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Abstract

In fair division of a connected graph G = (V,E), each of n agents receives a share of G’s
vertex set V . These shares partition V , with each share required to induce a connected subgraph.
Each agent uses her assigned valuation function to determine the non-negative numerical value
of her share, and these values determine whether the allocation is fair in some specified sense.
We show that graph cutsets, introduced here, constitute obstacles to divisions that are fair in
the EF1 (envy-free up to one item) sense. If G guarantees connected EF1 allocations for n
agents with valuations that are CA (common and additive), then G contains no cutset of gap
≥ 2 and valence n− 1. If G guarantees connected EF1 allocations for n agents with valuations
in the broader CM (common and monotone) class, then G contains no generalized cutset of
gap ≥ 2 and valence n− 1. These results rule out the existence of connected EF1 allocations
in a variety of situations. They generalize one direction of the characterization, in Biló et al.
[3], of graphs that guarantee connected EF1 allocations for n = 2 agents as those containing
no trident (regardless of whether valuations are CA or CM), and suggest that the CA vs. CM
distinction may be consequential for EF1 graph division when there are more than 2 agents.
Additionally, we provide an example of a (non-traceable) graph on eight vertices that has no
cutsets of gap ≥ 2 at all, yet fails to guarantee connected EF1 allocations for three agents with
CA preferences. We end by conjecturing a common pattern for all graphs, governing the values
of n for which connected EF1 allocations for n agents are guaranteed to exist.

1 Introduction
In the original, continuous setting for fair division, a single divisible good or “cake,” often modeled
by the closed interval [0, 1], is divided into n pieces, with each agent allocated a different piece of the
resulting partition. One thread of this literature studies allocations that are both envy-free (each agent
values her assigned piece at least as highly as she values any of the other pieces) and connected (each
piece forms a single subinterval of [0, 1]).

For the alternative setting of indivisible items, a finite set O of indivisible goods is partitioned into
disjoint subsets, with each agent allocated a different subset from the partition. This context precludes
envy-freeness as a reasonable goal; for example, if O contains but a single item, only one agent can
get it. Budish [5] proposed a relaxation, envy-freeness up to one good, aka EF1, that circumvents this
obstacle. It requires that whenever one agent i envies the share of another agent j, there exists some
item in j’s share whose removal would eliminate that envy.

Fair division of graphs, our context here, provides a natural way to import the connectivity
requirement from the continuous world into the world of indivisible goods. The vertices of a finite
connected graph G = (V,E) are viewed as indivisible items, and we insist that the share of vertices
allocated to each agent must form a connected subgraph. Natural applications represented by this
model (and mentioned in [11]) include, for example, the problem of dividing cities connected by a
road network among several parties, as when an island is partitioned and each party wishes to drive
among its allocated cities without leaving its own territory. Alternately, consider offices allocated to
several departments of an organization, where an edge represents a section of corridor joining a pair
of offices in the organization’s building, and each department must receive contiguous offices.

The graph cutsets introduced here provide a general tool for obtaining negative results when n
agents share the vertices of some finite, connected graph G and each agent is required to receive a
connected set of vertices. The cutset itself is a set of subgraphs; when the vertices in those subgraphs
are excised, G falls into a number of disconnected sections. Some agent j will wind up with a share
Aj that fails to include enough critical vertices from the deleted subgraphs, so that Aj lacks vertices
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to form a path connecting any pair of disconnected sections. This confines Aj , so that if one has
chosen the valuations appropriately, then Aj’s value is too small to be fair, in the EF1 sense.

Let N = {1, 2, . . . , n} be a finite set of agents and G = (V,E) be an undirected finite graph.
A subset I of V is connected if it induces a connected subgraph of G. We write C(V ) for the set
of connected subsets of V , and we call a set I ∈ C(V ) a (connected) piece. Each agent i ∈ N has
a valuation – a function vi : C(V ) → R+ assigning non-negative real values to connected pieces,
with vi(∅) = 0. A valuation vi is monotone if for all X,Y ∈ C(V ) it holds that X ⊆ Y implies
vi(X) ≤ vi(Y ). Monotone valuations treat vertices as goods; we do not consider bads (or chores)
here. The valuation functions of the agents are called common if vi = vj holds for all i, j ∈ N , and
are arbitrary if not required to be common. Valuations are additive if vi(I) =

∑
x∈I vi({x}) for each

agent i and each piece I ∈ C(V ). We will use abbreviations CM for “common and monotone”, and
CA for “common and additive.” Additive valuations form a proper sub-class of monotone valuations
(because of the non-negativity constraint on valuations), and CA forms a proper sub-class of CM. A
(connected) allocation A = {Ai}i∈N of G assigns each agent i ∈ N a connected piece A(i) ∈ C(V ),
with these pieces partitioning V , so that

⋃
i∈N Ai = V and Ai ∩Aj = ∅ when i ̸= j.

In fair division of a graph G, we ask whether there exists such an allocation that is fair, in some
well-defined sense. Maximin share fairness was the principal fairness criterion studied in Bouveret
et al. [4], which first introduced the topic of graph fair division. Three later works – Biló et al. [3],
Igarashi [10], and Igarashi and Zwicker [11] – instead focus (as does this paper) on the two variants
of envy-freeness defined below. The original definition of envy-freeness requires, of an allocation A
that vi(Ai) ≥ vi(Aj) hold for every pair i, j ∈ N of agents – that each agent thinks her piece is, in
her view, a best piece in the allocation. With indivisible objects, envy-free allocations may not exist,
and so we instead use the following notions.

Definition 1 An allocation A of graph vertices is envy-free up to one good, aka EF1, if for any pair
i, j of agents, either vi(Ai) ≥ vi(Aj), or there is an element x of Aj such that vi(Ai) ≥ vi(Aj \{x});
A is envy-free up to one outer good, aka EF1outer if for any pair i, j of agents, either vi(Ai) ≥ vi(Aj),
or there is an element x of Aj such that Aj \ {x} is connected and vi(Ai) ≥ vi(Aj \ {x}).

