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Abstract

We consider the notions of agreement, diversity, and polarization in ordinal elections
(that is, in elections where voters rank the candidates). While (computational)
social choice o�ers good measures of agreement between the voters, such measures
for the other two notions are lacking. We attempt to rectify this issue by designing
appropriate measures, providing means of their (approximate) computation, and
arguing that they, indeed, capture diversity and polarization well. In particular, we
present �maps of preference orders� that highlight relations between the votes in a
given election and which help in making arguments about their nature.

1 Introduction

The notions of agreement, diversity, and polarization of a society with respect to some issue
seem intuitively quite clear. In case of agreement, most members of the society have very
similar views regarding the issue, in case of diversity there is a whole spectrum of opinions,
and in case of polarization there are two opposing camps with con�icting views and with
few people taking middle-ground positions (more generally, if there are several camps, with
clearly separated views, then we speak of fragmentation; see, for example, the collection of
Dynes and Tierney [21]). We study these three notions for the case of ordinal elections�
that is, for elections where each voter has a preference order (his or her vote) ranking the
candidates from the most to the least appealing one�and analyze ways of quantifying them.

Interestingly, even though agreement, diversity, and polarization seem rather fundamen-
tal concepts for understanding the state of a given society (see, for example, the papers in a
special issue edited by Levin et al. [32]), so far (computational) social choice mostly focused
on the agreement-disagreement spectrum. Let us consider the following notion:

Given an election, the voters' agreement index for candidates a and b is the absolute
value of the di�erence between the fraction of the voters who prefer a to b and the
fraction of those with the opposite view. Hence, if all voters rank a over b (or, all
voters rank b over a) then the agreement index for these candidates is equal to 1. On
the other hand, if half of the voters report a ≻ b and half of them report b ≻ a, then
the index is equal to 0. The agreement index of the whole election is the average over
the agreement indices of all the candidate pairs.

For an election E, we denote its agreement index as A(E). Alcalde-Unzu and Vorsatz [1]
viewed this index as measuring voter cohesiveness�which is simply a di�erent term for voter
agreement�and provided its axiomatic characterization. Hashemi and Endriss [26] focused
on measuring diversity and provided axiomatic and experimental analyses of a number of
election indices, including 1 − A(E). Next, this value was characterized axiomatically by
Can et al. [13], who saw it as measuring polarization; their point of view was that for each
pair of candidates one can measure polarization independently. (In Section 2 we brie�y
discuss other election indices from the literature; generally, they are strongly interrelated
with the agreement one).



Our view is that 1 − A(E) is neither a measure of diversity nor of polarization, but
of disagreement. Indeed, it has the same, highest possible, value on both the antagonism
election (AN), where half of the voters report one preference order and the other half reports
an opposite one, and on the uniformity election (UN), where each possible preference order
occurs the same number of times. Indeed, both these elections arguably represent extreme
cases of disagreement. Yet, the nature of this disagreement is very di�erent. In the former,
we see strong polarization, with the voters taking one of the two opposing positions, and
in the latter we see perfect diversity of opinion. The fundamental di�erence between these
notions becomes clear in the text of Levin et al. [32] which highlights �the loss of diversity
that extreme polarization creates� as a central theme of the related special issue. Our main
goal is to design election indices that distinguish these notions.

Our new indices are based on what we call the k-Kemeny problem. In the classic Ke-
meny Ranking problem (equivalent to 1-Kemeny), given an election we ask for a ranking
whose sum of swap distances to the votes is the smallest (a swap distance between two
rankings is the number of swaps of adjacent candidates needed to transform one ranking
into the other). The k-Kemeny problem is de�ned analogously, but we ask for k rankings
that minimize the sum of each vote's distance to the closest one (readers familiar with mul-
tiwinner elections [23] may think of it as the Chamberlin�Courant rule [15] for committees
of rankings rather than candidates). We refer to this value as the k-Kemeny distance. Un-
fortunately, the k-Kemeny problem is intractable�just like Kemeny Ranking [6, 27]�so
we develop multiple ways (such as fast approximation algorithms) to circumvent this issue.

Our polarization index is a normalized di�erence between the 1-Kemeny and 2-Kemeny
distances of an election, and our diversity index is a weighted sum of the k-Kemeny distances
for k = 1, 2, 3, . . .. The intuition for the former is that if a society is completely polarized
(that is, partitioned into two equal-sized groups with opposing preference orders), then 1-
Kemeny distance is the largest possible, but 2-Kemeny distance is zero. The intuition for the
latter is that if a society is fully diverse (consists of all possible votes) then each k-Kemeny
distance is non-negligible (we use weights for technical reasons). Since our agreement index
can also be seen as a variant of the Kemeny Ranking problem, where we measure the
distance to the majority relation, all these indices are based on similar principles.

To evaluate our indices, we use the �map of elections� framework of Szufa et al. [37],
Boehmer et al. [9], and Boehmer et al. [10], applied to a dataset of randomly generated
elections. In particular, we �nd that our indices are correlated with the distances from sev-
eral characteristic points on the map and, hence, provide the map with a semantic meaning.
Additionally, we develop a new form of a map that visualizes the relations between the votes
of a single election (the original maps visualized relations between several elections from a
given dataset). We use this approach to get an insight regarding the statistical cultures
used to generate our dataset and to validate intuitions regarding the agreement, diversity,
and polarization of its elections.

2 Preliminaries

For every number k ∈ N, by [k] we understand the set {1, . . . , k}. For two sets A and B
such that |A| = |B|, by Π(A,B) we mean the set of all bijections from A to B.

Elections

An election E = (C, V ) is a pair, where C is a set of candidates and V is a collection of
voters whose preferences (or, votes) are represented as linear orders over C (we use the terms
vote and voter interchangeably, depending on the context). For a vote v, we write a ≻v b
(or, equivalently, v : a ≻ b) to indicate that v prefers candidate a over candidate b. We also



extend this notation to more candidates. For example, for candidate set C = {a, b, c} by
v : a ≻ b ≻ c we mean that v ranks a �rst, b second, and c third. For two candidates a and
b from election E, by pE(a, b) we denote the fraction of voters in E that prefer a over b.

We will often speak of the following three characteristic elections, introduced by Boehmer
et al. [9] as �compass elections� (we assume candidate set C = {c1, . . . , cm} here; Boehmer
et al. [9] also considered the fourth election, strati�cation, but it will not play an important
role for us):

Identity (ID). In an identity election all votes are identical. We view this election as being
in perfect agreement.

Antagonism (AN). In an antagonism election, exactly half of the voters have one prefer-
ence order (for example, c1 ≻ c2 ≻ · · · ≻ cm) and the other half has the reversed one
(cm ≻ cm−1 ≻ · · · ≻ c1). We view this election as being perfectly polarized.

Uniformity (UN). A uniformity election contains the same number of copies of every
possible preference order. We view this election as being perfectly diverse.

Kemeny Rankings and Swap Distance

For two votes u and v over a candidate set C, by swap(u, v) we mean their swap distance,
that is, the minimal number of swaps of consecutive candidates required to transform u
into v. This value is also known as Kendall's τ distance and is equal to the number of
candidate pairs a, b ∈ C such that a ≻u b but b ≻v a. A Kemeny ranking of an election
E = (C, V ) is a linear order over C that minimizes the sum of its swap distances to the
votes from V [30]. It is well known that computing a Kemeny ranking is NP-hard [6] and,
more precisely, Θp

2-complete [27].
For two elections, E = (C, V ) and F = (D,U), such that |C| = |D|, V = (v1, . . . , vn),

and U = (u1, . . . , un), by dswap(E,F ) we denote their isomorphic swap distance [24], that is,
the (minimal) sum of swap distances between the votes in both elections, given by optimal
correspondences between their candidates and their voters. Formally:

dswap(E,F )= min
σ∈Π([n],[n])

min
π∈Π(C,D)

∑n
i=1 swap(π(vi), uσ(i)),

where by π(vi) we denote vote vi with every candidate c ∈ C replaced by candidate π(c).

