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Abstract

We consider spatial voting where candidates are located in the Euclidean d-
dimensional space and each voter ranks candidates based on their distance from
the voter’s ideal point. We explore the case where information about the location
of voters’ ideal points is incomplete: for each dimension, we are given an interval
of possible values. We study the computational complexity of finding the possible
and necessary winners for positional scoring rules. Our results show that we re-
tain tractable cases of the classic model where voters have partial-order preferences.
Moreover, we show that there are positional scoring rules under which the possible-
winner problem is intractable for partial orders, but tractable in the one-dimension
spatial setting (while intractable in higher fixed number of dimensions).

1 Introduction

In the spatial model of voting [11, 19], both candidates and voters are associated with
points in the d-dimensional Euclidean space Rd. It is assumed that the locations of voters
correspond to the voters’ “ideal points” and that each voter’s preferences over the candidates
can be inferred from the Euclidean distance between the candidate and the voter’s ideal
point. For example, the location of candidates/voters in Rd could reflect the stance or
opinion of the candidate/voter regarding d different issues that are relevant for the election.
In the social choice literature, preferences with this structure are referred to as (d-)Euclidean
preferences [5, 10].

We consider a setting in which only partial information about the preferences of voters
is available. In this setting, the exact preference order of a voter is unknown, but assumed
to come from a known space of possible preference orders. Each combination of possible
preference orders is a possible voting profile that may result in different sets of winners
(given a fixed voting rule). Natural computational tasks that arise in such scenarios ask
about the possible winners (who win in at least one possible profile) and the necessary
winners (who win in every possible profile) [16]. A prominent manifestation of this idea is
the seminal framework of Konczak and Lang [15], in which voter preferences are specified
as partial orders, and a possible profile is obtained by extending each partial order into a
total preference order. A thorough picture of the complexity of the possible and necessary
winner problems has been established in a series of studies [2, 3, 24]. For example, under
every positional scoring rule in the setting of partial orders, the necessary winners can be
found in polynomial time, yet it is NP-complete to decide whether a candidate is a possible
winner (assuming a regularity condition that the rule is “pure”), except for the tractable
cases of the plurality and veto rules.

In this work, we study the complexity of the computational problems PW⟨d⟩ and NW⟨d⟩,
where the goal is to find the possible and necessary winners, respectively, when we have in-
complete information about voters’ ideal points in a spatial voting model with d dimensions.
More precisely, instead of ideal points of the voters, we are given—for each voter and each
dimension—an interval of possible values for the voter’s ideal point. Hence, each voter is
associated with a space of possible ideal points. Different points from this space may induce
different preference orders over the candidates (whose locations are assumed to be known



Problem plurality & veto two-valued rules other positional scoring rules

NW⟨d⟩ P [Thm. 2] P [Thm. 2] P [Thm. 2]

PW⟨1⟩ P [Thm. 6] P [Thm. 3]
P for weighted veto [Thm. 4] and
for F (k, t) whenever k > t [Thm. 5]

PW⟨d⟩ P [Thm. 6]
NP-complete for k-approval
for all d ≥ 2, k ≥ 3 [Thm. 7]

?

Table 1: Complexity results for computing necessary and possible winners.

precisely). Hence, we get a mechanism for defining a space of possible total orders that
is different1 from the classical partial-order setting [15]. We refer to our setting as partial
spatial voting.

We focus on the class of positional scoring rules and compare the computational com-
plexity of possible and necessary winner problems to the classic model with partial orders.
In particular, we are interested in the following questions: (1) Is the necessary-winner prob-
lem still tractable for all positional scoring rules? (2) Is the possible-winner problem still
tractable for plurality and veto? (3) Are there positional scoring rules where the possible-
winner problem is tractable for partial spatial voting but not for partial orders? We answer
all three questions positively. Our results are summarized in Table 1.

Related work. Spatial voting in one dimension is intuitively similar to assuming single-
peaked preferences [4, 1], where the order should behave like a specific location in a line of
positions. However, there are considerable differences, since single-peaked preferences do
not impose any restrictions on the comparison between candidates on different sides of the
voter. Walsh [22] showed hardness results in the setting where preferences are assumed to
be single-peaked (but not necessarily 1-Euclidean) for STV and polynomial time results for
Condorcet rules.

Bogomolnaia and Laslier [5] have shown that every (complete) preference profile can be
represented in the spatial model, by choosing the dimension d to be sufficiently large. Given
a preference profile, it can be efficiently checked whether the profile can be represented as
a one-dimensional spatial model [6, 14, 9]. However, for higher dimensions, the problem is
computationally intractable [20].

The problems we consider here relate also to control and manipulation problems that
involve reasoning about a space of possibilities of profiles. Lu et al. [17] study control where
a party can select a subset of issues to focus on. Estornell et al. [12] study manipulation
of spatial voting where the issues are weighted and a malicious attacker can change the
weights. Wu et al. [23] study manipulation where the adversary can change the position of
a candidate by some quantity.

Organization. The remainder of the paper is organized as follows. After preliminary
definitions in Section 2, we define partial spatial voting in Section 3. In Section 4 and
Section 5 we study the problems of necessary winners and possible winners, respectively.
We conclude in Section 6. Some of the proofs (omitted for lack of space) can be found in
the Appendix.

1In Section 3, we show that the two mechanisms are indeed incomparable.
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Figure 1: An example of a 2-dimenional spatial voting profile. There are three candidates
C = {c1, c2, c3} and a single voter v. The ranking of v is (c2, c1, c3).

2 Preliminaries

We first give preliminary concepts and notations that we use throughout the paper. For a
natural number n, we let [n] denote the set {1, . . . , n}.

2.1 Voting Profiles

Let C = {c1, . . . , cm} be a set of candidates and V = {v1, . . . , vn} a set of voters. We assume
that m = |C| ≥ 2. A ranking profile R = (R1, . . . , Rn) consists of n linear orders on C,
such that for each i ∈ [n], Ri represents the preference order of voter vi.

One way of obtaining a ranking profile is through spatial voting [11]. We associate each
candidate with a d-dimensional vector corresponding to its positions (opinions) on issues,
denoted as ci = ⟨ci,1, . . . , ci,d⟩ ∈ Rd. A spatial voting profile T = (T1, . . . , Tn) consists
of a vector Tj = ⟨Tj,1, . . . , Tj,d⟩ for each voter vj , which represents its positions on the
issues. Given a spatial profile T, we can construct a ranking profile RT = (RT1

, . . . , RTn
)

where each voter vj ranks candidates in C according to their Euclidean distance from vj ,
||Tj − ci||2. The closest candidate is ranked first, and the farthest is ranked in position m in
vj ’s preferences. We break ties by a linear order on the candidates, which is given as part of
the input for each voter. An example of a spatial voting profile and its associated ranking
profile is illustrated in Figure 1. Throughout the paper, we identify voters with their ideal
points in Rd, and we use the terms dimension and issue interchangeably.

