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Abstract

The correspondence between an online linear optimization/learning problem using
Follow the Regularized Leader and a market making problem using a duality-based
cost function market maker has been extensively explored. There, the goal of regret
minimization for learners corresponds to the goal of minimizing the worst-case loss
for market makers, which is a common objective for prediction market making design.
With the insights from online learning about designing no-regret algorithms under a
“predictable” or “more regular” loss environment (e.g., specifically, low variation or
low deviation), which corresponds to some “patterns” of trade sequences in market
making, we aim to achieve market making that furthermore guarantees profits, i.e.,
negative regrets, under appropriate patterns of trade sequences, which may require
conditions other than those suggested by just low deviation or variation.
We propose the optimistic lazy-update online mirror descent algorithm, which can be
seen as Be the Regularized Leader with the supposedly unknown current loss vector
being estimated by using the “predictability” of the loss sequence. Following the
framework of regret analysis for Be the Regularized Leader, we focus on analyzing
the hypothetical Be the Regularized Leader with the “known” current loss vector
when in each time step, a leader is “strong” compared with the other non-minimizers
in terms of its much less current cumulative loss, the regret will be negative in this
case, and the more frequent changes of leaders the more negative of the regret. If the
immediately previous loss vector is an estimator of the current loss vector, the regret
can stay negative whenever the estimation error is small. In addition, we propose
a modified optimistic multiplicative update algorithm catching infrequent changes
of “dominant experts” quickly enough to beat a fixed best expert in hindsight in
cumulative losses thereby to obtain negative regrets. The negative regret bounds of
our algorithms ensure the profit bounds of our proposed prediction market makers.

1 Introduction

We live in a world full of random events, and we actually devise ways to deal with happening
of good and bad events. One example is to design Arrow-Debreu securities [3] whose payoffs
depend on the future state of the world. Insurance contracts, options, futures, and many
other financial derivatives are all real-world examples of such contingent securities. A set
of securities are traded in a securities market. Anyone who worries about such bad events
might want to buy this security as a form of insurance to hedge the risk. In addition,
the information of the trader can be capitalized. The market price of the security can be
viewed as traders’ collective estimate of how likely some event will occur. Thus, securities
markets work as mechanisms for risk allocation and information aggregation. A complete
securities market offers at least a finite number of linearly independent securities over a set
of mutually exclusive and exhaustive outcomes [2] so a trader may bet on any combination
of the securities in a complete securities market to hedge any possible risk and to express
any belief over the outcomes. A securities market focusing on information aggregation is



called a prediction market.
An automated market maker is an institution that adaptively sets prices for each security

and is willing to accept trades at these prices all the time. Automated market makers for
complete markets have been well studied in economics and finance. A common goal of a
prediction market making is to upper bound the worst-case loss since it makes sense for
a market maker not to lose an arbitrarily large amount of money. Nevertheless, a general
market maker provides liquidity to traders and seeks to “profit” from the the buy and sell
prices of an asset. Profit making for a market maker has also been considered in some market
making works [15, 14], none of which exploits a connection to no-regret online learning like
those that bound the worst-case loss [7, 2] by bounding the regret that is our main technical
approach (formally defined and modeled in Section 2) to achieve not only an upper bounded
worst-case loss but also a lower bounded profit for some classes of instances.

In [7, 2], the correspondence between an online linear optimization/learning problem
using the follow the regularized leader algorithm (see Appendix A.1 for details) and a mar-
ket making problem using a duality-based cost function market maker has been extensively
explored. There, the goal of regret minimization for learners corresponds to the goal of min-
imizing the worst-case loss for market makers, which is a common objective for prediction
market making design. With the insights from online learning about designing no-regret
algorithms under a “predictable” or “more regular” loss environment, e.g., specifically, low
variation or low deviation [12, 9, 17], which corresponds to some “patterns” of trade se-
quences in market making, we aim to achieve market making that furthermore guarantees
profits, i.e., negative regrets, under appropriate patterns of trade sequences, which may re-
quire conditions other than those suggested by just low deviation or variation.

1.1 Our Results

As the worst case loss of our prediction market making corresponds to the regret of the online
learning, we first review no-regret online learning algorithms (i.e., the optimistic agile-update
online mirror descent algorithm [17] and in particular, the double agile-update online mirror
descent algorithm [9] as a special case). Then, we present our results on profitable market
making by designing optimistic lazy-update online mirror descents and analyzing it in the
“be-the-regularized-leader” framework (see, e.g., [16], restated in Appendix A.2) considering
estimation errors. With linear losses, optimistic lazy-update online mirror descents can be
seen as Be the Regularized Leader with the supposedly unknown current loss vector being
estimated due to the “predictability” (introduced in Section 2.2).

Following the framework of regret analysis with the help of Be the Regularized Leader,
we focus on analyzing Be the Regularized Leader with the known current loss vector: (i)
when in each time step, there is a leader that is the “strongest” compared with the other
axis non-minimizers in terms of its much less current cumulative loss. The regret will
be negative in this case, and the more frequent changes of leaders the more negative of
the regret, which turns out to be more profitable of the market making. Finally, if the
immediately previous loss vector is an estimator of the current loss vector, the regret can
stay negative whenever the estimation error is small. In addition, in the expert setting (ii)
we use a modified optimistic-update multiplicative update algorithm of [8] for our purpose
of catching the infrequently alternating “dominant experts” quickly enough to beat a fixed
best expert in hindsight in cumulative losses (or rewards) thereby to obtain negative regrets
as well as profits in market making.

In summary, we provide two types of non-stochastic conditions on trade sequences for
cost function-based prediction market makers to make profits other than the profitable
market making results and approaches of [15, 14].



