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Abstract

We consider the problem of fair allocation of indivisible goods to agents with sub-
modular valuation functions, where agents may have either equal entitlements or
arbitrary (possibly unequal) entitlements. We focus on share-based fairness notions,
specifically, the maximin share (MMS) for equal entitlements and the anyprice share
(APS) for arbitrary entitlements, and design allocation algorithms that give each
agent a bundle of value at least some constant fraction of her share value. For
the equal entitlement case (and submodular valuations), Ghodsi, Hajiaghayi, Sed-
dighin, Seddighin, and Yami [EC 2018] designed a polynomial-time algorithm for 1

3
-

maximin-fair allocation. We improve this result in two different ways. We consider
the general case of arbitrary entitlements, and present a polynomial time algorithm
that guarantees submodular agents 1

3
of their APS. For the equal entitlement case,

we improve the approximation ratio and obtain 10
27
-maximin-fair allocations. Our

algorithms are based on designing strategies for a certain bidding game that was
previously introduced by Babaioff, Ezra and Feige [EC 2021].

1 Introduction

We study the problem of allocating a set M of m indivisible items fairly to a set N of n
agents, where each agent i has an individual non-negative submodular valuation function
vi : 2

M → R≥0 (the definition of submodularity appears in Section 1.3). In fair allocation
settings, agents do not pay for the items. Instead, agents have arbitrary, possibly unequal
entitlements to the items. Specifically, each agent i has an individual entitlement 0 < bi ≤ 1,
and the entitlements sum up to 1 (

∑n
i=1 bi = 1). We focus on share-based fairness notions,

specifically, the maximin share (MMS) for equal entitlements [Bud11] and the anyprice share
(APS) for arbitrary entitlements [BEF21] (definitions of these notions appear in Section 1.5).
We design allocation algorithms that give each agent a bundle of value at least some constant
fraction of her share value.

The problem of fairly allocating indivisible items has been extensively studied, with
various settings of the problem considered (items might be goods or chores, agents may have
equal or unequal entitlements), and different fairness criteria explored, such as envy-based
notions and share-based principles. See for example [ALMW22, ABFV22] and references
therein.

The problem of allocating indivisible items to agents arises naturally in the real-world.
We present one such example that illustrates aspects addressed in our work (unequal en-
titlement, no payments, non-additive valuation functions). The NBA draft is an annual
event of the National Basketball Association (NBA) in which new eligible basketball players
(typically graduate college players) are allocated to NBA teams. The allocation mechanism
is a picking sequence composed of two rounds. In each round, each team in its turn picks
a player among the eligible players. In this example, teams correspond to the agents, and
basketball players correspond to the items. The teams do not have equal entitlement to
the players. Teams of poorer performance in the previous season have higher entitlement
than those of better performance (a policy that tries to maintain the competitiveness of the
teams). This unequality of entitlement is reflected in the allocation mechanism, by having
teams with higher entitlement pick earlier than teams of lower entitlement, in each of the



rounds of the picking sequence. (In practice, the allocation mechanism is somewhat more
complicated than described above, but these additional complications are not relevant to
our presentation, and hence omitted.) Teams do not pay for the right to pick a player.
(They will of course later pay the salary of the player, but these monetary aspects are only
an aspect that determines how desirable the player is for the team, and are not part of
the allocation processes.) The interests of teams do not seem to fit a model of an additive
valuation function. For example, it is likely that the combined value for a team of two
players that play in the “center” position is smaller than the sum of values of the individual
players.

1.1 Fairness notions

In our paper, we focus on notions of fairness known as share-based notions. In share-based
fairness, each agent cares only about her own bundle in the allocation, and expects its value
to reach at least a certain target value. One such fairness notion is the maximin share, which
was introduced by Budish [Bud11]. The maximin share (abbreviated as MMS ) of an agent
is defined to be the maximum value she can ensure for herself if she were to partition the
goods into n bundles and then receive a minimum valued bundle. A maximin fair allocation
is an allocation in which each agent gets a bundle that she values at least as her maximin
share.

The maximin share notion is applicable when agents have equal entitlement. A notion
of fairness for the case of arbitrary entitlements was presented by Babaioff, Ezra, and Feige
[BEF21], and is referred to as the AnyPrice share (abbreviated as APS). See Definition 9.
In the special case of equal entitlements, the AnyPrice share of an agent is at least as large
as her Maximin share, and sometimes strictly larger.

1.2 Notions of approximation

In the context of the notions of the MMS and APS, there are two different tasks that involve
approximations.

• Approximating the value of the MMS (or APS) of an agent. Both the MMS and APS
of an agent are NP-hard to compute even if the valuation function is additive, in which
case computing the exact value of the MMS is strongly NP-hard [Woe97], computing
the exact value of the APS is weakly NP-hard, and the APS can be computed by a
pseudo-polynomial time algorithm [BEF21]. For submodular valuation functions (a
class that is considered in this paper), computing the MMS and the APS is APX-hard.
See Section A for more details.

• Approximating a fair allocation (maximin-fair allocation, AnyPrice-fair allocation,
etc.). For α ∈ (0, 1), we say that an allocation is α-maximin-fair (resp. α-AnyPrice-
fair) if it gives every agent at least an α fraction of her MMS (resp. APS). Kurokawa,
Procaccia, and Wang [KPW18] showed that for every n ≥ 3, there exists an instance
with n additive agents for which no maximin-fair allocation exists (in every allocation
some agent gets a bundle she values strictly less than her MMS). As the APS of an
agent is at least as large as her MMS, there are instances with additive valuations and
no APS-allocation.

In our paper we will focus on the latter task, approximating MMS-fair (APS-fair) allo-
cations.



1.3 Classes of valuation functions

Throughout this paper we assume that valuation functions are normalized (the value of the
empty set is 0) and monotone (v(S) ≤ v(T ) for S ⊂ T ).

Lehman, Lehman, and Nissan [LLN06]introduce a hierarchy of families of valuation func-
tions, and two prominent members of this hierarchy are Submodular and XOS valuations,
as defined below.

Definition 1. (Submodular valuation) A valuation function v : 2M → R≥0 is submod-
ular if the following (equivalent) conditions hold:

• ∀S, T ⊆M we have v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )

• ∀S, T ⊆ M with S ⊆ T , and for any j ∈ M\T we have v(S ∪ {j}) − v(S) ≥ v(T ∪
{j})− v(T )

Definition 2. (XOS valuation) A valuation function v : 2M → R≥0 is XOS (also referred
to as fractionally subadditive) if there exist a finite set of additive valuations {v1, v2, . . . , vk}
such that

∀T ∈M, v(T ) = max
j∈[k]

vj(T )

As shown in [LLN06], the hierarchy of these classes is as follows:

Additive ⊊ Submodular ⊊ XOS

Let us briefly discuss the representation of valuation functions. The explicit represen-
tation of a valuation function requires exponential space in m (its domain size is 2m).
Consequently, as described in [LLN06], one typically assumes query access to valuation
functions, rather than having an explicit representation for them. Our paper will focus on
the value queries model (i.e., the function is implicitly given through a value oracle). In
this model, a query is a set of items, and the answer is the value of the function on this
set of items. We assume that each such query takes unit time. Consequently, polynomial
allocation algorithms may make only polynomially many value queries to the underlying
valuation functions.

1.4 Our main results

Our main results concern the existence (and polynomial time computability) of approx-
imate MMS-fair (APS-fair) allocations in the equal entitlements (arbitrary entitlements)
case for submodular agents. Previously, for the equal entitlement case, Ghodsi, Hajiaghayi,
Seddighin, Seddighin and Yami [GHS+18] designed a polynomial-time algorithm for 1

3 -
maximin-fair allocations, and designed instances in which in every allocation, at least one
agent gets a bundle of value not larger than a 3

4 fraction of her MMS.
Our results are based on a bidding game mechanism introduced by [BEF21]. Each agent

gets an initial budget equal to her entitlement. In every round, the highest bidder gets
to choose an item and pays her bid (see Section 2.2.) We show here that in this bidding
game, a submodular agent has a bidding strategy that guarantees at least a 1

3 fraction of
her APS in the arbitrary entitlements case. In the case of equal entitlements, we consider a
slight modification of the bidding game in which agents who spent a substantial fraction of
their budget drop out of the game. We refer to this version as the altruistic version of the
bidding game (see Section 2.3). For the altruistic version of the bidding game (and equal
entitlements), we present a bidding strategy that guarantees a submodular agent at least a
10
27 fraction of her MMS.



Theorem 3. Consider the bidding game described above, and an agent p with a submodular
valuation function and entitlement bp. Setting ρ = 1

3−2bp
> 1

3 , a bidding strategy referred

to as proportional(ρ) guarantees agent p a value of at least ρ ·APSp. (In the case of equal
entitlements, this gives ρ = n

3n−2 .)

Theorem 4. Consider the altruistic version of the bidding game in the equal entitlement
case. Every agent with a submodular valuation that uses a bidding strategy referred to as the
proportional bidding strategy is guaranteed to get a bundle of value at least a ρ = 10

27+Ω( 1n ) >
0.37037 fraction of her MMS.

The bidding strategies used in our two main theorems require computing the APS (or
MMS) of the agents, tasks which are APX-hard. Nevertheless, known techniques [GHS+18]
allow us to deduce the following corollary:

Corollary 5. For agents with submodular valuations, there are polynomial time algorithms
offering the following guarantees. In the case of arbitrary entitlements, each agent gets at
least 1

3 -APS. For the case of equal entitlements, each agents gets at least 10
27 -MMS.

Our results concerning submodular valuations can be combined with previous results of
[BEF21] that concern bidding strategies for agents with subclasses of submodular valuations,
namely additive valuations and unit demand valuations. This results in allocation algorithms
for setting with submodular valuations, in which agents that have valuations coming from
simple sub-classes of submodular valuations get improved guarantees.

Corollary 6. There is a polynomial time allocation algorithm, which simultaneously guaran-
tees for submodular agents 1

3 -APS, for additive agents 3
5 -APS, and for Unit-demand agents

1-APS.

A class of valuations that is more general than submodular valuations is XOS valuations.
A natural question concerning the bidding game is whether agents with XOS valuations have
strategies that guarantee a constant fraction of their APS. The answer for this question is
negative.

Proposition 7. There is no bidding strategy that guarantees a constant fraction of the MMS
to an agent with an XOS valuation function (not even in the case of equal entitlements).

1.5 Definitions of shares

In this section we provide formal definitions for the share notions that are used in this paper.
For equal entitlements, we use the well established notion of the maximin share.

Definition 8. (Maximin share (MMS)) Consider an allocation instance with a set
M = {e1, . . . , em} of m items and a set N = {1, . . . , n} of n agents, where each agent i has
an individual non-negative valuation function vi : 2

M → R≥0. Then the maximin share of
agent i, denoted by MMSi, is the maximum over all n-partitions of M, of the minimum
value under vi of a bundle in the n-partition

MMSi = max
A1,A2,...,An∈Pn(M)

min
j

vi(Aj)

(where Pn(M) is the set of all partitions ofM to n pairwise disjoint sets)

For arbitrary (unequal) entitlements, we use a relatively new notion of a share, the
anyprice share (APS). The APS of agent i is defined via the following price and choose
game. First, an adversary assigns nonnegative prices to the items in M, and agent i’s



entitlement bi translates to a budget that is a bi fraction of the sum of prices of all items.
Then, agent i may choose any bundle of items of total price not exceeding this budget. The
value that she can guarantee for herself as a chooser, no matter how items are priced, is her
anyprice share APSi. Note that the APS of an agent depends only on her valuation and
entitlement, and is independent of valuations and entitlements of other agents. Comparisons
of the APS with other share notions appear in [BEF21].

Definition 9. (AnyPrice share) Consider a setting in which agent i with valuation vi
has entitlement bi to a set of indivisible items M. The AnyPrice share (APS) of agent i,
denoted by AnyPrice(bi, vi,M), is the value she can guarantee herself whenever the items
inM are adversarially priced with non-negative prices that sum up to 1, and she picks her
favorite affordable bundle. More formally, if P = {(p1, . . . , pm)|

∑
pj = 1, and ∀j, pj ≥ 0}

is the set of all possible pricing ofM, then the definition of the APS is:

AnyPrice(bi, vi,M) = min
(p1,p2,...,pm)∈P

max
S⊆M

vi(S) |
∑
j∈S

pj ≤ bi


When M and vi are clear from context we denote the APS share of an agent i with

entitlement bi by AnyPrice(bi), instead of AnyPrice(bi, vi,M).

