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Abstract

The ability to measure the satisfaction of (groups of) voters is a crucial prerequisite
for formulating proportionality axioms in approval-based participatory budgeting
elections. Two common—but very different—ways to measure the satisfaction of
a voter consider (i) the number of approved projects and (ii) the total cost of ap-
proved projects, respectively. In general, it is difficult to decide which measure of
satisfaction best reflects the voters’ true utilities. In this paper, we study propor-
tionality axioms with respect to large classes of approval-based satisfaction functions.
We establish logical implications among our axioms and related notions from the lit-
erature, and we ask whether outcomes can be achieved that are proportional with
respect to more than one satisfaction function. We show that this is impossible
for the two commonly used satisfaction functions when considering proportional-
ity notions based on extended justified representation, but achievable for a notion
based on proportional justified representation. For the latter result, we introduce a
strengthening of priceability and show that it is satisfied by several polynomial-time
computable rules, including the Method of Equal Shares and Phragmén’s sequential
rule.

1 Introduction

“How can cities ensure that the results of their participatory budgeting process propor-
tionally represents the preferences of the citizens?” This is the key question in a recently
emerging line of research on proportional participatory budgeting [3, 18, 15]. Participatory
budgeting (PB) is the collective process of identifying a set of projects to be realized with
a given budget cap; often, the final decision is reached by voting [e.g., 14]. The goal of pro-
portional PB is to identify voting rules that guarantee proportional representation without
the need to declare a priori which groups deserve representation. Instead, each group of
sufficient size with sufficiently similar interests is taken into account. Such a group could be
a district, cyclists, parents, or any other collection of people with similar preferences. This
is contrast to, e.g., assigning each district a proportional part of the budget, which excludes
other (cross-district) groups from consideration.

To be able to speak about proportional representation in the context of PB, one first
needs to decide on how to measure the representation of a given voter by a selection of
projects. If votes are cast in the form of approval ballots, as is the case in most PB pro-
cesses in practice, two standard ways to measure the satisfaction of a voter have emerged.
The first assumes that the satisfaction a voter derives from an outcome is the total cost of
the approved projects in this outcome [3, 1, 23]. In other words, voters care about how much
money is spent on projects they like. The second assumes the satisfaction of a voter to be
simply the number of approved projects in the outcome [18, 15, 9, 23]. We refer to these
two measures as cost-based satisfaction and cardinality-based satisfaction, respectively. Both
measures, though naturally appealing, have their downsides: Under the cost-based satisfac-
tion measure, inefficient (i.e., more expensive) projects are seen as preferable to equivalent
but cheaper ones. Under the cardinality-based satisfaction measure, large projects (e.g., a
new park) and small projects (e.g., a new bike rack) are treated as equivalent.

The ambiguity of measuring satisfaction leads to three main problems: First, different



papers present incomparable notions of fairness based on different measures of satisfaction.
For example, both Aziz et al. [3] and Los et al. [15] generalized a well-known proportional-
ity axiom known as proportional justified representation (PJR), but they did so based on
different satisfaction measures. Second, the two measures described above are certainly not
the only reasonable functions for measuring satisfaction; and results in the literature can-
not easily be transferred to new satisfaction functions. For example, satisfaction could be
estimated by experts evaluating projects; if efficiency is taken into account, such a measure
may differ significantly from the cost-based one. Third, most papers so far have focused on
a single satisfaction function only. Therefore, it is not known whether we can guarantee pro-
portionality properties with respect to different satisfaction measures simultaneously. This
would be extremely useful in practice: If a mechanism designer is not sure which satisfaction
function most accurately describes the voters’ preferences in a given PB process, she could
potentially choose a voting rule that provides proportionality guarantees with respect to all
satisfaction functions that seem plausible to her.

Our contribution.

To tackle these problems, we propose a general framework for studying proportionality in
approval-based participatory budgeting: We employ the notion of (approval-based) satisfac-
tion functions [23], i.e., functions that, for every possible outcome, assign to each voter a
satisfaction value based on the voter’s approval ballot. We then use this notion of satisfac-
tion functions to unify the different proportionality notions studied by Aziz et al. [3], Peters
et al. [18], and Los et al. [15] into one framework and analyze their relations.

Furthermore, we identify a large class of satisfaction functions that are of particular
interest: Weakly decreasing normalized satisfaction (short: DNS) functions are satisfaction
functions for which more expensive projects offer at least as much satisfaction as cheaper
projects, but the satisfaction does not grow faster than the cost. Intuitively, the cardinal
measure is one extreme of this class (the satisfaction does not change with the cost) while the
cost-based measure is the other extreme (the satisfaction grows exactly like the cost). For
each satisfaction function in this class, we show that an instantiation of the Method of Equal
Shares (MES) [16, 18] satisfies extended justified representation up to any project (EJR-x).1

However, while MES for a specific satisfaction function satisfies EJR-x, we can show that
even the weaker notion of EJR-1 is incompatible for the cost-based and cardinality-based
satisfaction functions. In other words, it is not possible to find a voting rule that guarantees
EJR-1 for the cost-based and the cardinality-based satisfaction measure simultaneously.

To deal with this incompatibility, we turn to the notion of proportional justified rep-
resentation (PJR) and show that a specific class of rules, including sequential Phragmén
and one variant of MES, satisfies PJR up to any project (PJR-x) for all DNS satisfaction
functions at once. In other words, when using one of these rules, we generate an outcome
that can be seen as proportional no matter which satisfaction function is used, as long as
the function is a DNS satisfaction function.

Observe that most proofs have been moved to the appendix due to space constraints.

Related work.

The study of proportional PB crucially builds on the literature on approval-based committee
voting [12]. The proportionality notions most relevant to our paper are extended justified
representation (EJR) [2], proportional justified representation (PJR) [21], and priceability
[16].