1.2 Related Work

There have been results considering profitability of automated market making. Othman
and Sandholm [15] designed market makers which satisfy the four desiderata for automated
market makers, such as bounded loss, profitable, vanishing bid-ask spread, and unlimited
market depth, which have been considered oppositional. They considered a constant-utility
cost function while the quote prices to the traders involve a liquidity function and a profit
function, where the former is used to increase the amount of liquidity and the latter is used
to represent part of the savings. Li and Vaughan [14] extended the general framework of [2]
by considering the property that price movement slows as the volume of trades gets larger.
They provided an axiomatic characterization of a parameterized class of automated market
makers with adaptive liquidity. Expressiveness, which measures the degree that traders
can push market prices to match their beliefs, is deteriorated. Furthermore, they described
and quantified factors for the market maker to make profit, such as sufficient trade volume,
existence of disagreed traders and curvature of the price space.

In comparison to prediction market making, a market maker in another specific sense
places limit orders in terms of bids (i.e., passive buy orders) and asks (i.e., passive sell orders)
on an orderbook of an asset and hopes to profit by exploiting the “bid-ask spreads” of an
orderbook, i.e., the difference between the bids and asks. This work is challenging due to
inventory risk. To control the inventory risk, a market maker may use market orders to
aggressively match the asks or the bids to balance the inventory. The profitability of such
market making has been confirmed under some stochastic assumptions on price time series
(e.g., mean reverting price processes [5]).

Different connections to online learning models with low regrets is closely related to this
work. Abernethy and Kale [1] considered an online learning setting to extend the prior
work in [5]. They proposed a class of market making strategies parameterized by the choice
of bid-ask spread and liquidity and view such “spread-based” market making strategies as
experts. The performance is measured in terms of regret, which is the difference between
the learner’s value in the end and that of the best strategy in the hindsight. Their no-regret
algorithm resembles standard algorithms learning from expert advice, however, it keeps the
state, represented by the asset inventory of the strategy in each round. For N spread-based
strategies in T steps, they showed that the regret is bounded by O(

√
T ), when price volatility

is bounded.

2 Preliminaries

2.1 Correspondence between Market Making and Online Learning

There have been works focusing on cost function based markets [10, 11, 6]. Arrow-Debreu
securities, each representing a potential outcome, can be offered by a simple cost function
based market maker. The market maker prices each security using a differentiable cost
function,which acts as a potential function. It returns the amount of money currently put
in the market as a function of the number of each security’s shares having been purchased.
If a newly coming trader wants to make a purchase (or a sale) of a set of shares for each
security, the trader has to pay (or receive, respectively) the cost function value difference
(before and after the purchase) to the market maker. The price per share of an infinitesimal
amount of a security is so-called the instantaneous price (defined later). In the end, payoffs
have to be paid to the traders that hold the shares of the security corresponding to the
realized outcome.

In a market using a duality-based cost function market maker, the market maker has
an outcome space O and payoff function ρ : O 7→ Rd, which define a feasible price space



Π = H(ρ(O)).1 The market maker must select instantaneous security prices x ∈ Π. The
market maker uses a convex function R(·), which leads to the cost function C(·) via conjugate
duality [2, Definition 4.1]. The market maker receives security bundle purchases pt and
maintains a quantity vector qt, updating according to qt = qt−1 + pt. The market maker
sets prices via xt = arg maxx∈Π x · qt−1 − R(x) where C(q) = maxx∈Π x · q − R(x) and
the instantaneous price vector x = ∇C(q). The market maker suffers the worst-case (in
terms of q) loss C(q0)−C(qT ) + maxx∈Π x ·qT .2 It is the worst-case difference between the
maximum amount that the market maker might have to pay the traders (maxx∈Π x · qT )
and the amount collected from the traders by the market maker (C(qT )− C(q0)).

In the setting of online convex optimization, we describe an online game between a
player and the environment. The player is given a convex set K ⊆ Rd and has to make a
sequence of decisions x1,x2, ... ∈ K. After deciding xt, the environment reveals a convex
loss function ft ∈ F , where F is the set of the adversary’s moves, and the player obtains
ft(xt). The performance of the player is measured by regret defined in the following. In
this paper, what is closely related to our problem is a more specific problem of online linear
optimization where the loss functions are linear, i.e., ft(x) = 〈`t,x〉 for some `t ∈ Rd.

We define the player’s adaptive strategy L as a function taking as input a subsequence
of loss vectors `1, ..., `t−1 and returns a point xt ← L(`1, ..., `t−1) for xt ∈ K.

Definition 1 Given an online linear optimization algorithm L and a sequence of loss vectors
`1, `2, ... ∈ Rd, let the regret Regret(L; `1:T ) be defined as∑T
t=1〈`t,xt〉 −minx∈K

∑T
t=1〈`t,x〉.3

A desirable property that one would want an online linear optimization algorithm to have
is a regret that scales sublinearly in T . This property can be formally captured as the
following.

Property 1 For any bounded decision set K ⊆ Rd, an algorithm LK that achieves
Regret(LK) = o(T ) for any sequence of loss vectors {`t} with bounded norm has the no-regret
property.

The Follow The Regularized Leader algorithm (FTRL), (e.g., see [16], restated in Ap-
pendix A.1 for reference) has been proposed as a correspondence between market making
and online learning [7, 2]. We list such a correspondence in the following. Thus, we can
focus on designing market makers by designing no-regret online learning algorithms. In an
online linear optimization problem using FTRL, the learner is given access to a fixed space
of weights K. The learning algorithm must select a weight vector x∈K. The learner uses a
convex regularizer R(·), which is a parameter of FTRL. The learner receives a loss vector
`t. The learning algorithm maintains a cumulative loss vector Lt and updates according to
Lt = Lt−1 + `t. FTRL selects the weights by solving xt = arg minx∈K x · Lt−1 + 1

ηR(x).