As shown in [BEF21] (for all classes of valuation functions), the AnyPrice share has the
following equivalent definition.

Definition 10. (AnyPrice share dual definition) Consider a setting in which agent i
with valuation vi has entitlement bi to a set of indivisible itemsM. The AnyPrice share of
i, denoted by AnyPrice(bi, vi,M), is the maximum value z she can get by coming up with
nonnegative weights {λT }T⊆M that total to 1 (a distribution over sets), such that any set
T of value below z has a weight of zero, and any item appears in sets of a total weight at
most bi:

AnyPrice(bi, vi,M) = max z

subject to the following set of constraints being feasible for z:

•
∑

T⊆M λT = 1

• λT ≥ 0,∀T ⊆M

• λT = 0,∀T ⊆M s.t vi(T ) < z

•
∑

T :j∈T λT ≤ bi,∀j ∈M

1.6 Related work

There are several different approaches trying to define fairness criteria for allocation of
items. One approach concerns elimination (or minimization) of envy among agents. An
allocation is envy-free if no agent strictly prefers a bundle of another agent over her own
bundle [Fol67]. Envy free allocations exist in setting with divisible items, but need not exist
in settings with indivisible items (e.g., when there are fewer agents than items). Conse-
quently, various relaxations of the envy-free property have been introduced, among them
EF1 ([LMMS04],[Bud11]) and EFX [CKM+19]. In this work we do not consider envy-based
fairness notions.

Perhaps the first share-based fairness notion to have been introduced is the proportional
share. For agent i with entitlement bi and valuation function vi, it equals bi · vi(M). This



notion and various relaxations of it (Prop1) may be appropriate when valuations functions
are additive, but is hard to justify for other classes of valuation functions. In this work we
are concerned with submodular valuations. For the case of equal entitlements, we consider
the maximin share (MMS) [Bud11], which is the share notion that is most commonly used
for allocation of indivisible items to agents with equal entitlements. For the case of arbitrary
entitlements, we use the anyprice share (APS) [BEF21]. We remark that there are other
notions of shares that have been proposed for settings with unequal entitlements and are not
considered in our work. These include the weighted maximin share (WMMS) of [FGH+19],
and the l-out-of-d share [BNT21]. Arguments for preferring the APS over these other notions
are presented in [BEF21], and are omitted here for lack of space.

We present here some known approximation results for MMS-fair and APS-fair alloca-
tions:

• Additive valuations with equal entitlements (approximate MMS-allocations).

– Impossibility results. As mentioned above, Kurokawa, Procaccia, and Wang
[KPW18] were the first to show that for each n ≥ 3, there exists an instance
with n additive agents, such that no maximin-fair allocation exists. Later, Feige,
Sapir, and Tauber [FST21] showed an example of an instance with n = 3 agents
with additive valuations, where for any allocation, at least one of the agents gets
a bundle she values at most 39

40 of her MMS).

– Existence results. [KPW18] showed existence of ≈ 2
3 -maximin-fair allocation (up

to O( 1n )). Ghodsi et al [GHS+18] showed existence of 3
4 -maximin-fair allocations.

– Algorithmic results. Garg and Taki [GT21], presented a polynomial time algo-
rithm that finds a 3

4 -maximin-fair allocation, assuming value queries.

• Submodular valuations with equal entitlements. [BK20] showed existence and poly-
nomial time computability of ≈ 0.21-MMS fair allocations. Their algorithm is based
on a simple round-robin algorithm. Ghodsi et al [GHS+18] showed a polynomial-
time algorithm for 1

3 -maximin-fair allocations, and examples in which ρ-maximin-fair
allocations do not exist, for any ρ > 3

4 and any n ≥ 2 (number of agents).

• For XOS valuations with equal entitlements, Ghodsi et al [GHS+18] show the existence
of 1

5 -MMS allocations, and presented examples in which ρ-maximin-fair allocations
do not exist, for any ρ > 1

2 and any n ≥ 2.

• Additive valuations with arbitrary entitlements (approximate AnyPrice-fair alloca-
tions).

– Impossibility result. The negative results stated for MMS allocations (such as
upper bound of 39

40 for n = 3 agents) extend to APS allocations, as the APS is at
least as large as the MMS.

– There exists a polynomial-time algorithm for computing a 3
5 -APS allocation, i.e.,

an algorithm which returns an allocation where each agent gets a bundle she
values at least 3

5 of her AnyPrice share [BEF21].

We are not aware of previous work concerning approximate APS-allocations for valuation
functions that are submodular.



2 Proofs of our results

2.1 Preliminaries

Definition 11. Let vp be the valuation function of agent p and let t ≥ 0 be a scalar, then
we define vtp, the valuation vp truncated at t, as follows:

vtp(B) := min{vp(B), t}

Observe that if vp is submodular, then also vtp is submodular.

Claim 12. Let vp be the valuation function of an agent p, and set t ≤MMSp (respectively
t ≤ APSp). Then the new MMS (APS) of agent p is t if we consider her valuation function
to be vtp (Definition 11). In the special case of t = MMSp (t = APSp), this implies that
the MMS (APS) of the agent remains unchanged.

Proof. The partition (fractional partition) that certifies that the MMS (APS) with respect
to vp is at least t, certifies the same with respect to vtp (because every bundle that has value
at least t with respect to vp has value t with respect to vtp). The MMS (APS) with respect
to vtp cannot be larger than t, as no bundle has vtp value larger than t. ■

2.2 Approximate APS-fair allocations for submodular agents

We now describe an allocation game (introduced in [BEF21]), that we refer to as the bidding
game. Initially, every agent i is active, is given a budget of b0i = bi (in particular, in the
equal entitlement case b0i = 1

n ), and has an empty bundle S0
i of items. The set of initially

unallocated items is denoted by M0.
The game proceeds in rounds, and in every round, one item is allocated. In round r ≥ 1,

to decide which item is allocated, we do the following.

1. If there are no active agents, end the allocation algorithm. (The remaining items, if
there are any, can be allocated arbitrarily.)

2. Every active agent i submits a nonnegative bid pri of her choice, not exceeding her
budget. Namely, 0 ≤ pri ≤ br−1

i .

3. The agent i with the highest bid (breaking ties arbitrarily) wins, and selects an arbi-
trary item of her choice. Denote this selected item as er. We updateMr = Mr−1\{er}
and Sr

i = Sr−1
i ∪ {er}. Her budget is updated to bri = br−1

i − pri . That is, the winner
pays her bid. If bri = 0, then agent i stops being active. In any case, for agents j ̸= i,
we have Sr

j = Sr−1
j and brj = br−1

j .

Remark 13. One may consider a second-price version of the bidding game, in which the
winner pays the second highest bid. All results of this paper hold without change also with
respect to the second-price version.

To help illustrate the key methods used in the proof of Theorem 3, we first present a
sketch of proof for a weaker version. This will pave the way for the subsequent proof of
Theorem 3.

Proposition 14. Consider the bidding game described above and an agent p with a sub-
modular valuation function in an equal entitlements setting. Employing a bidding-strategy
referred to as proportional( 13 ) guarantees agent p a minimum value of 1

3 ·MMSp.



Proof. In the bidding game, each agent is initially assigned a budget equal to her entitle-
ment. In the equal entitlement case, each agent receives a budget of 1

n . The proportional(
1
3 )

bidding strategy involves the following steps. Initially, agent p calculates MMSp (her MMS
value). At the beginning of round r, letMr denote the set of items that are still available,
let Cr denote the set of items that agent p won prior to round r, and let brp denote the budget

that the agent still holds. In round r, agent p bids 3
2 ·

1
n ·

1
MMSp

·maxe∈Mr [vp(e | Cr)]. In

other words, the bid of the agent is equal to 3
2 times the scaled value of the marginal value

of the item of highest marginal value that still remains, where the scaling factor 1
n ·

1
MMSp

is such that after this scaling, the MMS value of p equals the original budget of p. If this
bid value exceeds brp (the remaining budget of p), then p bids brp. In any case, if p wins the
bid, she selects the item of highest marginal value inMr, and pays her bid. We note here
that the factor 3

2 was chosen so as to equal 1
2ρ , for our choice of ρ = 1

3 . The same type of

expression, 1
2ρ , will appear also in the proof of Theorem 3.

We now provide a sketch of proof that the above bidding strategy guarantees agent p
a bundle of value at least 1

3MMSp. In this sketch, {Bi}ni=1 denotes an MMS partition for
agent p. Namely, vp(Bi) ≥MMSp for every i.

Call an item e large if vp(e) >
2
3MMSp. We claim that, without loss of generality, we

can assume that there are no large items. As long as a large item exists, p bids her entire
budget. If agent p wins the round, we are done. If a different agent q wins the round, that
agent spends her entire budget and leaves the bidding game after winning only a single item.
Intuitively, q did not “hurt” p, since n − 1 bundles of the MMS partition of p still contain
all their items, whereas only n − 1 agents remain to compete on them. Further details of
this argument are omitted.

According to the bidding strategy, if agent p manages to spend at least half of her budget
during the bidding game, she will receive a 1

3 -fraction of her MMS. Therefore, our goal is to
show that p manages to spend at least half of her budget.

The main idea is that until p spent half of her budget, other agents cannot do much
damage to p. The bidding strategy of p has two key properties that are easy to verify.
First, the bidding sequence is non-increasing (this is a consequence of submodularity of vp).
Second, in the absence of large items (an assumption that we can make without loss of
generality), as long as p has spent at most half of her budget, her remaining budget does
not constrain her from providing a full bid according to the bidding strategy. Due to this
latter property, if another agent q wins an item, q pays for the item that she takes at least
3
2 times the scaled marginal value that p has for the item.

Next, we analyze how much harm the other agents can cause p up to the point when she
spends half of her budget. We denote by C the bundle that p holds at the last point in time
in which she has not spent half her budget. A sufficient condition for p to exceed 1

3MMSp

is if there exists a bundle Bi from p’s MMS partition that has sufficiently high marginal
value (relative to C, and after excluding from Bi those items won by other agents) so that
together with C, the value exceeds 1

3MMSp. For every item e that another agent wins,
that agent pays at least 3

2
1
n

1
MMSp

vp(e | C). (The fact that we can compare to marginal

value relative to C is a consequence of submodularity of vp.) Hence, the ratio between
the value taken from bundles of the MMS partition, and the payment done by the other
agents is α = 3

2
1
n

1
MMSp

. Therefore, using the fact that the total budget of all the agents

together is 1, we obtain an upper bound on the total value taken by the other agents, which
is 2

3 ·n ·MMSp. Hence, there must exist a bundle Bi in which the other agents took items of
marginal value relative to C of at most 2

3MMSp. Hence, together with C, there is enough
value left in Bi for p to surpass 1

3MMSp. (This last argument again uses submodularity of
vp.) ■



Before presenting the proof of Theorem 3, we discuss some of the challenges we will
face when extending the (sketch of) proof of Proposition 14 to the more general setting of
Theorem 3.

• Proposition 14 considers the MMS, whereas Theorem 3 considers the APS, which is
always at least as large as the MMS, and sometimes larger. The analysis needs to
be extended to hold relative to this stronger notion, and in particular, can no longer
assume the existence of an integral MMS partition.

• The setting considered in Theorem 3 allows for arbitrary entitlements. The proof of
Proposition 14 uses the assumption that the setting is that of equal entitlement (for
example, in its treatment of large items).

• Theorem 3 provides a guarantee that is somewhat better than 1
3 -fraction of the APS

(that becomes significant if the entitlement is large).

The proof of Theorem 3 appears in Appendix C.

2.3 Approximate MMS-fair allocations for submodular agents

In the standard version of the bidding game, every agent has an initial budget, and in each
round, the highest bidder picks an item. Each agent plays until she exhausts her budget,
and the game ends when either there are no more items left, or all agents exhaust their
budgets. Now we introduce a ρ-altruistic version of the bidding game, in which agents who
spent a ρ-fraction of their budget leave the game, without exhausting their full budget.
Consequently, the agents that remain in the game face less competition for the remaining
items, making it easier for them to win additional items. For the equal entitlement case,
this is helpful in the design of bidding strategies that guarantee agents a higher fraction of
their MMS.