2.2 Voting Rules

A voting rule is a function that maps a ranking profile to a nonempty set of winners. In
this paper, we focus on positional scoring rules.

Formally, a positional scoring rule r is a series {s⃗m}m≥2 of m-dimensional score vectors
s⃗m = (s⃗m(1), . . . , s⃗m(m)) of natural numbers, where s⃗m(1) ≥ · · · ≥ s⃗m(m) and s⃗m(1) >
s⃗m(m). Some examples of positional scoring rules include the plurality rule (1, 0, . . . , 0), the
k-approval rule (1, . . . , 1, 0, . . . , 0) that begins with k ones, the veto rule (1, . . . , 1, 0), the
k-veto rule that ends with k zeros, and the Borda rule (m− 1,m− 2, . . . , 0).

Given a ranking profile R = (R1, . . . , Rn) and a positional scoring rule r, the score
sr(Ri, c) that the voter vi contributes to the candidate c is s⃗m(j), where j is the position of
c in Ri. The score of c in R is sr(R, c) =

∑n
i=1 sr(Ri, c), which we may denote as s(R, c) if

r is clear from context. A candidate c is a winner if sr(R, c) ≥ sr(R, c′) for all candidates
c′. The set r(R) contains all winners.

A positional scoring rule r is two-valued if there are only two values in each scoring vector
s⃗m. For two-valued rules, we assume without loss of generality that s⃗m consists only of zeros
and ones, and hence is of the form s⃗m = (1, . . . , 1, 0, . . . , 0). We can therefore denote any
two-valued rule as k-approval, where k = k(m) may depend on the number m of candidates.
For example, (m− 2)-approval is the same as 2-veto.

For k-approval, we can naturally convert a ranking profile R = (R1, . . . , Rn) to an
approval profile A = (A1, . . . , An), where each Ai ⊆ C consists of the first k candidates in



order Ri. In other words, Ai denotes the candidates voter vi “approves.” The score s(Ai, c)
that the voter vi contributes to the candidate c is one if c ∈ Ai and zero otherwise. The
winners then are the candidates with the maximal score s(A, c) =

∑n
i=1 s(Ai, c).

We make some conventional assumptions about the positional scoring rule r. We assume
that s⃗m(j) is computable in polynomial time in m, and the scores in each s⃗m are co-prime
(i.e., their greatest common divisor is one). A positional scoring rule is called pure if every
s⃗m+1 can be obtained from s⃗m by inserting a score value at some position.

2.3 Incomplete Profiles

Throughout this paper, we study problems where voter preferences are incompletely specified
and we are interested in “possible” and “necessary” outcomes. Abstractly speaking, an
incomplete voting profile is simply a set R̃ of ranking profiles. Given R̃, a candidate c is
called a possible winner w.r.t. a voting rule r if c is a winner in at least one profile R ∈ R̃,
that is, c ∈

⋃
R∈R̃ r(R), and a necessary winner w.r.t. r if c is a winner in every profile

R ∈ R̃, that is, c ∈
⋂

R∈R̃ r(R). It follows from this definition that necessary winners are
always possible winners. In contrast to possible winners, necessary winners may not exist.

Incomplete profiles give rise to challenging computational problems since they are repre-
sented in a compact manner. For example, in the seminal work of Konczak and Lang [15],
an incomplete profile is represented by using a partial order Pi instead of a ranking Ri for
every voter vi. The set of all possible ranking profiles is then defined as the set of profiles
that can be obtained by completing every partial order into a total order. In the next
section, we discuss another compact representation.

3 The Model of Partial Spatial Voting

We introduce a model of incompleteness for spatial voting. A partial spatial profile P =
(P1, . . . , Pn) consists of a vector of pairs Pj = ⟨(ℓj,1, uj,1), . . . , (ℓj,d, uj,d)⟩ for every voter vj .
Each pair (ℓj,i, uj,i) represents a lower bound and an upper bound on the position of voter
vj regarding issue i. Note that in this model, the positions of the voters are incompletely
specified, but the positions of the candidates are all known precisely. A spatial voting profile
T = (T1, . . . , Tn) is a spatial completion of P if for every voter vj and issue i ∈ [d] we have
Tj,i ∈ [ℓj,i, uj,i]. We can then compute a ranking profile RT as before.

We call a ranking profile R a ranking completion of P if there exists a spatial completion
T such that R = RT. For k-approval, it will be useful to convert the ranking profile to
an approval profile, as described in Section 2. We call an approval profile A an approval
completion of P if there exists a spatial profile T such that RT is converted to A.

Given a partial spatial profile P, a candidate c is a necessary winner if c is a winner
in every ranking completion R of P, and c is a possible winner if there exists a ranking
completion R of P where c is a winner. For a positional scoring rule r and dimension d, we
consider the decision problems where we are given a set C of d-dimensional candidates, a
partial profile P and a candidate c ∈ C, and need to determine whether c is a possible or a
necessary winner. We denote these two problems by PW⟨d⟩ and NW⟨d⟩, respectively. Note
that the dimension is fixed and not part of the input of the problem.

3.1 Partial Order Profiles

The seminal work of Konczak and Lang [15] introduced the model of partial order profiles
and the problems of possible and necessary winners. In this model, a partial order profile
P = (P1, . . . , Pn) consists of n partial orders (i.e., reflexive, anti-symmetric and transitive



relations) on the set C of candidates, where each Pi represents the incomplete preferences
of the voter vi. A ranking completion of P is a ranking profile R = (R1, . . . , Rn) where each
Ri is a completion (i.e., linear extension) of the partial order Pi.

The possible and necessary winners of a partial order profile P are defined in the same
manner as for spatial order profiles. The decision problems associated with a positional
scoring rule r of determining, given a partial order profile P and a candidate c, whether c is
a necessary and a possible winner, are denoted by NW and PW, respectively. A classification
of the complexity of these problems has been established in a sequence of publications.

Theorem 1 (Classification Theorem [3, 24, 2]). NW can be solved in polynomial time for
every positional scoring rule. PW is solvable in polynomial time for plurality and veto; for
all other pure scoring rules, PW is NP-complete.

3.2 Relation of Partial Spatial and Partial Order Profiles

We conclude this section with a note on the expressiveness of partial spatial voting in
comparison to the model of partial-order profiles. We say that a partial profile P (in one
of the two models) can be expressed by the other model if there exists a partial profile
P′ in the other model with the same set of ranking completions. Note that in the case
of full information, every (complete) profile can be expressed by a spatial profile with d ≤
min{m,n} dimensions [5].