Maps of Elections

A map of elections is a collection of elections represented on a 2D plane as points, so that
the Euclidean distances between the points re�ect the similarity between the elections (the
closer two points are, the more similar should their elections be). Maps of elections were
introduced by Szufa et al. [37] (together with a corresponding open-source Python framework
mapel, that we use and build on) and Boehmer et al. [9], who used the positionwise distance
as a measure of similarity. We use the isomorphic swap distance instead. Indeed, Szufa et al.
[37] and Boehmer et al. [9] admitted that isomorphic swap distance would be more accurate
but avoided it because it is hard to compute (Boehmer et al. [10] analyze the consequences
of using various distances). We are able to use the swap distance because we focus on small
candidate sets. To present a set of elections as a map, we compute the distance between
each two elections and then run a multidimensional scaling algorithm (MDS)1 to �nd an
embedding of points on a plane that re�ects the computed distances. For an example of a
map, see Fig. 2 on page 11; we describe its elections in Section 5.

1Precisely, we run the multidimensional scaling algorithm from mapel, which uses the implementation of
metric multidimensional scaling from a prominent Python's library scikit-learn.



Agreement and Other Election Indices

Election index is a function that given an election outputs a real number. The next index
is among the most studied ones and captures voter agreement.

De�nition 1. The Agreement index of an election E = (C, V ) is:

A(E) =
(∑

{a,b}⊆C |pE(a, b)− pE(b, a)|
)/(|C|

2

)
.

The agreement index takes values between 0 and 1, where 0 means perfect disagreement
and 1 means perfect agreement. Indeed, we have A(ID) = 1 and A(UN) = A(AN) = 0.

There is also a number of other election indices in the literature. Somewhat disap-
pointingly, they mostly fall into one or more of the following categories: (1) They are
generalizations of the agreement index (or its linear transformation) [2, 14]; (2) They are
highly correlated with the agreement index (at least on our datasets) [26, 28, 3]; (3) Their
values come from a small set, limiting their expressiveness and robustness [11, 26] (e.g., a
diversity index whose value is the number of di�erent votes in an election would take only
voter-many possible values).

3 Diversity and Polarization Indices

In this section, we introduce our two new election indices, designed to measure the levels of
diversity and polarization in elections. Both of them are de�ned on top of a generalization
of the Kemeny ranking problem (note that this generalization is quite di�erent from that
studied by Arrighi et al. [4] under a related name).

De�nition 2. A collection of k-Kemeny rankings of election E = (C, V ) is a multiset
Λ = {λ1, . . . , λk} of k linear orders over C that minimize:∑

v∈V mini∈[k] swap(v, λi).

The k-Kemeny distance, κk(E), is equal to this minimum.

We can think of �nding k-Kemeny rankings as �nding an optimal split of votes into k
groups and minimizing the sum of each group's distance to its Kemeny ranking. Hence, 1-
Kemeny distance is simply the distance of the voters from the (standard) Kemeny ranking.
We will later argue that κ1(E) is closely related to the agreement index.

We want our diversity index to be high for UN, but small for AN and ID. For the latter,
1-Kemeny distance is equal to zero, but for both UN and AN, 1-Kemeny distance is equal
to |V | ·

(|C|
2

)
/2, which is the maximal possible value (as shown, for example, by Boehmer et

al. [10]). However, for k ≥ 2 we observe a sharp di�erence between k-Kemeny distances in
these two elections. For AN, we get distance zero (it su�ces to use the two opposing votes
as the k-Kemeny rankings), and for UN we get non-negligible positive distances (as long as
k is smaller than the number of possible votes). Motivated by this, we de�ne the diversity
index as a normalized sum of all k-Kemeny distances.

De�nition 3. The Diversity index of an election E = (C, V ) is:

D(E) =
(∑

k∈[|V |] κk(E)/k
)/(

|V | ·
(|C|

2

))
.

The sum in the de�nition is divided by the number of voters and the maximal possible
distance

(|C|
2

)
between two votes. As a result, the values of the index are more consistent

across elections with di�erent number of voters and candidates (for example, diversity of



AN is always equal to 1/2). Apart from that, in the sum, each k-Kemeny distance is divided
by k. This way, the values for large k have lesser impact on the total value, and it also
improves scalability. However, we note that even with this division, diversity of UN seems
to grow slightly faster than linearly with the growing number of candidates and there is
a signi�cant gap between the value for UN with all m! possible votes and even the most
diverse election with signi�cantly smaller number of voters. The currently de�ned diversity
index works well on our datasets (see Section 6), but �nding a more robust normalization is
desirable (the obvious idea of dividing by the highest possible value of the sum is challenging
to implement and does not prevent the vulnerability to changes in the voters count).

To construct the polarization index, we look at AN and take advantage of the sudden
drop from the maximal possible value of the 1-Kemeny distance to zero for the 2-Kemeny
distance. We view this drop as characteristic for polarized elections because they include
two opposing, but coherent, factions. Consequently, we have the following de�nition (we
divide by |V | ·

(
C
2

)
/2 for normalization; the index takes values between 0, for the lowest

polarization, and 1, for the highest).

De�nition 4. The Polarization index of an election E=(C, V ) is:

P (E) = 2 (κ1(E)− κ2(E))
/(

|V | ·
(|C|

2

))
.

For AN polarization is one, while for ID it is zero. For UN with 8 candidates, it is 0.232.
This is intuitive as in UN every vote also has its reverse. However, we have experimentally
checked that with a growing number of candidates the polarization of UN seems to approach
zero (for example, it is 0.13, 0.054, and 0.024 for, respectively, 20, 100, and 500 candidates).

Concluding our discussion of the election indices, we note a connection between the
agreement index and the 1-Kemeny distance. Let µ be the majority relation of an election
E = (C, V ), that is, a relation such that for candidates a, b ∈ C, a ⪰µ b if and only if
pE(a, b) ≥ pE(b, a). If E does not have a Condorcet cycle, that is, there is no cycle within
µ, then µ is identical to the Kemeny ranking. As noted by Can et al. [13], the agreement
index can be expressed as a linear transformation of the sum of the swap distances from all
the votes to µ (we also formally prove it in Appendix A). Hence, if there is no Condorcet
cycle, the agreement index is strictly linked to κ1(E) and all three of our indices are related.

4 Computation of k-Kemeny Distance

We de�ne an optimization problem k-Kemeny in which the goal is to �nd the k-Kemeny
distance of a given election (see De�nition 2). In a decision variant of k-Kemeny, we check
if the k-Kemeny distance is at most a given value. We note that k-Kemeny is NP-hard [6],
even if one needs to �nd a single ranking (1-Kemeny) in elections with only 4 voters (and
an unbounded number of candidates) [20]. Hence, we seek polynomial-time approximation
algorithms.

4.1 Approximation Algorithms

There is a polynomial-time approximation scheme (PTAS) for 1-Kemeny [31], that is, there
is a (1+ ϵ)-approximation alogorithm running in polynomial-time for each �xed ϵ > 0. It is,
however, not obvious how to approximate even 2-Kemeny. Yet, we observe that k-Kemeny
is related to the classic facility location problem k-Median [40]. In this problem we are
given a set of clients X, a set of potential facility locations F , a natural number k, and a
metric d de�ned over X ∪ F . The goal is to �nd a subset W = {f1, f2, . . . , fk} of facilities
which minimizes the total connection cost of the clients, that is,

∑
x∈X minf∈W d(x, f). We



see that k-Kemeny is equivalent to k-Median in which the set of clients are the votes from
the input election, the set of facilities is the set of all possible votes, and the metric is the
swap distance. Hence, to approximate k-Kemeny we can use approximation algorithms
designed for k-Median. The issue is that there are m! possible Kemeny rankings and the
algorithms for k-Median run in polynomial time with respect to the number of facilities so
they would need exponential time.

We tackle the above issue by reducing the search space from all possible rankings to
those appearing in the input. We call this problem k-Kemeny Among Votes and provide
the following result.

Theorem 1. An α-approximate solution for k-Kemeny Among Votes is a 2α-
approximate solution for k-Kemeny.

This allows us to use the rich literature on approximation algorithms for k-Median [40].
For example, using the (currently best) 2.7-approximation algorithms for k-Median [12, 17,
25] we get the following.

Corollary 1. There is a polynomial-time 5.4-approximation algorithm for k-Kemeny.

The algorithms of Byrka et al. [12], Cohen-Addad et al. [17] and Gowda et al. [25] are
based on a complex procedure for rounding a solution of a linear program, which is di�cult
to implement. Moreover, there are large constants hidden in the running time. Fortunately,
there is a simple local search algorithm for k-Median which achieves (3+ 2

p )-approximation
in time |F |p ·poly(|F |, |X|), where p is the swap size (as a basic building block, the algorithm
uses a swap operation which replaces p centers with p other ones, to locally minimize the
connection cost) [5].