1This strengthens a result by Peters et al. [18], showing that MES satisfies EJR up to one project (EJR-1)
for additive utility functions.



Proportionality in PB was first considered by Aziz et al. [3], who generalized PJR as well
as the maximin support method [20]. This setting was subsequently generalized to voters
with ordinal preferences [1]. The concept of satisfaction functions was introduced by Talmon
and Faliszewski [23], who presented a framework for designing (non-proportional) approval-
based PB rules. Besides the cost-based and the cardinality-based satisfaction function, they
also studied a satisfaction measure based on the Chamberlin–Courant method [7].

Peters et al. [18] studied PB with arbitrary additive utilities and showed that a gener-
alized variant of the Method of Equal Shares (MES) [16] satisfies EJR up to one project.
The approval-based satisfaction functions studied in our paper constitute special cases of
additive utility functions, and the additional structure provided by this restriction allows us
to show a significantly stronger result.

Los et al. [15] study the logical relationship of proportionality axioms in PB with either
additive utilities or the cardinality-based satisfaction function. They generalize notions
such as PJR, laminar proportionality, and priceability to the two aforementioned settings
and study how MES, sequential Phragmén, and other rules behave with regard to these
axioms. In particular, they show that sequential Phragmén satisfies PJR for the cardinality-
based satisfaction function. We strengthen the latter result along multiple dimensions,
by identifying a class of rules satisfying PJR-x for a whole class of satisfaction functions
simultaneously. (PJR-x is equivalent to PJR for the cardinality-based satisfaction function.)

Besides proportionality, other recent topics in PB include the handling of donations [8],
the study of districts [10] and projects groups [11], the maximin objective [22], welfare/rep-
resentation trade-offs [9], and uncertainty in the cost of projects [4].

2 Preliminaries

For t ∈ N, we let [t] denote the set [t] = {1, . . . , t}.
Let N = [n] be a set of n voters and P = {p1, . . . , pm} a set of m projects. Each voter

i ∈ N is associated with an approval ballot Ai ⊆ P and an approval profile A = (A1, . . . , An)
lists the approval ballots of all voters. Further, c : P → R+ is a cost function mapping each
project p ∈ P to its cost c(p). Finally, b ∈ R+ is the budget limit.

Together, (A,P, c, b) form an approval-based budgeting (ABB) instance. For a subset
W ⊆ P of projects, we define c(W ) =

∑
p∈W c(p). We call W an outcome if c(W ) ≤ b,

i.e., if the projects in W together cost no more than the budget limit. Further, we call an
outcome W exhaustive if there is no outcome W ′ ⊃ W . An ABB rule R now assigns every
ABB instance E = (A,P, c, b) to a non-empty set R(E) of outcomes. If every outcome in
R(E) is exhaustive for every ABB instance E, we call the rule R exhaustive.

For a project p ∈ P we let Np := {i ∈ N : p ∈ Ai} denote the set of approvers of p. We
often write Nj for Npj

.
An ABB instance with c(p) = 1 for all p ∈ P is called a unit-cost instance and corresponds

to an approval-based committee voting instance with ⌊b⌋ seats.
Next, we define our key concept.

Definition 2.1. Given an ABB instance (A,P, c, b), an (approval-based) satisfaction func-
tion is a function µ : 2P → R≥0 that satisfies the following conditions: µ(W ) ≤ µ(W ′)
whenever W ⊆ W ′ and µ(W ) = 0 if and only if W = ∅.

The satisfaction µi(W ) that a voter i derives from an outcome W ⊆ P with respect to
the satisfaction function µ is defined as the satisfaction generated by the projects in W that
are approved by i, i.e.,

µi(W ) = µ(Ai ∩W ).

For notational convenience, we write µ(p) instead of µ({p}) for an individual project p ∈ P .



Some of our results holds for restricted classes of satisfaction functions. In particular,
we are interested in the following properties.

Definition 2.2. Given an ABB instance (A,P, c, b), a satisfaction function µ is

• additive if µ(W ) =
∑

pi∈W µ(pi) for all W ⊆ P .

• strictly increasing if µ(W ) < µ(W ′) for all W,W ′ ⊆ P with W ⊂ W ′.

• cost-neutral if µ(W ) = µ(W ′) for all W,W ′ ⊆ P such that there is a bijection f : W →
W ′ for which c(p) = c(f(p)) holds for all p ∈ P .

Clearly, every additive satisfaction function is also strictly increasing. The two most
prominent satisfaction functions are the following.

Definition 2.3. Given an ABB instance (A,P, c, b) and a set W ⊆ P , the cost-based
satisfaction function µc is defined as µc(W ) = c(W ) =

∑
p∈W c(p) and the cardinality-

based satisfaction function µ# is defined as µ#(W ) = |W |.

Clearly, µc and µ# are cost-neutral and additive.
An example for a cost-neutral satisfaction function that is not strictly increasing (and,

hence, not additive) is the CC satisfaction function [23], which is inspired by the well-known
Chamberlin–Courant rule [7]:

µCC(W ) =

{
0 if W = ∅
1 otherwise.

An example for an additive satisfaction function that is not cost-neutral is share [13]:

µshare(W ) =
∑
p∈W

c(p)

|Np|
.

We illustrate the two most prominent satisfaction functions, µc and µ#, with a simple
example.

Example 2.1. Consider an ABB instance with one voter, five projects, and budget b = 5;
the voter approves all projects and the cost of each project is 1 except the first project, which
has cost c(p1) = 5. Under µc the best outcome is {p1}, which gives the voter a satisfaction
of 5. Under µ#, the best outcome is {p2, . . . , p5}, with a satisfaction of 4.

Let us show a simple lemma about the unit-cost case that we are going to use repeatedly.

Lemma 2.1. Consider a unit-cost ABB instance and a cost-neutral and strictly increasing
satisfaction function µ. Then, the following equivalence holds for all outcomes W,W ′:

µ(W ) ≥ µ(W ′) if and only if |W | ≥ |W ′|.