Here, EF1 is the original relaxation introduced by Budish [5]. Graph fair division, however, only
allows connected shares, so the version of the property introduced in [3], and used here requires
that Aj remains connected after removing the vertex in question.1 The additional demands made by
EF1outer seem to be appropriate, at least so far, with positive results typically establishing the stronger
EF1outer requirement and negative results defeating the weaker EF1.

Negative results in fair division seek counterexamples with agent valuations from as narrow a
class as possible (often the class CA, sometimes with additional restrictions on the number of distinct
vertex values). Positive results aim to apply to valuations from the broadest class possible (with
monotonicity often being the only requirement). In general, positive results for a graph G seem to
be linked to whether G is traceable (which means that G has a Hamiltonian path – a path visiting
each vertex exactly once) or satisfies some weak version of this property. In particular, the following
theorem from [10] is of this kind. It improves an earlier version in [3].2

Theorem 1 ([3], [10] ) Let G be any traceable graph and n ≥ 1 be any integer. Given any
assignment of monotone valuation functions to n agents, there exists a connected EF1outer allocation.

We restate this result informally, as follows: Under arbitrary monotone preferences, traceable
graphs universally guarantee connected EF1outer allocations. Here universally conveys that the result
holds for arbitrarily many agents; guarantee conveys that it holds for an arbitrary assignment of a
(monotone) valuation function to each agent.

Question 1 Does there exist a non-traceable graph that offers the same universal guarantee?
1Note that we do not even require that an agent’s valuation function be defined for non-connected sets of vertices.
2For n ≥ 5, the result in [3] only promises EF2outer (which allows two items to be deleted, in removing any envy).
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Question 2 Does the answer to Question 1 change if we restrict valuation functions to be CA?

These questions remain open. One result from [11] leans negative, however: if G, as well as
every subdivision of G, universally guarantees connected EF1outer allocations under CA valuations,
then G is traceable, as are all its subdivisions. Here, a subdivision of G is obtained by placing new
vertices of degree 2 along G’s edges.3

Our focus in this paper is on particular results rather than universal ones; given a particular
integer n and a graph G, does G guarantee connected EF1outer allocations for n agents with valuations
from some specified class? Two previous results of this kind stand out. The first is a complete
characterization for the two-agent case; the second applies to three agents, but is narrower in scope.
The first result requires two additional notions.

Definition 2 A bipolar ordering of a graph G = (V,E) is an enumeration (non-repeating and
exhaustive list) x1, x2, . . . , xk of G’s vertices such that every initial segment x1, x2, . . . , xm (1 ≤
m ≤ k) of the list is connected, as is every final segment xm, xm+1, . . . , xk. Equivalently, each
vertex xi is adjacent to some vertex xj appearing earlier on the list (unless i = 1) and is adjacent to
some vertex xj appearing later on the list (unless i = k).

Every Hamiltonian path is a bipolar ordering, but the converse fails.4 The other notion needed
is that of a trident – loosely, a subgraph whose removal cuts the graph into 3 or more disconnected
pieces (expressed as “three or more connected components,” below – see examples in Section 2).

Definition 3 For G = (V,E) a finite connected graph, let C ⊆ V be a set of vertices of G, and let
G \ C denote the subgraph of G induced by the vertex set V \ C.

(i) If C = {c} contains a single vertex, and G \ C has three or more connected components, then
C is a type 1 trident.

(ii) If C contains more than one vertex; G \ C has exactly three connected components H1, H2,
and H3; for each Hj exactly one vertex sj ∈ C (referred to as Hj’s contact vertex), is adjacent
to any vertices of Hj; and the vertices s1, s2, s3 are distinct, then C is a type 2 trident.

Theorem 2 ([3]) The following are equivalent for any finite connected graph G:
(i) G guarantees connected EF1outer allocations for n = 2 agents with monotone valuations that

are arbitrary (they need not be common).
(ii) G guarantees connected EF1outer allocations for n = 2 agents with CA valuations.

(iii) G contains no tridents.
(iv) G has a bipolar ordering.

Theorem 3 ([11]) The lips graph,5 as well as all of its subdivisions, guarantees connected EF1outer
allocations for n = 3 agents with monotone valuations.

The proof of Theorem 3 uses a discretization of a modified version of Stromquist’s famous moving
knife argument for continuous fair division of the [0, 1] interval. The technique works for a few other
graphs, but has not yielded any general result for 3 agents, and we know of no characterization for 3
agents analogous to Theorem 2. For positive results, the situation for 4 or more agents is worse yet
– there are none, except those for traceable graphs already implied by Theorem 1, and for the very
specialized result we present in the Appendix.

The graph cutsets defined here provide new negative results for a variety of specific graphs and
values of n ≥ 3. Speaking loosely, a cutset C is a set containing several tridents; if any of these are

3That is, an edge from x to y is replaced by two edges – from x to z and from z to y, where z is a newly inserted subdivision
vertex of degree 2 – and such insertions may be made repeatedly.

4Graph IV of Figure 2 is not traceable, but has a bipolar ordering – for example, order the vertices from left to right, with
the middle pair of vertices ordered either way.

5The lips graph, depicted in [11], has vertices a, b, and c; two edges join a to b, two join b to c, and one joins a to c.
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type 2, then C is a generalized cutset, and if exactly one is type 2, then C is a tame generalized cutset.
Cutsets generalize the role of tridents in Theorem 2, which applied only to n = 2, and are related to
cutsets for tangles (“continuous graphs” – see [11]), but with differences.6

Paper outline The rest of the paper is organized as follows. Section 2 presents some examples
of tridents and graph cutsets, motivating the definitions of Section 3, which also contains our two
main results: if a graph G contains either an “ordinary” cutset, or a generalized cutset that is tame,
then there exist n agents with CA valuations such that no connected EF1 allocation exists. From a
non-tame generalized cutset, we obtain a weaker result: there exist n agents with CM valuations (that
are superadditive but not subadditive, hence not additive) such that no connected EF1 allocations
exist. In Section 4 we present a counterexample to any converse, in the form of a graph G containing
no cutsets of any kind, yet there exist CA valuations for 3 agents that rule out the existence of a
connected EF1 allocation. Thus while cutsets explain, for many graphs, why EF1 allocations can
fail to exist, they are not the only explanation, and cannot, in their current formulation, provide
anything like a characterization. Finally, in Section 6 we provide an analysis that settles completely,
for Graph IV of Figure 2, and all values of n, whether connected EF1outer allocations for n agents are
guaranteed7 (the only “no” being for n = 3), and we conjecture what such a complete analysis might
look like for finite graphs in general.