Corollary 2. There is a local search (6 + 4/p)-approximation algorithm for k-Kemeny,
where p is the swap size.

We implemented the local search algorithm for p = 1 and used it in our experiments (see
Section 6). We note that there is a recent result [16] which shows that the same local search
algorithm actually has an approximation ratio 2.83+ ϵ, but at the cost of an enormous swap
size (hence also the running time)�for example, for approximation ratio below 3 one needs
swap size larger than 1010000.

In our experiments in Section 6, we also use a greedy algorithm, which constructs a
solution for k-Kemeny Among Votes iteratively: It starts with an empty set of rankings
and then, in each iteration, it adds a ranking (from those appearing among the votes) that
decreases the k-Kemeny distance most. It is an open question if this algorithm achieves a
bounded approximation ratio.

Addtionaly, using the PTAS for 1-Kemeny, we can obtain an approximation scheme
in parameterized time2 for k-Kemeny (parameterized by the number of voters; note that
an exact parameterized algorithm is unlikely as 1-Kemeny is already NP-hard for four
voters [20]). The idea is to guess the partition of the voters and solve 1-Kemeny for each
group.

Theorem 2. For every ϵ > 0, there is a (1 + ϵ)-approximation algorithm for k-Kemeny
which runs in time FPT w.r.t. n.

All algorithms in this section, besides solving the decision problem, also output the
sought k-Kemeny rankings.

2The running time of a parameterized algorithm is of the form f(t) ·poly(N) for instance size N , param-
eter t and some computable function f .



4.2 Hardness of k-Kemeny Among Votes

The reader may wonder why we use k-Median algorithms instead of solving k-Kemeny
Among Votes directly. Unfortunately, even this restricted variant is intractable.

Theorem 3. k-Kemeny Among Votes is NP-complete and W[2]-hard when parameter-
ized by k.

Proof. We give a reduction from the Max K-Cover problem (which is equivalent to the
well-known Approval Chamberlin-Courant voting rule [35]). InMax K-Cover we are given
a set of elements X = {x1, x2, . . . , xN}, a family S = {S1, S2, . . . , SM} of nonempty, distinct
subsets of X, and positive integers K ≤ M and T . The goal is to �nd K subsets from S
which together cover at least T elements from X.

We take an instance (X,S,K, T ) of Max K-Cover and construct an instance of k-
Kemeny Among Votes as follows. We create three pivot-candidates p1, p2, and p3.
For every set S ∈ S, we create two set-candidates cS and dS obtaining, in total, m =
2M + 3 candidates. Next, we create the votes, each with the following vote structure:

{p1, p2, p3}≻ {cS1 , dS1}≻ {cS2 , dS2}≻ . . .≻{cSM
, dSM

},

where {c, d}means that the order of candidates c and d is not speci�ed. Hence, when de�ning
a vote we will only specify the voter's preference on the unspeci�ed pairs of candidates.

For every set Sj ∈ S, we create L = N(M+4) set-voters vj (we do not need to distinguish
between these copies, hence we call any of them vj) with the following speci�cation over the
vote structure:

p1 ≻vj p2 ≻vj p3; dSj
≻vj cSj

; cS ≻vj dS , for S ̸= Sj .

For each two set-voters u and v, swap(u, v) ∈ {0, 2} and it equals 0 if and only if u and v
come from the same set (our sets are nonempty).

For every element xi ∈ X, we create an element-voter ei with the following speci�cation
over the vote structure:

p3 ≻ei p2 ≻ei p1; dS ≻ei cS , for ei ∈ S;

cS ≻ei dS , for ei /∈ S.

Note that for each element-voter ei and set voter vj , swap(ei, vj) ≥ 3. In total we have
n = N(M2 + 4M + 1) voters. We de�ne k = K and we set the limit for the k-Kemeny
distance in k-Kemeny Among Votes as D = 2L(M −K) +

∑
j∈[M ] |Sj |+ 4N − 2T .

The formal proof of correctness of the reduction is included in Appendix D. We just
notice that one direction follows by taking k set-voters corresponding to a solution forMax

K-Cover. The other one follows by observing that a solution to k-Kemeny Among Votes
may contain only set-voters (because there are N(M +4) copies of each) and, hence, we can
derive a corresponding solution for Max K-Cover.

In order to achieve the theorem statement we notice that Max K-Cover is W[2]-hard
w.r.t. K [19],3 k = K, and the reduction runs in polynomial time.

Using the same reduction as in the proof of Theorem 3, we can provide more �ne-grained
hardness results; they are presented in Appendix E.

3Actually, the result comes from W[2]-hardness of the Set Cover problem and a folklore reduction to
Max K-Cover by setting T = N .



5 Statistical Cultures of Our Dataset

Before we move on to our main experiments, we describe and analyze our dataset. It consists
of 292 elections with 8 candidates and 96 voters each, generated from several statistical
cultures, that is, models of generating random elections (we describe its exact composition
in Appendix F). For example, under impartial culture (IC) each vote is drawn uniformly at
random from all possible votes (thus, it closely resembles UN). We present our dataset as a
map of elections on Fig. 2. In the appendix we consider also two more datasets: extended
dataset in which we include also elections from additional statistical cultures not mentioned
in this section (Appendix H); and Mallows dataset in which the elections come from mixtures
of two Mallows models (Appendix I).

Below, we discuss each statistical culture used in our dataset and build an intuition on
how our indices should evaluate elections generated from them. To this end, we form a new
type of a map, which we call a map of preferences, where we look at relations between votes
within a single election. In other words, a map of elections gives a bird's eye view of the
space of elections, and a map of preferences is a microscope view of a single election.

5.1 Maps of Preferences

To generate a map of preferences for a given election, we �rst compute the (standard)
swap distance between each pair of its votes. Then, based on these distances, we create a
map in the same way as for maps of elections (that is, we use the multidimensional scaling
algorithm). We obtain a collection of points in 2D, where each point corresponds to a vote
in the election, and Euclidean distances between the points resemble the swap distances
between the votes they represent.

To make our maps of preferences more representative of their models, we generated
each of them with 1000 voters instead of 96 (but we include the version with 96 votes in
Appendix J). We show the results in Fig. 1, where each map shows a single election generated
from a given model. We de�ne these models and discuss their maps below. If there are
more than 10 copies of the same vote, we add a purple disc with a radius proportional to
the number of voters.

5.2 Model De�nitions and Analysis

ID, AN, and IC

We �rst consider ID, AN, and IC elections (which, for the time being, covers for UN). ID
and AN are shown as the �rst entries of the �rst two rows in Fig. 1. The former, with
1000 copies of the same vote, presented as a single point with a large purple disc, embodies
perfect agreement. The latter, with 500 votes of one type and 500 its reverses, represents
a very polarized society, which is well captured by the two faraway points with large discs
on its map. Under IC, whose map is the last one in the �rst row, we see no clear structure
except that, of course, there are many pairs of votes at high swap distance (they form the
higher-density rim). Yet, for each such pair there are also many votes in between. Hence,
it is close to being perfectly diverse.

We do not present UN in our maps because it requires at least m! votes. Indeed, from
now on instead of considering UN, we will talk about its approximate variant, UN∗, which
we generate by sampling votes from its scaled position matrix (see Appendix F for details).



Figure 1: Maps of Preferences (8 candidates, 1000 voters).

Mallows Model

The Mallows model is parameterized by the central vote u and the dispersion parameter ϕ ∈
[0, 1]. Votes are generated independently and the probability of generating a vote v is
proportional to ϕswap(u,v). Instead of using the parameter ϕ directly, we follow Boehmer et
al. [9] and use its normalized variant, norm-ϕ ∈ [0, 1], which is internally converted to ϕ (see
their work for details; with 8 candidates the conversion is nearly linear). For norm-ϕ = 1,
the Mallows model is equivalent to IC, for norm-ϕ = 0 it is equivalent to ID, and for values
in between we get a smooth transition between these extremes (or, between agreement and
diversity, to use our high-level notions). We see this in the �rst row of Fig. 1.

Urn Model

In the Pólya-Eggenberger urn model [7, 34], we have a parameter of contagion α ∈ [0,∞).
We start with an urn containing one copy of each possible vote and we repeat the following
process n times: We draw a vote from the urn, its copy is included in the election, and the
vote, together with α ·m! copies, is returned to the urn. For α = 0 the model is equivalent
to IC. The larger is the α value, the stronger is the correlation between the votes.