Next, we define a natural subclass of additive and cost-neutral satisfaction functions
that contains both µc and µ#. An additive satisfaction function belongs to this class if (i)
more expensive projects provide at least as much satisfaction as cheaper ones, and (ii) more
expensive projects do not provide a higher satisfaction per cost than cheaper projects.

Definition 2.4. Consider an ABB instance (A,P, c, b). An additive satisfaction function
µ has weakly decreasing normalized satisfaction (DNS) if for all projects p, p′ ∈ P with
c(p) ≤ c(p′) the following two inequalities hold:

µ(p) ≤ µ(p′) and
µ(p)

c(p)
≥ µ(p′)

c(p′)
.

In this case, we call µ a DNS function.



Clearly, both µc and µ# are DNS functions. Indeed, they can be seen as two extremes
among DNS functions since µ#(p) = µ#(p′) holds for all p, p′, whereas for µc we have
µc(p)
c(p) = µc(p′)

c(p′) . Other natural examples of DNS functions include µ
√
c(W ) :=

∑
p∈W

√
c(p)

and µlog(c) :=
∑

p∈W log(1 + c(p)).

Finally, let us define an ABB rule that we use throughout the paper: the Method of
Equal Shares (MES). In fact, we do not only define one rule, but rather a family of variants
of MES, parameterized by a satisfaction function. We follow the definition of MES by Peters
et al. [18] in the setting of additive PB.

Definition 2.5 (MES[µ]). Given an ABB instance (A,P, c, b) and a satisfaction function
µ, MES[µ] constructs an outcome W , initially empty, iteratively as follows. It begins by
assigning a budget of bi =

b
n to each voter i ∈ N . A project pj /∈ W is called ρ-affordable if∑

i∈Nj

min(bi, ρµ(pj)) = c(pj).

In each round, the project pj which is ρ-affordable for the minimum ρ is selected and for
every i ∈ Nj, the budget bi is updated to bi −min(bi, ρµ(pj)). This process is iterated until
no further ρ-affordable projects are left (for any ρ).

Intuitively, the parameter ρ tells us how many units of budget a voter has to pay for one
unit of satisfaction.

3 Extended Justified Representation

We begin our study of proportionality with the strong notion of extended justified repre-
sentation (EJR). This concept was first introduced in the multiwinner setting by Aziz et al.
[2]. On a very high level, it states that every group that is sufficiently “cohesive” deserves
a certain amount of representation in the final outcome. Therefore, we first need to define
what it means for a group of voters in a PB instance to be cohesive. For this, we follow
Peters et al. [18] and Los et al. [15].2

Definition 3.1. Given an ABB instance (A,P, c, b) and a set T ⊆ P of projects, a subset

N ′ ⊆ N of voters is T -cohesive if and only if T ⊆
⋂

i∈N ′ Ai and c(T ) ≤ |N ′|
n b.

Using this definition, we can now define EJR, which essentially states that in every T -
cohesive group there is at least one voter that derives at least as much satisfaction from the
outcome as from T .

Definition 3.2. Given an ABB instance (A,P, c, b) and a satisfaction function µ, an out-
come W ⊆ P satisfies extended justified representation with respect to µ (µ-EJR) if and
only if for any T -cohesive N ′ ⊆ N , there is some i ∈ N ′ such that µi(W ) ≥ µi(T ).

In the following we say that an ABB rule R satisfies a property (in this case µ-EJR) if
and only if, for every ABB instance (A,P, c, b), each outcome in R(A,P, c, b) satisfies this
property. Definition 3.2 defines a whole class of axioms, one for each satisfaction function
µ. This in contrast to the unit-cost setting, where only one version of the EJR axiom exists.
This can be explained by the fact that µ-EJR and µ′-EJR are equivalent in the unit-cost
setting for many satisfaction functions µ and µ′.

2Aziz et al. [3] define cohesiveness slightly differently, which leads to slightly different looking definitions
of the axioms. The resulting definitions are, however, equivalent.



Proposition 3.1. Consider a unit-cost ABB instance and two additive and cost-neutral
satisfaction functions µ and µ′. Then, an outcome satisfies µ-EJR if and only if it satisfies
µ′-EJR.

Moreover, under these assumptions, µ-EJR is equivalent to EJR as originally defined
originally by Aziz et al. [2]. By contrast, this is not the case, e.g., for µCC-EJR.

Next, we show that µ-EJR is always satisfiable. Our proof adapts a similar proof for
general additive utility functions [18] and employs the so-called Greedy Cohesive Rule. 3

Theorem 3.2. µ-EJR is always satisfiable for any satisfaction function µ.

The Greedy Cohesive Rule that is used to prove Theorem 3.2 has exponential running
time. This is however unavoidable, as we can show that no algorithm can find an allocation
satisfying µ-EJR in polynomial time (unless P = NP), for a large class of approval-based
satisfaction functions. We call this class strictly cost-responsive.

Definition 3.3. We say that a satisfaction function µ is strictly cost-responsive if for all
W,W ′ ⊆ P with c(W ) < c(W ′), we have µ(W ) < µ(W ′).

This class includes µc but also functions with diminishing (but not vanishing) marginal
satisfaction like µ

√
c.

Theorem 3.3. Let µ be a satisfaction function that is strictly cost-responsive for instances
with a single voter. Then, there is no polynomial-time algorithm that, given an ABB instance
(A,P, c, b) as input, always computes an outcome satisfying µ-EJR, unless P = NP .

The theorem can be proven via a standard reduction from Subset-sum. Note that
µ# does not satisfy strict cost-responsiveness. Indeed, outcomes satisfying µ#-EJR can
be computed efficiently, e.g., by employing MES[µ#] [18, 15]. Further, we note that our
reduction does not preclude efficient algorithms in the case that costs are bounded. Hence,
it is open whether a pseudopolynomial-time algorithm exists.