2 Examples of tridents and cutsets

2.1 Trident Examples
Figure 1 shows three connected graphs, each of which contains a trident; see Definition 3. For
each graph, we will consider vertex allocations to two agents. In Graph I, deleting the one point a
would disconnect the graph into three components (each of which consists of a single vertex, for this
simplest possible example). Only one agent can receive a share including a; we will say that this
agent dominates a. The share of the second “deprived” agent must be contained within a single one
of the three components, as she cannot use a to forge a connected share from vertices belonging to
different components. Next, assume that each of the four vertices has value 1 to both agents, and
the value of a set of vertices is obtained by summing the values of the individual vertices. Then the
deprived agent receives a single vertex of value 1, while the other agent receives three vertices, each
worth 1 to the deprived agent, thus leaving her envious of the other agent by more than one item.
In some other example, deleting vertex a might leave more than three connected components, each
with more than one vertex . We can similarly force envy by assigning value 1 to a and to one vertex
from each component, with value 0 assigned to all other vertices. In these situations, vertex a is an
example of a type 1 trident – an obstacle to connected EF1allocations for two agents, when paired
with a suitable choice of CA valuations.

Deleting any single vertex from Graph II yields at most two disconnected components, so this
graph has no type 1 trident. It does have what we will call a type 2 trident, however, in the form of
the central subgraph CII induced by vertex set {b, c, d}, which acts collectively in a manner similar
to a type 1 trident. Deleting the vertices in CII would yield three disconnected components, and only
one agent can dominate CII by being allocated at least two of the three vertices b, c, d. The share of
a second, deprived agent contains at most one of these three vertices – not enough for her to form
a connected share containing vertices from more than one of the components. Note that this last
argument requires that each component have its own distinct contact point s ∈ C, with s adjacent to a

6We say that an edge from x to y in G is saturated if x or y has degree 1 or degree 2; G is saturated if all its edges are.
Any graph can be made saturated by inserting a new subdivision vertex along each edge. Envy-free fair division of tangles
tells us a lot about EF1 fair division of saturated graphs, but less about non-saturated ones. Differences between the graph and
tangle definitions of cutset seem driven, in part, by additional subtlety in defining graph cutsets for non-saturated graphs.

7Equivalently, whether EF1 allocations are guaranteed for Graph IV – see comment in the Appendix.
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Figure 1: Graph I has a type 1 trident; II and III have type 2 tridents.

vertex in that component. For a type 2 trident, the counterexample CA valuations that defy connected
EF1 allocations for 2 agents are a bit different. We assign value 1

3 to each of the three contact points
b, c and d of CII , value 1 to one vertex from each of the three components, and value 0 to all other
vertices (from the components, or from CII ). The deprived agent now receives a share with at most
two valuable vertices, whose values are 1 and 1

3 , while the agent who dominates CII is left with at
least four valuable vertices with values 1, 1, 1

3 , and 1
3 , so he is envied by more than one item.

What about variants of Graph II for which deleting a subgraph C leaves more than three com-
ponents? This happens in Graph III if we declare the trident to be the central square induced by
vertices e, f, g, and h. We would then get 4 components, each with its own distinct contact point
in the square. However, we disallow tridents with more than three contact points (and they are not
needed for the 2-agent characterization). In the case of Graph III we can instead enlarge the square by
having our trident CIII absorb the fourth component (with vertices j and k in Figure 1) completely,
as suggested by the dashed gray ellipse in the figure. For the 2 agent case, the same can be done any
time the proposed type 2 trident has more than 3 contact points, or has 3 contact points with multiple
components sharing a common contact point.

2.2 Graph Cutset Examples
Cutsets provide obstacles to connected EF1 allocations for more than just 2 agents, generalizing
tridents. The consecutive numbers 1, 2 and 3 played a critical role in a type 1 trident; we removed
1 point from a connected graph, we had 2 agents, and the point’s removal yielded 3 subgraphs that
were disconnected from one another. Suppose instead we remove 2 points from the graph, we have 3
agents, and when we remove both of the points we get 4 disconnected subgraphs? This is exactly the
situation for Graph IV in Figure 2, when removing the circled points a and b. We will declare the
gap ≥ 2 cutset here to be CIV = {a, b}. The word “gap” here refers to the difference between the
number of points removed and the number of disconnected subgraphs that result.

How can connected EF1 allocations for three agents be blocked by a cutset similar to the one
for Graph IV? Given any partition of the vertices into three connected shares, at most one agent
dominates vertex a (meaning a is in his share) and at most one other dominates b. With three agents,
this leaves some third, deprived agent dominating neither member of the cutset, and as before his
share will only contain vertices from one of the four disconnected subgraphs. Consider the CA
valuation that assigns value 1 to a, 1 to b, 1 to exactly one vertex selected from each of the four
disconnected subgraphs, and value 0 to all remaining vertices (if there are any – of course, there are
none for Graph IV). The deprived agent gets at most one valuable vertex, worth 1, with 5 valuable
vertices, worth 1 each, to be split between the remaining two agents. One gets at least three of these,
and the deprived agent envies her by more than one item.

