builds the preference order of each manipulator r
in turn, and the order in which the women in B are placed depends on their order according
to F(L ∪ LR). That is, the order in which the woman in B are placed in each `r is not the
same for each r, since LR is updated in each iteration. We refer to each of the iterations
in Lines 10-20 as a stage of the algorithm. We now show that Algorithm 2 is an efficient
heuristic that also has a theoretical guarantee. Specifically, the algorithm is guaranteed
to find a coalitional manipulation in many instances, and we characterize the instances in
which it may fail. Formally,

Theorem 4. Given an instance of coalitional MnM-m,

1. If there is no preference profile making w∗ the match of m̂, then Algorithm 2 will
return false.

2. If a preference profile making w∗ the match of m̂ exists, then for the same instance with
one additional manipulator, Algorithm 2 will return a preference profile that makes w∗

the match of m̂.



That is, Algorithm 2 will succeed in any given instance such that the same instance
but with one less manipulator is manipulable. Thus, it can be viewed as a 1-additive
approximation algorithm (this approximate sense was introduced by Zuckerman et al. [25]
when analyzing Borda as a social choice function (SCF)).

In order to prove Theorem 4 we use the following definitions. Let D0 = {d0}, where
(d0,L) > (w,L), and d0, w ∈ B. For each s = 1, 2, ..., let Ds ⊆ B be Ds = Ds−1∪{d ∈ B : d
was ranked above some d′ ∈ Ds−1 according to F(L,LR) in some stage l, 1 ≤ l ≤ |R|}.
Now, let D =

⋃
0≤sDs. Note that ∀s Ds 6= Ds−1, and s does not necessarily equal |R|. Let

s`(w) be the score of woman w in F(L,LR) after stage `.
The proof of Theorem 4 relies on Lemmata 4-8, and its general intuition is as follows.

Consider the women in D: we show that if there exists a manipulation, then Algorithm 2 is
able to determine the votes in LR such that the average score of the women in D is lower
than the score of woman w∗. Moreover, a successful manipulation requires that w∗ will
be ranked higher than any women in D, and thus the algorithm may use one additional
manipulator.

We begin with a basic lemma that clarifies where Algorithm 2 places the women of D.

Lemma 4. The women in D are placed in each stage l, 1 ≤ l ≤ |R| in the |D| lowest
positions.

We now show the relation between the score of w∗ and the average score of the women
in D, when there are |R| − 1 manipulators. In essence, the lemma characterizes the settings
in which Algorithm 2 returns false and no manipulation exists.

Lemma 5. Let q(D) be the average score of women in D after |R| − 1 stages. That is,
q(D) = 1

|D|
∑
d∈D s|R|−1(d). If s|R|−1(w∗) < q(D) and there are |R| − 1 manipulators, then

there is no manipulation that makes w∗ the match of m̂, and the algorithm will return false.

The following lemma shows the relation between the score of w∗ and the maximum score
of a woman in D, when there are |R| manipulators. In essence, the lemma characterizes the
settings in which Algorithm 2 finds a successful manipulation.

Lemma 6. Assume that a preference order for m̂ exists, which makes w∗ the match of m̂.
If maxd∈D{s|R|(d)} < s|R|(w

∗) and there are |R| manipulators, then there is a manipulation
that makes w∗ the match of m̂, and Algorithm 2 will find such a manipulation.

Finally, we show that the highest score of a woman from D is not much higher than the
average score of the women in D. We thus first show that the scores of the women in D are
dense, as captured by the following definition.

Definition 4 (due to [25]). A finite non-empty set of integers A is called 1-dense if, when
sorting the set in a non-increasing order a1 ≥ a2 ≥ · · · ≥ ai (such that {a1, . . . , ai} = A),
∀j, 1 ≤ j ≤ i− 1, aj+1 ≥ aj − 1 holds.

Lemma 7. Let D be as before. Then the set {s|R|−1(d) : d ∈ D} is 1-dense.

Lemma 8. maxd∈D{s|R|(d)} ≤ q(D) + |D| − 1.

Now we can prove the theorem.