Theorem 3.3 motivates us to consider weakenings of EJR. First, we define EJR up to
one project [18].

Definition 3.4. Given an ABB instance (A,P, c, b) and a satisfaction function µ, an out-
come W ⊆ P satisfies EJR up to one project with respect to µ (µ-EJR-1) if and only if,
for every T -cohesive group N ′, either T ⊆ W or there exists a voter i ∈ N ′ and a project
p ∈ P \W such that µi(W ∪ {p}) > µi(T ).

Peters et al. [18] have shown that we can satisfy µ-EJR-1 for every additive satisfaction
function µ using MES[µ].4 Since the approval-based setting studied in this paper is a special
case of the setting studied by Peters et al. [18], we can improve upon their result. Similar
to the fair division literature, where the notion of envy-freeness up to one good (EF-1)
can be strengthened to envy-freeness up to any good (EF-x) [6], we strengthen µ-EJR-1
to µ-EJR-x: Instead of requiring that there exists one project whose addition lets voter i’s
satisfaction exceed µ(T ), we require that this holds for every unchosen project from T .

Definition 3.5. Given an ABB instance (A,P, c, b) and a satisfaction function µ, an out-
come W ⊆ P satisfies EJR up to any project with respect to µ (µ-EJR-x) if and only if,
for every T -cohesive group N ′, there is a voter i ∈ N ′ such that µi(W ∪ {p}) > µi(T ) for
every project p ∈ T \W .

3Our result is less general in that it only considers the approval case and more general in that it does
not assume additivity.

4In the approval-based setting considered in this paper, this is even true if we strengthen µ-EJR-1 by
requiring that the project p comes from T , i.e., by replacing p ∈ P \ W with p ∈ T \ W in Definition 3.4
(see Appendix B for details).



By definition, µ-EJR-x implies µ-EJR-1 and, intuitively, we would assume that µ-EJR-x
is implied by µ-EJR. This is indeed the case, at least for strictly increasing satisfaction
functions. Moreover, µ-EJR, µ-EJR-1 and µ-EJR-x are equivalent in the unit-cost setting
as long as µ is strictly increasing and cost-neutral.

Proposition 3.4. Let µ be a strictly increasing satisfaction function. Then,

(i) µ-EJR implies µ-EJR-x, and

(ii) for unit-cost instances if µ is cost-neutral, both µ-EJR-1 and µ-EJR-x are equivalent
to µ-EJR.

The following example illustrates the difference between µ-EJR-x and µ-EJR-1.

Example 3.1. Consider one voter and five projects p1, p2, p3, p4 and p5, all approved by
this voter. The costs and the additive satisfaction function are defined as follows.

p1 p2 p3 p4 p5
c(·) 2.5 2.5 2.5 3 4.5
µ(·) 0.1 0.1 0.1 3.1 4

Let b = 7. The single voter is {p1, p5}-cohesive with µ({p1, p5}) = 4.1. For this instance,
there are three exhaustive outcomes (if one treats p1, p2, and p3 the same). The first one,
{p1, p5}, satisfies µ-EJR (and thus also µ-EJR-x and µ-EJR-1). The second one, {p2, p3},
violates µ-EJR-x since µ({p2, p3}∪{p1}) = 0.3 < µ({p1, p5}); it, however, satisfies µ-EJR-1
since µ({p2, p3} ∪ {p5}) = 4.2 > µ({p1, p5}). Similarly, {p1, p4} also satisfies µ-EJR-1 but
not µ-EJR-x.

Having observed that µ-EJR-x is strictly stronger than µ-EJR-1, a natural question is
whether MES[µ] also satisfies µ-EJR-x. This is not the case in general. In Example 3.1,
MES[µ] would first select p4 and then one of {p1, p2, p3}, and would thus violate µ-EJR-x.
However, if we restrict attention to DNS functions µ, we can show that MES[µ] always
satisfies µ-EJR-x.

Theorem 3.5. Let µ be a DNS function. Then MES[µ] satisfies µ-EJR-x.

This result shows that MES[µ] is proportional in a strong sense. However, it also has
a big downside: Theorem 3.5 only provides a proportionality guarantee for MES[µ] for the
specific satisfaction function µ by which the rule is parameterized. This means that we have
to know which satisfaction function best models the voters when deciding which voting rule
to use. It turns out that this is unavoidable, because for two different satisfaction functions,
the sets of outcomes providing EJR-x can be non-intersecting. In fact, this even holds for
EJR-1.

Proposition 3.6. There is an ABB instance for which no outcome satisfies µc-EJR-1 and
µ#-EJR-1 simultaneously.

Proof. Consider the following example with two voters and projects p1, . . . , p12 with c(p1) =
c(p2) = 5 and the other projects costing 1. Voter 1 approves {p1, . . . , p7} and voter 2
approves {p1, p2, p8, . . . , p12}. We set the budget to be 10. For µ#, we observe that each
voter on their own is cohesive over the set of 5 projects they approve individually (i.e.,
voter 1 is {p3, . . . , p7}-cohesive and voter 2 is {p8, . . . , p12}-cohesive). If either p1 or p2 is
included in the outcome, at least one voter has a satisfaction of at most 3 under µ#; such an
outcome can not satisfy µ#-EJR-1. Thus, W = {p3, . . . , p12} is the only outcome satisfying
µ#-EJR-1. On the other hand, since both voters together are {p1, p2}-cohesive, the outcome
W does not satisfy µc-EJR-1. Thus, no outcome satisfies both µc-EJR-1 and µ#-EJR-1 in
this instance.



Proposition 3.6 shows that if we want to achieve strong proportionality guarantees, we
need to know the satisfaction function. Since this might be unrealistic in practice, in the
next chapter we focus on a weaker notion of proportionality.