For every number d of issues, we can easily come up with partial-order profiles (and
even complete ranking profiles) that cannot be expressed as partial spatial profiles, simply
by using the property that in spatial voting all voters must respect the positions of the
candidates, where in partial orders each voter can have a completely different structure.
Note, for example, that if d = 1, then all preferences will be single-peaked. Moreover, even
for a single voter, there exist partial orders that cannot be expressed as a partial spatial
voter, since the two models have different limitations on the number of ranking completions.
A single partial order can have up to m! completions, and we later show in Lemma 2 that
the number of ranking completions of a partial spatial voter is at most O(dm2d).

On the other hand, consider the case of a single dimension and a set C = {c1, c2, c3} of
three candidates with the positions c1 = 1, c2 = 2 and c3 = 3. Consider also a voter v with
P = (1, 3). The voter has four ranking completions: (c1, c2, c3), (c2, c1, c3), (c2, c3, c1) and
(c3, c2, c1). This incomplete voting profile cannot be expressed with partial orders. Assume
to the contrary that there exists a partial order ≻v with the same set of ranking completions.
For every pair ci, cj ∈ C, there are ranking completions where ci is ranked higher than cj
and also rankings where cj is ranked higher than ci, hence ci ̸≻v cj and cj ̸≻v ci. We get
that ≻v is empty, which results in six ranking completions instead of four. Therefore the
partial spatial voter in our example cannot be expressed as a partial order.

We can conclude that complexity results on possible/necessary winners for the partial-
order model do not immediately imply results for the partial spatial model, and vice versa,
since neither of the two models generalizes the other.

4 Computing Necessary Winners

In this section, we show that the necessary winner problem can be solved in polynomial
time for every positional scoring rule and for every fixed number of dimensions. Hence, the
tractable cases of NW of partial orders are also tractable for partial spatial profiles.

Theorem 2. Let d ≥ 1 be fixed. NW⟨d⟩ is solvable in polynomial time for every positional
scoring rule.
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Figure 2: An illustration of the proof of Lemma 1. The three candidates in C = {c1, c2, c3}
are positioned on a line, and a voter can be positioned at any value in [ℓ, u]. The values
with equal distance between two candidates are x1 (for c1 and c2), x2 (for c1 and c3) and
x3 (for c2 and c3). The sequence of intervals is I0, I1, I2, I3.

The remainder of this section is devoted to proving Theorem 2. To determine whether
a candidate c is a necessary winner for a given a partial spatial profile P, we use the
same concept from the algorithm for NW given partial orders [24]: c is not a necessary
winner if and only if there exists another candidate c′ and a ranking completion R where
s(R, c′) > s(R, c). To this end, we iterate over every other candidate c′ and compute the
maximal score difference s(R, c′)− s(R, c) among the ranking completions R of P. Observe
that it is sufficient to consider each voter vj ∈ V separately and compute the maximal score
difference s(Rj , c

′) − s(Rj , c) among the ranking completions Rj of Pj , since we can sum
these values to obtain the maximal value of s(R, c′) − s(R, c). Then, c is not a necessary
winner if and only if the maximal score difference is positive for some candidate c′.

The difference between our algorithm and the one for partial orders is the way we com-
pute the maximal score difference for an individual voter vj . We show that for a partial
spatial voter, we can enumerate all the ranking completions in polynomial time and compute
the score difference in each ranking. This is not possible for partial orders since the number
of ranking completions in that model can be exponential in m.

Next, we prove that we can indeed enumerate the ranking completions of a single voter
in polynomial time. We start with an algorithm for the one-dimensional case and then
generalize it to any fixed dimension d > 1.

4.1 The Case of a Single Issue

We now assume that the number of issues, d, is 1. In this case, every candidate ci is asso-
ciated with a single real value ci. We assume without loss of generality that the candidates
c1, . . . , cm are ordered such that c1 < · · · < cm. A partial profile P consists of a pair
Pj = (ℓj , uj) for every voter vj , and a spatial completion satisfies Tj ∈ [ℓj , uj ]. Note that
this means that in every completion, the preferences of each voter are single-peaked with
respect to the candidate order described above.

Lemma 1. Let C be a set of m 1-dimensional candidates and P = (ℓ, u) a 1-dimensional
partial spatial vote. The number of ranking completions of P is at most

(
m
2

)
+ 1. Further-

more, we can enumerate these rankings in polynomial time.

Proof. Let X be the set of values x ∈ [ℓ, u] such that there exist at least two candidates c, c′

for which |x− c| = |x− c′|. Note that |X| ≤
(
m
2

)
since each pair of candidates introduces at

most one value inX. Let x1 ≤ · · · ≤ xt be the elements ofX, and define a sequence I0, . . . , It
of intervals such that I0 = [ℓ, x1), Ij = [xj , xj+1) for every j ∈ [t− 1], and It = [xt, u]. The
set X and intervals I0, . . . , It are illustrated in Figure 2.

Let T < T ′ be two spatial completions of P (i.e., values in [ℓ, u]) that belong to the same
interval Ij . Observe that for every pair c and c′ of candidates it holds that |T −c| > |T −c′|
if and only if |T ′ − c| > |T ′ − c′|, since otherwise there exists a value x ∈ [T, T ′] such that
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Figure 3: An illustration of the proof of Lemma 2 for d = 2 dimensions. Three candidates
C = {c1, c2, c3} are positioned on a two-dimensional plane. A voter can be positioned at any
point in the axis-parallel rectangle that is defined by the interval [ℓ1, u1] for the horizontal
axis and [ℓ2, u2] for the vertical axis. The line Hi,j (a (d − 1)-dimensional hyperplane)
partitions R2 into 2 regions: the points that are closer to ci, and the points that are closer
to cj . The top-left region — above H1,2 and to the left of H2,3 and H1,3 — corresponds to
the possible positions of the voter where the preference ranking equals c1 ≻ c2 ≻ c3.

|x−c| = |x−c′|, which implies that the completions belong to different intervals. Therefore
the ranking completions RT and RT ′ are identical.

We can conclude that the number of ranking completions of P is at most t+1 ≤
(
m
2

)
+1.

To enumerate these rankings, we can select an arbitrary value T in each interval Ij and
compute the ranking RT .