Graph V is different; removing two vertices from the graph never yields more than three dis-
connected subgraphs.8 But the subgraph induced by c, d, and e acts like a type 2 trident; at most
one agent x can dominate the subgraph (meaning x’s share contains at least two of the three contact
points c, d, and e). We set the gap ≥ 2 cutset to be CV = {{c, d, e}, {f}}, our first example of a

8For a traceable graph, deleting k vertices never yields more than k + 1 disconnected subgraphs.
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Figure 2: Three examples of gap ≥ 2 cutsets with valence 2.

generalized cutset. The additional set braces clarify that CV has two members – a type I member
resembling a type 1 trident, and a type II member resembling a type 2 trident. Deleting the vertices
from both members yields 4 disconnected subgraphs. We can think of each member as a kind of
ticket, on which is printed a face value of 1:

1 pass-through allowed.
Any agent who dominates a member gets to use the ticket, granting her the possibility to obtain a
share containing vertices from two of the four subgraphs.

The valence of a cutset is the sum of the face values on the tickets, so CV has valence 2, as does
cutset CIV for Graph IV. (Shortly we will consider tickets with face values k > 1, that can be used by
k agents, and that correspond to cutset members with enough contact points to be passed through by
k agents.) When the number of agents is one more than the valence of the cutset (for graphs IV or V,
when the number of agents is three), we know that some deprived agent has no ticket to use, so his
share has vertices from at most one of the disconnected subgraphs.

We use CV to block connected EF1outer allocations for three agents with CA valuations as follows:
assign weight 1 to each of the four unlabeled vertices in Figure 2 (that’s one vertex from each
disconnected subgraph), weight 1 to vertex f and weight 1

3 to each of the vertices c, d, e; if there
were any additional vertices, we would have assigned them weight 0. Now the deprived agent
receives at most two valuable vertices, with values of 1 and 1

3 . The remaining agents receive at least
three unlabeled vertices, so some agent y gets at least two of these. These two come from different
disconnected subgraphs, so to connect them agent y must also get a “ticket,” meaning y’s share either
includes f or includes at least two of the three vertices. So agent y either gets three vertices valued at
1, 1, and 1, or gets four vertices valued at 1, 1, 1

3 and 1
3 . Either way, the deprived agent envies y by

more than one item.
This more complicated weighting works in general for generalized cutsets that are tame, meaning

they are limited to a single type II member, but falls apart with two or more such members, as we
see next. For Graph VI we will consider the cutset CV I = {{g, h, j}, {k,m, n}}, with 2 type II
members, and valence of 2. With three agents, there will again be a deprived agent who dominates
neither member of CV I , meaning his share contains fewer than 2 vertices from {g, h, j} and fewer
than 2 from {k,m, n}. However there is a connected allocation in which the deprived agent’s share is
{h, k, T} (where T denotes the top middle vertex of Graph VI), and the other two shares are {L, g, j}
and {B,n,m,R} (where L,B and R denotes the leftmost, bottom middle, and rightmost vertices,
respectively). Suppose we use a weighting similar to that from Graph V, by assigning weight ϵ to
each of the six vertices g, h, j, k,m, and n, and weight 1 to the other 4 vertices. Then the specified
allocation turns out to be EF1outer for any value of ϵ ≥ 0.9

We can, however, use CV I to construct common monotone preferences that are not additive and
that block connected EF1 allocations of Graph VI for 3 agents. We set the common value of a share
A to be the number of unlabeled vertices in A plus the number of cutset elements of CV I dominated
by A. For example, h alone adds nothing to a share, nor does h along with k, but h along with j (or h
along with j and g) adds 1 to the value. As the deprived agent dominates neither member of CV I , her
share is worth 1. Once again some agent y gets at least two unlabeled vertices from different pieces,

9Other weightings are possible, of course, but so far we found no CA valuations that defeat EF1outer for Graph VI.
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each worth 1, and dominates some member of CV I . So y additionally owns at least two vertices from
a single cutset element. Taken together, they add another 1 to the value of her share, for a total value
of 3. Again, the deprived agent envies y by more than one item.

a b

c

f
e

d

Figure 3: Graph VII has a
cutset of valence 3.

Graph VII has a cutset that blocks connected EF1outer allocations
for 4 agents with certain CA valuations. Our cutset for this graph
will be CV II = {{a}, {b, c, d, e, f}}, with two members; D = {a} is
type I and E = {b, c, d, e, f} is type II, but has 5 contact points rather
than only 3. Consider any connected share that contains 2 of the 5
unlabeled vertices of Graph VII, but omits a. To connect those two,
it must include at least two of E’s vertices – that is, it must dominate
E. But E has only 5 vertices, so it can be dominated by at most two
agents. Its ticket reads

2 pass-throughs allowed
and enables as many as two agents to pass through E, while a third
ticket enables one more agent to pass through D. The valence of CV II

is the sum 1 + 2 = 3 of the pass-through numbers on these two tickets. The rest of the argument is
similar to the one for Graph V. 10

The seven examples presented here portend all of the main ideas used in the general proofs of
Section 4, as well as most – but not all – of the features found in the precise definitions of cutset and
of generalized cutset. Other examples, not presented here, have stretched these definitions in two
directions, relaxing some requirements so as to be satisfied by these other examples, while forcing
the imposition of additional requirements not needed for graphs I – VII. We seek a definition as broad
as possible, to encompass any situation for which a version of the deprived agent argument applies.
For example, we want to allow cutsets for which the “gap” (between valence of some cutset C and the
number of connected components that remain after excising C) is more than two, but the requirement
that contact points be unique and distinct must also be imposed on these excess components, and
these requirements then sometimes rule out cutset examples that we might think to include. In some
cases we can bypass that problem by merging several components into one. The merged version is a
subgraph that might no longer be internally connected, so we will not call it a “component” any more;
note that the deprived agent argument only needs these subgraphs to be disconnected from each other,
and never needs them to be internally connected as subgraphs.11 Other requirements are necessitated
for generalized cutsets that are not tame (meaning they have more than one type II member). For
example, we need to be sure that the deprived agent cannot put together a path from one section to a
different one by crossing from one type II member to a different type II member while using only
one contact point from each.