4 Proportional Justified Representation

In this section, we consider proportionality axioms based on proportional justified repre-
sentation (PJR). As our main result in this section, we show that there exist rules which
simultaneously satisfy PJR-x for all DNS functions. This establishes a counterpoint to our
result for EJR at the end of the previous section (Proposition 3.6).

4.1 Variants of PJR

PJR is a weakening of EJR. Instead of requiring that, for every cohesive group, there exists a
single voter in the group who is sufficiently satisfied, PJR considers the satisfaction generated
by the set of all projects that are approved by some voter in the group.

Definition 4.1. Given an ABB instance (A,P, c, b), an outcome W ⊆ P satisfies PJR with
respect to a satisfaction function µ (µ-PJR) if and only if for any T -cohesive group N ′ it
holds that µ((W ∩

⋃
i∈N ′ Ai)) ≥ µ(T ).

For µ = µc, µ-PJR was considered by Aziz et al. [3], who called it BPJR-L. For µ = µ#,
µ-PJR was considered by Los et al. [15].

It is straightforward to see that µ-EJR implies µ-PJR. Hence, from Theorem 3.2 it
follows directly that µ-PJR is also always satisfiable.

Corollary 4.1. µ-PJR is always satisfiable for any satisfaction function µ.

Since µ-EJR and µ-PJR coincide if there is only one voter, the hardness proof for µ-EJR
(Theorem 3.3) directly applies to µ-PJR.

Corollary 4.2. Let µ be a satisfaction function that is strictly cost-responsive for instances
with a single voter. Then, there is no polynomial-time algorithm that, given an ABB instance
(A,P, c, b) as input, always computes an outcome satisfying µ-PJR, unless P = NP .

The hardness result above (for µ = µc) motivated Aziz et al. [3] to define a relaxation
of µ-PJR (for µ = µc) they call “Local-BPJR”. We discuss this relaxation in Appendix D,
where we show that it does not imply PJR under the unit-cost assumption. Aziz et al. [3]
show that their property is satisfied by a polynomial-time computable generalization of the
maximin support method [20]. Instead of Local-BPJR, we consider a stronger property that
is similar to µ-EJR-x.

Definition 4.2. Given an ABB instance (A,P, c, b), an outcome W satisfies PJR up to any
project w.r.t. µ (µ-PJR-x) if and only if for any T -cohesive group N ′ and any p ∈ T \W it
holds that µ((W ∩

⋃
i∈N ′ Ai) ∪ {p}) > µ(T ).

Let us consider the relationships between µ-PJR, µ-PJR-x and the EJR-based fairness
notions that we introduced. By definition, µ-PJR-x is implied by µ-EJR-x for all satisfac-
tion functions. One would additionally assume that µ-PJR-x is implied by µ-PJR. Like
in the analogous statement for EJR (Proposition 3.4), we show this for strictly increasing
satisfaction functions.

Proposition 4.3. Let µ be a strictly increasing satisfaction function. Then,

(i) µ-PJR implies µ-PJR-x, and



(ii) for unit-cost instances if µ is cost-neutral, µ-PJR-x is equivalent to µ-PJR.

For unit-cost instances and cost-neutral and strictly increasing satisfaction functions, the
second part of Proposition 4.3 implies that µ-PJR-x is equivalent to the original definition
of PJR [21].5 Under these conditions, the equivalence also holds for the following weakening
of µ-PJR-x, which was considered by Los et al. [15] for µ = µ#.

Definition 4.3. An outcome W satisfies Proportional Justified Representation up to one
project (µ-PJR-1) with respect to an ABB instance (A,P, c, b) if and only if for any T -
cohesive group S either T ⊆ W or there exists a p ∈

⋂
v∈S Av \W such that

µ((W ∩
⋃
v∈S

Av) ∪ {p}) > µ(T )

We say more about µ-PJR-1 in Appendix D.
Next, we consider the relationship between µ-PJR-x and µ-EJR-1. Of course, EJR is

generally a stronger axiom that PJR. However, “up to one project” is a greater weakening
than “up to any project” and, indeed, we find that µ-EJR-1 does not imply µ-PJR-x in
general. We keep the following example fairly general to show that µ-EJR-1 does not imply
µ-PJR-x for a large class of satisfaction functions.

Example 4.1. Consider a strictly increasing satisfaction function µ and an ABB instance
(A,P, c, b) with |P | ≥ 3, and one voter 1 who approves all projects in P . Moreover, assume
that there is a project p1 ∈ P for which

c(P \ {p1}) ≤ c(p1) and µ(P \ {p1}) = µ(p1).

Finally, let b = c(p1). For example, for µ ∈ {µc, µshare}, we can use any example for which
c(P \ {p1}) = c(p1).

Let p2 ∈ P with p2 ̸= p1 and P ∗ = P \ {p1, p2}. Since |P | ≥ 3 we have that P ∗ ̸= ∅.
We claim that P ∗ satisfies µ-EJR-1 but not µ-PJR-x. Let us first consider µ-EJR-1: We
observe that {1} is {p1}-cohesive and {p1} is an affordable outcome from which 1 derives
maximal satisfaction. Moreover, as µ is a satisfaction function and because P ∗ ̸= ∅, we
know that µ(W ) > 0. Since µ is strictly increasing, this implies µ(p1) < µ(P ∗ ∪ {p1}).
Hence, P ∗ satisfies µ-EJR-1.

On the other hand, since 1 derives the same satisfaction from the outcomes {p1} and
P \ {p1}, we know that P \ {p1} is also an outcome from which the voter derives maximal
satisfaction. By definition, P \ {p1} is a proper superset of P ∗. Moreover, by assumption
P ⊂ {p1} is within the budget limit. This means that P ∗ violates µ-PJR-x.