In Fig. 1, urn elections (shown in the middle of the second row) consist of very few
distinct votes. For example, for α = 1 we only have seven, thus this election's map looks
similarly to that for AN�few points with discs. Such elections, with several popular views
but without a spectrum of opinions in between, are known as fragmented [21]. Hence, we
expect their diversity to be small. As α decreases, urn elections become less fragmented.

We upper-bound the expected number of di�erent votes in an urn election with m candi-
dates, n voters (with n signi�cantly smaller than m!), and parameter α by

∑n
i=1

1/(1+(i−1)α)

(the �rst vote is always unique, the second one is drawn from the original m! votes from
the urn with probability 1/(1+α), and so on; if we draw one of the original votes from the
urn it still might be the same as one of the previous ones, but this happens with a small
probability when n is signi�cantly smaller than m!). For example, for n = 1000 and α
equal to 1, our formula gives 7.48. In the literature, authors often use α = 1 [22, 29, 38],



sometimes explicitly noting the strong correlations and modifying the model [22]. However,
smaller values of α also are used [36, 34]. Since α = 1 gives very particular elections, it
should be used consciously.

Single-Peaked Elections

Single-peaked elections [8] capture scenarios where voters have a spectrum of opinions be-
tween two extremes (like choosing a preferred temperature in a room).

De�nition 5 (Black [8]). Let C be a set of candidates and let ▷ be an order over C, called
the societal axis. A vote is single-peaked with respect to ▷ if for each t ∈ [|C|], its top t
candidates form an interval w.r.t. ▷. An election is single-peaked (w.r.t. ▷) if its votes are.

We use the Walsh [39] and the Conitzer (random peak) models [18] of generating single-
peaked elections. In the former, we �x the societal axis and choose votes single-peaked
with respect to it uniformly at random (so we can look at it as IC over the single-peaked
domain). In the Conitzer model we also �rst �x the axis, and then generate each vote as
follows: We choose the top-ranked candidate uniformly at random and �ll-in the following
positions by choosing either the candidate directly to the left or directly to the right of the
already selected ones on the axis, with probability 1/2 (at some point we run out of the
candidates on one side and then only use the other one).

In Fig. 1, Conitzer and Walsh elections are similar, but the former one has more votes at
large swap distance. Indeed, under the Conitzer model, we generate a vote equal to the axis
(or its reverse) with probability 2/m, which for m = 8 is 25%. Under the Walsh model, this
happens with probability 1.5% (it is known there are 2m−1 di�erent single-peaked votes and
Walsh model chooses each of them with equal probability). Hence, our Conitzer elections are
more polarized (see the purple discs at the farthest points) than the Walsh ones, and Walsh
ones appear to be more in agreement (in other words, the map for the Conitzer election is
more similar to that for AN, and the map for Walsh election is more similar to ID).

Euclidean Models

In d-dimensional Euclidean elections (d-Euclidean elections) every candidate and every voter
is a point in Rd, and a voter prefers candidate a to candidate b if his or her point is closer to
that of a than to that of b. To generate such elections, we sample the candidate and voter
points as follows: (a) In the d-Cube model, we sample the points uniformly at random from
a d-dimensional hypercube [0, 1]d, and (b) in the Circle and Sphere models we sample them
uniformly at random from a circle (embedded in 2D space) and a sphere (embedded in 3D
space). We refer to the 1-Cube, 2-Cube, and 3-Cube models as, respectively, the Interval,
Square, and Cube models. In Fig. 1, we see that as the dimension increases, the elections
become more similar to the IC one (see the transition from the Interval to the Cube one).
The Interval election is very similar to those of Conitzer and Walsh, because 1-Euclidean
elections are single-peaked. It is also worth noting that the Circle election is quite polarized
(we see an increased density of votes on two opposite sides of its map).

Irish and Other Elections Based on Real-Life Data

We also consider elections generated based on real-life data from a 2002 political election
in Dublin [33]. We treat the full Irish data as a distribution and sample votes from it as
from a statistical culture (technical details in Appendix G). The Irish election in Fig. 1 is,
in some sense, between the Cube and Mallows ones for norm-ϕ = 0.5. Intuitively, we would
say that it is quite diverse. In the dataset, we also include Sushi and Grenoble elections,
similarly generated using di�erent real-life data [33].
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6 Final Experiments and Conclusion

In this section we present the results of computing the agreement, diversity, and polarization
indices on our dataset.

6.1 Computing the Indices in Practice

First, we compared three ways of computing k-Kemeny distances: the greedy approach, the
local search with swap size equal to 1, and a combined heuristic where we �rst calculate
the greedy solution and then try to improve it using the local search. We ran all three
algorithms for all k ∈ [96] and for every election in our dataset. The complete results
are in Appendix K. The conclusion is that the local search and the combined heuristic
gave very similar outcomes and both outperformed the greedy approach. Hence, in further
computations, we used the former two algorithm and took the smaller of their outputs.

6.2 Understanding the Map via Agreement, Diversity, and Polar-

ization

Using the κk(E) values computed in the preceding experiment, we calculated diversity and
polarization indices of all the elections from our datasets, along with their agreement indices
(which are straightforward to compute). We illustrate the results in several ways.

First, we consider Fig. 4. On the left plot, each election from our dataset is represented as
a dot whose x/y coordinates are the values of the diversity index and the distance from UN∗,
and whose color corresponds to the statistical culture from which it comes (it is the same as
in Fig. 2, though due to large density of the dots, this only gives a rough idea of the nature of
the elections). The right plot is analogous, except that it regards polarization and distance
from AN. An analogous plot for agreement and distance from ID is almost perfectly linear
(see Appendix L). The Pearson correlation coe�cient between each of the three indices and
the distance from the respective compass election is very strong, that is, below −0.9. This
is our �rst indication that the locations on the map of elections, in particular, the one from
Fig. 2, can be understood in terms of agreement, diversity, and polarization.

Next, for all three pairs of our indices we plotted our dataset in such a way that each
election's x/y coordinates are the values of the respective indices (these plots can be found
in Appendix L). We observed that each of these plots resembles the original map from
Fig. 2. Hence, for the sake of clearer comparison, we took the plot for agreement and



Figure 4: Correlation between our indices and the distance from the respective compass election.

diversity indices and, by an a�ne transformation, converted it to a roughly equilateral
triangle spanned between ID, AN, and UN∗. Fig. 3 presents the result of this operation.

The similarity between Figs. 2 and 3 is striking as most elections can be found in analo-
gous locations. Even the positions of the outliers in the groups are, at least approximately,
preserved. Yet, there are also di�erences. For example, in Fig. 3 elections from most of
the statistical cultures are closer to each other, whereas on Fig. 2 they are more scattered.
Nonetheless, the similarity between these two �gures is our second argument for understand-
ing the map in terms of agreement, diversity, and polarization. Speci�cally, the closer an
election is to ID, AN, or UN∗, the more agreement, polarization, or diversity it exhibits.

6.3 Validation Against Intuition

Finally, let us check our intuitions from Section 5 against the actually computed values of
the indices, as presented on the plot from Fig. 3. We make the following observations:

1. We see that Mallows elections indeed progress from ID (for which we use norm-ϕ = 0)
to IC (for which we use norm-ϕ = 1), with intermediate values of norm-ϕ in between.
The model indeed generates elections on the agreement-diversity spectrum.

2. Elections generated using the urn model with large value of α appear on the agreement-
polarization line. Indeed, for very large values of α nearly all the votes are identical, but
for smaller values we see polarization e�ects. Finally, as the values of α go toward 0,
the votes become more and more diverse.

3. Walsh elections are closer to agreement (ID) and Conitzer elections are closer to po-
larization (AN).

4. High-dimensional Cube elections have fairly high diversity. Circle and Sphere elections
are between diversity and polarization.

5. Irish elections are between Mallows and high-dimensional Cube elections.

All in all, this con�rms our intuitions and expectations.

7 Summary

The starting point of our work was an observation that the measures of diversity and po-
larization used in computational social choice literature should, rather, be seen as measures
of disagreement. We have proposed two new measures and we have argued that they do
capture diversity and polarization. On the negative side, our measures are computation-
ally intractable. Hence, �nding a measure that would be easy to compute but that would
maintain the intuitive appeal of our ones is an interesting research topic.
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Supplementary Material

A Agreement and 1-Kemeny Distance

In this section, we show the relation between the agreement index and 1-Kemeny distance.
By µ let us denote the majority relation, which is a (possibly intransitive and not asym-
metric) relation on the set of candidates such that for each a, b ∈ C, a ⪰µ b if and only
if pE(a, b) ≥ pE(b, a). Let say that the linear order λ of candidates is consistent with µ if
a ≻λ b implies a ⪰µ b, for every a, b ∈ C. Observe that if an election E = (C, V ) does
not have a Condorcet cycle, i.e., there is no sequence of candidates c1, . . . , ck ∈ C such that
pE(ci, ci+1) ≥ pE(ci+1, ci), for every i ∈ [k − 1], and pE(ck, c1) > pE(c1, ck), then the set of
preference orders consistent with µ is the set of all Kemeny rankings.