The learner suffers regret
∑T
t=1 xt · `t −minx∈K x · LT .

2.2 Predictable Sequences

We use the following definition to model “regular” or “predictable” sequences [17, 9, 18].
Fix a sequence of functions Mt : F t−1 → F for each t ∈ {1, ..., T}. These func-
tions give a predictable process of the environment M1,M2(`1), ...,MT (`1, ..., `T−1). Re-
call that the sequence {`t} corresponds to the purchase vectors {pt} in market making. If

1Here ρi(o) ∈ {0, 1} for o ∈ O and security i, and H(S) is the convex hull of a convex set S.
2Note that there is a difference term between C(qT ) − C(q0) and

∑T
t=1 xt · pt ignored here since

C(qT ) − C(q0) =
∑T

t=1 C(qt) − C(qt−1) ≈
∑T

t=1∇C(qt−1) · (qt − qt−1) =
∑T

t=1 xt · pt, where the
approximation approaches equality when t is continuous.

3For a player maximizing her total reward given a sequence of reward vectors, the regret can also be
defined accordingly.



Mt(`1, ..., `t−1) = `t for all t, then {`t} forms a noiseless time series, which should suffer
no regret. From the perspective of marking making, this is a predictable sequence of pur-
chases from traders. If the actual sequence is roughly given by this predictable process,
i.e., Mt(`1, ..., `t−1) ≈ `t, the sequence can be described as predictable process plus adver-
sarial noise. Like [17, 9] (see Appendix A.3 for the optimistic agile-update mirror descent
algorithm), we are also motivated by this idea of decomposition to design online learning
algorithms with even negative regrets for some classes of sequences.

In [9], a measure called Lp-deviation for the loss functions {ft} is defined as

Dp =

T∑
t=1

max
x∈K
‖∇ft(x)−∇ft−1(x)‖2p, (1)

which is defined in terms of sequential difference between individual loss function to its
previous one. This double (agile-update) mirror descent algorithm (Algorithm 1) and the
corresponding regret bounds4 are given. In particular, Mt predicts the loss gradient at t
by the the loss gradient at t − 1, i.e., Mt(`1, ..., `t−1) = `t−1. Throughout this paper, BR
denotes the Bregman divergence with respect to a strictly convex function R, in our case,
the regularizer.

We focus on the case that Mt(`1, ..., `t−1) = `t−1. Double agile-update online mirror
descents, stated in Appendix A.4, achieve so-called path length bounds (Theorem 8 and 10 of
[9]), which are smaller than O(

√
T ) bounds when `t−1 is a good proxy for `t (low deviation).

3 Optimistic Lazy-Update Online Mirror Descents with
Predictable Sequences

Since it is known that, with linear losses, the standard lazy-update online mirror descent
algorithm is the same as follow the regularized leader [16], which is not the case for the
standard agile-update online mirror descent algorithm.5 We then propose the optimistic
lazy-update online mirror descent algorithm, which is stated in Appendix B.1.

Algorithm 1 Double Lazy-Update Online Mirror Descents

1: Let x1 = x̂1 = y1 = (1/d, ..., 1/d)>

2: for t ∈ [T ] do
3: Receive ft and compute `t = ∇ft(x̂t).
4: update

xt+1 = arg minx∈K BR(x,yt+1) for ∇R(yt+1) = ∇R(yt)− ηt`t,
x̂t+1 = arg minx̂∈K BR(x̂, ŷt+1) for ∇R(ŷt+1) = ∇R(yt+1)− ηt`t.

5: end for

In particular, it can be instantiated as the double lazy-update online mirror descent
algorithm with Mt = `t−1, which is as stated in Algorithm 1. Lazy updates take gradient
updates from possibly infeasible points yt and yt+1 instead of feasible points xt and xt+1,
respectively, in agile updates. With linear losses, the equivalence of lazy-update online
mirror descents and Follow The Regularized Leader (e.g., see [16]) serves as a good reason

4Theorem 8 of [9]: When the L2-deviation of the loss functions is D2, the regret of our algorithm
is at most O(

√
D2) with a matching lower bound. In the setting of prediction with N expert advice,

Theorem 10 of [9]: When the L∞-deviation of the loss functions is D∞, the regret of our algorithm is at
most O(

√
D∞ lnN) with a matching lower bound.

5Note that agile updates and lazy updates give the same multiplicative updates; however, agile updates
and lazy updates give different online mirror descents in general.



for adopting lazy updates, which furthermore motivates the work and leads to Lemma 1, an
advanced version of the equivalence.

3.1 Optimistic Lazy-Update Online Mirror Descents As Be The
Regularized Leader Estimated with Predictors Mt+1

We first show that with linear losses, Double Lazy-Update Online Mirror Descents, an
instantiation of Optimistic Lazy-Update Online Mirror Descents, can be seen as Be The
Regularized Leader with the unknown current loss vector estimated by the immediately
previous loss vector (Lemma 1), which is proved in Appendix B.2. Following the framework
of regret analysis with the help of Be the Leader (see, e.g., [16]), we then focus on analyzing
Be The Leader with the known current loss vector when in each time step, a leader is
dominating the other non-minimizers in terms of cumulative loss by much. The regret will
be negative in this case, and the more frequent changes of leaders the more negative of the
regret. Finally, if the immediately previous loss vector is a good estimator of the current
loss vector, the regret can stay negative if the estimation error is small.