4.2 The Case of Multiple Issues

We now consider the setting where the number of issues, d, is larger than 1. Recall that
every candidate ci is associated with a d-dimensional real vector ci = ⟨ci,1, . . . , ci,d⟩ ∈ Rd.
A partial profile P consists of a vector of pairs Pj = ⟨(ℓj,1, uj,1), . . . , (ℓj,d, uj,d)⟩ for every
voter vj , and a completion satisfies Tj,i ∈ [ℓj,i, uj,i] for each issue i ≤ d. This means that a
voter’s possible location is bounded by an axis-parallel d-dimensional rectangle.

As we did for the one-dimensional case, we are again able to bound the number of
rankings that a single partial vote can generate — and, more importantly, we show how to
efficiently iterate over them. Note that we allow the bounds in this chapter to be exponential
in d, as we treat this variable as a constant (rather than a part of the input).

Lemma 2. Let C be a set of m d-dimensional candidates and P = ⟨(ℓ1, u1), . . . , (ℓd, ud)⟩
a d-dimensional partial spatial vote. The number of ranking completions of P is at most
O(dm2d).

Proof. Every pair of candidates c, c′ ∈ Rd corresponds to a (d− 1)-dimensional hyperplane
partitioning Rd into 2 regions or d-faces: the halfspace of points that are closer to c, and the
halfspace of points that are closer to c′. Likewise, the set of all (at most)

(
m
2

)
= m(m−1)/2

hyperplanes then partitions Rd into a set of regions, or more formally, of (d-)faces Φ. See
the illustration in Figure 3. Note that there is a one-to-one relationship between these faces
and the possible rankings of the candidates C: A face φ ∈ Φ consists exactly of those points
in Rd where the ranking of candidates in C according to distance does not change, and no
two of these faces correspond to the same ranking of candidates.

The maximum number of rankings possible is thus equal to the maximum number of
d-faces one can partition Rd into with m(m−1)/2 many (d−1)-dimensional hyperplanes. It



is known that this maximum number is
∑d

i=0

(
m(m−1)/2

i

)
(see, e.g., [18, Proposition 6.1.1]).

We obtain the asymptotic bound by

d∑
i=0

(
m(m− 1)/2

i

)
≤ (d+ 1) max

i≤d

(
m(m− 1)/2

i

)
≤ (d+ 1)(m(m− 1))d ∈ O(dm2d).

The above result only provides us with an upper bound on the number of rankings. It is
not immediately clear how to efficiently iterate over them (or the corresponding d-faces in
Rd), as—in contrast to the one-dimensional case—in Rd we do not have an obvious ordering
of the faces that we could iterate over. It is not even clear from the set of hyperplanes
itself, which combinations of hyperplanes correspond to one of the faces. Nevertheless, we
establish an efficient algorithm to enumerate the rankings.

Lemma 3. Let C be a set of m d-dimensional candidates and P = ⟨(ℓ1, u1), . . . , (ℓd, ud)⟩ a
d-dimensional partial spatial voter. The set of ranking completions of P can be enumerated
in polynomial time.

Proof. The algorithm to enumerate all (at most O(dm2d)) different possible rankings uses
the idea of considering the hyperplanes corresponding to pairs of points in C again. A
pseudocode of the algorithm is given (as Algorithm 1) in the Appendix.

Given the candidates C we can easily compute the corresponding set of at most
m(m− 1)/2 hyperplanes H. We are now interested in constructing a representation of the
arrangement of these hyperplanes, i.e., of the geometric relation of the (d-)faces spanned
by the hyperplanes. A classic approach from computational geometry is to construct an
incidence graph of the arrangement that consists, basically, of a node for each face of the
arrangement, i.e., a node for each point, line(-segment), plane(-segment), etc., where two or
more hyperplanes intersect. Further, two nodes are connected by an edge if the correspond-
ing faces are incident, i.e., one is contained in the other. Using an incremental algorithm,
where the hyperplanes are introduced one-by-one to the arrangement and the incidence
graph is updated accordingly, Edelsbrunner et al. [7] show that the incidence graph of our
arrangement can be constructed in O(m2d) time. We denote the incidence graph describing
the arrangement of the hyperplanes in H by G(H).

To obtain and iterate over the set of actual possible rankings, we need to find the d-
faces of the arrangement intersecting the rectangle corresponding to P. For this, we iterate
over those nodes in G(H) that correspond to d-faces of the arrangement. We know from
Lemma 2 that there are only polynomially many such nodes. For each such node x we
consider all (d − 1)-faces incident to x to obtain the set of linear inequalities that describe
the face corresponding to x. (Note that it is possible to turn a hyperplane into a linear
inequality in linear time.) The rectangle corresponding to P can be expressed via 2d linear
inequalities itself. The d-face intersects the rectangle if and only if the Linear Feasibility
Program (LFP) of the corresponding set of linear inequalities is solvable. For each d-face

of the arrangement we therefore solve an LFP with d variables and at most m(m−1)
2 + 2d

inequalities which can be done in polynomial time [13]. If there is a solution to the LFP we
know that P and the face intersect and a feasible point we obtain from solving the LFP can
be used as a witness. Afterwards, by iterating over all witnesses and ordering the candidates
by distance from that witness we can iterate over all different possible rankings.

With this result, we complete the proof of Theorem 2 for higher dimensions.

5 Computing Possible Winners

We now turn to the problem of computing possible winners. Again, we start with the
one-dimensional case.



5.1 The Case of a Single Issue

We first assume that d = 1 and study the complexity of PW⟨1⟩. Recall that every candidate
c is associated with a single real value c, that without loss of generality c1 < · · · < cm, and
a partial profile P consists of a pair Pj = (ℓj , uj) for every voter vj .

For partial orders, by the Classification Theorem (Theorem 1), finding the possible
winners is NP-complete for every pure positional scoring rule except for plurality and veto.
In spatial voting, we are able to provide efficient algorithms to decide the question for
multiple well-studied classes of scoring rules. We begin our investigation with two-valued
scoring rules (including plurality and veto), and then prove tractability for other classes of
positional scoring rules.

5.1.1 Two-Valued Rules

We first focus on positional scoring rules consisting of two values (zero and one w.l.o.g.).
The simplest and most well-known rules in this class are plurality and veto.2

We extend the tractability of PW⟨1⟩ to any two-valued rule. Recall that we denote a two-
valued rule as k-approval for k = k(m). We introduce an alternative definition for partial
spatial profiles for k-approval, in the case of a single dimension. Let P = (P1, . . . , Pn) be a
partial spatial profile where every voter vj is associated with a pair Pj = (ℓ, u). Since we
assume that c1 < · · · < cm, the set of candidates that vj approves among the completion of
Pj is a sequence (cij , cij+1, . . . , cij+t) of consecutive candidates. (Note that we can find this
sequence for each voter in polynomial time using Lemma 1.) Moreover, in every completion,
the candidates that vj approves are a substring of length k of (cij , cij+1, . . . , cij+t).