The Kendall's τ distance can be generalized for any relations. For every linear order λ
over candidates C, we have

τ(λ, µ) =
1

2

∑
a,b∈C

(
1a≻λb · 1a̸⪰µb + 1b⪰µa · 1b̸≻λa

)
.

In other words, for every pair of candidates a, b for which a ≻λ b, we count 1, if b ⪰µ a and
a ̸⪰µ b, and 1/2, if b ⪰µ a but also a ⪰µ b. As we show in the following proposition, there is
a strict relation between the agreement index and the average Kendall's τ distance from all
votes to the majority relation.

Proposition 1. For every election E = (C, V ), it holds that

A(E) = 1−
2 ·

∑
v∈V τ(v, µ)

|V | ·
(|C|

2

) .

Proof. We split the set of pairs of candidates into two subsets: A containing the pairs
with perfect disagreement, and B with the pairs for which some opinion is stronger than
the other. Formally, let A = {{a, b} ⊆ C : pE(a, b) = pE(b, a)} and B = {{a, b} ⊆ C :
pE(a, b) ̸= pE(b, a)}. Without loss of generality, throughout the proof we assume that for
pair {a, b} ∈ B we have a ⪰µ b. Then, by the de�nition of µ we get pE(a, b) > pE(b, a) and
thus

|pE(a, b)− pE(b, a)| = pE(a, b)− pE(b, a)

= (pE(a, b) + pE(b, a))− 2pE(b, a)

= 1− 2pE(b, a).

Since for {a, b} ∈ A we have |pE(a, b) − pE(b, a)| = 0, by the de�nition of the agreement
index, we get that

A(E) =

∑
{a,b}∈B (1− 2pE(b, a))(|C|

2

)
=

|B| − 2 ·
∑

{a,b}∈B

∑
v∈V 1b≻va/|V |(|C|

2

)
=

|B|(|C|
2

) − 2

∑
v∈V

∑
{a,b}∈B 1b≻va

|V | ·
(|C|

2

)
=

|B|(|C|
2

) − 2

∑
v∈V

∑
{a,b}∈B

1/21b≻va + 1/21a̸≻vb

|V | ·
(|C|

2

) ,



where the last equation comes from the fact that ≻v is asymmetric, so 1b≻va = 1a ̸≻vb.
Since for {a, b} ∈ B we have pE(a, b) > pE(b, a), then we know that 1a⪰µb = 1b ̸⪰µa = 1
and, conversely, 1a̸⪰µb = 1b⪰µa = 0. In particular, this means that

1/21b≻va + 1/21a̸≻vb = 1/21b≻va1b̸⪰µa + 1/21a̸≻vb1a⪰µb

+ 1/21a≻vb1a̸⪰µb + 1/21b ̸≻va1b⪰µa,

which we denote as τa,b(v.µ). Then, we have that

A(E) =
|B|(|C|
2

) − 2

∑
v∈V

∑
{a,b}∈B τa,b(v, µ)

|V | ·
(|C|

2

) . (1)

Now, let us consider a pair of candidates {a, b} ∈ A. Observe that independently whether
a ≻v b or b ≻v a we have that

τa,b(v, µ) = 1/21b≻va · 0 + 1/21a̸≻vb · 1
+ 1/21a≻vb · 0 + 1/21b̸≻va · 1 = 1/2.

Therefore, summing for all voters and pairs of candidates in set A, we obtain∑
v∈V

∑
{a,b}∈A τa,b(v, µ) = 1/2|A| · |V |.

We can rearrange this equation and divide by 1/2|V |
(|C|

2

)
, to get

0 =
|A|(|C|
2

) − 2

∑
v∈V

∑
{a,b}∈A τa,b(v, µ)

|V | ·
(|C|

2

) .

Combining this we equation (1) we obtain

A(E) = 1− 2

∑
v∈V

∑
{a,b}⊆C τa,b(v, µ)

|V | ·
(|C|

2

)
= 1−

2 ·
∑

v∈V τ(v, µ)

|V | ·
(|C|

2

) .

Since in elections without a Condorcet cycles every Kemeny ranking is consistent with
µ, we get that in such elections there is a strict relation between the agreement index and
1-Kemeny distance.

Corollary 3. For every election E = (C, V ) without a Condorcet cycle, it holds that

A(E) = 1− 2 · κ1(E)/
(
|V | ·

(|C|
2

))
.

B Proof of Theorem 1

For a given instance I = (E = (C, V ), k) a feasible solution for k-Kemeny Among Votes

is also a feasible solution to k-Kemeny. Let µk(E) be the optimum value of k-Kemeny
Among Votes on I and κk(E) be the optimum value of k-Kemeny on I. In order to show
the theorem statement it is enough to show that µk(E) ≤ 2κk(E).

Let Λ = {λ1, . . . , λk} be an optimum solution for k-Kemeny Among Votes and Γ =
{γ1, . . . , γk} be an optimum solution for k-Kemeny. Let v(x) ∈ V be a voter that is closest



to some ranking x and v(Γ) = {v(γ) : γ ∈ Γ}. Let γ(x) ∈ Γ be a ranking from Γ that is
closest to some ranking x. We de�ne swap(v,X) = minx∈X swap(v, x). We have

µk(E) =
∑
v∈V

swap(v,Λ)

≤
∑
v∈V

swap(v, v(Γ))

≤
∑
v∈V

(
swap(v, γ(v)) + swap(γ(v), v(γ(v)))

)
≤ 2 ·

∑
v∈V

swap(v, γ(v)) = 2κk(E).

where the �rst inequality holds because of optimality of Λ restricted to votes and the
second inequality is due to the triangle inequality. The third inequality follows from
swap(γ(v), v(γ(v))) ≤ swap(γ(v), v), which expresses that for some vote v ∈ V , its dis-
tance to the closest ranking γ(v) from Γ is at least as large as the distance between γ(v)
and a vote closest to it. This �nishes the proof.

C Proof of Theorem 2

Let us �x some ϵ > 0.
We consider every possible subset of votes as a cluster; there are 2n of them. First, our

algorithm runs a PTAS designed for 1-Kemeny [9] for every possible cluster and store the
result. This gives us an (1 + ϵ)-approximate solution for every cluster separately.

Second, our algorithm guesses a k-clustering {V1, V2, . . . , Vk} of votes. Then, for each
cluster in the clustering, we take an (1 + ϵ)-approximate solution to 1-Kemeny (which was
computed in the �rst step) and store it. The algorithm repeats this procedure for each of
kn possible clusterings and outputs the smallest computed distance.

It is clear that an optimum solution corresponds to one of the k-clusterings, say K,
analyzed by the algorithm in the second step. Moreover, in each cluster of K the solution
returned by the algorithm is a (1+ ϵ)-approximation of the optimum solution of the cluster
under consideration. Hence, eventually, the algorithm returns a k-Kemeny solution that
costs at most a multiplicative factor 1 + ϵ more than the optimum one, as claimed.

Regarding the running time, note that k < n; otherwise, the set of votes gives a solution
of cost 0. The algorithm computes a solution for 2n many clusters (each in polynomial time)
and considers kn ≤ nn many clusterings (each in polynomial time), so the running time is
FPT w.r.t. n, namely nn · poly(n,m).

D Proof of Theorem 3

In the main text we provided the construction of the reduction. Here we prove its correctness.
First, let us assume that there is some (partial) cover R ⊆ S, |R| = K such that

|
⋃

S∈R S| ≥ T . We claim that the set Λ = {≻vj : Sj ∈ R} of k rankings has the k-Kemeny
distance at most D.

For every (copy of) set-voter vj such that Sj ∈ R, we have swap(vj ,Λ) ≤ swap(vj , vj) = 0
and for the remaining L(M − K) set-voters the distance to Λ equals 2. Hence, set-voters
realize the distance equal to the �rst term in the de�nition of D.