Proof of Theorem 4. Clearly, if Algorithm 2 returns a preference profile LR, then it is a
successful manipulation that will make w∗ the match of m̂. Suppose that a preference
profile exists that makes w∗ the match of m̂ with |R| − 1 manipulators. By Lemma 8,
maxd∈D{s|R|(d)} ≤ q(D)+|D|−1. By Lemma 5, q(D)+|D|−1 ≤ s|R|−1(w∗)+|D|−1. Since
|D| ≤ k−1, s|R|−1(w∗)+|D|−1 < s|R|−1(w∗)+k−1 = s|R|(w

∗). Overall, maxd∈D{s|R|(d)} <
s|R|(w

∗), and by Lemma 6 the algorithm will find a preference profile that will make w∗ the
match of m̂ with |R| manipulators.



5 Women’s Side

We now consider the second variant, in which a specific voter, or a coalition of voters, are
associated with an agent ŵ, and they would like to manipulate the election so that a preferred
spouse m∗ will be the match of ŵ. This variant is more involved, since manipulation of the
GS algorithm is also possible by a single woman or a coalition of women. Indeed, there
are notable differences between manipulation from the women’s side and manipulation from
the men’s side. First, the manipulators from the women’s side need to ensure that two
men are positioned “relatively” high. In addition, the set B, which is the set of agents that
are placed in low positions, is defined differently, and it is not built iteratively. Finally, in
manipulation from the women’s side, it is not always possible to place all the agents from
B in the lowest positions.

5.1 Single Manipulator

With a single manipulator, the Manipulation in the context of Matching from the Women’s
side (MnM-w) is defined as follows:

Definition 5 (MnM-w). We are given a woman ŵ, the preference profile L of the honest
voters that associate with ŵ, the preference profile �M , the preference profile �W−ŵ, a
specific manipulator r, and a preferred man m∗ ∈ M . We are asked whether a preference
order `r exists such that µ(ŵ, `r) = m∗.

ALGORITHM 3: Manipulation by a single voter from the women’s side

1 for each mnd ∈M \ {m∗} do
// phase 1:

2 `r ← empty preference order
3 place mnd in the highest position in `r
4 place m∗ in the second-highest position in `r
5 if (mnd,L, `r) > (m∗,L, `r) then
6 place m∗ in the highest position in `r
7 place mnd in `r in the highest position such that (m∗,L, `r) > (mnd,L, `r), if such

position exists
8 if no such position exists then
9 continue to the next iteration

10 if µ(ŵ, `r) 6= m∗ or mnd /∈ o(ŵ, `r) then
11 continue to the next iteration

// phase 2:

12 for each m /∈ o(ŵ, `r) do
13 place m in the highest available position in `r

// phase 3:

14 Bnd ← o(ŵ, `r) \ {m∗,mnd}
15 while Bnd 6= ∅ do
16 b← the least preferred man from Bnd according to F(L)
17 place b in the highest available position in `r

18 remove b from Bnd

19 if µ(ŵ, `r) = m∗ then
20 return `r
21 return false

Clearly, if µ(ŵ) = m∗ then finding a preference order `r such that µ(ŵ, `r) = m∗ is
trivial. We thus henceforth assume that µ(ŵ) 6= m∗. The MnM-w problem can be decided



in polynomial-time, using Algorithm 3. The algorithm tries to identify a man mnd ∈ M ,
and to place him and m∗ in `r such that mnd is ranked in F(L ∪ {`r}) as high as possible
while m∗ is still preferred over mnd according to F(L ∪ {`r}). In addition, the algorithm
ensures (at the end of phase 1) that µ(ŵ, `r) = m∗ and mnd ∈ o(ŵ, `r). Note that we
compute F(L ∪ {`r}) even though `r is not a complete preference order, since we assume
that all the men that are not in `r get a score of 0 from `r. If phase 1 is successful (i.e.,
µ(ŵ, `r) = m∗ and mnd ∈ o(ŵ, `r)), the algorithm proceeds to phase 2, where it fills the
preference order `r by placing all the men that are not in o(ŵ, `r) in the highest available
positions. Finally, in phase 3, the algorithm places all the men from o(ŵ, `r) (except for m∗

and mnd that are already placed in `r) in the lowest positions in `r, and they are placed
in a reverse order with regard to their order in F(L). If µ(ŵ, `r) = m∗ then we are done;
otherwise, the algorithm iterates and considers another man.

For proving the correctness of Algorithm 3 we need the following result.