Definition 15. The ρ-altruistic version of the bidding game is the same bidding game with
the change that every agent becomes inactive after spending a ρ-fraction of her budget.

We shall consider a bidding strategy for the ρ-altruistic bidding game, that we shall
refer to as the proportional bidding strategy. We make two assumptions that simplify our
presentation. These assumptions have no effect on the correctness of Theorem 4 that follows.
These assumptions concern the submodular valuation function vp of agent p that uses the
proportional bidding strategy.

1. The valuation function is scaled so that MMSp = bp (the MMS of agent p equals her
entitlement).

2. The valuation function is truncated at MMSp (as in Definition 11). By Claim 12, this
truncation does not affect the MMS value.

We now present the proportional bidding strategy, as used by agent p. At the beginning
of round r, letMr denote the set of items not yet allocated, let Cr denote the set of items
already allocated to p, and let brp denote the budget remaining for agent p. Then the agent
bids maxe∈Mr [vp(e | Cr)] (the highest marginal value that a yet unallocated item has) if
this bid is not larger than brp, and bids her remaining budget brp otherwise.

Recall Theorem 4:

Theorem 4. Consider the altruistic version of the bidding game in the equal entitlement
case. Every agent with a submodular valuation that uses a bidding strategy referred to as the
proportional bidding strategy is guaranteed to get a bundle of value at least a ρ = 10

27+Ω( 1n ) >
0.37037 fraction of her MMS.



Before presenting the proof of Theorem 4, we sketch the proof for a weaker version of
the theorem, setting ρ = 4

11 instead of ρ = 10
27 > 4

11 . Already this weaker version improves
over the ratio of ρ = n

3n−2 of Theorem 3 (when n > 8). Moreover, the proof of this weaker
version of Theorem 4 conveys some intuition that may be helpful for following the proof of
Theorem 4.

Proposition 16. In the equal entitlement case with submodular valuations, for ρ = 4
11 ,

every agent that uses the proportional strategy in the altruistic version of the bidding game
is guaranteed to get a bundle of value at least a ρ = 4

11 fraction of her MMS.

Proof. We only sketch the proof, as we shall later present a full proof for Theorem 4.
If agent p that uses the proportional bidding strategy manages to spend ρ · bp, then she

also wins items of total value at least ρ ·MMSp, and we are done. Hence it remains to
exclude the case that agent p failed to spend ρbp. In this case, partition the agents other
than p into three classes, X0, X1, Y .

Class X0 contains those agents that by the end of the bidding game take only one item.
Intuitively, an agent i of class X0 who took one item does not “hurt” p, because there are
n − 1 bundles in the MMS partition of p from which agent i does not take any item, and
only n− 1 agents (including p) compete for items in these bundles. Hence we may assume
that no agent is in class X0. See further details in Claim 29.

Class X1 contains those agents that by the end of the bidding game take two items.
Being in the ρ-altruistic bidding game implies that for the first item that such an agent
i took she paid at most ρbp (here we use the fact that agents have equal entitlements),
implying that the bid of p at the time was at most ρbp = ρMMSp. By the proportional
strategy, this bid was equal to the highest marginal value for p for any of the remaining
items at the time, and as the sequence of highest marginal values cannot increase as rounds
progress, this further implies that the marginal vp values of items taken by agent i is at most
2ρMMSp. A key observation is that if there are more than n

2 agents in class X1, then there
must be a bundle B in the MMS partition of p from which they took at least two items. As
it does not matter for p which of the agents in X1 takes which of the items that the agents
in X1 collectively take (as long as each agent in X1 takes two items, and each such item has
marginal value at most ρbp), we may pretend that there is an agent i in X1 for which the
two items that she takes are from this bundle B. This agent i does not “hurt” p, because
there are n − 1 bundles in the MMS partition of p from which agent i does not take any
item, and only n − 1 agents (including p) compete for items in these bundles. Hence, we
may assume that at most n/2 agents are in class X1. See further details in Claim 30.

Class Y contains all remaining agents. Such an agent i either takes no items (and then
of course she does not hurt p), or takes only one item with marginal value (to p) of at most
ρAPSp, or takes k ≥ 3 items. In the latter case, being in the ρ-altruistic bidding game
implies that for her first k − 1 items agent i spent at most ρbp, and hence the bid of p for
the last item taken by i was at most 1

k−1ρbp. This implies that the total marginal vp values

(with respect to items held by p) of items taken by i is at most k
k−1ρMMSp. For k ≥ 3,

this is maximized when k = 3, giving 3
2ρMMSp.

Summing up, agents other than p take a total marginal vp value of at most n
2 ·2ρMMSp+

(n2−1)·
3
2ρMMSp = ( 7n4 −

3
2 )ρMMSp. Hence from at least one of the bundles B of the MMS

partition of p, the total marginal value taken by other agents is at most ( 74 −
3
2n )ρMMSp.

As the bidding game ended with p spending strictly less than ρbp = ρMMSp, no items
left in B have any marginal value for p. Denoting the bundle that p receives by C, this
implies that vp(B | C) ≤ ( 74 −

3
2n )ρMMSp. Hence. we have that MMSp ≤ vp(B) ≤ vp(B |

C)+ vp(C) ≤ ( 74 −
3
2n )ρMMSp+ vp(C). For ρ = 4

11 , the assumption that vp(C) < ρMMSp

leads to a contradiction in the above inequality, thus proving that vp(C) ≥ ρMMSp, as
desired. ■



Observe that due to the slackness factor of 3
2n in the last paragraph of the proof of

Proposition 16, we can adapt the proof to get a slightly better bound for ρ, of the order of
4
11 + Θ( 1n ). Though this slackness term does not substantially change the approximation
ratio, it does prove useful for designing a polynomial time algorithm that outputs an allo-
cation in which each agent receives at least a 4

11 fraction of her APS. See more details in
Section 2.4.

Having seen the proof of Proposition 16, let us explain the source of improvement that
leads to the proof of Theorem 4. The 4

11 approximation ratio (rather than a better one)
comes from the possibility that agents other than p take 2 · n2 items of value ρMMSp, and
3 · (n2 − 1) items of value 1

2ρMMSp, for a total value of nearly 7
4ρMMSp. However, in this

case the other agents take fewer than 3n items, implying that in at least one of the bundles
of the MMS partition of p, they take at most two items, of values ρMMSp and 1

2ρMMSp

(recall that we may assume that no two items of value ρMMSp are in the same bundle of
p’s MMS partition). Hence one of these bundles still has value of MMSp− 3

2ρMMSp. The
assumption that p gets a value of at most ρMMSp then implies that MMSp ≤ 5

2ρMMSp,
implying that ρ ≥ 2

5 .
The other agents may do damage to p in a different way. n

2 agents might each take two
items of value ρMMSp,

n
3 agents might each take three items of value 1

2ρMMSp, and
n
6 −1

agents might each take six items of value 1
5ρMMSp. Ignoring the missing one agent (that

is important, but is ignored only for the sake of the argument), this allows the other agents
to take three items from each MMS bundle, of values ρMMSp,

1
2ρMMSp and 1

5ρMMSp.
This leads to the inequality MMSp ≤ 27

10ρMMSp, implying that ρ ≥ 10
27 . The proof of

Theorem 4 shows that this is the most damage that the other agents can do.
The proof of Theorem 4 appears in Appendix D

2.4 Polynomial time algorithms

Theorems 3 and 4 imply (among other things) the existence of allocations that give each
agent with a submodular valuation a certain fraction of her APS (or MMS). However, they
do not provide polynomial time algorithms to find such allocations because they assume that
the APS (or MMS) value is known (or can be computed by the agent), whereas computing
this value is NP-hard. Nevertheless, by using a technique presented in [GHS+18], we obtain
a polynomial time implementation, proving Corollary 5. The basic idea is as follows. One
runs the bidding game with all agents using our proposed proportional strategy, but each
agent starts with an estimate for her MMS (or APS) that is higher than the true value. If
all agents get the desired fraction of their estimated MMS, we are done. If not, then for
those agents that get a fraction that is too small, we lower their estimate for their MMS
by a factor of (1 − ϵ), and repeat the whole process. No agent will ever need to lower her
estimate to below a (1− ϵ) fraction of her true MMS. For the full proof, see Appendix E.

Corollary 6 states that if valuation functions of agents come from different classes, then
there is an allocation that simultaneously gives each agent a bundle of value that is a
certain fraction of her APS, where this fraction depends on the class (1 for unit demand,
3
5 for additive, 1

3 for submudular). This is a consequence of the fact that all these ratios
can be achieved by bidding strategies for a certain bidding game. The bidding game that is
used is a variation on the bidding games considered in the current paper, in which agents
who win a bid may pick more than a single item (as long as they can afford to pay for the
items that they pick). This variation is used in [BEF21] in their proof of the 3

5 ratio for
additive valuations. Our 1

3 ratio for submudular valuations extends also to this version of
the bidding game (and unit demand bidders have trivial bidding strategies), establishing
Corollary 6. For more details, see Appendix E.



2.5 Negative examples

The following proposition shows that our analysis in Theorem 4, showing a ratio of 10
27 ≃ 0.37,

is nearly tight (for the particular bidding game and bidding strategy used in that theorem).
Its proof is presented in Section F.

Proposition 17. For every constant ρ > limk→∞ ρk ≃ 0.3716 (where for each k ∈ N we
will define ρk in the proof), there is an allocation instance with equal entitlements and an
adversarial run of the altruistic version of bidding game, in which an agent p that has a
submodular valuation function and uses the proportional bidding strategy gets a bundle of
value smaller than ρMMSp.

The following proposition shows that in Theorem 3, the value of ρ cannot be improved
to a constant (independent of bp) larger than

1
3 . Its proof is presented in Section F.

Proposition 18. For every constant ρ > 1
3 , there is an allocation instance with equal

entitlements and an adversarial run of the bidding game, in which an agent p that has a
submodular valuation function and uses the proportional(ρ) bidding strategy gets a bundle
of value smaller than ρMMSp.

We now restate and prove Proposition 7, showing that our proof techniques do not extend
to XOS valuations.

Proposition 7. There is no bidding strategy that guarantees a constant fraction of the MMS
to an agent with an XOS valuation function (not even in the case of equal entitlements).

Proof. For parameters n, k, define the instance I(n, k) as follows. There are n agents with
equal entitlements. The setM of items consists of nk items eij for 1 ≤ i ≤ k and 1 ≤ j ≤ n.
We think ofM as arranged in an k × n matrix, with eij in the ij entry. For every column
j, let cj be the additive valuation function defined by giving value 1 to items in column
j, and 0 to all other items. Let v be the pointwise maximum of the functions cj , that is,
v(S) = maxj cj(S) for every S ⊆M. Then the valuation function v is an XOS function by
its definition. We focus on a specific agent p whose valuation function is vp = v. (The other
agents may have arbitrary valuations.)

Claim 19. If n ≥ 4k2, no bidding strategy can guarantee p more than a 1/k-fraction of
MMSp.

Proof. For convenience, assume all agents are given a budget of k. We give the other agents
adversarial bidding strategies, as follows. There are two types of agents.

• Type 1 agents consist of n/2 of the agents that always bid 1/2, and take an arbitrary
available item upon winning.

• Type 2 agents consist of the rest n/2−1 agents, which operate as follows. Once agent
p wins an item eij , an agent of this type bids all of her budget in the next k−1 rounds,
and upon winning, chooses an available item from column j (and becomes inactive).

An agent of type 1 becomes inactive after winning exactly 2k items. As the number of items
is nk, it follows that there exists an active agent of type 1 in every round. Thus, agent p
must pay 1/2 for every won item, so she can win at most 2k items overall. Once p wins her
first item from some column j, if there exist at least k − 1 active agents of type 2, all other
items in column j will be taken by them in the next k − 1 rounds. So, if we start with at
least (2k) · (k − 1) agents of type 2, p will not win more than one item from every column.
As (2k) · (k − 1) ≤ 2k2 − 1 ≤ n/2− 1, this indeed holds, so agent p cannot win a bundle of
value more than 1. Observe that MMSp = k, so the claim follows. ■

Proposition 7 is an immediate consequence of Claim 19. ■
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A APX-hardness for computing MMS and APS for
submodular valuations

The current section is presented in a somewhat sketchy way, and without detailed proofs,
as it is not the main focus of the current paper.