We can therefore define a partial spatial profile P = (P1, . . . , Pn) for k-approval as
follows. Each voter vj is associated with a sequence of at least k consecutive candidates
Pj = (cℓ, cℓ+1, . . . , cu). In an approval completion A = (A1, . . . , An) of P, the set Aj of
candidates that vj approves is a substring of length k of Pj . We then use the approval profile
A to compute the scores of the candidates and select the winners (as defined in Section 2.2).

In the next two lemmata, we use this definition of partial votes to show that any partial
profile can be converted to another partial profile with some useful properties, and that we
can use these properties to solve PW⟨1⟩ in polynomial time for two-valued rules.

Lemma 4. Let d = 1 and consider a partial spatial profile P on a set C of m candidates
Furthermore, let r be a two-valued rule. For each candidate c ∈ C, there exists a partial
spatial profile P′ with the following properties:

(i) In P′, each voter either necessarily approves c or never approves c; and

(ii) c is a possible winner in P′ (w.r.t. rule r) if and only if c is a possible winner in P.

Moreover, P′ can be constructed in polynomial time.

The proof of Lemma 4 is given in the Appendix. Next, we show that for k-approval,
we can solve the possible winner problem in polynomial time if the partial profile satisfies
the properties of P′ in Lemma 4. We use a reduction to scheduling with release times and
deadlines, which is defined as follows.

Definition 1 (Non-preemptive multi-machine scheduling with arrival times and deadlines).
We are given a set M = {M1, . . . ,Mt} of identical machines and a set J = {J1, . . . , Jn}
of n jobs. Each job Jj has an arrival time aj, a deadline dj, and processing time pj. We

2We later show that for plurality and veto, PW⟨d⟩ is solvable in polynomial time for every fixed d ≥ 1.
In particular, the tractability of PW⟨1⟩ follows both from Theorem 3 (proved in this section) and from
Theorem 6 (proved in Section 5.2.



assume that aj , dj , pj ∈ N. A feasible schedule is a mapping f : J→ R×M that maps each
Jj ∈ J to a pair f(Jj) = (sj , hj) such that the following properties hold:

1. Every job is run between its arrival time and its deadline: aj ≤ sj ≤ dj − pj for all
j ∈ [n].

2. Each machine can run at most one job at a time: if hi = hj for i, j ∈ [n] with i ̸= j
and si ≤ sj then sj ≥ si + pi.

Since the arrival times, deadlines, and processing times are all integers, we can assume
without loss of generality that the starting time of every job in a feasible schedule is also an
integer.3

We now present the algorithm for possible winner.

Lemma 5. Let k = k(m). Given a set C of m 1-dimensional candidates, a candidate
c ∈ C, and a partial spatial profile P where every voter either necessarily approves c or
never approves c, we can decide whether c is a possible winner in P w.r.t. k-approval in
polynomial time.

Proof sketch. We show a reduction to multi-machine scheduling where all jobs have the
same processing time p. In this case, deciding whether a feasible schedule exists is known
to be solvable in polynomial time [21].

Let Vc be the set of voters that necessarily approve c (and the voters of V \ Vc never
approve c). Note that s(A, c) = |Vc| in every approval completion A of P. In the reduction,
each voter is a job, and the number of machines is |Vc|. Let vj ∈ V with Pj = (cℓ, . . . , cu).
Define a job Jj with arrival time ℓ and deadline u+ 1. The processing time of every job is
k. In the Appendix, we show that c is a possible winner in P w.r.t. k-approval if and only
if there exists a feasible schedule for all jobs.

Combining Lemma 4 and Lemma 5, we conclude the following.

Theorem 3. PW⟨1⟩ is solvable in polynomial time under every two-valued positional scoring
rule.

5.1.2 Beyond Two-Valued Rules

Next, we discuss rules with more than two values. We start with a family of rules that we
refer to as weighted veto rules. These rules are of the form s⃗m = (α, . . . , α, β1, . . . , βk) for
α > β1 ≥ · · · ≥ βk and k < m/2. The condition k < m/2 implies that each voter assigns
the highest score α to more than half of the candidates.

Theorem 4. PW⟨1⟩ is solvable in polynomial time under every weighted veto rule.

Proof. Consider a weighted veto rule with s⃗m = (α, . . . , α, β1, . . . , βk). Let C be a set of
1-dimensional candidates and P a partial profile. We partition the candidates into three sets
Clft = {c1, . . . , ck}, Crgt = {cm−k+1, . . . , cm} and Cmid = C \ (Clft∪Crgt). Note that Cmid ̸= ∅
since k < m/2. Each of the scores β1, . . . , βk can only be assigned to the candidates of
Clft∪Crgt, and every voter assigns the score α to the candidates of Cmid. Therefore for every
ranking completion R of P, every candidate c ∈ Cmid receives the maximal possible score
s(R, c) = n ·α. We can deduce that all candidates of Cmid are possible winners. To complete
the proof we describe how we can find the possible winners of Clft∪Crgt in polynomial time.

3Otherwise, we can iterate over the jobs, sorted from the smallest starting time to the largest. If a job
Ji starts at time si which is not an integer, we can change the start time to ⌊si⌋ without changing the
feasibility.
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Figure 4: An example of two voters in a completion of the partial profile P from the proof of
Theorem 7. The voter v represents a job of length k, and approves the k candidates closest
to it among c1, . . . , cd̃. The voter v′ represents a job of length k− 1. It approves c∗ and the
k − 1 candidates closest to it among c1, . . . , cd̃.

Let c ∈ Clft ∪ Crgt. In order to be a winner in a ranking completion R, c must receive
the maximal possible score n · α, otherwise it is defeated by the candidates of Cmid. Hence,
c is a possible winner if and only if there exists a completion where every voter assigns the
score α to c. We can therefore consider each voter separately, check if it can assign α to c
in some completion using Lemma 1, and determine that c is a possible winner if and only if
that condition is satisfied for all voters.

For two positive integers k and t, we denote by F (k, t) the three-valued rule with scoring
vector s⃗m = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0) that begins with k occurrences of two and ends with
t zeros. For example, the scoring vector for F (1, 1) is s⃗m = (2, 1, . . . , 1, 0). In the Appendix,
we prove the following.

Theorem 5. PW⟨1⟩ is solvable in polynomial time under F (k, t) whenever k > t.

5.2 The Case of Multiple Issues

We return to the setting where d > 1. We show that the tractable cases of possible winners
for the partial orders model, namely plurality and veto, are also tractable for the spatial
model in any fixed dimension d.