3 Cutsets for Graphs: Definitions and Main Theorem
Here we give precise definitions for graph cutset (aka cutset simpliciter) and for generalized graph
cutset (tame or not), and prove that for n agents with specified valuations, cutsets with valence n− 1
block the existence of connected EF1 allocations for n agents. These proofs are straightforward and
very similar to those for the examples in the previous section.

The definition of cutset simpliciter is also quite simple – much more so than that for generalized
cutset to follow. A cutset simpliciter is just a set of t vertices, that – when excised – break the graph
into at least t+2 pieces that are disconnected from one another (expressed as “at least t+2 connected

10With four agents, some deprived agent dominates neither member of CV II and their share contains at most one unlabeled
vertex. If we assign weight 1 to a and to each unlabeled vertex, and assign weight 1

3
to each of the five contact vertices of H2,

then the deprived agent will envy one of the others by more than one item.
11Curiously, the argument also does not require that a type II member of a cutset be connected as a subgraph. But it is

certainly easier to find cutsets hiding within a graph when their type II element are connected, and we do not know of any
examples where imposing connectivity would limit the consequences for connected EF1 allocations.
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components” in the precise version, below). The valence, in this case, is just the number t of vertices
that are cut (but valence will become more complicated for generalized cutsets). This simpler type of
cutset was exemplified in graphs I (with valence 1) and IV (with valence 2) of the previous section,
and can be thought of as a generalization of the type 1 tridents from [3].

Definition 4 (graph cutset) For G = (V,E) a finite connected graph, let C = {c1, c2, ..., ct} be a
set of t vertices in V . If the subgraph of G induced by the vertex set V \ C contains at least t + 2
nonempty connected components H1, H2, . . . ,Ht, Ht+1, . . . ,Ht+r, then C is a graph cutset of gap
≥ 2 and valence t.

Before we define generalized cutset, we need some additional terminology:

Definition 5 Let K = (V,E) be a finite graph, not necessarily connected. Two sets L,M ⊆ V are
independent in K if L ∩M = ∅ and no vertex in L is adjacent to any vertex in M ; they are isolated
in K if there is no path in K from a vertex in L to a vertex in M . Given a set H = {H1, H2, . . . Hs}
with Hi ⊆ V for each i with 1 ≤ i ≤ s, H is independent in K if every two members in H are
independent in K; H is isolated in K if every two members in H are isolated in K.

Observation 1 Suppose K = (V,E) is a finite graph, and H = {H1, H2, . . . Hs} is a set of subsets
of V . Then if H is isolated in K, it is independent in K. Suppose we additionally assume that H
partitions K’s vertex set V . Then H is isolated in K if and only if it is independent in K.

The definition of generalized cutset is complex, so we will start with a slightly simpler, preliminary
version of the definition that excludes some cases covered by the final version. Specifically, the
cutset for Graph VII (in the previous section) will not satisfy our preliminary definition. Recall that
this cutset introduced a new feature; one of its cutset elements had 5 contact vertices, rather than 3,
allowing as many as two agents to own shares containing 2 of them. Those two agents could both use
their vertices to connect a pair of the unlabeled vertices in the diagram. This is why the corresponding
(imaginary) “ticket” had a face value of 2 and why we needed 4 agents rather than 3 (and 5 unlabeled
vertices rather than 4) to make the deprived agent argument go through. Our preliminary version will
only apply to cutsets for which the corresponding tickets each have face value 1. For these cutsets
“valence” is just equal to the number of members of a cutset, allowing us to write a definition in which
“valence” is synonymous with cardinality:

Preliminary Definition 1 (preliminary version, generalized graph cutset) For G = (V,E) a finite
connected graph, let

• C = {C1, C2, ..., Ct} be a set of t pairwise disjoint, nonempty subsets of V,
• G\C be the subgraph of G induced by the vertex set V \

⋃
C (where

⋃
C = C1∪C2∪· · ·∪Ct),

• and H = {H1, H2, . . . ,Ht+r} partition V \
⋃

C, with H isolated in the graph G \ C.
Assume, in addition, that

• for each Ci and Hj there is at most one vertex si,j in Ci adjacent to any vertices in Hj , with
si,j referred to as the contact vertex for Ci and Hj ,

• each Cj ∈ C is either a “type I member” containing a single vertex, or a “type II member”
containing more than one,

• for each type II member Ci, exactly three of the Hj have a contact vertex in Ci and these three
vertices are distinct,

• the set containing all type II members of C is independent in G, and
• r ≥ 2.

Then C is a generalized graph cutset of gap ≥ 2 and valence t, with witness H .

Note that each Hj is a union of the vertex sets from one or more of the connected components of
G \ C, so that Hj itself is disconnected if more than one component is used. Our final version of the
definition now allows for cutset elements with pass-through numbers greater than 1.
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Definition 6 (final version, generalized cutset) For G = (V,E) a finite connected graph, let
• C = {C1, C2, ..., Ct} be a sequence of t pairwise disjoint, nonempty subsets of V,
• τ = {τ1, τ2, ..., τt} be a sequence of natural numbers, with τj called Cj’s pass-through number

and the sum Στ of all τj called the valence,
• G\C be the subgraph of G induced by the vertex set V \

⋃
C (where

⋃
C = C1∪C2∪· · ·∪Ct),

• and H = {H1, H2, . . . ,HΣτ+r} partition V \
⋃

C, with H isolated in the graph G \ C.
Assume, in addition, that

• for each Ci and Hj there is at most one vertex si,j in Ci adjacent to any vertices in Hj , with
si,j referred to as the contact vertex for Ci and Hj ,

• each Cj ∈ C is either a “type I member” containing a single vertex, or a “type II member”
containing more than one,

• for each type II member Ci, the number of Hj for which there exists some contact vertex
si,j ∈ Ci is either 2τj + 1 or 2τj and these contact vertices are distinct,

• the set containing all type II members of C is independent in G, and
• r ≥ 2.