In general, computing the MMS and the APS are both NP-hard tasks. For example, for
the case of two agents with equal entitlements and additive valuations, weak NP-hardness is a
straightforward consequence of the NP-hardness of the PARTITION problem (given a set of
integers, is there a subset whose sum of values is exactly half of the total sum?). Computing
the APS is in some sense an easier task than computing the MMS. In particular, for additive
valuations there are pseudo-polynomial time algorithms for computing the APS [BEF21],
whereas computing the MMS is strongly NP-hard. Also, as the value of the APS is a solution
to a linear program with exponentially many constraints (Definition 9), the APS can be
computed in polynomial time (using the ellipsoid algorithm) if there is a separation oracle
for the linear program. This separation oracle corresponds to a computational problem
that has a natural economic interpretation: given prices to the items and a budget for the
agent, which is the highest value bundle that the agent can afford? For a given valuation
function, if one can answer such queries in polynomial time, then the APS can be computed
in polynomial time.

In the case of equal entitlement, the APS is at least as large as the MMS, and sometimes
strictly larger. For submodular valuations, a ratio of 5

6 between the MMS and the APS
is demonstrated in [BEF21], for an allocation instance with six items and two agents with
equal entitlements.

For submodular valuations, both the MMS and the APS are APX-hard to compute.
We are not aware of a reference in which such a statement is proved explicitly. However,



(1 − 1
e ) approximation hardness can be proved using known techniques. (For simplicity,

we omit here low order additive terms when stating approximation ratios.) Let us briefly
explain how. A certain reduction template (starting from the APX-hard problem Max
3SAT) described in [Fei98] established hardness of approximation results for Min Set Cover
(within a ratio of lnn) and Max k-Coverage (within a ratio of 1− 1

e ). The same reduction
template, but starting from a different APX-hard problem (Max 3-Coloring), was used
in [FHKS02] to prove hardness of approximation of the Domatic Number (within a ratio
of lnn), and in [KLMM08] to prove that the maximum welfare problem with submodular
valuations is hard to approximate within a ratio of 1− 1

e . The reduction used to prove this
last result implies that for submodular valuations it is NP-hard to approximate the MMS
within a ratio better than 1− 1

e . The reason for this is that in the maximum welfare instance
constructed by the reduction, all agents have the same submodular valuation function (call
it v). Moreover, on yes instances, the maximum welfare allocation gives all agents the same
value (call it t, with the total welfare being n · t). Hence on yes instances, the MMS of v
is t (as the maximum welfare allocation serves as an MMS partition). On no instances, the
fact that the welfare is at most (1 − e)n · t implies that in every partition to n bundles,
at least one of the bundles has value at most (1 − e)t, showing that the MMS is at most
(1 − 1

e )t. As it is NP-hard to distinguish between yes and no instances, we get a hardness
of approximation for the MMS.

To derive (1− 1
e ) approximation hardness for the APS, one further observes the following

property of no instances that result from using the reduction template: every set that
contains a 1

n fraction of the items has value at most (1 − 1
e )t. This property is inherited

from the fact that the same reduction template is used in the proof in [Fei98] that Max
k-Coverage is hard to approximate within a ratio better than 1− 1

e . When the entitlement
is 1

n , the APS fractional partition (of Definition 10) must contain at least one bundle with
at most a 1

n fraction of the items, and hence the APS for no instances is at most (1− 1
e )t.

B Simple technical claims

Claim 20. Let I be an allocation instance with a set M of items, let i be an agent with
entitlement 0 < bi < 1, let j be an agent with entitlement bj ≤ bi, and let e ∈ M be an
arbitrary item. Consider an allocation instance I ′ that differs from I only in that agent i is
removed, the entitlements of all other agents are scaled by 1

1−bi
(so that they sum up to 1),

and item e is removed. Then the APS of j in I ′ is at least as large as the APS of j in I.
Moreover, if I was an instance with equal entitlement, then the same applies to the MMS
of j

Proof. The claim above states that for each agent j with bj ≤ bi, if we define b
∗
j := 1

1−bi
·bj ,

then:
APSj(M\ {e}, b∗j ) ≥ APSj(M, bj)

Let {λSS} be a fractional APS partition for j in the original instance I. Let w =∑
S|e∈S λS denote the total weight of bundles in which e participates in the fractional

partition. Note that by definition of the APS, w ≤ bj , and since bj ≤ bi, we also have
w ≤ bi. Define the following new weights:

λ∗
S =

{
1

(1−w) · λS if e ̸∈ S

0 otherwise

We show that the new weights induce a fractional APS partition for the new instance I ′

(with agent i and item e removed). Indeed, every item is in bundles of total weight at most



b∗j :

∀e′ ∈M \ {e},
∑

S|e′∈S

λ∗
S ≤

1

(1− w)

∑
S|e′∈S

λS ≤
1

(1− w)
bj ≤

1

(1− bi)
bj = b∗j

The sum of weights of all bundles is 1:∑
S

λ∗
S =

∑
S|e/∈S

λ∗
S =

∑
S|e/∈S

1

(1− w)
λS =

1

(1− w)
· (1− w) = 1

Trivially all bundles in the support of {λ∗
SS} are of value at least APSj(M, bj), proving

the claim. ■

We recall notation used when describing the proportional(ρ) bidding strategy for the
bidding game in Section 2.2. Let Is denote the residual instance after round s, which is
the first point in time after which no items satisfy vp(e) > 2ρAPSp. The total budget bs

remaining for all agents is denoted by γ. We consider a new instance Îs to be the following:

• The set of agents is those who are active in Is.

• The entitlement of an agent in Îs is her budget in Is, scaled by 1
γ . Consequently, the

entitlements are non-negative and sum up to 1.

• The items of Îs are those of Is (denoted by Ms), and vp remains unchanged (over
subsets ofMs).

Claim 21. Given that agent p did not win an item yet (in the first s rounds), then
APS(Ms, vp,

1
γ bp) ≥ APS(M, vp, bp). In other words, the APS of agent p in Îs is at

least as her APS in I0, the original instance. (Referring Definition 11, in the special case
of vp = vtp with t = APSp, then the claim holds with equality)

Proof. Agent p did not win an item in the first s rounds, while there is an item with a
value greater than 2ρ of her APS. Therefore by the proportional bidding strategy, she bids
her entire budget, bp, in each of these rounds. Thus, after these s rounds, γ = bs ≥ 1−s ·bp.
Let P0 = {λSS} be a fractional partition associated with the APS of agent p. then we define
a new fractional partition Ps = {λ′

SS} to be the following

λ′
S =

{
1
γλS if S ⊆Ms

0 otherwise

We claim that Ps witness that indeed APS(Ms, vp,
1
γ bp) ≥ APS(M, vp, bp).

• ∑
S⊆Ms

λ′
S =

1

γ

∑
S⊆Ms

λS =
1

γ
(
∑
S⊆M

λS −
∑

e∈M\Ms

∑
S|e∈S

λS)

≥
∗

1

γ
(1−

∑
e∈M\Ms

bp)

=
1

γ
(1− s · bp)

≥ 1

By definition of Po, for each e ∈M,
∑

S|e∈S λS ≤ bp, which justify inequality *.



• Each e ∈Ms satisfies: ∑
S|e∈S

λ′
S =

1

γ

∑
S|e∈S

λS ≤
1

γ
bp

Where 1
γ bp is the entitlement of p in Îs.

• Each S ⊆ Ms with strictly positive weight in Ps is of value vp(S) ≥ APSp (since
a bundle with positive weight also has positive weight in P0). In the special case
of vp = vtp with t = APSp, (no bundle equals more than APSp) then clearly also
vp(S) ≤ APSp, and therefore vp(S) = APSp

■

C Proof of Theorem 3

In this section we present the proof of Theorem 3.
We describe a bidding strategy for the bidding game in the arbitrary entitlement

case. It has a parameter ρ > 0, and we refer to it as the proportional bidding strategy
proportional(ρ). As we shall later prove, if ρ is chosen to satisfy ρ ≤ 1

3−2bp
, then the

proportional(ρ) bidding strategy will guarantee that agent p receives a bundle of value
at least ρAPSp. A player p (with valuation function vp and entitlement bp) that uses
proportional(ρ) first computes her APS(M, vp, bp) value, which we refer to as APSp. Up
to some minor technical details (that manifest themselves only if other agents spend their
budgets at a rate that is higher than that dictated by the bids of p – these details do not
affect the guarantees offered by the bidding strategy), proportional(ρ) is equivalent to the
following simple strategy. Scale the valuation function of p such that her APS equals her
entitlement (and budget) bp. In each round, bid 1

2ρ times the marginal value (with respect

to the items that p already holds) of the item of highest marginal value that is not yet
allocated, if p has sufficient budget to do so, and bid the total remaining budget otherwise.
If p wins the bid, she selects the item of highest marginal value.

To simplify the proofs that follow later, we now present the proportional(ρ) bidding
strategy in more detail, and introduce terminology that will be used in the proofs. We first
present proportional(ρ) in the special case in which vp(e) ≤ 2ρAPSp holds for all items.
We refer to the strategy in this special case as proportional1(ρ). At the beginning of round
r, letMr denote the set of items not yet allocated, let Cr denote the set of items already
allocated to p, and let br−1

p denote the budget remaining for agent p. Then the agent bids
1
2ρ ·

bp
APSp

·maxe∈Mr [vp(e | Cr)] (the highest marginal value that a yet unallocated item has,

scaled by 1
2ρ

bp
APSp

) if this bid is not larger than br−1
p , and bids her remaining budget br−1

p

otherwise. If the agent wins her bid, she selects the item with the highest marginal value
with respect to Cr.

We now present the strategy for the remaining case, that in which there are large items
that satisfy vp(e) > 2ρAPSp. We refer to the strategy in this case as proportional2(ρ).

Prior to the beginning of the bidding game, agent p truncates her valuation function, so
that the value of each bundle S is min[vp(S), APSp]. In the notation of Definition 11, this
new valuation function is denoted as vtp, with t = APSp. This does not affect APSp, and
preserves submodularity. To keep notation simple, we still use the notation vp for this new
valuation function.

In the bidding game itself, as long as there exists a large item that satisfies vp(e) >
2ρAPSp, p bids her entire budget. If the agent wins her bid, she selects the item with the



highest value (which is at least 2ρAPSp) and leaves the game (as her budget is exhausted).
If the agent does not win any of the large items, let s denote the last round in which there
are large items, i.e., from round s+1 onward, all unallocated items satisfy vp(e) ≤ 2ρAPSp.
At this point, agent p basically switches to using proportional1(ρ). Below we introduce
terminology that describes how this switch is done. This terminology will later be used in
our proofs.

Let Is denote the residual instance that remains after round s. It includes the set of
items that were not yet allocated (which we denote by M̂), and each agent has whatever
remains from her budget after the s rounds. View Is as a new allocation instance, that we
refer to as Îs. The agents of Îs are the remaining active agents of Is. The set of items of Îs is
M̂ (those items remaining in Is). Setting γ = bs to be the total remaining budget of agents,

we update the entitlement of each agent to be b̂i =
1
γ bi. Agent p simulates proportional1(ρ)

on Îs. To do so, for every agent i ̸= p, a bid xr
i in Is is viewed as a bid of 1

γ x̂
r−s
i in Îs,

and any intended bid xr of agent p in Îs is translated to a bid γxr+s in Is. (Since the ratio
between a budget of an agent in Is and in Îs is 1

γ , by taking a bid of another agent i in Is

and scaling it by 1
γ we get a legal bid of the agent in Îs. Similarly, scaling by γ a bid of

agent p in Îs induces a legal bid in Is.)
Observe that by Claim 21, the APS of p in Îs remains the same as the original value of

APSp.

Observation 22. The sequence of bids of an agent that uses the proportional bidding strat-
egy is weakly decreasing.

Consider an APS fractional partition {λS}S⊆M for agent p , where
∑

S λS = 1,∑
S | e∈S λS ≤ bp for every item e, and vp(S) ≥ APSp for every S with λS in the sup-

port. We trace three parameters throughout the execution of the algorithm. One is a lower
bound on the total marginal value of the set of all remaining items to agent p, given her
set of items at the time. Initially it is L0 =

∑
S λSvp(S) ≥ APSp. Another is the budget

of agent i, which initially is b0i = bi. Another is the total remaining budget of all agents.
Initially it is b0 = 1.