Theorem 6. PW⟨d⟩ is solvable in polynomial time for plurality and veto.

Proof. We show a reduction to PW under plurality and veto, respectively, in the model of
partial orders, which is known to be solvable in polynomial time [3]. We start with the case
of plurality. Let C be a set of candidates and P = (P1, . . . , Pn) a partial spatial profile. For
every voter vi, let Ci ⊆ C be the set of candidates that are ranked in the first position in at
least one ranking completion of Pi. We can compute Ci in polynomial time using Lemma 3.
Define a partial order P ′

i = (Ci ≻ (C \Ci)). It is easy to verify that the ranking completions
of Pi and P ′

i result in the same possible scores, since only the first candidate in the ranking
receives 1 and the others receive 0. Therefore a candidate c is a possible winner for P if and
only if c is a possible winner for P′ = (P ′

1, . . . , P
′
n).

For veto we use the same idea with a small modification. For every voter vi, let Ci ⊆ C be
the set of candidates that can be ranked last. Define a partial order P ′

i = ((C\Ci) ≻ Ci).

For k-approval, where we can find the possible winners in polynomial time for a single
dimension (Theorem 3), the problem becomes intractable for d ≥ 2, and every k ≥ 3.

Theorem 7. Let d ≥ 2 and k ≥ 3 be fixed. PW⟨d⟩ is NP-complete for k-approval.



Proof sketch. We focus on d = 2, since this is a special case of any higher-dimensional
instance. Hence, each candidate ci is associated with a pair of values ci = ⟨ci,1, ci,2⟩ and
a partial voter consists of two intervals Pj = ⟨(ℓj,1, uj,1), (ℓj,2, uj,2)⟩. We show a reduction
from scheduling with arrival times and deadlines (from Definition 1) where we have a single
machine and every processing time satisfies pj ∈ {k, k − 1}. Deciding whether a feasible
schedule exists is strongly NP-complete for every pair of job lengths k, k − 1 where k >
2 [8]. Since it is strongly NP-complete, we can assume that the maximal deadline dmax is
polynomial in the number of jobs n. We also assume that the minimal arrival time is 1.

Let J = {J1, . . . Jn} be the set of jobs, each job Jj with arrival time aj and deadline
dj . We partition the jobs into two sets Jk−1,Jk depending on their processing time. The

reduction is as follows. Let d̃ be the smallest multiplication of k that is greater or equal to
dmax − 1, the candidates are C =

{
c∗, c1, . . . , cd̃

}
. The position of c∗ is c∗ = ⟨0, 3d̃⟩ and

the position of every other candidate ci is ci = ⟨i + 0.5, 0⟩. For the partial voters that we
define, the interval for the first position (ℓj,1, uj,1) always satisfies 0 ≤ ℓj,1 ≤ uj,1 ≤ d̃, and

the position on the second issue is always one of two values, either 0 or 3d̃.
Observe that for a partial voter v with P = ⟨(ℓ, u), 0⟩ such that 0 ≤ ℓ ≤ u ≤ d̃, the

set of candidates that v approves among the completions of P is a sequence of consecutive
candidates (ci, ci+1, . . . , ci+t). Moreover, in every completion, the candidates that v approves
are a substring of length k of that sequence. If we have P = ⟨(ℓ, u), 3d̃⟩ then v necessarily
approves c∗. Besides c∗, the set of candidates that v approves among the completions of
P is again a sequence of consecutive candidates, and in each completion, v approves a
substring of length k − 1 of that sequence. We can therefore use an alternative definition
for partial voters as in Section 5.1.1. For each voter we specify the value on the second
issue, and a sequence of candidates that the voter approves among the completions (not
including c∗, since each voter either necessarily approves it or never approves it). Hence
we denote P = ⟨(ci, . . . , ci+t), y⟩ where (ci, . . . , ci+t) is a sequence of consecutive candidates
and y ∈ {0, 3d̃}. An approval completion is defined as before (for each voter, we specify the
candidates that it approves).

The partial profile P = P1 ◦P2 ◦P3, illustrated in Figure 4, consists of three parts that
we describe next. In the first part, P1, for every job Jj ∈ Jk we introduce a voter vj with
Pj = ⟨(caj

, . . . , cdj−1), 0⟩. In the second part, P2, for every job Jj ∈ Jk−1 we introduce a

voter vj with Pj = ⟨(caj
, . . . , cdj−1), 3d̃⟩. The third part P3 consists of (|Jk−1| − 1) · d̃/k

voters without uncertainty such that every candidate among c1, . . . , cd̃ is approved by exactly
|Jk−1| − 1 voters. Specifically, |Jk−1| − 1 voters approve c1, . . . , ck, then |Jk−1| − 1 voters
approve ck+1, . . . , c2k and so on. In the Appendix, we show that c∗ is a possible winner of
P if and only if there exists a feasible schedule.

6 Conclusions

We introduced the framework of partial spatial voting, where candidates and voters are
positioned in a geometrical space, but voters can have intervals of possible values instead of
single values in each dimension (that corresponds to an issue). For positional scoring rules,
we recovered the tractable cases of necessary and possible winners in the model of partial
orders, for every fixed number of issues. In particular, we showed that the possible winners
can be found in polynomial time for the plurality and veto rules, and that the necessary
winners can be found in polynomial time for every positional scoring rule. We also identified
cases where the possible-winner problem is hard for partial orders but not for partial spatial
voting. Specifically, we showed it for the two-valued rules other than plurality and veto,
such as k-approval and k-veto for k > 1. We also showed that the possible-winner problem
may become intractable when we increase the number of issues to a higher fixed number.
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A Proofs for Section 4 (Computing Necessary Winners)

Algorithm 1: Enumerate Rankings

Input : m candidates C as points in Rd and the rectangle corresponding to P (via
2d linear inequalities)

Output: set of possible rankings of C according to possible positions P
1 H ← ∅ // set of hyperplanes

2 Φ← ∅ // set of d-faces
3 R← ∅ // set of possible rankings

4 foreach distinct pair c, c′ ∈ C do
5 h← hyperplane corresponding to “middle” of c and c′

6 H ← H ∪ {h}
7 G← incidence graph of H // can be obtained as in [7]

8 foreach node x of G corresp. to a d-face do
9 φ← ∅ // linear ineq.s bounding d-face x

10 foreach node y in G corresp. to a (d− 1)-face incident to x do
11 L← linear inequalities corresponding to y
12 φ← φ ∪ L

13 Φ← Φ ∪ φ

14 foreach φ ∈ Φ do
15 if φ ∩ P then
16 wφ ← point in intersection of φ and P
17 r ← C, sorted by distance to wφ

18 R← R ∪ {r}

19 return R

B Proofs for Section 5 (Computing Possible Winners)

Lemma 4. Let d = 1 and consider a partial spatial profile P on a set C of m candidates
Furthermore, let r be a two-valued rule. For each candidate c ∈ C, there exists a partial
spatial profile P′ with the following properties:

(i) In P′, each voter either necessarily approves c or never approves c; and

(ii) c is a possible winner in P′ (w.r.t. rule r) if and only if c is a possible winner in P.