Then C is a generalized graph cutset of gap ≥ 2 and valence Στ , with witness H . Such a cutset is
tame if it contains at most one type II member.

Observation 2 Every cutset C (of gap ≥ 2 and valence t) satisfies the preliminary definition for
generalized cutset (of gap ≥ 2 and the same valence t), once each vertex ci ∈ C is converted into
the corresponding singleton set {ci} and H is set equal to the set of connected components in G \ C.
Every pair C and H satisfying the preliminary definition for generalized cutset (with witness H , of
gap ≥ 2 and valence t) also satisfies the final definition (with the same witness H , of gap ≥ 2 and
valence Στ ), once τ is set equal to (1, 1, . . . , 1), with Στ = t.

Observation 2 explains why we present only one version of the main theorem that follows.

Theorem 4 (Main Theorem) Let G = (V,E) be a finite, connected graph. Suppose C =
{C1, C2, ..., Ct} is a generalized cutset for G, of gap ≥ 2 and valence Στ , with witness H =
{H1, H2, . . . ,HΣτ+r}. Let n = 1 + Στ be the number of agents under consideration. Then

• if C is tame, there exist common additive valuations for the n agents for which no connected
EF1 allocations exist (whence no connected EF1outer allocations exist).

• whether or not C is tame, there exist common monotone valuations for the n agents for which
no connected EF1 allocations exist (whence no connected EF1outer allocations exist).

Proof: We will say that a set S ⊆ V dominates a type I member Ci = {ci} ∈ C if ci ∈ S; S
dominates a type II member Ci ∈ C if S includes two or more of Ci’s contact vertices si,j . Given an
allocation A = {A1, A2, ..., An} of G’s vertices to the n agents, we will say that agent i dominates a
member Ci ∈ C if their assigned share Ai dominates Ci. An agent who dominates no member of C
will be called deprived.

Claim 1 For every allocation A, a deprived agent exists. Claim 1 follows because at most τi agents
can dominate any single member Ci ∈ C, so the number of agents who dominate members of C is at
most Στ . But there are 1 + Στ agents.

Claim 2 For every connected allocation A, the share of a deprived agent contains no two vertices
coming from different members Hi ∈ H (and also contains no vertex ci with {ci} ∈ C, and
no two contact points si,j from the same type II member of C). Note that the parenthetical part
merely repeats the definition of “deprived.” For the first part, assume Ai is a connected share that
contains vertices from two different members of H . We will show that Ai is not deprived. Let
ρ = x1, x2, . . . , xk−1, xk be a shortest path possible consisting entirely of vertices from Ai and
joining members x1, xk from different sets in H . As H is an independent collection , x1 and xk are
not adjacent, so there must be at least one vertex in the “middle” part x2, . . . xk−1 of ρ. None of
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those middle vertices are in
⋃
H , else we would get a shorter path of the desired kind, so they all

come from
⋃
C. If any middle vertex is some cj ∈ {cj} = Cj ∈ C then Ai dominates that type I

member Cj , so Ai is not deprived, as desired. If not, then all of the middle vertices come from type II
members of C. But the type II members form an independent collection, so all of the middle vertices
come from the same type II member Cj . Thus x2 and xk−1 are each contact vertices from the same
Cj , but for distinct sets from H . We cannot have x2 = xk−1, because contact vertices for different
sets in H and the same Cj are required to be distinct. So x2 and xk−1 are two contact points from
the same type II member Cj , establishing that Ai dominates Cj , as desired.

The common valuation v of a set of vertices will be defined as the sum v = vH + vC of an H-part
and a C-part. For the H-part, we choose one vertex xj from each Hj ∈ H , set vH(xj) = 1 for each
such xj , and set vH(y) = 0 for every other vertex y ∈

⋃
H . Then vH(Ai) is defined to be sum of

these values for all vertices in the set Ai ∩ (
⋃

H). Observe that at least 2 + Στ of the vertices in⋃
H have been given value 1. The definition of vC now depends on whether or not C is tame:

Case 1 Assume C is tame. Then for each x ∈
⋃

C we set vC(x) = 1 if {x} is a type I member of C,
vC(x) =

1
3 if x is one of the contact vertices in the only type II member of C, and vC(y) = 0 for

every other vertex y ∈
⋃
C. Then vC(Ai) is defined to be sum of these values for all vertices in the

set Ai ∩ (
⋃
C). In this case, v = vH + vC is additive as well as common and the total value of the

deprived agent’s share Aj is at most 1 + 1
3 , thanks to Claim 2.

Case 2 Assume C is not tame. Then vC(Ai) is defined to be the number of members of C dominated
by Ai. In this case, v = vH + vC is still common and monotone, but is not additive (because any
single contact point from a type II member adds no value to a share, whereas two or more contact
points from the same type II member adds 1 to the value). The total value of the deprived agent’s
share Aj is at most 1, as vC contributes no value to a deprived agent.

In both cases the number of vertices in H that have been given value 1 is r + Στ ≥ 2 + Στ .
These valuable vertices have been distributed to 1 + Στ many agents, so some agent k must have
two of them in her connected share. The proof of Claim 2 tells us that Ak is not deprived – Ak must
dominate some member of the cutset, meaning Ak either includes some vertex x for which {x} is a
type I member of C, or includes some two contact points from the same type II member Cj of C.