Consider an agent p with valuation function vp. We begin by proving Theorem 3 under
the simplifying assumption that there are no large items i.e., every item satisfies vp(e) ≤
2ρAPSp.

Lemma 23. For an agent p with a submodular valuation function, if vp(e) ≤ 2ρAPSp for
every item e, then by setting ρ = 1

3−2bp
> 1

3 , the proportional(ρ) bidding strategy guarantees

agent p a value of at least ρ ·APSp.

We shall present a sequence of claims that proves Lemma 23.

Claim 24. In every round t of the algorithm, at least one of the following two conditions
hold:

1. Agent p’s bid is equal to 1
2ρ ·

bp
APSp

· maxe∈Mr [vp(e | Cr)] (the highest marginal value

that a yet unallocated item has, scaled by 1
2ρ

bp
APSp

)

2. Agent p already won a bundle with value at least ρAPSp.

Proof. Suppose that the second condition does not hold. If p did not win an item yet, then
she still has her entire budget, and using the assumption that no item has a value greater than
2ρAPSp, condition 1 holds. Otherwise, agent p won items with a total value less than ρAPSp

by time t. Submodularity of vp implies that the sequence of remaining maximal marginal



values maxe∈Mr [vp(e | Cr)] is non-increasing in r. Hence maxe∈Mt [vp(e | Ct)] ≤ ρAPSp.

Therefore 1
2ρ

bp
APSp

maxe∈Mt [vp(e | Ct)] ≤ 1
2ρρbp ≤

1
2bp ≤ btp, and condition 1 holds. ■

Let {λS}S⊆M be the set of weights associated with the APS for vp (i.e., for every S ⊆M,
λS > 0 =⇒ vp(S) ≥ APSp, also

∑
S λS = 1, and ∀e ∈M,

∑
S|e∈S λS ≤ bp).

Let L0 :=
∑

S λSv(S). Observe that by the definition of APS, L0 ≥ APSp. At the
beginning of the algorithm (when no item has been allocated yet), L0 is a lower bound on
the marginal value that agent p has for the set of all items.

Let f denote the earliest round after which either all other agents become inactive, or
all items have been allocated. Let C ⊆M denote the set of items agent p has by the end of
round f , and let O denote the set of items that the other agents have by the end of round f .
Define Lf =

∑
S λS · vp(S \O∪̇C | C). Namely, Lf is the expected marginal value to agent

p (who already holds the set C of items) of a bundle S selected at random according to the
probability distribution over bundles implied by the coefficients λS , after one removes from
S those items that were allocated by the end of round f .

Claim 25. Let M̃ be the set of items that remain unallocated after round f , i.e., M̃ =
M\ (O∪̇C). Then vp(C ∪M̃) = vp(M\O) ≥ vp(C) +Lf . In other words, vp(C) +Lf is a
lower bound on the total value that agent p will have, if she receives all the remaining items
(M̃).

Proof. If no items remain after round f (i.e., C∪̇O =M), then for each S ⊆M, S\O∪̇C =
∅ and Lf = 0. Hence, vp(C ∪ M̃) = vp(C) = vp(C) + Lf , proving the claim.

If items do remain after round f , then every term vp(S \ O∪̇C | C) in the sum of
Lf =

∑
S λS · vp(S \O∪̇C | C), is a marginal value of a partial set of the not-yet-allocated

items (i.e., (S \O∪̇C) ⊆ M̃). Hence vp(S \O∪̇C | C) ≤ vp(M̃ | C). Since the scalars {λS}
in the sum Lf =

∑
S λS · vp(S \O∪̇C | C) are non-negative and add up to 1, we obtain:

Lf =
∑
S

λS · vp(S \O∪̇C | C)

≤
∑
S

λS · vp(M̃ | C)

=vp(M̃ | C)

Hence

vp(C) + Lf ≤vp(C) + vp(M̃ | C) = vp(C ∪ M̃)

■

Claim 26. min{Lf + vp(C), 2ρAPSp} is a lower bound on the final total value of agent p.

Proof. First, notice that if p is not active in time f , then p spent her entire budget, bp.
The bidding strategy of p (and submodularity of vp) implies that in that case, p has a value
of at least 2ρAPSp in time f , i.e., vp(C) ≥ 2ρAPSp and the claim follows in this case.

Otherwise, p is an active agent after round f . We consider two cases. If some items
remain after round f , then agent p is the only remaining active agent. Hence p is the only
agent to win items from M̃. Then, the agent will keep winning items until she becomes
inactive or until she wins all remaining items. By Claim 25, vp(M\O) ≥ vp(C) +Lf . The

fact that the agent bids at most 1
2ρ ·

bp
APSp

times the marginal value of the item she wins

in each round guarantees that agent p gets at least min{Lf + vp(C), 2ρAPSp}. It remains



to handle the case of agent p being active at time f while no items remain. In this case,
Lf = 0, so the bound is trivial. ■

Claim 27. The following holds:

L0 ≤ Lf + vp(C) + bp ·
∑
e∈O

vp(e | C)

Proof.
Lf =

∑
S

λS · vp(S \O∪̇C | C) =
∑
S

λS · vp(S \O | C)

For every S ⊆M we claim:

vp(S) ≤
1.
vp(S | C) + vp(C) ≤

2.
vp(S \O | C) + vp(C) +

∑
e∈S∩O

vp(e | C)

proof of inequality 1:

vp(S | C) + vp(C) = vp(S ∪ C)− vp(C) + vp(C) = vp(S ∪ C) ≥ vp(S)

proof of inequality 2:
Consider an arbitrary order of the set S ∩O = {e1, . . . , ek}. Then:

vp(S | C) = vp (S \O | C) +

k∑
i=1

vp

ei | (S \O) ∪ C ∪

i−1⋃
j=1

ej


≤ vp (S \O | C) +

k∑
i=1

vp (ei | C)

Thus, using the last inequality, we obtain the following:

L0 =
∑
S⊆M

λSvp(S) ≤
∑
S⊆M

λS (vp(S | C) + vp(C))

≤
∑
S⊆M

λS

(
vp(S \O | C) + vp(C) +

∑
e∈S∩O

vp(e | C)

)
≤
∗
vp(C) + bp ·

∑
e∈O

vp(e | C) +
∑
S⊆M

λSvp(S \O | C)

= vp(C) + bp ·
∑
e∈O

vp(e | C) + Lf

where inequality * is since each item e ∈ M has a total weight of at most bp (by the APS
definition). Overall, as we wanted to show, we obtained the following:

L0 ≤ Lf + vp(C) + bp ·
∑
e∈O

vp(e | C)

■



Claim 28. Either vp(C) ≥ ρAPSp, or∑
e∈O

vp(e | C) ≤ 2ρ(b0 − bp)·
APSp

bp

Proof. Suppose that vp(C) < ρAPSp. Let Ce ⊆ C be the set of items agent p already

won when another agent wins item e. Claim 24 implies that agent p bids 1
2ρ ·

bp
APSp

times

the highest marginal value of an item w.r.t Ce. Hence, when the other agent i wins item e,
agent p bid is at least 1

2ρ
bp

APSp
vp(e | Ce) ≥ 1

2ρ
bp

APSp
vp(e | C), and winning item e reduces

the budget of agent i by at least 1
2ρ

bp
APSp

vp(e | C). Since the budget of all other agents at

the beginning is b0 − bp, we obtain∑
e∈O

bp
2ρAPSp

vp(e | C) ≤
∑
e∈O

bp
2ρAPSp

vp(e | Ce) ≤ (b0 − bp)

The claim follows by rearranging (scaling both sides by
2ρAPSp

bp
). ■

We are now ready to prove Lemma 23.
Proof. Considering Claim 27 and Claim 28, we have that either vp(C) ≥ ρbp, or the
following holds:

APSp ≤ L0 ≤ vp(C) + Lf + bp ·
∑
e∈O

vp(e | C) ≤ vp(C) + Lf + bp · 2ρ
APSp

bp
(b0 − bp)

By rearranging the above, and plugging b0 = 1 we obtain:

APSp · (1− 2ρb0 + 2ρbp) = APSp · (1− 2ρ+ 2ρbp) ≤ vp(C) + Lf

By setting ρ = 1
3−2bp

the above gives Lf + vp(C) ≥ ρAPSp. So far we obtained that

either vp(C) ≥ ρAPSp, or agent p is guaranteed to have a total final value of min{Lf +
vp(C), 2ρAPSp} (Claim 26). Hence, in both cases, when setting ρ = 1

3−2bp
, agent p is

guaranteed to have at least ρ fraction of her APS. In the special case of equal entitlements
(where bp = 1

n ) it implies ρ = n
3n−2 . This completes the proof of Lemma 23.

■

We now restate and prove Theorem 3.

Theorem 3. Consider the bidding game described above, and an agent p with a submodular
valuation function and entitlement bp. Setting ρ = 1

3−2bp
> 1

3 , a bidding strategy referred

to as proportional(ρ) guarantees agent p a value of at least ρ ·APSp. (In the case of equal
entitlements, this gives ρ = n

3n−2 .)

Proof. Lemma 23 handles the case that vp(e) ≤ 2ρAPSp for every item e. It remains to
handle the case that there are items e of value vp(e) > 2ρAPSp.

Consider an input instance I0. Run the bidding game with p using the proportional
bidding strategy. As described in proportional2, s denotes the last round in which there
was an unallocated item e with vp(e) > 2ρAPSp. If agent p won some item by the end of
round s, then she has a value of at least 2ρAPSp, and we are done. Hence, we may assume
that agent p did not win any item in the first s rounds. Recall the definitions of residual
instance Is, Îs and γ (which is the scaling factor between bids in Is and Îs) presented in
proportional2.



By the definition of s, in each of the first s rounds, there is an available item with
vp(e) > 2ρAPSp. Thus agent p bids her entire budget bp in each such round, and the (other)
agent who wins the round spends at least bp. (In the special case of equal entitlement, this
means that in each of the first s rounds, some agent wins a single item and becomes inactive.
Hence, in the residual instance Is there are n − s active agents (including p), each active
agent has her entire original budget, and no active agent has any items.)

Setting γ = bs ≤ 1− s · bp, the entitlement of each agent in Îs is b̂si =
1
γ b

s
i .

Recall that agent p simulates the bidding strategy (proportional1) on Îs. A bid pri in Is
is interpreted as a bid of 1

γ p̂
r−s
i in Îs. By Claim 21, the APS of agent p at Îs stays the same

as the APS of p in the original instance. Hence, in Is, agent p will get the same bundle as
she gets in the run on Îs. By Lemma 23, this bundle is of value at least ρAPSp, as desired.
■

D Proof of Theorem 4

We now present rigorous proofs for two claims that were used in the proof of Proposition 16,
and will also be used in the proof of Theorem 4. These claims imply that we can assume
without loss of generality that there are no agents of type X0, and at most n

2 agents of
type X1. For both claims, we present their proofs under a framework in which we prove by
induction on n (the number of players) the statement that the proportional bidding strategy
guarantees a ρ fraction of MMSp to agent p. The statement is clearly true for the base case
of n = 1. Hence for a given value of n > 1, we just prove the inductive step (assuming that
the statement has already been proved for all n′ < n). To simplify the presentation of the
proofs of the claims, we make two assumptions. We stress that these assumptions do not
affect the correctness of the claims. (Alternatively, these assumptions can be turned into
facts, by simply incorporating them as part of the description of the proportional bidding
strategy.)

• Agent p truncates her valuation function at t = MMSp, (i.e., vp ← vtp).

• Agent p fixes some order over M in order to break ties consistently. If she wins a
round and there is more than one item with the highest marginal value, she will break
the tie by picking the item appearing earlier in this order.

Claim 29. In the inductive framework presented above, suppose that there is an allocation
instance I with n agents, and that agent p has a submodular valuation function vp and uses
the proportional bidding strategy. If in the run of the bidding game there is at least one
agent of type X0, then agent p is guaranteed to receive a bundle of value at least ρMMSp.

Proof. Recall that by our assumption, the original valuation function vp is truncated so
that no bundle has value larger than MMSp. Consider a run R of the bidding game, in
which agent p uses the proportional bidding strategy with an order Π over the items M.
Suppose that in this run agent i is of type X0. Let e denote the single item that agent
i takes, and let r denote the round number in which i took item e. Suppose for the sake
of contradiction that in this run R agent p receives a bundle of value strictly smaller than
ρMMSp. Then we show a new allocation instance I ′ with only n − 1 agents, and a run
R′ in which an agent p′ that uses the proportional bidding strategy gets value smaller than
ρMMSp′ . This contradicts our induction hypothesis.