Now, we calculate the distance realized by element-voters. For each element-voter ei,
representing element xi that is not covered by R, its swap distance swap(ei,Λ) can be



computed as follows. Starting from the distance being 0, we add one for each set in which
xi is included and we add 3 because of the pivot-candidates. Furthermore, we increase the
distance by one once more, due to the following. For every vote vj ∈ Λ (recall that in vj
candidate dSj

is preferred to cSj
), we have that in vote ei candidate cSj

is preferred to dSj
,

since xi is not covered. So, formally, for an element-voter ei that represents an element xi

not covered by R, we obtain the following formula:

swap(ei,Λ) = |{S ∈ S : xi ∈ S}|+ 3 + 1.

If, however, element xi is covered by some set, say Sj , in R, then candidates cSj
and dSj

are in the same order in ei and vj and vj ∈ Λ. Hence, we should decrease the computed
distance by two. By one, due to the fact that, we added one for each set in xi is included;
hence we also assumed that the order of cSj and dSj is reversed in ei and vi. By another one
because also the last summand of the aforementioned formula came from the (now false)
assumption there is no vote in Λ for which cSj

and dSj
are in the same order in ei and vi.

Since we computed their inversion in the �rst part of the formula. Eventually, introducing
the indicator function 1[Φ] such that 1[Φ] = 1 if Φ is true, and 1[Φ] = 0 otherwise, formally
the sought swap(ei,Λ) is

swap(ei,Λ) = |{S ∈ S : xi ∈ S}|+ 4− 2 · 1[xi ∈
⋃
S∈R

S].

It means that the distance realized by element-voters is equal to∑
i∈[N ]

swap(ei,Λ) =
∑

j∈[M ]

|Sj |+ 4N − 2 ·
∣∣∣ ⋃
S∈R

S
∣∣∣

≤
∑

j∈[M ]

|Sj |+ 4N − 2T.

In total, swap(V,Λ) ≤ D, as required.
Now, let us assume that there is Λ ⊆ {≻v: v ∈ V }, |Λ| = k such that swap(V,Λ) ≤ D.
First of all, we observe that Λ may contain only rankings of set-voters. Let us assume, by

contradiction, that there is an element-voter in Λ. It means that at most L(k−1) set-voters
realize the swap distance 0. Furthermore, at least L(M − k + 1) set-voters realize the swap
distance at least 2 (it is exactly 2 when the closest ranking comes from a set-vote, and it
is at least 3 when the closest ranking comes from an element-vote). Hence, we would have
swap(V,Λ) ≥ 2L(M − k+1) > 2L(M −K)+NM +4N ≥ D, which is a contradiction with
swap(V,Λ) ≤ D.

Using the same calculation as in the previous paragraph, we can conclude that Λ does not
contain two copies of the same set-voter. Because of that, we can de�ne R ⊆ S containing
exactly k = K subsets corresponding to votes from Λ, i.e., R = {Sj : ≻vj∈ Λ}.

We will show that R covers at least T elements. Let us assume, by contradiction, that
R covers at most T − 1 elements. Then we would have:

swap(V,Λ) = 2L(M −K) +
∑

j∈[M ]

|Sj |+ 4N − 2 ·
∣∣∣ ⋃
S∈R

S
∣∣∣

≥ 2L(M −K) +
∑

j∈[M ]

|Sj |+ 4N − 2(T − 1)

= D + 2,

which is a contradiction with swap(V,Λ) ≤ D.



E Propositions from Theorem 3

Let us de�ne M = maxv,u∈V swap(v, u), i.e., the maximum distance between votes. The
value of M is small in instances with similar votes. Unfortunately, small values of M do not
make the problem easy.

Proposition 2. k-Kemeny Among Votes is W[1]-hard when parameterized by k +M .

Proof. It is known that Max K-Cover is W[1]-hard w.r.t. K + f [3], where f is the
maximum frequency of an element, i.e., f = maxi∈[N ] |{Sj ∈ S : xi ∈ Sj}|. We can observe
that M ≤ 2f + 4 in the reduction given in the proof of Theorem 3 hence we obtain the
proposition statement.

By adapting results regarding Max K-Cover [13, Observation 7], we also obtain the
following bound that uses the Strong Exponential Time Hypothesis (SETH).4

Proposition 3. There is no 1.4m · poly(n,m)-time algorithm for k-Kemeny Among

Votes, where m is the number of candidates and n is the number of voters, unless SETH
fails.

Proof. Let us assume, by contradiction, that there is a 1.4m · poly(n,m)-time algorithm
for k-Kemeny Among Votes. We take an instance of Max K-Cover and reduce it
(in poly(N,M) time) to k-Kemeny Among Votes using the reduction from the proof
of Theorem 3. We solve the obtained instance of k-Kemeny Among Votes in time
1.4m·poly(n,m) and we output the same response toMax K-Cover. Due to Theorem 3, we
obtained a correct response to the instance of Max K-Cover. Recall that m = 2M+3 and
n = N(M2+4M+1). Therefore, the running time of our algorithm forMax K-Cover is at
most 1.4m·poly(n,m)·poly(N,M) ≤ 1.42M+3·poly(N,M) ≤ 1.96M ·poly(N,M). This would
show that SETH is false because under SETH Max K-Cover has no 1.99M · poly(N,M)
time algorithm [13, Observation 7].

On the other hand, k-Kemeny Among Votes (and k-Kemeny) is FPT w.r.t. m by
a brute-force evaluation of all k-size subsets of m! possible linear orders as a solution, each
in polynomial time. Hence, the running time is

(
m!
k

)
· poly(n,m) ≤ 2m! · poly(n,m) ≤

2m
m · poly(n,m). This is a double-exponential dependence. An open question is to provide

a single-exponential time algorithm.

F Standard Dataset Composition

The map of elections from Fig. 2 consists of elections from various statistical cultures. In
Table 1 we specify how many elections come from each culture and how their parameters
were chosen. From now on, we will call this collection of elections (i.e., the elections depicted
in Fig. 2) as the standard dataset, to distinguish it from the extended dataset and theMallows
dataset presented in the following sections. In what follows, we describe how we generate
elections that were not covered in Section 5 (or Appendix G).

Before we begin, let us describe a general technique that is sampling elections from a
position matrix. A position matrix [14, 1] is an integer m×m matrix, in which the values
of each row and each column sum up to some constant n ∈ N. An election, E = (C, V ),
realizes a given position matrix X, if |C| = m, |V | = n, and for every i, j ∈ [m], the value
in i-th row and j-th column of matrix X, i.e., Xi,j , is equal to the number of voters in V

4SETH is one of popular complexity assumptions in parameterized complexity. For a formal statement
see, e.g., the book of Cygan et al. [2015, Conjecture 14.2].



Table 1: The ingredients of the standard dataset.

model variants/parameters #elcs

Impartial Culture 16
normalized Mallows ϕ ∈ unif. over [0, 1] 48

urn model α ∈ Γ(0.8) 48

single-peaked (Conitzer) 16
single-peaked (Walsh) 16

1-cube (Interval) uniform interval 16
2-cube (Square) uniform square 16
3-cube (Cube) uniform cube 16

5-cube uniform 5D-cube 8
10-cube uniform 10D-cube 8

circle circle in 2D 16
sphere sphere in 3D 16

Irish dataset 8
Sushi dataset 8

Grenoble dataset 8

uniformity (UN∗) 4
identity (ID) 1

antagonism (AN) 1

ID-AN mixture AN fractions: 1/12 . . . 11/12 11
AN-UN∗ mixture UN∗ fractions: 1/12 . . . 11/12 11

that ranks the j-th candidate at the i-th position (note that one position matrix can be
realized by multiple elections). For example, a position matrix realizing UN election with
m candidates, is an m×m matrix with each element equal to (m− 1)!. In [2], the authors
provide a technique to sample elections realizing given position matrix X, which starts from
an empty election without any votes, and then, iteratively:

1. �nds a vote v that can belong to an election realizing X,

2. adds v to the election, and then

3. updates the values of matrix X (by subtracting one from Xi,j for every j ∈ [m] and i
being the position of j-th candidate according to vote v),

until X is a zero matrix. We note that this procedure returns every election realizing
given matrix with positive probability, but the exact distribution we obtain is unknown (the
authors of [2] argue that obtaining a P-time uniform sampler is challenging). We use this
sampling technique to generate UN∗ and AN-UN∗ mixture elections.

UN* To generate UN∗ elections, we sample an election realizing an 8× 8 position matrix
in which every element is equal to 12.