In Case 1 we conclude that Ak has (additive) value of at least 1 + 1 + 1
3 + 1

3 or 1 + 1 + 1, so
removing any single vertex leaves Ak with value at least 1 2

3 . The deprived agent thus envies agent k
by more than 1 item, as her own share is worth at most 1 1

3 for Case 1.
In Case 2 we conclude that vH awards a value of at least 1 + 1 to Ak with vC providing an

additional value of at least 1, for a total of at least 3. Removing any single vertex would not reduce
that value below 2. The deprived agent again envies agent k by more than 1 item, as her own share is
worth at most 1 in Case 2. □

4 A Counterexample
Consider the following three conditions on a finite and connected graph G:
(C1) G is traceable.
(C2) G guarantees connected EF1outer allocations universally, for CM valuations.
(C3) G contains no generalized cutsets of gap ≥ 2.
We know these conditions satisfy “(C1) ⇒ (C2)” (from Theorem 1) and “(C2) ⇒ (C3)” (from the
previous section of this paper). At one point, we did not know whether either arrow reversed. Recently
we found a 10-vertex graph showing that “(C3) ⇒ (C1)” fails.12

12This was not a great surprise as “(C3) ⇒ (C1)” would imply that “(C3) ⇔ (C1)”, and hence NP is contained in coNP;
the latter, however, is widely considered as unlikely. The reason is that checking traceability is an NP-complete problem,
while checking the non-existence of generalized cutsets is a coNP problem. We conjecture that it is indeed NP-complete to
determine the existence of generalized cutsets (see Definition 6).
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Figure 4: The JCS graph – a coun-
terexample.

The example was a bit too large to check directly whether
connected EF1outer allocations were guaranteed universally.
Much more recently we were able to reduce the earlier example
to the 8-vertex graph JCS presented here, which was small
enough to yield to a trial-and-error search for a “bad” common
additive valuation. It is worth noting that while the valuation
used in the proof for JCS is not very complicated, it does
seem quite different from the valuations used (in the previous
section) to defeat EF1outer allocations in graphs that contain
cutsets.

Theorem 5 The non-traceable 8-vertex JCS graph of Figure 4 has no graph cutsets of gap ≥ 2 (of
any kind), yet fails to guarantee connected EF1outer allocations for three agents, even for agents with
common additive valuations. Thus “(C3) ⇒ (C2)” fails.

Proof: It is straightforward to check by inspection that JCS contains no cutsets of gap ≥ 2, and it is
also easy to see that no Hamiltonian path exists (which, alternately, follows from Theorem 1). To see
that connected EF1 allocations may fail to exist, consider the vertex weights appearing directly above
the vertices in Figure 4. Let the common value v(S) assigned (by all agents) to a connected set S of
vertices be given by the sum of the weights of the vertices in S.

A partition P of the JCS vertex set V into three connected pieces will be called a 3−partition.
Let X and Y be pieces of a 3−partition P , and X⋆ denote the set of vertices that remain in X after
X’s most valuable vertex is removed. We will write X >> Y if v(X⋆) > v(Y ). If a 3−partition P
contains two such pieces X and Y , then any assignment of P ’s pieces to the agents clearly fails to be
EF1 (whence EF1outer also fails). In this case we will say simply that P fails. Our goal, then, will be
to show that every 3−partition fails in this way.
Claim Let P be a 3-partition, A denote the piece of P containing vertex a in Figure 4, and H denote
the piece containing vertex h. Then for P to avoid failure we must have that A ̸= H , with

(i) A containing b and c, and omitting d and e, and
(ii) H containing g and f , and omitting d and e.

The theorem follows immediately from this claim, because the third piece of P is now forced to
be {d, e}, which is disconnected. To prove the claim, note that if A = {a} or A = {a, b} then v(A)
is only 2 or 4, and the value of the remaining vertices in V \ A is at least 14. But there exists no
partition of V \ A into two connected pieces of value 7 each, so one of these pieces X must have
value at least 8, whence X >> A. So A contains a, b, and at least one more vertex. Similarly, H
contains h, g and at least one more vertex. If A contains g then A = H , with v(A) ≥ 8. But then the
value of the remaining vertices is only 10 – small enough to force A >> Y for some Y ∈ P . So for
P to avoid failure we must have a, b, and c in A; f, g, and h in H; and A ̸= H . If A also contained
d or e, we would again get A >> Y for some Y ∈ P , and the same reasoning applies to H . This
establishes the claim, and the theorem. □

5 The EF-1 Spectrum of a Graph
Suppose that we fix a finite graph G = (V,E) along with some class V of valuations (all monotone
valuations, for example) and ask: for which natural numbers n are EF1outer allocations of G guaran-
teed for n agents with valuations in V ? We will record the answer in the form of an infinite sequence
of yes-no answers, with the nth member of the sequence being a “yes” if the EF1outer guarantee holds
for n, and a “no” if the EF1 guarantee fails for n. We will refer to that sequence as the EF1outer

spectrum of G for the class V (or just as the spectrum, when the context is clear). For example, we
know from Theorem 1 that the spectrum of a traceable graph is ⟨yes, yes, . . . , yes . . . ⟩.
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Are there any general patterns that hold for all such spectra? When n is one less than the number
|V | of vertices, one can impose a picking order and have agents pick their most preferred vertex
among those still available after agents earlier in the order have picked. The one remaining vertex is
no more valuable to any agent than is the vertex picked earlier by that agent, so it can be given to any
agent for which connectivity is maintained. The resulting allocation is connected and EF1outer for
arbitrary monotone preferences. When n is equal to or greater than the number |V | of vertices, we
can give each vertex to a different agent (with some agents possibly getting no vertices); the result is
EF1outer regardless of V . Thus, the spectrum of a graph is all yes from the (|V | − 1)th place on. Each
spectrum with any nos thus has a last no at some location j. We will record a YES in capital letters at
location j + 1 to indicate that the sequence is all yes from then on.

Also, as long as G is connected, its spectrum clearly has an initial yes for n = 1. These two
observations summarize everything we know for certain: every spectrum for a connected graph starts
with a yes, and is all yes from some point on. However, we do have a few examples that suggest the
following conjecture:

Conjecture 1 The spectrum of any connected graph G consists of an initial yes string, followed by a
(possibly empty) no string, followed by an unending yes string.