The instance I ′ contains n−1 agents and the setM′ =M\{e} of items. The valuation
vp′ is identical to vp, though defined only overM′ (for every S ⊆M′ we have that vp′(S) =



vp(S)). Note that even though there are n − 1 agents, MMSp′ = MMSp. (The MMS
partition for vp, after dropping the bundle containing e, can serve as an MMS partition for
vp′ , showing that MMSp′ ≥ MMSp. Being truncated at MMSp, we have that MMSp′ ≤
MMSp.) The order Π′ used by p′ overM′ is identical to Π (but with item e removed). The
run R′ is identical to R, except for the following four changes:

• Agent i and her bids are removed.

• Agent p′ plays in R′ the role that agent p played in R.

• Round r (the one in which item e was taken) is removed.

• All bids are scaled by n−1
n (as the budgets of agents are 1

n−1 rather than 1
n )

Consequently, the sequence of bids and item choices that p′ makes in R′, being derived
from the bids of p in R, is consistent with p′ using the proportional strategy. The bundle
received by p′ in R′ is exactly the same bundle that p received in R, and hence of value
below ρMMSp′ . This contradicts our induction hypothesis. ■

Claim 30. In the inductive framework presented above, suppose that there is an allocation
instance I with n agents, and that agent p has a submodular valuation function vp and uses
the proportional bidding strategy. If in the run of the bidding game, more than n

2 agents are
of type X1, then agent p is guaranteed to receive a bundle of value at least ρMMSp.

Proof. Consider a run R of the bidding game, in which agent p uses the proportional bidding
strategy with an order Π over the itemsM. Suppose that in this run, more than n

2 agents
are of type X1. Suppose for the sake of contradiction that in this run R agent p receives a
bundle of value strictly smaller than ρMMSp. Then we show a new instance I ′ with only
n − 1 agents, and a run R′ in which agent p′ that uses the proportional bidding strategy
gets a value strictly smaller than ρMMSp′ . This contradicts our induction hypothesis.

Consider an MMS partition {Bi}ni=1 with respect to vp. Since there are more than n
2

agents of type X1, there are at least n+ 1 items taken by these agents. Hence, there exists
a bundle Bi in the MMS partition that contains at least two of these items. Denote these
items by e1 and e2, the agents who win them by a1 and a2, and the rounds in R in which
these items were taken by r1 and r2.

The instance I ′ contains n − 1 agents and the set M′ = M \ {e1, e2} of items. The
valuation v′p is identical to vp, though defined only over M′ (for every S ⊆ M′ we have
that v′p(S) = vp(S)). Note that even though there are n − 1 agents, MMSp′ = MMSp.
({Bi}ni=1, the MMS partition for p, can serve as an MMS partition for p′, after dropping the
bundle containing e1 and e2, showing that MMSp′ ≥MMSp. Being truncated at MMSp,
we have that MMSp′ ≤ MMSp). The order Π′ used by p′ over M′ is identical to Π (but
with items e1, e2 removed). The run R′ is identical to R, except for the following changes:

• Rounds r1 and r2 (the rounds in which items e1, e2 were taken) are removed.

• Agent p′ plays in R′ the role that agent p played in R.

• Agent a1 and her bids are removed.

• If a1 ̸= a2 (i.e e1 and e2 were taken by different agents) then let e3 denote the other
item taken by a1 in R, and let r3 denote the round in which it was taken. In R′ agent
a2 takes item e3 in round r3 (instead of e2 that a2 took in the run R - recall that
e2 ̸∈ M′).

• All bids are scaled by n−1
n (as the budgets of agents are 1

n−1 rather than 1
n )



Consequently, the sequence of bids and item choices that p′ makes in R′, being derived
from the bids of p in R, is consistent with p′ using the proportional strategy. The bundle
received by p′ in R′ is exactly the same bundle that p received in R, and hence of value
below ρMMSp′ . This contradicts our induction hypothesis. ■

We are now ready to prove Theorem 4.
Proof. Consider an arbitrary allocation instance with equal entitlement, and an arbitrary
agent p with a submodular valuation function vp. We wish to show that by using the
proportional strategy in the ρ-altruistic version of the bidding game (with a choice of ρ =
10
27 ), p receives a bundle of value at least 10

27 ·MMSp. Equivalently (by scaling vp so that
MMSp = 27

10 ), we wish to show that if MMSp = 2.7, then p receives a bundle of value at
least 1.

We begin by presenting a claim that will be used later. Let {Bi}ni=1 be an MMS partition
of agent p, i.e., for each i vp(Bi) ≥MMSp. Let f be the earliest round after which no other
agents are active. Let C denote the bundle p has by the end of round f , and let O ⊆M be
the set of items taken by other agents. The following claim is similar in nature to Claim 26

Claim 31. In the altruistic version of the bidding game, for each i ∈ [n], the final value
that p has is at least

min {ρMMSp, vp(C) + vp(Bi \O | C)} = min {ρMMSp, vp(C ∪ {Bi \O})}

Proof. If p is not active at the end of round f , then p has a value of at least ρMMSp at
that time, i.e., vp(C) ≥ ρAPSp, as desired.

If p is active at the end of round f , we consider two cases. If some items remain after
round f , then agent p is the only remaining active agent. Hence p is the only agent to win
items from M. Then, the agent will keep winning items until either she becomes inactive
(and has value at least ρMMSp) or until she wins all remaining items from Bi \ O. It
remains to handle the case of agent p being active after time f while no items remain. In
this case, vp(Bi \O) = vp(∅) = 0, so the bound is trivial. ■

Every negative example (i.e., an instance of the problem in which agent p does not get
at least ρMMSp) implies (by scaling the valuation function of the agent) the existence of
another instance of the problem, in which MMSp = 1

ρ and p gets a bundle of value less
than 1. Denote the MMS of agent p by z. We set up a system of linear inequalities. The
linear inequalities encode various constraints on the vp value of items that agents other than
p receive, given that p is using the proportional strategy and ends up with a value of at
most 1. We show that the system of inequalities is feasible only if z ≤ 2.7. This implies
that ρ ≥ 10

27 .
To simplify the presentation of the system of inequalities, we shall have a slight abuse

of terminology. The term payment of an agent (say, for an item in round r) will correspond
to the bid of agent p (in round r), even though the actual payment might be larger (if the
bid of the winning agent was strictly higher than the bid of agent p). With this abuse of
notation, the sequence of payments that an agent makes is nonincreasing. This implies that
the total payment of an agent that wins t > 1 items is at most t

t−1 , because otherwise the
agent spent more than 1 on the first t− 1 items that she picked, and would become inactive
before winning its tth item. Observe that the total payment of p can be assumed to be not
more than 1, as otherwise, the bundle that p receives according to the proportional strategy
has vp value at least 1, and we are done.

Consider a negative example for some ρ, i.e., an instance in which an agent does not get
a ρ fraction of her MMS, and she gets a value of at most 1. Keeping this instance in mind,
we will present our set of inequalities, and explain why the instance respects each of them.



The system of inequalities has nonnegative variables, x1, x2, x3, x4, y, q, z. For each 1 ≤
i ≤ 4, xi represents the fraction of agents who satisfy the following two conditions:

1. The agent takes i+ 1 items.

2. The total payments that the agent made is at least 6
5 .

The reason why we do not introduce a variable x0 (for agents who take one item and
pay at least 6

5 ) is because Claim 29 implies that we can assume that there are no such
agents. This also implies that a payment for an item is never larger than 1. Variable y
represents the fraction of the rest of the agents, those that either take at least six items
or paid at most 6

5 . Observe that in either case, any such agent paid a total of at most 6
5 .

Variable z represents the MMS of agent p (and recall that we scale the valuation vp so that
MMSp = 1

ρ ). The variable q needs a more detailed explanation. For every 0 ≤ s ≤ 1
2 , let

αs denote the fraction of agents that satisfy the following conditions:

1. The agent takes at least three items.

2. The total payments made by the agent is larger than 6
5 .

3. Her payment for the first item that she takes is 1
2 + s.

Note that this implies that the number of items that such an agent takes is either three,
in which case her total payments are at most 3

2−s, or four, in which case her total payments
are at most 5

4 −
s
2 , which is smaller than 4

3 − s for s < 1
6 (note that if s ≥ 1

6 then her total
payments when taking four items are at most 6

5 , and hence this case is excluded). The

variable q represents
∫ 1

2

0
s · αsds.

We turn to present the linear inequalities, and explain why each of these inequalities
must hold if p executes the proportional bidding strategy

1. x1 + x2 + x3 + x4 + y ≤ 1− 1
n . The variables x1, x2, x3, x4, y represent fractions of the

total number of agents, and agent p is not included in these fractions. As the total
number of agents is n, the sum of the fractions is at most 1− 1

n .

2. z−2x1−(3/2)x2−(4/3)x3−(5/4)x4−(6/5)y+q ≤ 1. Fix {Bi}ni=1, an MMS partition
for agent p. Since we assume p is active at the end of the algorithm, Claim 31 implies
that the final value of p is at least vp(C) + vp {Bi \O | C}). Since the final value of p
is at most 1, we obtain 1 ≥ vp(C) + vp {Bi \O | C})
Recall that O⊆M is the set of items taken by other agents. Consider the following
partition of O , {Oi = Bi ∩O}ni=1. Then, for each i,

1 ≥ vp(C) + vp {Bi \O | C})
= vp(C) + vp(Bi \Oi | C)

≥ vp(C) + vp(Bi | C)− vp(Oi | C)

= vp(C ∪Bi)− vp(Oi | C)

≥ vp(Bi)− vp(Oi | C)

= z − vp(Oi | C)

Denote the total payments of agents other than p as PO. Notice that
∑

i vp(Oi | C) ≤∑
i

∑
e∈Oi

vp(e | C) ≤ PO. Hence, there exists i ∈ [n] for which vp(Oi | C) ≤ 1
n · PO.

We now upper bound 1
n ·PO. Recall that the total payment of an agent that takes t > 1

items is at most t
t−1 . Moreover, if agents of type x2 and x3 have a payment strictly



larger than 1
2 for their first item, then they do not reach the maximum payment they

can achieve ( 32 and 4
3 ). By the definition of q, we obtain that their total payment is

reduced by at least q. (Recall the discussion that follows the definition of q. It shows
that if an agent of type x2 pays 1

2 + s for her first item, then the maximum payment
she might reach after taking her three items is at most 3

2 − s. Likewise, it shows that
if an agent of type x3 pays 1

2 + s for her first item, then the maximum payment she
might reach after taking her four items is at most 4

3 − s.) Therefore we have

1

n
· PO≤2x1 + (3/2)x2 + (4/3)x3 + (5/4)x4 + (6/5)y − q

The constraint follows by using this last inequality and the two previous inequalities
1 ≥ z − vp(Oi | C) and vp(Oi | C) ≤ 1

nP0.

3. 2x1 ≤ 1. We can assume that at most half of the agents are of type x1, by Claim 30.

4. 6
5y + q ≥ (z − 1 − 3

2 ) · (3− 2x1 − 3x2 − 4x3 − 5x4). (This is not a linear inequality,
but it will be linearized before it will be used.) We refer to items taken by agents
represented by x1, x2, x3, x4 as primary, and to items taken by agents represented by
y as secondary. How much payment do secondary items need to have so that payment
of at least z − 1 is paid for items in each bundle Bi of the MMS partition (which is
a necessary condition for p having a total value of at most 1 Claim 31)? The total
number of primary items is (2x1 +3x2 +4x3 +5x4)n. We split the argument into two
cases.

In the first case, there are at most 3n primary items. The number of primary items
missing to complete this number to 3n is (3−2x1−3x2−4x3−5x4)n. We refer to each
such missing item as a deficiency unit. As noted above, we assume no two primary
items of agents of type x1 are taken from a single bundle. We analyze the distribution
of deficiency units over the MMS bundles when a bundle with ℓ ≤ 3 primary items
has 3− ℓ deficiencies. Then, we will find properties of the distribution of deficiencies
that minimizes the amount of payment to be paid by y agents to reach z− 1 payment
in each MMS-bundle.