Lemma 9 (Swapping lemma, due to [23]). Given a woman w ∈W , let �′w be a preference
order that is derived from �w by swapping the positions of an adjacent pair of men (mi,mj)
and making no other changes. Then,

1. if mi /∈ o(w) or mj /∈ o(w), then µx(w,�′w) = µ(w).

2. if both mi and mj are not one of the two most preferred proposals among o(w) according
to �w, then µx(w,�′w) = µ(w).

3. if mi is the second preferred proposal among o(w) according to �w and mj is the third
preferred proposal among o(w) according to �w, then µx(w,�′w) ∈ {µ(w),mj}.

4. if mi = µ(w) and mj is the second preferred proposal among o(w) according to �w,
then the second preferred proposal among o(w) according to �′w is mi or mj.

If we use the swapping lemma sequentially, we get the following corollary.

Corollary 2. Given a woman w ∈W , let �′w be a preference order for w such that �w 6=�′w.
Let m∗ ∈M be the most preferred man among o(w) according to �w. That is, µ(w) = m∗.
Let mnd ∈ M be the second most preferred man among o(w) according to �w. If mnd

is the most preferred man among o(w) \ {m∗} according to �′w, and m∗ �′w mnd, then
o(w) = ox(w,�′w) and thus µx(w,�′w) = µ(w) = m∗.

Corollary 2 is the basis of our algorithm. Intuitively, the manipulator needs to ensure
that m∗ is among the set of proposals o(ŵ, `r), and that m∗ is the most preferred men,
according to F(L ∪ {`r}), among this set. That is, m∗ = µ(ŵ, `r). Thus, the algorithm
searches for a man, denoted by mnd, that serves as the second-best proposal. If such a
man exists, then, according to Corollary 2, the position of every man m ∈ o(ŵ, `r) does not
change ŵ’s match (which is currently m∗) if mnd is preferred over m in F(L ∪ {`r}). In
addition, the position of every man m /∈ o(ŵ, `r) does not change ŵ’s match at all.

Theorem 5. Algorithm 3 correctly decides the MnM-w problem in polynomial time.

5.2 Coalitional Manipulation

Finally, We study manipulation by a coalition of voters from the women’s side.

Definition 6 (coalitional MnM-w). We are given a woman ŵ, the preference profile L of
the honest voters that associate with ŵ, the preference profile �M , the preference profile
�W−ŵ, a coalition of manipulators R, and a preferred man m∗ ∈M . We are asked whether
a preference profile LR exists such that µ(ŵ,LR) = m∗.



Similar to the single manipulator setting, if µ(ŵ) = m∗ then finding a preference profile
LR such that µ(ŵ, `R) = m∗ is trivial. We thus henceforth assume that µ(ŵ) 6= m∗. The
coalitional MnM-w problem is computationally hard, even with two manipulators, and we
again reduce from the Permutation Sum problem (Definition 3).

Theorem 6. Coalitional MnM-w is NP-Complete.

Similar to the coalitional MnM-m, the coalitional MnM-w also has an efficient heuristic
algorithm that finds a successful manipulation. We use Algorithm 4, which works as
follows. Similar to Algorithm 3, Algorithm 4 needs to identify a man mnd ∈ M , such

ALGORITHM 4: Manipulation by a coalition of voters from the women’s side

1 for each mnd ∈M \ {m∗} do
// phase 1:

2 gap← s(mnd,L)− s(m∗,L)
3 if mnd is preferred over m∗ according to the lexicographical tie breaking rule then
4 gap = gap+ 1
5 if |R| · (k − 1) < gap then
6 continue to the next iteration

7 LR ← (`1, ..., `|R|) where each preference order is an empty one
8 if |R| ≥ gap then
9 place m∗ in the highest position and mnd in the second highest position, in

max(gap+ d(|R| − gap)/2e, 0) preference orders of LR

10 place m∗ in the second highest position and mnd in the highest position in all of the
other preference orders of LR

11 else
12 place m∗ in the highest position in each `r ∈ LR

13 smnd ← |R| · (k − 1)− gap
14 place mnd in (smnd mod |R|) manipulators such that it gets a score of d smnd

|R| e from
each manipulator

15 place mnd in the other manipulators such that it gets a score of b smnd
|R| c from each

manipulator
16 if µ(ŵ,LR) 6= m∗ or mnd /∈ o(ŵ,LR) then
17 continue to the next iteration

// phase 2:

18 Bnd ← o(ŵ,LR) \ {m∗,mnd}
19 for each r ∈ R do

20 for each m ∈M \ (Bnd ∪ {m∗,mnd}) do
21 place m in the next highest available position in `r

22 B′ ← Bnd

23 while B′ 6= ∅ do
24 b← the least preferred man from B′ according to F(L ∪ LR)
25 place b at the highest available position in `r
26 remove b from B′

27 if µ(ŵ,LR) = m∗ then
28 return LR

29 return false

that mnd is ranked in F(L ∪ LR) as high as possible while m∗ is still preferred over mnd

according to F(L ∪ LR). In addition, the algorithm needs to ensure that µ(ŵ,LR) = m∗

and mnd ∈ o(ŵ,LR), which is done at the end of phase 1. Indeed, finding such a man
mnd ∈M , and placing him and m∗ in every `r ∈ LR is not trivial. The algorithm considers
every m ∈ M \ {m∗}, and computes the difference between the score of m from L and the



score of m∗ from L. Clearly, if this gap is too big, m cannot be mnd (line 5). Otherwise,
there are two possible cases. If there are many manipulators, specifically, |R| ≥ gap, then
the algorithm places m∗ and m in the two highest positions in every `r (lines 9-10). On
the other hand, if |R| < gap, then the algorithm places m∗ in the highest position in every
`r. The algorithm places m such that he gets a total score of |R| · (k − 1) − gap from the
manipulators. Moreover, the algorithm tries to place m in almost the same position in
every `r. If phase 1 is successful, the algorithm proceeds to fill the preference orders of LR
iteratively in phase 2. The algorithm first defines the set Bnd, which consists of all the men
from o(ŵ,LR), except for m∗ and mnd. Note that at the beginning of phase 2, in which Bnd

is defined, only m∗ and m are positioned in every `r ∈ LR. Then, in every `r ∈ LR, the
algorithm places all the men that are not in Bnd (except for m∗ and mnd that are already
placed in LR) in the highest available positions. The algorithm places all the men from Bnd

in the lowest positions in `r, and they are placed in a reverse order with regard to their
current order in F(L ∪ LR). Note that since LR is updated in every iteration, the order in
which the men from Bnd are placed in each `r is not the same for each r. If µ(ŵ, `R) = m∗

then we are done; otherwise, the algorithm iterates and considers another man. We refer to
each of the iterations in Lines 19-26 as a stage of the algorithm.

We now show that Algorithm 4 will succeed in any given instance such that the same
instance but with two less manipulators is manipulable. That is, unlike the coalitional
MnM-m, the coalitional MnM-w admits a 2-additive approximation algorithm. Formally,

Theorem 7. Given an instance of coalitional MnM-w,

1. If there is no preference profile making m∗ the match of ŵ exists, then Algorithm 4
will return false.

2. If a preference profile making m∗ the match of ŵ exists, then for the same instance
with two additional manipulators, Algorithm 4 will return a preference profile that
makes m∗ the match of ŵ.

6 Conclusion and Future Work

In this paper, we initiate the analysis of strategic voting in the context of stable matching
of teams. Specifically, we assume that the Borda rule is used as a SWF, which outputs
an order over the agents that is used as an input in the GS algorithm. Note that in the
standard model of manipulation of Borda, the goal is that a specific candidate will be the
winner. In our setting, the algorithms need also to ensure that specific candidates will not
be ranked too high. Similarly, in the standard model of manipulation of the GS algorithm,
the goal is simply to achieve a more preferred match. In our setting, the algorithms for
manipulation need also to ensure that a less preferred spouse is matched to a specific agent.
Therefore, even though the manipulation of the Borda rule and the manipulation of the GS
algorithm have already been studied, our analysis of the manipulation of Borda rule in the
context of GS stable matching provides a better understanding of both algorithms.

Interestingly, our algorithms for the single manipulator settings are quite powerful. They
provide exact solutions for the single manipulator case, and their generalizations provide
approximate solutions to the coalitional manipulation settings, both when the manipulators
are on the men’s side or on the women’s side.

For future work, we would like to extend our analysis and study additional voting rules
as SWFs. It is also worth studying the destructive manipulation objective. In addition,
it will be interesting to examine a new type of manipulation, which is only relevant in our
setting, in which there is a coalition of manipulators, but every manipulator is associated
with a different agent.
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