Lemma 1 According to the first update of optimistic lazy-update online mirror descents,
∇R(yt+1) = ∇R(yt)− ηt`t and xt+1 = arg minx∈K BR(x,yt+1), we have that

xt+1 = arg min
x∈K

(
ηt〈

t∑
s=1

`s,x〉+R(x)

)
.

For the second update, ∇R(ŷt+1) = ∇tR(yt+1)− ηtMt+1 and x̂t+1 =
arg minx̂∈K BR(x̂, ŷt+1), we have that

x̂t+1 = arg min
x∈K

(
ηt〈

t∑
s=1

`s +Mt+1,x〉+R(x)

)
.

In particular with Mt+1 = `t, for the second update of double lazy-update online mirror
descents, ∇R(ŷt+1) = ∇R(yt+1)− ηt`t and x̂t+1 = arg minx̂∈K BR(x̂, ŷt+1), we have that

x̂t+1 = arg min
x∈K

(
ηt〈

t∑
s=1

`s + `t,x〉+R(x)

)
.

Under the following condition in the next subsection, we will analyze its regret by de-
composing it into two parts: (1) the regret of the hypothetical Be The Regularized Leader
algorithm plus (2) the gap in the cumulative loss between the estimated Be The Regular-
ized Leader, i.e., Optimistic Lazy-Update Online Mirror Descents by Lemma 1, and the
hypothetical Be The Regularized Leader.

3.2 Condition: Frequent Changes of Strong Leaders

The hypothetical Be The Regularized Leader is merely a concept for the convenience of anal-
ysis. How can it be implemented? Actually, the cumulative loss of the hypothetical Be the
Regularized Leader can be obtained by evaluating the play xt+1 of the follow the regularized

leader algorithm using the corresponding immediately previous loss `t, i.e.,
∑T
t=1〈`t,xt+1〉

where xt+1 is the play of Follow The Regularized Leader. Thus,
∑T
t=1〈`t,xt+1〉 is the

cumulative loss of the hypothetical Be The Regularized Leader.
Let there be K changes of leaders in total in running the Follow The Regularized Leader

algorithm over T time steps so there are K periods, each of which has the same minimizer,



i.e., the same algorithm-selected leader. Specifically, let Lt(x) = 〈
∑t
s=1 `s,x〉 for all t, and

x1 = arg minx∈KR(x) and

xtj+1 ∈ arg min
x∈K

(
Ltj (x) +

R(x)

η

)
for j = 1, ...,K such that the time steps from tj−1 + 1 to tj are dominated by the same
algorithm-selected leader x(tj−1+1)+1 = . . . = xtj+1 that minimizes the current cumulative
loss Lt over period j (where tj is the last time step during this period for xtj+1’s domination).
That is, by definition, xtj−1+1 6= xtj+1 for j = 1, ...,K and let t0 = 0.

We have that tK = T so Lt(xt+1) = LT (x∗) for t = tK−1 + 1, . . . , tK . Note that the
best fixed choice in hindsight x∗ might be different from the algorithm selected xtK+1 since
there may be multiple minimizers for each LtK .

Lemma 2 For all t ∈ {1, ..., T}, if Lt(x) − Lt(xt+1) ≥ δ for any dimension i-axis non-
minimizer x /∈ arg minx∈K{Lt(x) + R(x)/η} for i ∈ {1, ..., d} where δ > 0 is the leader’s
advantage in cumulative loss, then

T∑
t=1

〈`t,xt+1〉 − LT (x∗) ≤ −δK +
1

η
(R(x∗)−R(x1)).

Proof. We will prove this bound by induction on the number of changesK in the dominating
leaders. Since LtK (xtK+1) = LT (x∗), it is equivalent to show that

T∑
t=1

〈`t,xt+1〉 − LtK (xtK+1) ≤ −δK +
1

η
(R(x∗)−R(x1)).

The base case is when j = 1: by x1 = arg minx∈KR(x), 0 ≤ 1
η (R(x∗) − R(x1)). The

induction hypothesis is

tK−1∑
t=1

〈`t,xt+1〉 − LtK−1
(xtK−1+1) ≤ −δ(K − 1) +

1

η
(R(x∗)−R(x1)).

We derive that

T∑
t=1

〈`t,xt+1〉 − LT (x∗) =

tK∑
t=1

〈`t,xt+1〉 − LtK (xtK+1)

=

tK−1∑
t=1

〈`t,xt+1〉 − LtK−1
(xtK+1)

=

tK−1∑
t=1

〈`t,xt+1〉 − LtK−1
(xtK−1+1)− (LtK−1

(xtK+1)− LtK−1
(xtK−1+1))

≤ −δ(K − 1) +
1

η
(R(x∗)−R(x1))− δ

= −δK +
1

η
(R(x∗)−R(x1)),

where the second equality comes from the fact that the two equivalent terms that get
canceled out are

∑tK
t=tK−1+1〈`t,xt+1〉 and

∑tK
t=tK−1+1〈`t,xtK+1〉, and the inequality holds

by the induction hypothesis and the condition Lt(x) − Lt(xt+1) ≥ δ for all every other
x /∈ arg minx(Lt(x) +R(x)/η).



3.3 Profit (Negative Regret) Bounds

Actually, we are implementing the Be The Regularized Leader algorithm by estimating
Mt(`1, . . . , `t−1) = `t−1 under low deviation (so `t−1 is a good estimator) and Lemma 2.
We have the following profit (regret) bound.