4.2 Achieving PJR-x for All DNS Functions

Next we turn to our main result on PJR. We give a family of voting rules, all of which
simultaneously satisfy µ-PJR-x for all DNS functions µ. To define these voting rules, we
recall the definition of priceability, which has been introduced in multiwinner voting by
Peters and Skowron [16] and extended to the PB setting by Peters et al. [18] and Los et al.
[15].

Definition 4.4 (Priceability). An outcome W satisfies priceability with respect to an ABB
instance (A,P, c, b) if and only if there is a budget B > 0 and a collection d = (di)i∈N of
payment functions di : P → [0, B

n ] such that6

5According to this definition, an outcome W satisfies EJR if |W ∩
⋃

i∈N′ Ai| ≥ ℓ for every ℓ-cohesive
group N ′.

6The numbering of constraints follows Peters et al. [17].



C1 If di(pj) > 0 then pj ∈ Ai for all pj ∈ P and i ∈ N

C2 If di(pj) > 0 then pj ∈ W for all pj ∈ P and i ∈ N

C3
∑

pj∈P di(pj) ≤ B
n for all i ∈ N

C4
∑

i∈N di(pj) = c(pj) for all pj ∈ W

C5
∑

i∈Nj
B∗

i ≤ c(pj) for all pj /∈ W , where B∗
i is the unspent budget of voter i, i.e.,

B∗
i = B

n −
∑

pk∈P di(pk).

The pair {B, d} is called a price system for W .

For unit-cost instances, every exhaustive, priceable outcome satisfies PJR [16]. For µc,
we show something similar in the approval-based PB setting.

Theorem 4.4. Let W be an outcome such that there is a price system {B, d} with B > b.
Then W fulfills µc-PJR-x.

However, this implication does not hold for other satisfaction functions, as the following
example illustrates.

Example 4.2. Consider µ# and an instance with two voters, five projects p1, . . . , p5, and
budget b = 4. The voters have the approval sets A1 = {p1, p2, p3} and A2 = {p1, p4, p5}.
The project p1 costs 4 while the rest of the projects cost 1 each. Then the outcome {p1}
is priceable with a budget of B = 4.5 > 4 (with both voters paying 2 for p1), but does not
satisfy µ#-PJR-x.

Towards a more broadly applicable variant of Theorem 4.4, we introduce a new constraint
for price systems:

C6
∑

i∈Nj
di(pk) ≤ c(pj) for all pj /∈ W and all pk ∈ W .

Intuitively, a violation of this axiom would mean that the approvers of pj could take their
money they spent on pk and buy pj instead for a strictly smaller cost. If an outcome is
priceable with a price system satisfying C6, we say that it is C6-priceable. For instance, in
Example 4.2, the outcome consisting only of p1 is not C6-priceable since at least one voter
must spend at least 2 on p1 which is more than the price of one of {p2, . . . , p5}.

Using this definition, we can now show our main result, namely that C6-priceability
with B > b is sufficient for satisfying µ-PJR-x for all DNS functions µ.

Theorem 4.5. Let W ⊆ P be a C6-priceable outcome with price system {B, d} such that
B > b. Then, W satisfies µ-PJR-x for all DNS functions µ.

First, we observe that from the MES family of rules MES[µ#] satisfies the conditions of
the theorem.

Corollary 4.6. MES[µ#] satisfies µ-PJR-x for all DNS functions µ.

Proof. For this, it is sufficient to show that MES[µ#] always returns an outcome that is
C6-priceable for a B > b. We observe that requirements C1 to C5, are naturally satisfied
by the price system constructed throughout MES[µ#]. The requirement that B > b is
however not naturally satisfied. To change this, let δ = minp∈P c(p) − (

∑
i∈Np

B∗
i ). Since,

no further project is affordable, we know that δ > 0. We now set Bδ = B+ δ
n to be the new

budget. Requirements C1 to C4 still naturally hold for this budget. Further, we know that
c(p) − (

∑
i∈Np

B∗
i ) ≥ δ and hence c(p) ≥

∑
i∈Np

(B∗
i + δ

n ). Hence, C5 is also satisfied and



we only need to show that MES[µ#] indeed satisfies C6. Hence, we need to show that for
any pj /∈ W and pk ∈ W it holds that

∑
i∈Nj

di(pk) ≤ c(pj). Assume on the contrary that∑
i∈Nj

di(pk) > c(pj). At the time pk gets bought we know that pk is ρ affordable, while

pj is not ρ′ affordable for any ρ′ < ρ and thus
∑

i∈Nj
min(bi, ρ

′) < c(pj). Further, we know

that min(bi, ρ) = di(pk) for any i ∈ N ′.
Thus, we know that

c(pj) <
∑
i∈Nj

di(pk) =
∑

i∈Nj∩Nk

min(bi, ρ)

≤
∑
i∈Nj

min(bi, ρ).

Let Nmin = {i ∈ Nj : bi < ρ}. If Nmin = N ′, we could set ρ′ = maxi∈N ′ bi < ρ and would
thus get

c(pj) <
∑
i∈Nj

min(bi, ρ) =
∑
i∈Nj

min(bi, ρ
′) < c(pj)

and thus a contradiction. Otherwise, we could pick ρ′ such that |Nj |(ρ − ρ′) <
(
∑

i∈Nj
min(bi, ρ)− c(pj)). Then since pj is not ρ affordable get that

c(pj) >
∑
i∈Nj

min(bi, ρ
′)

≥
∑
i∈Nj

min(bi, ρ) + |Nj |(ρ′ − ρ)

> c(pj).

Next, we present an example showing that MES[µc] does not satisfy C6. Similar coun-
terexamples can be constructed for other satisfaction function µ ̸= µ#. As a consequence,
Theorem 4.5 does not apply to those variants of MES.

Example 4.3. Consider an ABB instance (A,P, c, b) with two voters, three projects and
budget b = 3, where project p1 costs 3 and is approved by both voters, project p2 costs 1 and
is only approved by voter 1, and project p3 costs 1 and is only approved by voter 2.