Moreover, P′ can be constructed in polynomial time.

Proof. Let k = k(m) the value for which the two-valued rule r corresponds to k-approval.
Given P = (P1, . . . , Pn), let Vc = {vj ∈ V : c ∈ Pj} denote the voters that approve c in
at least one completion of P. We construct P′ = (P ′

1, . . . , P
′
n) as follows. Let vj be a

voter with Pj = (cℓ, cℓ+1, . . . , cu). If v /∈ Vc then v never approves c, and we set P ′
j = Pj .

Otherwise, there exists ℓ ≤ i ≤ u for which ci = c. Define ℓ′ = max {ℓ, i− k + 1} and
u′ = min {u, i+ k − 1}. Then, P ′

j = (cℓ′ , cℓ′+1, . . . , cu′). Observe the following:

• ℓ′ ≥ ℓ and u′ ≤ u, hence P ′
j is a substring of Pj .

• P ′
j consists of at least k candidates.



• Every substring of Pj of length k contains c. I.e., c is necessarily approved by vj in
P′.

We show that c is a possible winner in P w.r.t. k-approval if and only if c is possible
winner in P′. One direction is trivial since every completion of P′ is also a completion of P.
For the other direction, assume that there exists an approval completion A = (A1, . . . , An)
of P where c is a winner. We construct a completion A′ = (A′

1, . . . , A
′
n) of P′ as follows.

Let vj be a voter. If vj /∈ Vc, or vj ∈ Vc and c ∈ Aj , then A′
j = Aj . Otherwise, vj ∈ Vc and

c /∈ Aj , i.e., V does not approve c in Aj . Let A′
j be an arbitrary completion of P ′

j . Note
that c ∈ A′

j by the construction of P ′
j . We get that s(A′

j , c) = s(Aj , c) + 1, and for every
other candidate c′, s(A′

j , c
′) ≤ s(Aj , c

′) + 1, hence c remains a winner when we change Aj

to A′
j . Overall, c is a winner of A′.

Lemma 5. Let k = k(m). Given a set C of m 1-dimensional candidates, a candidate
c ∈ C, and a partial spatial profile P where every voter either necessarily approves c or
never approves c, we can decide whether c is a possible winner in P w.r.t. k-approval in
polynomial time.

Proof. Following the proof sketch, we show that c is a possible winner in P w.r.t. k-approval
if and only if there exists a feasible schedule of all the jobs. Assume that there exists an
approval completion A = (A1, . . . , An) of P where c is a winner. Note that s(A, c) = |Vc|
and s(A, c′) ≤ |Vc| for every other candidate c′ ∈ C. We define a schedule as follows. For a
voter vj , let Aj =

{
cij , cij+1 . . . , cij+k−1

}
be the sequence of k consecutive candidates that

vj approves in A. We schedule the job Jj from time ij to time ij + k. We show that this
schedule is feasible for |Vc| machines. By the definition of a completion, no job is started
before its arrival and each job is completed by its deadline. Observe that for every i ∈ [m]
and j ∈ [n], job Jj is scheduled to run at time [i, i + 1] if and only if vj approves ci in A.
Since s(A, c′) ≤ |Vc| for every candidate c′ ∈ C, we can deduce that any time at most |Vc|
jobs are scheduled, hence the schedule is feasible.

Next, assume that there exists a feasible schedule (and recall our assumption that the
starting times are integers). We construct a completion A = (A1, . . . , An) of P as follows.
For every voter vj , let [ij , ij + k] be the scheduled execution time of Jj in the schedule.
Define Aj =

{
cij , cij+1 . . . , cij+k−1

}
. Note that by the definition of the arrival time and the

deadline, Aj is a substring of Pj of length k, hence each Aj is indeed a completion of Pj ,
and A is a completion of P. We show that c is a winner of A.

First, s(A, c) = |Vc| since A is a completion of P. Second, observe that for every i ∈ [m]
and j ∈ [n], the voter vj approves ci in A if and only if the job Jj is scheduled to run at
time [i, i+1]. Since there are only |Vc| machines, at any given time the number of jobs that
are scheduled to run is at most |Vc|, which implies that s(A, c′) ≤ |Vc| for every candidate
c′ ∈ C. We deduce that c is a winner in A.

Theorem 5. PW⟨1⟩ is solvable in polynomial time under F (k, t) whenever k > t.

Proof. Let C be a set of 1-dimensional candidates and P a partial profile. We denote the
rule F (k, t) by r and k-approval by r′. Recall that for a ranking completion R, we denote
the score of c in R w.r.t. a voting rule r by sr(R, c). As in the proof of Theorem 4,
we partition the candidates to three sets Clft = {c1, . . . , ct}, Crgt = {cm−t+1, . . . , cm} and
Cmid = C \ (Clft ∪ Crgt).

We start by showing a connection between the scores of candidates in Clft, Crgt and the
scores of two specific candidates ct+1, cm−t ∈ Cmid. Let R = (R1, . . . , Rn) be a ranking
completion of P, let vj be a voter, and let clft ∈ Clft. Note that vj can only assign the score
0 to the candidates of Clft ∪ Crgt, since it assigns 0 to the t farthest candidates from its



position, and Clft ∪R are the first and last t candidates on the line. Hence sr(Rj , c) ≥ 1 for
every candidate c ∈ Cmid, and in particular sr(Rj , ct+1) ≥ 1.