Theorem 3 If Mt = Mt(`1, . . . , `t−1) = `t−1 and the condition in Lemma 2 is satisfied,
then the regret of the optimistic/double lazy-update online mirror descent algorithm is

T∑
t=1

〈`t, x̂t〉 − LT (x∗) ≤ O


√√√√ T∑

t=1

‖`t‖2‖`t − `t−1‖2

− δK,
by setting ηt = 1/

√∑t−1
s=1 ‖`s‖2‖`s − `s−1‖2. In other words, the profit of our proposed

market maker is at least

δK −O


√√√√ T∑

t=1

‖pt‖2‖pt − pt−1‖2

 .

Proof. Observe that the regret can be decomposed into

T∑
t=1

(〈`t, x̂t〉 − 〈`t,xt+1〉) +

T∑
t=1

〈`t,xt+1〉 − LT (x∗),

where xt+1 = arg minx∈K(
∑t
s=1〈`s,x〉+

R(x)
η ). First notice that in [9, Lemma 6], when ‖ · ‖

is a norm with dual norm ‖ · ‖∗ such that 1
2‖x − x′‖ ≤ BR(x,x′) for any x,x′ ∈ K, it is

shown that
〈`t − `t−1, x̂t − xt+1〉 ≤ ‖`t − `t−1‖2∗.

We cannot expect a result as good as the above for 〈`t, x̂t〉−〈`t,xt+1〉 since there is an extra
term of 〈`t−1, x̂t − xt+1〉 here.

We can simply have that by a generalized Cauchy-Schwartz inequality,

T∑
t=1

(〈`t, x̂t〉 − 〈`t,xt+1〉) ≤
T∑
t=1

‖`t‖∗‖x̂t − xt+1‖.

By [9, Proposition 7] whose proof is restated in Appendix B.3 for reference, which ensures
that

‖x̂− xt+1‖ ≤ ‖∇R(ŷt)−∇R(yt+1)‖∗,

we have that

‖x̂t − xt+1‖ ≤ ‖(∇R(yt)− `t−1)− (∇R(yt)− `t)‖∗
≤ ‖`t − `t−1‖∗,

where ‖ · ‖ = ‖ · ‖2/
√
ηt and ‖ · ‖∗ =

√
ηt‖ · ‖2. Thus,

T∑
t=1

(〈`t, x̂t〉 − 〈`t,xt+1〉) ≤
T∑
t=1

‖`t‖∗‖`t − `t−1‖∗

≤
T∑
t=1

ηt‖`t‖2‖`t − `t−1‖2.



Define function F (t) =
∫ t

0
f(s)ds, where continuous function f(s) is defined by connect-

ing f(0) = 0 and all f(s) = ‖`s‖2‖`s−`s−1‖2 for s = 1, ..., t. Along with Lemma 2, we know
that the regret is at most

T∑
t=1

ηt‖`t‖2‖`t − `t−1‖2 +
1

η
(R(x∗)−R(x1))− δK

≤
T∑
t=1

‖`t‖2‖`t − `t−1‖2√∑t−1
s=1 ‖`s‖2‖`s − `s−1‖2

+
R(x∗)−R(x1))

η
− δK

≤ c

∫ T

1

f(t)√
F (t)

dt+
R(x∗)−R(x1))

η
− δK

= c
√
F (T )− c′ + R(x∗)−R(x1))

η
− δK

≤ O


√√√√ T∑

t=1

‖`t‖2‖`t − `t−1‖2

− δK,
where the last inequality follows from setting η = 1/

√∑T
t=1 ‖`t‖2‖`t − `t−1‖2.

Remark 1 Since agile updates and lazy updates give the same multiplicative updates, this
result of Theorem 3 would directly hold for agile updates if the regularization function is the
relative entropy.

4 Expert Setting: Modified Optimistic Multiplicative
Updates with Predictable Sequences

We use a model with experts inducing {0,−1}-losses as a special case, where each `
(i)
t ∈

{0,−1} for i ∈ {1, ..., d}6 in this section for the convenience of analysis. We call the only
expert that induces a loss of −1 at a time step the dominant expert at a that time step.

It is not hard to show that even when there are only few changes of dominant experts in
the two-expert case, the Be The Leader algorithm cannot change leaders promptly enough
even if the dominant expert changes periodically and not too fast. Be The (Regularized)
Leader is simply not enough. Intuitively, for our algorithm to perform well with alternat-
ing dominant experts over time, we would want to put enough probability on the current
dominant expert but not too much to prevent that probability from being reduced too slow
in case of the changes of dominant experts. Therefore, we will resort to a modified double
multiplicative update algorithm that has the desirable balance properties mentioned above,
for negative regrets under some class of loss sequences, which will be explained formally in
the following.

4.1 Condition: Alternating Dominant Experts

In [8], they did not only consider loss functions with a small deviation, but also a natural
generalization in which the regret is measured against a “dynamic” offline algorithm that can
play different strategies in different rounds (under the constraint that the losses’ deviation
is small). Interestingly, in this paper, we are using this algorithm for a different purpose: we

6Here experts corresponds to the securities in market making, i.e., the number of securities.



are applying it for our purpose of catching up with the changes of dominant experts quickly
enough to beat still a fixed best expert in hindsight in terms of the cumulative reward. This
algorithm can be generalized into the modified optimistic multiplicative update algorithm,
stated in Appendix C.1.

Note that when Mt+1 = `t, the modified optimistic multiplicative update algorithm
mentioned above can be instantiated into the modified double multiplicative update algo-
rithm [8, Algorithm 2] as follows (Algorithm 2).