In this example, the outcome of MES[µc] is {p1}. Assume that there exists a budget B
and payment functions d1 and d2 such that C1-C6 are satisfied. Then, d1(p1)+d2(p1) = 3.
Hence either d1(p1) or d2(p1) must be larger than 1. Assume w.l.o.g. d1(p1) > 1. Then we
have

∑
i∈N2

di(p1) = d1(p1) > 1 = c(p2). This contradicts C6.

Two further rules for which we can always find such a price system are the PB versions
of sequential Phragmén [19, 5] and the maximin support method [20]. For the definitions
of these two rules, we refer to the Appendix C.

Corollary 4.7. Sequential Phragmén and the maximin support method provide µ-PJR-x
for all DNS functions µ.

Corollary 4.7 is proved in Appendix C.
Finally, we can show that DNS is, in a sense, a necessary restriction. Namely, we can

show that for any function mapping costs to satisfaction in a way that violates DNS, we
can find an instance such that MES[µ#] does not satisfy PJR-x for that instance.

Proposition 4.8. Let µ be an additive satisfaction function that is not a DNS func-
tion. Then there exists an ABB instance (A,P, c, b) with satisfaction function µ such that
MES[µ#] violates µ-PJR-x.



5 Conclusion

We have studied proportionality axioms for participatory budgeting elections based on ap-
proval ballots. Our results can be summarized along two main threads:

1. If strong (i.e., EJR-like) proportionality guarantees are desired, then it is necessary
to know the satisfaction function, as different satisfaction functions may lead to in-
compatible requirements (Proposition 3.6). If the satisfaction function is known and
belongs to the class of DNS functions, however, we can guarantee EJR up to any
project using a polynomial-time computable variant of MES tailored to this function
(Theorem 3.5).

2. If the proportionality requirement is weakened to a PJR-like notion, there is no need
to know the satisfaction function precisely: We identify a large class of satisfaction
functions so that PJR up to any project is achievable for all those functions simulta-
neously (Theorem 4.5). We identify a class of voting rules that achieve this, including
Phragmén’s sequential rule, the maximin support method, and a variant of MES.
(Among those three rules, the MES variant is the only rule that additionally satisfies
EJR w.r.t. the cardinality-based satisfaction function.)

It is open whether we can even achieve EJR-x (or even PJR-x) in polynomial time for
additive non-DNS functions. Here, it seems crucial to further identify rules — besides MES
— providing proportionality guarantees for PB. Furthermore, it would be interesting to
push the boundaries of Theorem 4.5; for example, can we soften the assumption that we
use the same satisfaction function for all voters?

It is also an open question whether proportional outcomes can be computed in polynomial
time for satisfaction functions that are not additive (e.g., for submodular or subadditive
satisfaction functions). Looking beyond the approval-based setting, it would be interesting
to extend our framework to general (additive or non-additive) utility functions.
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A Missing Proofs

Lemma 2.1. Consider a unit-cost ABB instance and a cost-neutral and strictly increasing
satisfaction function µ. Then, the following equivalence holds for all outcomes W,W ′:

µ(W ) ≥ µ(W ′) if and only if |W | ≥ |W ′|.

Proof. From right to left: Consider W,W ′ such that |W | ≥ |W ′|. If |W | = |W ′|, then by
cost-neutrality and unit costs we have µ(W ) = µ(W ′). If |W | > |W ′|, the previous argument
and strict increasingness imply µ(W ) > µ(W ′).

From left to right: Consider W,W ′ such that µ(W ) ≥ µ(W ′). Assume for contradic-
tion that |W ′| > |W |. Then, by the argument above, we would have µ(W ′) > µ(W ), a
contradiction. It follows that |W | ≥ |W ′|.

Proposition 3.1. Consider a unit-cost ABB instance and two additive and cost-neutral
satisfaction functions µ and µ′. Then, an outcome satisfies µ-EJR if and only if it satisfies
µ′-EJR.

Proof. Assume that µ is a cost-neutral, strictly increasing satisfaction function. To show
our statement, we show that µ-EJR is equivalent to EJR in the unit cost setting [2]. In
the follwing, we refer to this axiom as unit-EJR. An outcome W satisfies unit-EJR if every
ℓ-cohesive7 group contains a voter i such that |Ai ∩W | ≥ ℓ.

First, let W ⊆ P be an outcome that satisfies unit-EJR. We show that W satisfies µ-EJR
as well. Let N ′ be a T -cohesive group. For ℓ = |T |, this group is ℓ-cohesive (in unit-EJR
terminology). Since W satisfies unit-EJR, we know that that |Ai ∩W | ≥ ℓ = |T | for some
i ∈ N ′. By Lemma 2.1, this implies µ(Ai ∩ W ) ≥ µ(T ), or, equivalently, µi(W ) ≥ µi(T ).
Since N ′ was chosen arbitrarily, this means that µ-EJR is satisfied.

Next, let W ⊆ P be an outcome that does not satisfy unit-EJR. Then, there is a ℓ-
cohesive group N ′ for which |Ai ∩W | < ℓ for all i ∈ N ′. By definition, there exists a T ⊆ P
such that S is T -cohesive and |T | = ℓ. By Lemma 2.1, we have µ(Ai ∩ W ) < µ(T ) for
all i ∈ N ′, or equivalently, µi(W ) < µi(T ) for all i ∈ N ′. Therefore, µ-EJR is violated as
well.

Definition A.1. Given an ABB instance (A,P, c, b), the Greedy Cohesive Rule with respect
to µ (GCR[µ]) selects all outcomes W that may result from the following procedure:

W := ∅
NW := N

C(W,NW ) := {W ′ | W ′ ⊆ P\W and there exists

a W ′-cohesive group N ′ ⊆ NW }
while C(W,NW ) ̸= ∅

W ′ := argmax
Ŵ∈C(W,NW )

µ(Ŵ )

W := W ∪W ′

NW := NW \N ′

C(W,NW ) := {W ′ | W ′ ⊆ P\W and there exists

a W ′-cohesive group N ′ ⊆ NW }
return W

7In the terminology of approval-based committee voting, a group is ℓ-cohesive for a natural number ℓ if
it is T -cohesive for some T ⊆ P with |T | = ℓ.