• A bundle Bj in the MMS partition with one deficiency unit, has a payment for
primary items of at most 1 + 1

2 + s. At least z − 1 − 3
2 − s needs to be paid by

y agents in order to surpass a z − 1 payment in Bj . I.e., a z − 1− 3
2 − s for the

one unit of deficiency.

• A bundle Bj in the MMS partition with two deficiency units has a payment for
primary items of at most 1. At least z − 1 − 1 needs to be paid by y agents to
surpass a z − 1 payment in Bj . I.e., a

z−2
2 on average per deficiency unit.

• A bundle with three deficiency units, needs a payment of at least z − 1 by y
agents. I.e., a z−1

3 on average for per deficiency unit.

For z ≤ 3, the minimum payment per deficiency occurs when every deficiency unit is in
a different bundle (i.e., these bundles have one deficiency unit, the case of bullet two).
Then, in each bundle with two primary items, one item can have payment arbitrarily
close to 1, and the other 1

2 + s, with s as above. Hence, to reach ∼ (z− 1), the bundle
needs ∼ (z − 1− 3

2 )− s. As integrating over all s we get q, the above considerations
give the constraint (6/5)y ≥ (z − 1− 3

2 ) · (3− 2x1 − 3x2 − 4x3 − 5x4)− q as desired.

In the second case, the number of primary items is greater than 3n. If z > 2.5, then
the right-hand side of constraint 4 is a product of a positive scalar and a negative



scalar, resulting in a negative scalar. By non-negativity of variables q and y, the left-
hand side of the constraint is a non-negative scalar. Hence constraint 4 is valid for the
range of values of z which will be considered in the proof, which only includes values
larger than 2.5.

The fourth constraint is not a linear inequality. Nevertheless we may make use of the
system of four constraints as if it is a system of linear inequalities. We do so by substituting
candidate values for z (these values are larger than 2.5, so that the fourth constraint remains
valid), simplifying the second and fourth constraints after making this substitution, and
checking whether the resulting system of inequalities is feasible. If it is not feasible, this
certifies that the substituted value for z was too high, and hence we obtain an upper bound
on z. Substituting z = 2.7, the constraints become:

1. x1 + x2 + x3 + x4 + y ≤ 1− 1
n

2. −2x1 − 3
2x2 − 4

3x3 − 5
4x4 − 6

5y + q ≤ −1.7

3. 2x1 ≤ 1

4. − 2
5x1 − 3

5x2 − 4
5x3 − x4 − 6

5y − q ≤ − 3
5 .

Summing up the four constraints multiplied by coefficients (1.8, 1, 0.2, 0.5) respectively,
we obtain:

(
2

5
− 1

3
)x3 +

x4

20
+

q

2
≤ −1.8

n

As x3, x4 and q are non-negative, this is a contradiction. Hence z < 2.7. In fact, the
term − 1.8

n on the right hand side implies that z ≤ 2.7 − Ω( 1n ), which in turn implies that
ρ ≥ 10

27 +Ω( 1n ). ■

E Proofs concerning polynomial time algorithms

In this section, we demonstrate how to overcome the need for computing the MMS or APS
value, which is an NP-hard task, in the bidding strategies presented in Theorem 3 and Theo-
rem 4. Namely, we show polynomial time allocation algorithms that output allocations that
approximate the APS and MMS within ratios almost as good as those shown in Theorems 3
and 4. Our proof is based on a technique that was introduced in [GHS+18].

Consider an allocation instance I with n agents, m items, integer valued valuation func-
tions, with values of bundles in the range [0,K] (that is, K = maxi∈N vi(M)). (Alterna-
tively, for a valuation function vi that is not integer valued, K denotes an upper bound on
vi(M)
vi(S) , over all sets S ⊂M for which vi(S) > 0. Namely, K is an upper bound on the ratio

between the values of the most valuable bundle and least valuable bundle of positive value.)
We assume that all allocation algorithms have value query access to the valuation functions
of the agents. We say that an allocation algorithm runs in polynomial time if both its run-
ning time and the number of value queries that it makes are polynomial in n, m and logK.
In the following presentation, we consider the APS as our share notion, and allow for agents
of arbitrary entitlement. We remark that the same principles apply (with straightforward
modifications) to settings with equal entitlement, and the MMS as a fairness notion.

Remark 32. Definition 33 and Theorem 34 (that will be presented shortly) involve an
approximation ratio ρ. All results extend without any change in the proofs to settings in



which ρ is not a fixed constant, but instead a function of the entitlement (such approximation
ratios appear in Theorem 3, for example). That is, for agent i with entitlement bi, the
approximation ratio is ρ(bi).

Definition 33. For ρ > 0, we say that an allocation algorithm is a ρ-APS algorithm for a
class C of valuations, if given any allocation instance with valuations from the class C, the
algorithm outputs an allocation (A1, . . . , An) in which every agent i gets a bundle Ai of value
vi(Ai) ≥ ρ ·APSi. We say that an allocation algorithm is a conditional ρ-APS algorithm for
a class C of valuations, if given any allocation instance with valuations from the class C, and
given any vector (t1, . . . , tn), the algorithm outputs an allocation (A1, . . . , An) that satisfies
the following property: for every agent i, if it happens that ti ≤ APSi, then vi(Ai) ≥ ρ · ti.

The proof of the following theorem is similar to a proof of a related theorem proved
in [GHS+18]. We present its proof for completeness.

Theorem 34. Fix arbitrary ρ > 0 and arbitrary ε > 0. Then every polynomial time con-
ditional ρ-APS algorithm for a class C of valuations can be transformed into a polynomial
time (unconditional) (1− ε)ρ-APS algorithm for the class C of valuations. Here, the depen-
dence on ε of the running time of the unconditional algorithm is a multiplicative factor of
O( 1ε ).

Proof. In Algorithm 1 we give an unconditional (1−ε)ρ-APS algorithm, using a conditional
ρ-APS algorithm as a blackbox.

Algorithm 1: An unconditional (ρ − ε)-APS algorithm using a conditional rho-
APS algorithm as a blackbox

Data: M,N , ⟨v1, . . . , vn⟩, ε,K
1 For every i ∈ N , ti ← vi(M);
2 while true do
3 Run conditional -ρ-APS algorithm with guesses ⟨t1, . . . , tn⟩, resulting

A = ⟨A1, . . . , An⟩;
4 if ∃i, such that vi(Ai) < ρi · ti and ti ≥ vi(M) · 1

K then
5 i = i which satisfies the condition;
6 ti ← (1− ε)ti;

7 else
8 Return A and exit;
9 end

10 end

Remark 35. In Algorithm 1, we require having K (the maximum ratio between largest
and smallest value bundles) as an input. However, in the case of agents with submodular
valuations, K is not needed as input. Instead, K can be computed efficiently as it equals

maxi∈N {max{e∈M|vi(e)>0}{ vi(M)
vi(e)

}}.

Claim 36. During the whole run of Algorithm 1, for every agent i, ti ≥ (1− ε)APSi.

Proof. Fix an agent i. At the beginning of the algorithm, ti = vi(M) ≥ APSi. during the
algorithm we only reduce the value of ti each time by a factor of (1− ε). Consider the first
time when ti < APSi. Then, ti ≥ (1 − ε)APSi (since in its previous value, the variable ti
was greater than APSi). Since ti < APSi, by Definition 33, every time we run command
3, the bundle of agent i in the resulted allocation A is of value ≥ ρti, so we will not reduce
the value of ti. ■



We prove the correctness of Algorithm 1. If the algorithm terminates, then it returns an
allocation A = ⟨A1, . . . , An⟩ with the property that for every agent i with ti ≥ vi(M) · 1

K ,
vi(Ai) ≥ ρi · ti. By Claim 36, we have that each variable ti holds during the algorithm
a value greater than (1 − ε)APSi. Thus, given that the algorithm terminates, each such
agent i gets a bundle Ai of value at least (1 − ε)ρAPSi. It remains to consider those
agents i with ti < vi(M) · 1

K , and for which furthermore, APSi > 0. The assumption
that APSi > 0 implies that APSi ≥ vi(S), where S is the bundle of minimum value.
Also, ti < vi(M) · 1

K ≤ vi(S). Thus, by Claim 36, vi(Ai) ≥ ρti ≥ vi(S) ≥ ti (where the
middle inequality holds because every bundle of positive value has value at least vi(S)). As
APSi <

ti
1−ε (otherwise, the condition of step 4 of the algorithm would not allow the value

ti to be reached), we have that vi(Ai) ≥ (1− ε)APSi.
We turn to analyze algorithm’s time complexity. Let T (n,m, logK) denote the running

time of the conditional -ρ-APS algorithm (called in command 3 of Algorithm 1). The num-
ber of times that command 3 is run is at most n · log(1−ε) K = n · 1ε · logK (because in each
iteration, at least one ti drops by a factor of 1−ϵ, and the total drop in value of ti is at most a
factor of K). Thus the overall runtime of Algorithm 1 is O

(
n · log(K) · 1ε · T (n,m, logK)

)
,

yielding a polynomial time algorithm (under the assumption that T (n,m, logK) is polyno-
mial).

■

The following theorem, Theorem 37, is a relatively straightforward consequence of The-
orems 3 and 4.

Theorem 37. There is a polynomial time conditional ρ-APS algorithm for submodular
valuations, with ρ = 1

3−2bi
. For the equal entitlement case, there is a polynomial time

conditional ρ-MMS algorithm for submodular valuations, with ρ = 10
27 +Ω( 1n ).

Proof. As described in the proportional bidding strategy, both in the original and altruistic
version of the bidding game, an agent i executes the proportional bidding strategy is required
to know/compute their APS (MMS). Based on her APSi (MMSi), the agent knows how
to bid. Consider a modification of the bidding strategy, in which agent i receives as an
auxiliary input a value ti (instead of computing her true APS (MMS) value), and truncates
her valuation function at ti, namely vi ← vtii (Definition 11). Then, the agent infers her
bidding using the value of ti instead of APSi (MMSi).

The conditional ρ-APS algorithm (or ρ-MMS algorithm) is simply to simulate the bidding
game (or altruistic bidding game) with the ti values as auxiliary inputs to the agents,
and having each agent follow her respective modified proportional bidding strategy. Now,
giving value queries, the bidding game is simulated in polynomial time, where we break
ties arbitrarily. It remains to show the correctness of the algorithm. For this, notice that
given a value ti ≤ APSi (MMSi), then by Claim 12 the APS (MMS) value of agent i is
reduced to ti, and the truncation preserves submodularity. Now the conditions of Theorem 3
(Theorem 4) are met, and agent i gets a bundle of value at least ρ-APS (-MMS), as desired.
■

Combining theorems 34 and 37 we prove Corollary 5, which is restated here for conve-
nience.

Corollary 5. For agents with submodular valuations, there are polynomial time algorithms
offering the following guarantees. In the case of arbitrary entitlements, each agent gets at
least 1

3 -APS. For the case of equal entitlements, each agents gets at least 10
27 -MMS.

Proof. Theorem 37 states that there is a conditional ρ-APS algorithm for submodular
valuations with ρ = 1

3−2bi
. We can assume bi ≥ 1

m (as otherwise the APS of agent i



is 0, implying that ρ = 1
3 + Ω( 1

m ). Thus, setting ε to be O( 1
m ) in Algorithm 1 yields the

existence of an unconditional 1
3 -APS polynomial time algorithm, as desired. In a similar

way for the MMS, by setting ε to be O( 1n ) we obtain an unconditional 10
27 -MMS polynomial

time algorithm. ■

Finally, we restate and prove Corollary 6.

Corollary 6. There is a polynomial time allocation algorithm, which simultaneously guaran-
tees for submodular agents 1

3 -APS, for additive agents 3
5 -APS, and for Unit-demand agents

1-APS.

Proof. For the sake of this proof, we consider a modified version of the original bidding
game. When an agent wins a round (i.e., she is the highest bidder), instead of picking one
item, she can pick k ≥ 1 of the remaining items and pay k times her bid. We consider
this version of bidding game because this is the version for which it was previously shown
(in [BEF21]) that additive agents have a bidding strategy that guarantees themselves 3

5 of
their APS. That strategy is implementable in polynomial time.

We show that in this version of the bidding game, any submodular, additive, or unit-
demand agent has a strategy that guarantees herself the relevant guarantee of her APS.