Algorithm 2 Modified Double Multiplicative Updates ([Algorithm 2 of [8])

1: Let x̄1 = x1 = x̂1 = (1/d, ..., 1/d)>

2: for t ∈ [T ] do
3: Receive ft and compute `t = ∇ft(x̂t).
4: for i ∈ [N ] do
5: update

x̄
(i)
t+1 = x

(i)
t e−η`

(i)
t /Z̄t+1 with Z̄t+1 =

∑
j x

(j)
t e−η`

(j)
t , and x

(i)
t+1 = (1−β)x̄

(i)
t+1 +β/N ,

x̂
(i)
t+1 = x

(i)
t+1e

−η`(i)t /Ẑt+1 with Ẑt+1 =
∑
j x

(j)
t+1e

−η`(j)t .
6: end for
7: end for

4.2 Profit (Negative Regret) Bounds

For the simplicity of illustration, we consider the two-expert case, i.e., d = 2 for the analysis.
Suppose that there are K + 1 periods of time where each period is defined by its dominant
expert for a constantly large K = O(1) with respect to T . We have that

∑K+1
i=1 Ti = T .

Since we have two experts, the dominant expert of a period is alternating between the two
experts and D∞ = K. We set β = 1/t. At the end of the first period whose time step is T1,
the dominant expert can never have a probability greater than T1 times the other expert’s
probability. And it only takes relatively short time for the other expert to offset in the next
period. The proofs are deferred to Appendix C.2 and C.3, respectively.

Lemma 4 At time step T1, the end of the first period, the probability of the first expert who
is the current dominant expert for the first period and that of the other expert is in a ratio
at most O(T1).

Lemma 5 After the first period of time steps T1, it takes at most O(log(T1)/η) time steps
for the ratio (of the first expert’s probability to the probability of the other expert who is the
current dominant expert) to achieve at most 1 again.

This means that there is always enough time before the end of this current period for the
current dominant expert to offset the probability of the other expert who was the dominant
expert of the immediately previous period and to accumulate enough probability. This is
proved in Appendix C.4.

Lemma 6 After the ith period of time steps, it takes at most O(log(Ti)/η) time steps for
the ratio of the previous dominant expert’s probability to the probability of the other expert
who is the current dominant expert (of the (i+ 1)th period) to achieve at most 1.

Then, we have the main result of this section.



Theorem 7 The regret of the modified double multiplicative updates is at most

−T/2 +

K∑
i=1

log(Ti)/η.

With η = O(1/
√
D∞) = O(1/

√
K),7 the regret is at most −T/2 +K3/2 log(T/K). In other

words, the profit of our proposed market maker is at least

T/2−K3/2 log(T/K).

Proof. The cumulative (expected) reward of the modified double multiplicative updates is
by Lemma 4, Lemma 5 (a special case of Lemma 6) and Lemma 6.

T1 +

K∑
i=1

(Ti+1 − log(Ti)/η) = T −
K∑
i=1

log(Ti)/η.

The cumulative reward of the best in hindsight is T/2. Thus, the regret is

−T/2 +

K∑
i=1

log(Ti)/η.

To have a negative regret, η has to be set to be greater than 2
∑K
i=1 log(Ti)/T . With

η = 1/
√
D∞, since D∞ = K, we obtain a regret at most

−T/2 +K3/2
K∑
i=1

log(Ti)/K ≤ −T/2 +K3/2 log(T/K),

where the inequality holds by the concavity of logarithm.
We have a result for the special case when Ti = T/(K + 1) for i = 1, ...,K + 1, which is

proved in Appendix C.5.

Corollary 8 When T is equally divided into K+1 periods, the regret of the modified double
multiplicative updates is at most −T/2 + K log(T/(K + 1))/η. With η = O(1/

√
D∞) =

O(1/
√
K), the regret is at most

−T/2−
√
K log(T/(K + 1)) +K

3
2 log(T/K).

In other words, the profit of our proposed market maker is at least

T/2 +
√
K log(T/(K + 1))−K 3

2 log(T/K).

5 Simulations and Numerical Results

We conduct two numerical experiments to verify our theoretical results in terms of bounding
the profits (negative regrets) for the proposed market makers under the two corresponding
conditions in Section 3 and 4 (on sequences with low deviation).

In the 1st experiment, we construct 100 sequences of loss vectors ranging between −1
and 1 each dimension that have low deviation in terms of (1) and at the same time satisfy the
condition in Lemma 2 for running the optimistic lazy-update mirror descent algorithm to
induce negative regrets, i.e., profits, theoretically guaranteed by Theorem 3 and numerically

7The learning rate can also be set adaptively as the one in the previous section.



Table 1: Profits of 10 (out of 100) sequences of loss vectors with T = 100
Profits

seq. 1 61.83141206
seq. 2 51.33172529
seq. 3 59.72396573
seq. 4 32.07606561
seq. 5 24.49051896
seq. 6 20.79662341
seq. 7 33.56186039
seq. 8 60.73038448
seq. 9 32.78915073
seq. 10 37.79053322

Table 2: Profits of 3 sequences of {−1, 0}-loss vectors with T = 100
K + 1 Profits

2 43.89414975
4 30.24045795
5 22.79767258

with an average profit of 40.95948428. In the 2nd experiment, we construct sequences with
two periodically alternating dominant experts to induce profits guaranteed by Theorem 7
and Corollary 8. In the following, some detailed numerical results are listed in Table 1 and 2,
respectively, for optimistic lazy-update online mirror descents and modified multiplicative
updates.

6 Conclusions and Future Work

We use the correspondence between designing online no-regret algorithms for negative re-
grets under some predictable (or more regular) loss environments and prediction market
making under some patterns of trade sequences. We provide two types of non-stochastic
conditions on trade sequences for cost function-based prediction market makers to make
profits other than the profitable market making results and approaches of [15, 14].