ID-AN mixture. Elections from ID-AN mixture model with AN share i ∈
{1/12, . . . , 11/12} come from merging AN election with 96i voters and ID election with 96(1−i)
voters. Hence, we have 96 − 48i voters with a given preference order and 48i voters with
exactly opposing views.
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Figure 5: A map of elections in the extended dataset obtained using isomorphic swap distance and
MDS.

AN-UN* mixture. Elections from AN-UN∗ mixture model with UN∗ share i ∈
{1/12, . . . , 11/12} come from merging UN∗ election with 96i voters and AN election with
96(1 − i) voters. Hence, we have 48(1 − i) voters with a given preference order, 48(1 − i)
voters with exactly opposing views, and on top of that we add 96i voters that we get by
sampling election realizing 8× 8 matrix in which every element is equal 12i.

G Preprocessing of Real-life Data

Grenoble. In the Grenoble �eld experiment, 760 people were asked to place 11 candidates
on the [0, 1] line. The higher the value, the more a given candidate is liked by a voter. We
converted each participant's line preference into ordinal ranking, by choosing the candidate
being closest to one as a �rst choice, the second closest to one as a second choice and so on.

Sushi. In the survey about Sushi there were 5000 participants and 10 di�erent types of
sushi (i.e., candidates). The original data consists of full ordinal rankings without ties.

Irish. In the election held in Dublin North constituency, there were 43942 voters and 12
candidates. In the original data many votes were incomplete, hence, we �lled them using
the same procedure as Boehmer et al. [1], in order to obtain complete preference orders.

Sampling procedure. We decided to conduct experiments with 8 candidates, hence, for
all three dataset we selected 8 candidates having the highest Borda score. We treat all
three datasets as statistical cultures. To sample an election from a given dataset, we simply
sample a given number of votes (in our case 1000) uniformly at random (sequentially with
returning).

H Extended Dataset

In this section, we introduce our extended dataset. This dataset consists of all 292 elections
from the standard dataset and 74 new elections generated using 4 additional statistical
cultures (single-peaked on a circle, single-crossing, group-separable balanced, and group
separable caterpillar) and 2 special models (α-strati�cation and ID-ST∗ mixture). The



Table 2: The ingredients of the extended dataset (elections not appearing in the standard dataset
are in boldface).

model variants/parameters #elcs

Impartial Culture 16
normalized Mallows ϕ ∈ unif. over [0, 1] 48

urn model α ∈ Γ(0.8) 48

single-peaked (Conitzer) 16
single-peaked (Walsh) 16

single-peaked on a circle 16
single-crossing 16

group-separable balanced 16
group-separable caterpillar 16

1-cube (Interval) uniform interval 16
2-cube (Square) uniform square 16
3-cube (Cube) uniform cube 16

5-cube uniform 5D-cube 8
10-cube uniform 10D-cube 8

circle circle in 2D 16
sphere sphere in 3D 16

Irish dataset 8
Sushi dataset 8

Grenoble dataset 8

uniformity (UN∗) 4
1/2-strati�cation (ST∗) 4

identity (ID) 1
antagonism (AN) 1
α-strati�cation α ∈ {1/8, 2/8, 3/8} 3

ID-AN mixture AN share: 1/12 . . . 11/12 11
AN-UN∗ mixture UN∗ share: 1/12 . . . 11/12 11
ID-ST∗ mixture no. blocks: 3, 4, 6 3

exact composition of the extended dataset is presented in Table 2. In what follows we
describe each new culture and model.

We present also map of preferences for elections from these cultures in Fig. 6 (some
additional maps for cultures and models already appearing in the standard dataset are also
included). In order to obtain maps of preferences more representative for their models, we
generated elections with 1000 voters instead of 96 (but we present also the version with 96
voters in Appendix J). Finally, a map of elections generated in the same way as that in
Fig. 2, but for elections in the extended dataset is presented in Fig. 5.

Single-Peaked On a Cycle Elections (SPOC)

Elections single-peaked on a circle [11] are analogous to single-peaked ones, except that
the societal axis is cyclic (so a vote is SPOC with respect to axis ▷ if for every t ∈ [m]
its t top-ranked candidates either form an interval with respect to ▷ or a complement of
an interval; an election is SPOC if there is an axis with respect to which all its votes are
SPOC). Such preferences occur, e.g., when choosing a virtual meeting time and voters are
in di�erent time zones. We generate SPOC elections by choosing SPOC votes uniformly at
random (for SPOC, this is equivalent to using the Conitzer approach). The shape of the



Figure 6: Maps of Preferences (8 candidates, 1000 voters).

SPOC election in Fig. 6 naturally corresponds to the cyclic nature of the axis.

Single-Crossing Elections

Single-crossingness captures a similar idea as single-peakedness, but based on ordering the
voters.

De�nition 6 (Mirrlees [10], Roberts [12]). An election is single-crossing if it is possible to
order the voters so that for each two candidates a and b either every voter who prefers a to
b comes before every voter who prefers b to a, or the other way round.

We generate single-crossing elections using the approach of Szufa et al. [14]. First, we
generate a single-crossing domain, i.e., a set of votes such that any multisubset of them is
single-crossing. Then we draw the required number of votes from the domain, uniformly
at random. To obtain the domain (for candidate set C = {c1, . . . , cm}), we �rst generate
vote v1 : c1 ≻ c2 ≻ · · · ≻ cm, and for each i ∈ [n] \ {1} we obtain vi by copying vi−1 and
swapping a random pair of adjacent candidates, but so that v1, . . . , vi are single-crossing (for
this order). Unfortunately, this is not a uniform sampling procedure (obtaining a P-time
one is an open problem).

The map of a single-crossing election in Fig. 6 shows a linear spectrum of opinions, from
one vote to its reverse. Indeed, the consecutive votes in the single-crossing domain di�er by
single swaps, and this is exactly what we see.

Group-Separable Elections

We de�ne group-separable elections following the tree-based approach of Karpov [8] (see
also the work of Elkind et al. [5]) rather than the original one [6, 7]. The idea is that
candidates have features (organized hierarchically in a tree) and voters have preferences
over these features.

Let C be a candidate set and let T be a rooted, ordered tree whose each leaf is labeled
with a unique candidate (intuitively, each internal node represents a feature and a candidate
has the features that form its path to the root). A vote is consistent with T if we can obtain
it by reading the leaves of T from left to right after, possibly, reversing the order of some
nodes' children.

De�nition 7. An election is group-separable if there is a rooted, ordered tree T whose each
leaf is associated with a unique candidate, such that each vote of the election is consistent
with T .



For a tree T , we generate consistent elections uniformly at random: We obtain each
vote by, �rst, reversing the order of each internal node's children with probability 1/2 and,
then, reading o� the candidates from the leaves left to right. We focus on complete binary
trees (where every level except, possibly, the last one is completely �lled) and on binary
caterpillar trees (where each internal node has two children, of which at least one is a leaf).
These trees give, respectively, balanced and caterpillar group-separable elections.

In Fig. 6, the group-separable elections are very distinct from all the other ones and
re�ect the structures of their trees. While it seems that they had only a few distinct votes,
this is not the case (it is known that for a binary tree with m candidates, there are 2m−1

consistent votes), but many of their votes are similar; they are less fragmented than they
appear, but there is a level of polarization (especially in the balanced ones).

Strati�cation

In α-strati�cation election (α-ST) [1] the set of candidates, C, is partitioned into two sub-
sets D1 and D2, where the �rst group contains α fraction of candidates, i.e., |D1|/|C| = α
(if no α is given it is assumed that α = 1/2). Intuitively, in such election all voters agree
that candidates D1 are better than D2, but all orderings of candidates inside the sub-
sets are equally represented. Hence, every possible vote that ranks all candidates in D1

above all candidates in D2 (but with arbitrary orderings inside subsets) appears exactly
the same number of times. However, this means that α-strati�cation election requires at
least (α|C|)! · ((1 − α)|C|)! voters. To cope with this problem, we consider approximated
α-strati�cation elections (α-ST∗) that we generate using the same sampling technique as
described in Appendix F, but whit di�erent matrices. In particular, for α ∈ {1/8, 1/4, 3/8, 1/2}
we generate α-ST∗ election by sampling an election realizing the matrix Xα given as follows:

X
1/2 =



24 24 24 24
24 24 24 24
24 24 24 24
24 24 24 24

24 24 24 24
24 24 24 24
24 24 24 24
24 24 24 24


,

X
3/8 =



32 32 32
32 32 32
32 32 32

20 19 19 19 19
19 20 19 19 19
19 19 20 19 19
19 19 19 20 19
19 19 19 19 20


,



X
2/8 =



48 48
48 48

16 16 16 16 16 16
16 16 16 16 16 16
16 16 16 16 16 16
16 16 16 16 16 16
16 16 16 16 16 16
16 16 16 16 16 16


,

X
1/8 =



96
14 14 14 14 14 13 13
13 14 14 14 14 14 13
13 13 14 14 14 14 14
14 13 13 14 14 14 14
14 14 13 13 14 14 14
14 14 14 13 13 14 14
14 14 14 14 13 13 14


.