• Submodular agents have a strategy that guarantees 1
3+Ω( 1n ) fraction of their APS. The

key property that enables the proportional bidding strategy presented in Theorem 3
to maintain its guarantee also in the current version of he bidding game is the fact the
bidding sequence of a submodular agent executing the proportional bidding strategy
is non-increasing. (Observation 22). Therefore, if another agent, o, wins a round and
decides to pick k > 1 items, for the submodular agent perspective, this is equivalent
to k rounds in which o raises the same bid, and all other agents raise a bid of zero.
Since the bids of the submodular agent are non-increasing, the submodular agent will
not raise a bid strictly greater than o’s bid. Thus, with adversarial tie-breaking, we
can guarantee that in both cases of the bidding game, the bundle of the submodular
agent will remain the same, and the 1

3 +Ω( 1n ) guarantee from Theorem 3 holds.

• Additive agents have a strategy that guarantees a 3
5 fraction of their APS. The proof

is presented in [BEF21]. In addition, [BEF21] presented a polynomial time implemen-
tation of this strategy, that does not require knowing the APS value of an agent.

• Unit-demand agents have a strategy that guarantees a 1-APS. Consider a unit-demand
agent p with entitlement bp. It is easy to verify that the APS of p is the ⌈ 1

bp
⌉th most

valuable item, and 0 if there are fewer than ⌈ 1
bp
⌉ items. We claim that the simple

strategy of p bidding her entire budget in each round and, upon winning, taking the
most valuable remaining item guarantees p her APS. Since p bids her entire budget
until she wins an item, in every round she does not win, at least bp of the total budget
of agents is spent. Hence, p must win one of the first ⌊ 1

bp
⌋ rounds. By that, she

guarantees herself one of the ⌊ 1
bp
⌋ most valuable items, which is at least her APS.

Note that this strategy does not require agent p to know her APS value, and given
access to value queries, her strategy is polynomial-time.

It remains to show a transformation from the existence of approximate fair allocation
(induced by the above strategies) to a polynomial time algorithm. The proof of this is
similar to the proof of Corollary 5, and is omitted. ■



F Negative examples

We restate and prove Proposition 17.

Proposition 17. For every constant ρ > limk→∞ ρk ≃ 0.3716 (where for each k ∈ N we
will define ρk in the proof), there is an allocation instance with equal entitlements and an
adversarial run of the altruistic version of bidding game, in which an agent p that has a
submodular valuation function and uses the proportional bidding strategy gets a bundle of
value smaller than ρMMSp.

Proof. We present a series of instances in which agent p with a submodular valuation
function executes the proportional bidding strategy.

The instances are parameterized by k ∈ N. The kth instance will be as follows: Define

q1 = 2

qk = 1 +

k−1∏
i=1

qi

(This sequence is known as the Sylvester sequence)
The number of agents will be: nk = qk+1− 1 (for example, for k = 2, nk = 2 · 3 · 7 = 43).
The set of item isM = {ei,j} for 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n (n · (k + 1) items).
If we think of ei,j as arranged in a matrix, then all the items in a row are copies of the

same item and are substitutes. The value of items from different rows is additive.
For any 1 ≤ i ≤ k and for any j, vp(ei,j) =

1
qi−1 . For i = k+1 and any j, vp(ek+1,j) = 1.

For example, if k = 3, there are 43 agents and columns, and in each column j, vp(e1,j) = 1,
vp(e2,j) =

1
2 , vp(e3,j) =

1
6 , vp(e4,j) = 1.

• vp is submodular. The marginal value of each item is weakly decreasing (the marginal
value of item ei,j to a set S is either vp(ei,j) or 0, depending on whether the set S
already contains an item from the i’th row).

• The columns Cj of the matrix {ei,j} form an MMS partition. The value of every
bundle is at most vp(M), and in this partition, the value of each bundle (column) is
exactly vp(M).

• APSp = MMSp = vp(M) = vp(Cj) = vp(ek+1,j) +
∑k

i=1 vp(ei,j) = 1 +
∑k

i=1
1

qi−1

• qi divides n, for every i ≤ k.

For convenience, we assume w.l.o.g that the budget of each agent equal her MMS.
For every k, we first show a run of the bidding game with adversarial bidding of the other

agents, in which agent p executes the proportional bidding strategy with ρk = 1
MMSp

=
1

1+
∑k

i=1
1

qi−1

, and she receives a value of precisely 1 (she gets the bundle that consists only

of items from row k+ 1), which is a 1
MMSp

of her MMS. The series of ρk is monotonically

decreasing and bounded by 0, so limk→∞ ρk exists. (Sylvester’s sequence grows at a doubly
exponential rate. Hence, the sequence of ρk converges very fast.)

Then, by proportional(ρk), in each round, agent p bids the highest marginal value of
the remaining items. Moreover, each agent who spends more than 1 value from her budget
becomes inactive. We now present the adversarial run.

In round 1, p bids 1, and is allowed to win. She selects an item of value 1 from row k+1.
In each of the next n rounds, at least one of the first n

2 other agents bids 1, and upon
winning (note that p bids 1 in each of these rounds, and the algorithm is assumed to brake



the ties adversarially), takes an item from the first row (i.e., e1,j). All items of the first row
are taken by n

2 of the other agents. These n
2 agents surpass a payment of 1 and become

inactive.
In each of the next n rounds, at least one of the next n

3 other agents bids 1
2 , and upon

winning (note that p bids 1
2 in each of these rounds), takes an item from the second row

(i.e., e1,j). Each such agent surpasses a payment of 1 exactly when winning her 3rd item,
and becomes inactive.

The run proceeds in the same way, where for every i, n
qi

of the other agents bid 1
qi−1 ,

win all the items in the i’th row, and become inactive. Note that each such agent surpasses
a payment of 1 exactly when winning her qith item, and becomes inactive. Note that we
use the property of qi | n for every i ≤ k.

Thus, the number of other agents that take all items from rows 1 to k is:

k∑
i=1

n

qi
= n ·

k∑
i=1

1

qi
= n · (1− 1

qk+1 − 1
) = n · (1− 1

n
) = n− 1

Thus, there are sufficiently many other agents to take all items from rows 1 to k, and
agent p gets items only from row k+1. As they are substitutes, the total value received by
p is 1.

Consider for ρ′ > ρk the altruistic version of the bidding game in which an agent be-
comes inactive after spending a ρ′ fraction of her budget, and suppose that p executes the
proportional(ρ′) bidding strategy. On the instance Ik described above, the same run of the
bidding game holds, and p does not get a bundle of value ρ′APSp, but rather only ρkAPSp.
Hence, Ik serves as an example showing that our proof of Theorem 3 does not extend to
values of ρ larger than ρk. The same holds for every ρ > limk→∞ ρk (by enlarging k, we can
make ρk as close as we wish to limk→∞ ρk). ■

Remark 38. The negative example in Proposition 17 can be modified by replacing (for
every j) the single item ek+1,j of value 1 by qk − 1 items, each of value 1

qk−1 (the same

value as that of item ek,j). In this modified version, the adversarial run is changed so that
other agents win all items eij for i ≤ k (their budgets exactly suffice for this), and agent p
can take the remaining items from one of the bundles of the MMS partition (the remaining
items in different MMS bundles are substitutes to each other and do not provide additional
marginal value), getting a value of 1. This modified example is useful in illustrating that
for certain variations of the bidding game (considered by the authors but omitted here),
bidding strategies similar to the ones considered in the proof of Theorem 4 do not lead to
approximation ratios that are significantly better than those proved in Theorem 4).

We restate Proposition 18.

Proposition 18. For every constant ρ > 1
3 , there is an allocation instance with equal

entitlements and an adversarial run of the bidding game, in which an agent p that has a
submodular valuation function and uses the proportional(ρ) bidding strategy gets a bundle
of value smaller than ρMMSp.

The proof of this proposition is similar to the proof of Proposition 17, with some rel-
atively straightforward modifications. For completeness, we present here the proof in a
self-contained way.
Proof. We present a series of instances in which agent p with a submodular valuation
function executes the proportional bidding strategy.



The instances are parameterized by k ∈ N. The kth instance will be as follows: Define

q1 = 2

qk = 1 +

k−1∏
i=1

qi

(This sequence is known as the Sylvester sequence)
The number of agents will be: nk = qk+1− 1 (for example, for k = 2, nk = 2 · 3 · 7 = 43)
The set of item isM = {ei,j} for 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n (n · (k + 1) items)
If we think of ei,j as arranged in a matrix, then all the items in a row are copies of the

same item and are substitutes. The value of items from different rows is additive.
For any 1 ≤ i ≤ k and for any j, vp(ei,j) =

2
qi
. For i = k + 1 and any j, vp(ek+1,j) = 1.

For example, if k = 3, there are 43 agents and columns, and in each column j, vp(e1,j) = 1,
vp(e2,j) =

2
3 , vp(e3,j) =

2
7 , vp(e4,j) = 1.

• vp is submodular. The marginal value of each item is weakly decreasing (the marginal
value of item ei,j to a set S is either vp(ei,j) or 0, depending on whether the set S
already contains an item from the i’th row).

• The columns Cj of the matrix {ei,j} form an MMS partition. The value of every
bundle is at most vp(M), and in this partition, the value of each bundle (column) is
exactly vp(M).

• APSp = MMSp = vp(M) = vp(Cj) = vp(ek+1,j) +
∑k

i=1 vp(ei,j) = 1 +
∑k

i=1
2
qi

=

1+2
∑k

i=1
1
qi

= 1+2 · (1− 1
qk+1−1 ) =∗

3− 2
qk+1−1 , where equality * is a known property

of the partial sums of Sylvester’s inverse series (this can be proved by induction,
Wikipedia value of Sylvester sequence).

• qi divides n, for every i ≤ k.

For convenience, we assume w.l.o.g that the budget of each agent is 2.
For every k, we first show a run of the bidding game with adversarial bidding of the

other agents, in which agent p executes the proportional bidding strategy with ρk = 1
APSp

,

and she receives a value of precisely 1 (she gets the bundle that consists only of items from
row k + 1) which is a 1

APSp
of her APS. For that instance, ρk = 1

3− 2
qk+1−1

. The series

of ρk is monotonically decreasing to a limit of 1
3 . (Sylvester’s sequence grows at a doubly

exponential rate. Hence, the sequence of ρk converges very fast.)
Consider the Ik instance parameterized by k. For convenience, assume the budget of

each agent is 2 (which is 2ρkAPSp). Then, by proportional(ρk), in each round, agent p bids
the highest marginal value of the remained items. We now present the adversarial run.

In round 1, p bids 1, and is allowed to win. She selects an item of value 1 from row k+1.
In each of the next n rounds, at least one of the first n

2 other agents bids 1, and upon
winning (note that p bids 1 in each of these rounds, and the algorithm is assumed to brake
the ties adversarially), takes an item from the first row (i.e., e1,j). All items of the first
row are taken by n

2 of the other agents. These n
2 agents exhaust their budget and become

inactive.
In each of the next n rounds, at least one of the next n

3 other agents bids 2
3 , and upon

winning (note that p bids 2
3 in each of these rounds), takes an item from the second row

(i.e., e1,j). Each such agent becomes inactive after taking three items.



The run proceeds in the same way, where for every i, n
qi

of the other agents bid 2
qi
, win

all the items in the i’th row, and become inactive. Note that we use the property of qi | n
for every i ≤ k.

Thus, the number of other agents that take all items from rows 1 to k is:

k∑
i=1

n

qi
= n ·

k∑
i=1

1

qi
= n · (1− 1

qk+1 − 1
) = n · (1− 1

n
) = n− 1

Thus, there are sufficiently many other agents to take all items from rows 1 to k, and
agent p gets items only from row k+1. As they are substitutes, the total value received by
p is 1.

Notice that if p executes proportional(ρ′) with ρ′ > ρk, then the bids of p in each round
are strictly smaller than those described above. Hence same run of the algorithm holds, and
p does not get a bundle of value ρ′APSp, but rather only ρkAPSp. Hence, Ik serves as an
example showing for every ρ′ > ρk that proportional(ρ′) does not guarantee p a value of
ρ′APSp.

Since ρk is close to 1
3 as we wish, for any ρ > 1

3 , there exist a witness Ik on which
proportional(ρ) does not guarantee p a (ρ)-fraction of her APS. ■
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