In this line work of prediction market making [7, 2] and this paper, the market maker
sets the price and the traders can bet on the future trends of underlying securities. In
another line of work on market making, as discussed in [1, 5], a “passive” market maker
makes profit of a security basically by placing limit orders as bids and asks to reap the
bid-ask spreads on the orderbook, yet takes exposure risk of the inventory. A promising
direction of market making design to try is to combine the merits of both the designs. As
an efficient prediction market maker sets the security’s price with no regret, one can decide
to either replace the announced market price by the predicted prices and place the bids
and asks accordingly, or clear the inventory to avoid the inventory risk especially for a large
price movement in a single direction. We conjecture that this prediction market making
helps reduce the inventory risk while the overall profit can be still guaranteed in terms of
risk-adjusted return [13].
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A.1 Follow The Regularized Leader Algorithm

Algorithm 3 Follow the Regularized Leader (FTRL)

1: for t ∈ [T ] do
2:

xt = arg min
x∈K

[η

t−1∑
s=1

`s(x) +R(x)].

3: end for

A.2 Be The Regularized Leader Algorithm

Algorithm 4 Be the Regularized Leader (BTRL)

1: for t ∈ [T ] do
2:

xt = arg min
x∈K

[η

t∑
s=1

`s(x) +R(x)].

3: end for

A.3 Optimistic Agile-Update Mirror Descent Algorithm

A.4 Double Agile-Update Mirror Descent Algorithm



Algorithm 5 Optimistic (Agile-Update) Online Mirror Descent Algorithm [17]

1: Let x̂1 = x1 = arg minxR(x) with R a 1-strongly convex function w.r.t. a norm ‖ · ‖
2: for t ∈ [T ] do
3: Receive x̂t
4: update

xt+1 = arg minx∈K ηt〈x, `t〉+ BR(x,xt),
x̂t+1 = arg minx̂∈K ηt〈x̂,Mt+1〉+ BR(x̂,xt+1).

5: end for

Algorithm 6 Double Agile-Update Online Mirror Descents (Algorithm 1 of [9])

1: Let x1 = x̂1 = (1/d, ..., 1/d)>

2: for t ∈ [T ] do
3: Receive ft and compute `t = ∇ft(x̂t).
4: update

xt+1 = arg minx∈K BR(x,yt+1) for ∇R(yt+1) = ∇R(xt)− ηt`t,
x̂t+1 = arg minx̂∈K BR(x̂, ŷt+1) for ∇R(ŷt+1) = ∇R(xt+1)− ηt`t.

5: end for

B.1 Optimistic Lazy-Update Mirror Descent Algorithm

Algorithm 7 Optimistic Lazy-Update Online Mirror Descents

1: Let x1 = x̂1 = y1 = (1/d, ..., 1/d)>

2: for t ∈ [T ] do
3: Receive ft and compute `t = ∇ft(x̂t).
4: update

xt+1 = arg minx∈K BR(x,yt+1) for ∇R(yt+1) = ∇R(yt)− ηt`t,
x̂t+1 = arg minx̂∈K BR(x̂, ŷt+1) for ∇R(ŷt+1) = ∇R(yt+1)− ηtMt+1.

5: end for

B.2 Proof of Lemma 1

Observe that the unconditioned minimum

x̂∗t+1 = arg min
x∈Rn

{〈
t∑

s=1

`s +Mt+1,x〉+
1

ηt
R(x)}

satisfies, by the first-order condition,

∇R(x̂∗t+1) = −ηt

(
t∑

s=1

`s +Mt+1

)
.

By definition, ∇R(yt+1) = −ηt
∑t
s=1 `s from the recurrence relation of yt and ∇R(ŷt+1) =

∇R(yt+1)− ηtMt+1 so

∇R(ŷt+1) = −ηt

(
t∑

s=1

`s +Mt+1

)
.



Since R(·) is strictly convex, there is only one solution for the equation, and thus ŷt+1 =
x̂∗t+1. Moreover, we have that

BR(x, ŷt+1)

= R(x)−R(ŷt+1)− 〈∇tR(ŷt+1),x− ŷt+1〉

= R(x)−R(ŷt+1) + ηt〈
t∑

s=1

`s +Mt+1,x− ŷt+1〉.

Minimizing BR(x, ŷt+1) over x ∈ K is equivalent to minimizing η(
∑t
s=1 `s+Mt+1)Tx+R(x)

over x ∈ K.

B.3 Proof of [9, Proposition 7]

From the property of a norm, we know that

1

2
‖x̂t − xt+1‖ ≤ R(x̂t)−R(xt+1)− 〈∇R(xt+1), x̂t − xt+1〉,

and
1

2
‖xt+1 − x̂t‖ ≤ R(xt+1)−R(x̂t)− 〈∇R(x̂t),xt+1 − x̂t〉.

Combining these two bounds, we derive that

‖x̂t − xt+1‖2 ≤ 〈∇R(x̂t)−∇R(xt+1), x̂t − xt+1〉 (2)

We need the following well-known fact. See [4, p.139-140] for the proof. Let X ⊆ Rn
be a convex set and x = arg minz∈X φ(z) for some continuous and differentiable function
φ : X → R. Then for any w ∈ X ,
〈∇φ(x),w − x〉 ≥ 0.

By φ(z) = BR(z, ŷt), we have x̂t = arg minz∈X φ(z), ∇φ(x̂t) = ∇Rt(x̂t)−∇Rt(ŷt), and

〈∇Rt(x̂t)−∇Rt(ŷt),xt+1 − x̂t〉 ≥ 0.