We have three options for the score that vj assigns to clft. If the score is 0 then
sr(Rj , clft) ≤ sr(Rj , ct+1)+1, and if it is 1 then sr(Rj , clft) ≤ sr(Rj , ct+1). If sr(Rj , clft) = 2
then we also have sr(Rj , ct+1) = 2 since vj assigns 2 to k > t candidates, clft is one of the
t left-most candidates, and ct+1 is the (t + 1)th candidate from the left. By summing the
scores from all voters, we get the following:

sr(R, clft) ≤ s(R, ct+1)−B(R, clft) (1)

where B(R, c) is the number of voters that assign 0 to c in R. Similarly, for every crgt ∈ Crgt

we have

sr(R, crgt) ≤ s(R, cm−t)−B(R, crgt) (2)

We now show a connection between the scores of candidates in a completion w.r.t. r and
r′. Let vj be a voter and let cmid ∈ Cmid. Recall that sr(Rj , cmid) ≥ 1. If cmid is among the
top k candidates in the ranking of vj then sr(Rj , cmid) = 2 and sr′(Rj , cmid) = 1. Otherwise,
cmid is not among the top k candidates in the ranking of vj , which implies sr(Rj , cmid) = 1
and sr′(Rj , cmid) = 0. In both cases we get sr(Rj , cmid) = sr′(Rj , cmid) + 1, and overall

sr(R, cmid) = sr′(R, cmid) + n (3)

For a candidate clft ∈ Clft we have the same relation between the scores under r and r′,
unless sr(Rj , clft) = 0 which implies sr′(Rj , clft) = sr(Rj , clft) = 0. We can apply the same
argument for every crgt ∈ Crgt, and obtain the following.

sr(R, clft) = sr′(R, clft) + n−B(R, clft) (4)

sr(R, crgt) = sr′(R, crgt) + n−B(R, crgt) (5)

We now present the algorithm to determine whether a candidate c is a winner. We use
a different procedure for each set of candidates Clft, Cmid, Crgt. Let c ∈ Cmid. We show that
for every ranking completion R of P, c is a winner of R w.r.t. r if and only if c is a winner
of R w.r.t. r′. Finding the possible winners under r′ is covered by Theorem 3, hence we get
that we can decide whether c is a possible winner w.r.t. r in polynomial time.

Assume that c is a winner ofR w.r.t. r, i.e., sr(R, c) ≥ sr(R, c′) for every other candidate
c′. Let cmid ∈ Cmid, by Equation (3) we get sr′(R, c) ≥ sr′(R, cmid). For every clft ∈ Clft, we
apply Equations 1 and 4.

sr′(R, c) = sr(R, c)− n ≥ sr(R, ct+1)− n ≥ (sr(R, clft)) +B(R, clft))− n = sr′(R, ct+1)

For crgt ∈ Crgt we apply Equations 2 and 5 in the same manner. We can deduce that c is a
winner of R w.r.t. r′.

Now, assume that c is a winner of R w.r.t. r′. For every cmid ∈ Cmid we can use
Equation (3) again to show that sr(R, c) ≥ sr(R, cmid). For clft ∈ Clft we use Equations 3
and 4.

sr(R, c) = sr′(R, c) + n ≥ sr′(R, clft) + n ≥ sr′(R, clft) + n−B(R, clft) = sr(R, clft)

For crgt ∈ Crgt we apply Equations 3 and 5 in the same manner. We can deduce that c is a
winner of R w.r.t. r. This completes the proof for the algorithm of PW⟨1⟩ in the case that
c ∈ Cmid.

We now show an algorithm for c ∈ Clft, and the case of c ∈ Crgt is similar. In a completion
R, if B(R, c) > 0 then c is not a winner of R since sr(R, c) < sr(R, ct+1) by Equation (1).



We define another partial profile P′ where voters never assign 0 to c and get that c is a
possible winner of P if and only if it is a possible winner of P′. Note that P′ can be easily
constructed by inspecting the ranking completions of each voter vj and modifying the values
of Pj = (ℓj , uj) accordingly.

In every completion R of P′ we have sr(R, c) = sr′(R, c) + n, since we can use Equa-
tion (4) with B(R, c) = 0. By the same arguments that we had for the case of c ∈ Cmid, we
can show that c is a possible winner of P′ w.r.t. r if and only if it is a possible winner of P′

w.r.t. r′.

Theorem 7. Let d ≥ 2 and k ≥ 3 be fixed. PW⟨d⟩ is NP-complete for k-approval.

Proof. Following the proof sketch, we start by analyzing the possible scores in different
completions. Let A = A1 ◦A2 ◦A3 be an approval completion of P, we start with some
observations regarding the profile. For every voter vj in A1, as we stated in the discussion
on the alternative model of partial votes, c∗ is never approved by vj , hence s(A

1, c∗) = 0. In
contrast, every voter vj in A2 approves c∗, which implies s(A2, c∗) = |Jk−1|. For the third
part A3 we get s(A3, c∗) = 0 and s(A3, ci) = |Jk−1| − 1 for every candidate ci. Overall, the
score of c∗ is s(A, c∗) = |Jk−1|.

We now show that c∗ is a possible winner of P if and only if there exists a feasible
schedule. Let A be an approval completion of P where c∗ a winner. By our analysis of
the scores in the possible completion, for every candidate ci we have s(A, ci) ≤ s(A, c∗) =
|Jk−1|. Since s(A3, ci) = |Jk−1| − 1 we get s(A1 ◦ A2, ci) ≤ 1, i.e., at most one voter
from A1 ◦A2 approves ci. We construct a schedule as follows. For every job Jj ∈ Jk, let
(cij , cij+1, . . . , cij+k−1) be the k candidates that vj approves in Aj ∈ A1. We schedule Jj to
start at time ij . For every job Jj ∈ Jk−1, let (cij , cij+1, . . . , cij+k−2) be the k−1 candidates
that vj approves in Aj ∈ A2 other than c∗. We again schedule Jj to start at time ij .

We show that this is a feasible schedule. By the definition of the partial votes, every job
is processed between its arrival time and its deadline. Let ci ∈ C. Observe that a job Jj
is scheduled to run at time i if and only if the voter vj approves ci in A1 ◦A2. Since At
most one voter from A1 ◦A2 approves ci, we can deduce that at most one job is scheduled
to run at time i, therefore we never schedule two jobs at the same time and the schedule is
feasible.

We now prove the other direction. Assume there exists a feasible schedule (recall we
can assume the starting times are all integers). We construct a completion A = A1 ◦
A2 ◦ A3 of P. For every job J ∈ Jk, let ij be the scheduled starting time, we define
Aj = {cij , cij+1, . . . , cij+k−1}. For every job J ∈ Jk−1, let ij be the scheduled starting
time, we define Aj = {c∗, cij , cij+1, . . . , cij+k−2}. Note that by the definition of the arrival
times, deadlines, and the two types of jobs, each Aj is a valid completion of Pj , and A is a
completion of P. We show that c is a winner of A.

By our analysis regarding the scores in different completions, it is sufficient to show that
s(A1 ◦A2, ci) ≤ 1 for every candidate ci. For every candidate ci and voter vj , vj approves
ci in A1 ◦A2 if and only if the job Jj is scheduled to run at time i. Since at most one job
is scheduled to run at any time, we get that at most one voter of A1 ◦A2 approves ci. This
completes the proof.
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