A few examples, discussed below, suggest some support for the conjecture:
(1) The 5-pointed star has spectrum ⟨yes, no, no, no, YES⟩.
(2) Graph IV in this paper, aka the friendly diamond graph, has spectrum ⟨yes, yes, no, YES⟩.
(3) The version L8 of the Lips graph found in Figure 11 of [11] has 8 vertices, with spectrum

⟨yes, yes, yes, no, ?, ?, YES⟩.
A 5-pointed star has a central vertex adjacent to 5 vertices of degree 1. The three nos in its spectrum
follow from reasoning like that used for Graph I (in Section 2). The YES sits in the 5th position
because of the general rule (discussed above) for n ≥ |V | − 1. Similar reasoning applies to a
k-pointed star, yielding a string of k − 2 nos. For these graphs, all the yes answers hold for arbitrary
monotone valuations, and all no answers arise from CA counterexamples, so the class V of valuations
for this spectrum can be taken to be any of the classes of valuations that we have discussed.

For the L8 Lips graph, the second yes uses the existence of a bipolar ordering paired with Theorem
2. The third yes, proved in [11], uses the discretization (mentioned earlier) of a modified version of
Stromquist’s moving knife argument for three agents in [13]. The no in the 4th position uses a graph
cutset of valence 3, consisting of the three vertices of degree greater than 2 in L8.13 The unknown
entries for 5 and 6 agents reflect the absence of any good techniques for proving positive EF1outer

results for non-traceable graphs when the number of agents is greater than 3. The class V for this
spectrum can again be any of those we have mentioned.

The surprise for Graph IV is that we are able to fill in yes answers for 4 agents, thus determining
the entire spectrum for V = CM. The argument, found in the appendix, rests on a detailed case
analysis, and applies when V is limited to the class of common monotone valuations. Despite this
limitation, the argument was probably only feasible because the graph has so few vertices. We
conjecture that the yes answer for 4 agents holds even for arbitrary monotone valuations. The yes
in location 2 follows from the bipolar ordering for Graph IV, and the no follows from the cutset of
valence 2 (both discussed earlier).

13That argument, from “Example 1 continued” of [11], does not use the term “graph cutset,” but the idea is the same.
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Appendix

A Friendly Diamond Graph Shared by 4 Agents

a b
e

c

d

f

IV

Figure 5: A diamond graph with 6 vertices.

Theorem 6 The graph given in Figure 5 guarantees connected EF1outer allocations for n = 4 agents,
under common and monotone valuations.

Proof: We use the following notational conventions:
• Given a common monotone valuation function v we write x, xy, and xyz as shorthand for
v({x}), v({x, y}), and v({x, y, z}), respectively.

• We write “agent i does not envy>1 agent j” as shorthand for “either i does not envy j, or some
one vertex in j’s share would, if removed, eliminate any such envy while leaving j’s share
connected.”

• Greek letter subscripts on an inequality, such as min(e, a) <γ min(d, bf), allow us to refer
the inequality when it is used to justify a later step.

Note that except for Subcase II, all of the specified allocations award shares consisting of one or
two vertices each, and such allocations automatically satisfy the requirement that j’s share remain
connected after removing any one vertex. In the exceptional case, A4 = {d, b, f}, with d being the
vertex that gets removed in the argument. The remaining vertices b and f are indeed adjacent in
Graph IV. This dispenses with the connectivity issue for Theorem 6.

Now, we proceed with showing how to find a connected EF1outer allocation for 4 agents. Without
loss of generality, assume min(e, a) ≥α min(b, f) and c ≥β d. We consider four cases.

Case I: Assume min(e, a) <γ min(d, bf).
Allocate the vertices as follows: A1 = {e, a}, A2 = {c}, A3 = {d}, A4 = {b, f}.
As d >γ min(e, a) ≥α min(b, f) and c ≥β d, players 2 and 3 do not envy>1 players 1 or 4.
As ea ≥ min(e, a) ≥α min(e, f), agent 1 does not envy>1 agent 4.
Moreover, bf ≥γ min(a, e), so agent 4 does not envy>1 agent 1.

Case II: Assume min(e, a) ≥δ min(d, bf)) and min(a, d) ≥ε bf .
Let A1 = {e}, A2 = {a}, A3 = {c}, and A4 = {d, b, f}.
As min(a, d) ≥ε bf and c ≥β d, agents 2 and 3 do not envy>1 agent 4.
As d ≥ min(a, d) ≥ε bf , we have that min(e, a) ≥ bf , so agent 1 does not envy>1 agent 4.

Case III: Assume min(e, a) ≥δ min(d, bf) and min(a, d) <ζ bf and “d ≥η bf or c ≥θ min(b, f)”.
Let A1 = {e}, A2 = {a, d}, A3 = {c}, A4 = {b, f}.

Agents 1 and 2 do not envy>1 agent 4 because min(e, a) ≥α min(b, f).
Agent 3 does not envy>1 agent 2 because c ≥β d, and does not envy>1 agent 4 because
“d ≥η bf or c ≥θ min(b, f)”, together with c ≥β d, implies c ≥ min(b, f).
Agent 4 does not envy>1 agent 2 because min(a, d) <ζ bf .
Now, if d ≥κ bf , then e ≥ min(e, a) ≥κ,δ bf >ζ min(a, d), so agent 1 does not envy>1

agent 2. Otherwise, d < bf , so min(e, a) ≥δ d, and thus agent 1 does not envy>1 agent 2.

15



Case IV: Assume min(e, a) ≥δ min(d, bf) and min(a, d) <ζ bf and d <λ bf and c <µ min(b, f).
Let A1 = {e}, A2 = {a, d}, A3 = {c, b}, and A4 = {f}.
The assumptions imply that min(e, a) ≥δ,λ d and min(e, a) ≥α min(b, f) >µ c.
These implications tell us that agent 1 does not envy>1 agents 2 or 3, and also that agent 2 does
not envy>1 agent 3. Agent 4 does not envy>1 agents 2 or 3 because min(b, f) >µ c ≥β d.
Finally, agent 3 does not envy>1 agent 2 because c ≥β d.

□
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