By φ(z) = BR(z,yt+1), we have xt+1 = arg minz∈X φ(z), ∇φ(xt+1) = ∇Rt(xt+1) −
∇Rt(yt+1), and

〈∇Rt(xt+1)−∇Rt(yt+1), x̂t − xt+1〉 ≥ 0.

Combining these two bounds, we obtain that

〈∇Rt(x̂t)−∇Rt(xt+1), x̂t − xt+1〉 (3)

≤ 〈∇Rt(ŷt)−∇Rt(yt+1), x̂t − xt+1〉

By Inequalities(2) and (3), we have that

‖x̂t − xt+1‖2 ≤ 〈∇Rt(ŷt)−∇Rt(yt+1), x̂t − xt+1〉
≤ ‖∇Rt(ŷt)−∇Rt(yt+1)‖∗‖x̂t − xt+1‖,

where the last inequality holds by a generalized Cauchy-Schwartz inequality. We have the
proposition.

C.1 Modified Optimistic Multiplicative Updates



Algorithm 8 Modified Optimistic Multiplicative Updates

1: Let x̄1 = x1 = x̂1 = (1/d, ..., 1/d)>

2: for t ∈ [T ] do
3: Receive ft and compute `t = ∇ft(x̂t).
4: for i ∈ [N ] do
5: update

x̄
(i)
t+1 = x

(i)
t e−η`

(i)
t /Z̄t+1 with Z̄t+1 =

∑
j x

(j)
t e−η`

(j)
t , and x

(i)
t+1 = (1−β)x̄

(i)
t+1 +β/d,

x̂
(i)
t+1 = x

(i)
t+1e

−ηM(i)
t+1/Ẑt+1 with Ẑt+1 =

∑
j x

(j)
t+1e

−ηM(j)
t+1 .

6: end for
7: end for

C.2 Proof of Lemma 4

At time step T1, we use the following proposition to claim that the probability of the first
expert is at most c for a constant c while that of the other expert is at least 1/T1 according
to the first probability update in Algorithm 3, and thus, the ratio of these two probabilities
is at most c · T1.

Proposition 9 At time step t, the ratio of the probability of the first expert to that of the
other expert is at most ct for some constant c.

We show this by induction. The induction hypothesis is that the probability of the first
expert is at most c for some constant c while that of the other expert is at least 1/(t − 1)
at times step t− 1 ≥ 2. Thus, the ratio of these two probabilities is at most c(t− 1).

The base case is when t = 2: the probability of the first expert is 1 · eη(1 − 1/2) + (1 ·
eη + 1)/(2 · 2) = eη/2 + (eη + 1)/4 = (3eη + 1)/4 = c; the probability of the other expert is
1 · 1 · (1 − 1/2) + (1 · eη + 1)/(2 · 2) = 1/2 + (eη + 1)/4 = (eη + 3)/4 ≥ 1/2. The base case
holds. The induction step works as follows: the probability of the first expert is at most

c · eη(1− 1/t) + (c · eη + 1/(t− 1) · 1)/(2 · t)
= c · eη − c · eη/(2t) + 1/(2t(t− 1)) ≤ c′

for some constant c′; the probability of the other expert is at least

1/(t− 1) · 1 · (1− 1/t) + (c · eη + 1/(t− 1) · 1)/(2 · t)
= 1/(t− 1)− 1/(2t(t− 1)) + (c · eη)/(2t) ≥ 1/t.

Hence, the ratio of these two probabilities is at most ct.

C.3 Proof of Lemma 5

At time step T1 + 1, the ratio of the first expert’s probability to the probability of the other
expert who is the current dominant expert is

(c · T1/Z̄T1+1)(1− 1/(T1 + 1)) + 1/(2(T1 + 1))

(eη/Z̄T1+1)(1− 1/(T1 + 1)) + 1/(2(T1 + 1))

=
c · T1(1− 1/(T1 + 1)) + Z̄T1+1/(2(T1 + 1))

eη(1− 1/(T1 + 1)) + Z̄T1+1/(2(T1 + 1))

≤ c · T1

eη
= c · T1 · e−η,



where Z̄T1+1 = c · T1 + eη and the inequality is from the assumption that c · T1 ≥ eη. Thus,
at time step T1 + k, the ratio is at most

c · T1 · e−kη = 1,

which implies that k = log(T1)/η.

C.4 Proof of Lemma 6

At time step
∑i
j=1 Tj , the end of the ith period, the probability of the first expert who was

the (immediately previous) dominant expert for the (i − 1)th period and that of the other
expert who is the current dominant expert is in a ratio at least c/Ti for a constant c if i ≥ 2
is even; the probability of the first expert who is the current dominant expert and that of
the other expert who is the previous dominant expert for the (i − 1)th period is in a ratio
at most c′(Ti−1) for a constant c′ if i ≥ 3 is odd. Thus, similarly by Lemma 5, we have the
lemma.

C.5 Proof of Corollary 8

The cumulative (expected) reward of the modified double multiplicative updates is by
Lemma 4, Lemma 5 (a special case of Lemma 6) and Lemma 6.

T/(K + 1) + (T/(K + 1)− log(T/(K + 1))/η)K

= T −K log(T/(K + 1))/η.

The cumulative reward of the best in hindsight is T/2. Thus, the regret is

−T/2 +K log(T/(K + 1))/η.

To have a negative regret, η has to be set to be greater than 2K log(T/(K + 1))/T . With
η = 1/

√
D∞, since D∞ = K, we obtain a regret at most −T/2 −

√
K log(T/(K + 1)) +

K
3
2 log(T/(K + 1)) ≤ −T/2−

√
K log(T/(K + 1)) +K

3
2 log(T/K).