The map for ST∗ election in Fig. 6 resembles a bit the map for Mallows elections, and it
also lands between ID and IC. This is expected: In these elections there is some agreement
between the voters (they distinguish the stronger group from the weaker one) but there is
also room for diversity.

ID-ST* mixture.

Finally, we consider elections that capture a transition from ST∗ to ID. Speci�cally, instead
of dividing candidates into two subsets (aka blocks) on ordering of which the voters agree
we divide the candidates in k blocks for some 2 ≤ k ≤ |C|. If we choose k = 2 we get a
standard strati�cation election and for k = |C| we get identity. In the extended dataset, we
included one such election for each k ∈ {3, 4, 6}. Again, they were obtained by sampling
(using procedure described in Appendix F) from the position matrix Xk given as follows:



X3 =



48 48
48 48

32 32 32
32 32 32
32 32 32

32 32 32
32 32 32
32 32 32


,

X4 =



48 48
48 48

48 48
48 48

48 48
48 48

48 48
48 48


,

X6 =



96
48 48
48 48

48 48
48 48

96
96

96


.

The order of the larger and smaller blocks in matrices X3 and X6 was chosen randomly.

I Mallows Dataset

In this section, we introduce the Mallows dataset.

Mallows Mixture Model. Mallows mixture model is parameterized by the central vote
u, norm-ϕ ∈ [0, 1], and mixing parameter ω ∈ [0, 0.5]. We generate votes as follows: With
probability 1−ω, we use the Mallows model with central vote u and parameter norm-ϕ, and
with probability ω we use norm-ϕ and the reversed central vote. Observe that for ω = 0 this
gives a standard Mallows model as described in Section 5 (we speak then of pure Mallows
election).

Let us analyze maps of preferences for Mallows mixture model as seen in Fig. 7. As
noted in Section 5, pure Mallows elections form a spectrum between ID and IC. However,
for ω ∈ {0.25, 0.5}, polarization appears (the maps for ω ∈ {0.25, 0.5} show how the central
vote and its reverse are at maximum swap distance and their noisy incarnations are closer
to each other). Note that for ω = 0.5 and norm-ϕ = 0, the election we obtain is basically
AN election (with possible random �uctuation in the sizes of the opposite groups).

The Mallows Dataset Composition. The Mallows dataset includes elections (with 8
candidates and 96 voters) generated from mixtures of Mallows models (and the four special
elections, ID, AN, UN∗, and ST∗, for orientation). We present this dataset on map of
elections in Fig. 8. There, each dot represents an election generated from the Mallows
mixture model with ω drawn uniformly at random from [0, 0.5] and norm-ϕ drawn from
[0, 1] in such a way that P[1− norm-ϕ ≤ x] = x2. This allows us to avoid high congestion of



Figure 7: Maps of Preferences (8 candidates, 1000 voters). A title �x-Mallows y� denotes an election
from Mallows mixture model with norm-ϕ = y and ω = x. We omit x- when ω = 0.

elections near UN∗ (intuitively, we can think of one minus norm-ϕ as a distance from UN∗

and of ω as a direction in which we move away from UN∗�by taking the probability of the
distance proportional to its square, we ensure the uniform distribution of the dots on the
map).

J Maps of Preferences

In this section, we present analogues of the pictures form Fig. 6 (hence, including all elections
from Fig. 1), but for elections with 8 candidates and 96 voters. The method through which
it is obtained is exactly the same, i.e., �rst we compute swap distance between every pair of
votes in an election, and then we project the votes onto a 2D plane using MDS. The results
are presented in Fig. 9.

K k-Kemeny Computation Methods

In this section, we present our experiment comparing three methods of computing k-Kemeny
distances: the greedy approach, the local search, and the combined heuristic.

For each election in all three of our datasets and every k ∈ [96], we calculated k-Kemeny
distance using our three methods. Then, we looked at the di�erences between the reported
values. The histograms of di�erences for all three pairs of methods and all three datasets
are presented in Fig. 10. We note that in the majority of cases all three methods returned
exactly the same distance. However, in other cases, the di�erences between the reported
k-Kemeny distance was signi�cant, especially if we compare the combined heuristic or the
local search against the greedy approach. In particular, maximal di�erence, 482, is observed
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Figure 8: A map of election in the Mallows dataset obtained using isomorphic swap distance and
MDS. The color corresponds to ω parameter (blue for ω = 0 and red for ω = 0.5) and the color
intensity is greater for greater norm-ϕ values.

for an election that is a mixture of AN and UN∗, where voters characteristic for AN dominate
by far (see Appendix F for the de�nition). Hence, we have two large groups of voters with
exactly opposing preferences and few approximately uniformly spread votes (see Fig. 9 (5th
column, 1st row) for an illustration). Then, for k = 2, the greedy algorithm �rst chooses a
vote that is somewhere in the middle, and then a vote that belongs to one of the two opposing
groups. However, we obtain much smaller total distance, if we just set the rankings at the
preference orders of the two opposing groups what both the local search and the combined
heuristic managed to do.

The di�erences between local search and the combined heuristic are comparatively very
small. On average, local search performed better than the combined heuristic, but the
di�erence is too small to draw any conclusions. Hence, in our further calculations we simply
took the better of the outcomes produced by either of these two methods.

L Plots

In this section, we present the values of all three indices for elections in our datasets. We
do it in three �gures (see their captions for details):

� Fig. 11 presents plots on which every election is a dot with x/y coordinates corre-
sponding to the values of two out of three of our indices (for every pair of indices). We

Figure 9: Maps of Preferences (8 candidates, 96 voters).



Improvement of the combined heuristic over greedy approach

Improvement of local search over greedy approach

Improvement of the combined heuristic over local search

Standard dataset Extended dataset Mallows dataset

Figure 10: The histograms of di�erences in k-Kemeny distances returned by our three algorithms
(note that the counts are in the logarithmic scale). The �rst column corresponds to the standard
dataset, the second one to the extended dataset, and the third to the Mallows dataset. The maximal,
average, and minimal value in each case is given.

include also their a�ne transformations to show the resemblance to maps of elections
from Figs. 2, 5, and 8.

� Fig. 12 shows the maps of elections in which the colors of the dots correspond to the
values our indices.

� Fig. 13 depicts the correlation between the values of agreement, diversity, and polar-
ization and the distance from ID, UN∗, and AN, respectively.



Figure 11: For each dataset, the �rst row presents the plots where the position of each dot corre-
sponds to the value of our indices for elections in the dataset. In the second row, under each plot,
we present its a�ne transformation obtained in a following way: First, we rotate the map in such
a way that ID and AN form a horizontal line (with ID on the left hand side). If UN∗ is below this
line, we take a symmetric re�ection with respect to ID�AN line. Next, we take the dot furthest
from ID�AN line, x, and scale the height of the image, so that the distance from x to ID�AN line
is approximately 0.87 times the distance from ID to AN (the height of the equilateral triangle).
Then, we make a shear mapping to make sure that x is in equal distance to ID and AN (i.e., we
move x to the right or to the left, so it is in the middle, and every other dot we move in the same
direction, but less, proportionally to its distance to ID�AN line). Finally, we rotate the picture by
120 degrees so that x and ID form a horizontal line. For comparison, in the �rst column we present
corresponding maps of elections from Figs. 2, 5, and 8.



Figure 12: The maps of elections from Figs. 2, 5, and 8, where the colors of the dots denote the
values of our indices. The rows correspond to the datasets, and the columns correspond to the
indices. The fourth one shows the sum of the indices, and the �fth one a superimposition of the
�rst three.

Figure 13: The plots showing the correlations between agreement, diversity, and polarization indices
and distances from ID,UN∗, and AN, respectively. The rows correspond to the datasets and columns
to index�distance-from-election pairs.
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