This version of GCR[µ] differs from the corresponding rule introduced by Peters et al. [18],
as they assume a tie-breaking mechanism for equally good subsets of P\W in favor of subsets
of lower costs while in our rule the tie-breaking is done in an arbitrary fashion. This was
purely done for ease of exposition, as we believe that breaking ties in favor of lower costs
would have resulted in a algorithm of reduced readability. Another reason for our modified
version of GCR is that it is already strong enough to always satisfy µ-EJR for any – even
non-additive – satisfaction function µ. The proof is essentially the same as the proof due
to Peters et al. [18] because neither tie-breaking in favor of smaller costs nor additivity of
satisfaction is assumed anywhere in the proof.

Theorem 3.2. µ-EJR is always satisfiable for any satisfaction function µ.

Proof. We show that the output of GCR[µ] always is an outcome that satisfies µ-EJR.

Feasibility: Assume W is a set of projects computed by GCR[µ]. For any W ′ that we
chose at line 5, we know by the definition of cohesiveness that

c(W ′) ≤ |S| · b
n

and since any voter in N is only removed as a member of one such group, we know that
for the cost of the outcome c(W ) it holds that

c(W ) ≤ |N | · b
n

= b

and thus W is a feasible outcome.

Satisfaction: Assume to the contrary that there is a satisfaction function µ and ABB
instance (A,P, c, b), such that some outcome W in GCR[µ](A,P, c, b) does not satisfy µ-
EJR. This means that by the definition of µ-EJR there is a T -cohesive group N ′ ⊆ N , such
that for any i ∈ N ′ we have

µi(W ) < µ(T ) (1)

By the strict increasingness of satisfaction functions this implies T ̸⊆ W .
Now suppose i0 is the first voter in N ′ removed by the algorithm. Such a voter must

exist, since otherwise we know that it holds that N ′ ⊆ NW at the last execution of the
loop condition and thus T could be added to W , which in turn means it was not the last
execution of line 3.

So i0 was removed as a member of some T ′-cohesive group N ′′. Since T ′ ⊆ W and by
T ′-cohesiveness, we know that for any i ∈ N ′′

µi(W ) ≥ µ(T ′)

and since i0 ∈ N ′′ thus
µi0(W ) ≥ µ(T ′)

Since the algorithm chose T ′ and N ′′ instead of T and N ′ at line 4, we know by line 6
that

µ(T ′) ≥ µ(T )

and thus for i0 it holds that
µi0(W ) ≥ µ(T )

contradicting (1).



Theorem 3.3. Let µ be a satisfaction function that is strictly cost-responsive for instances
with a single voter. Then, there is no polynomial-time algorithm that, given an ABB instance
(A,P, c, b) as input, always computes an outcome satisfying µ-EJR, unless P = NP .

Proof. Assume that there is an algorithm A that always computes an allocation satisfying
µ-EJR.

We will make use of the Subset-Sum problem, which is known to be NP-hard. In this
problem, we are given as input a set S = {s1, . . . , sm} of integers and a target t ∈ N and we
wonder whether there exists an X ⊆ S such that

∑
x∈X x = t.

Given S and t as described above, we construct an ABB instances as follows. We have m
projects P = {p1, . . . , pm} with the following cost function c(pj) = sj for all j ∈ {1, . . . ,m}
and a budget limit b = t. There is moreover only one voter, who approves of all the projects.

Now, (S, t) is a positive instance of Subset-Sum if and only if there is an outcome T
that cost is exactly b. If such an allocation T exists, then the one voter 1 is T -cohesive.
Therefore, any allocation W that satisfies µ-EJR must give that voter µ(W ) ≥ µ(T ). By
strict cost-responsiveness, this implies that c(W ) ≥ c(T ) = b. Hence, (S, t) is a positive
instance of Subset-Sum if and only if c(A((A,P, c, b))) = b. This way, we can use A to
solve Subset-Sum in polynomial time.

Proposition 3.4. Let µ be a strictly increasing satisfaction function. Then,

(i) µ-EJR implies µ-EJR-x, and

(ii) for unit-cost instances if µ is cost-neutral, both µ-EJR-1 and µ-EJR-x are equivalent
to µ-EJR.

Proof. For (i), assume that W satisfies µ-EJR. This means that for any T -cohesive N ′, there
is some i ∈ N ′ with

µi(Ai ∩W ) ≥ µ(T ).

By strict increasingness, for any p ∈
⋂

i∈S Ai \W we have

µ(
⋃
i∈S

Ai ∩W ∪ {p}) > µ(
⋃
i∈S

Ai ∩W ) ≥ µ(T ),

and thus µ-PJR-x holds.

For (ii), consider a unit-cost instance (A,P, c, b), an outcome W ⊆ P , and a T -cohesive
group N ′. If T ⊆ W , the requirements of µ-EJR, µ-EJR-1, and µ-EJR-x are all satisfied.8

Therefore, we assume T \ W ̸= ∅ and consider a project p ∈ T \ W . In order to show
the equivalence of the three notions, it is sufficient to show that µi(W ∪ {p}) > µi(T ) is
equivalent to µi(W ) ≥ µi(T ). This is in fact true, as the following chain of equivalences
show:

µi(W ) ≥ µi(T ) ⇔ µ(Ai ∩W ) ≥ µ(T )

⇔ |Ai ∩W | ≥ |T |
⇔ |Ai ∩ (W ∪ {p})| > |T |
⇔ |Ai ∩W |+ 1 > |T |
⇔ µ(Ai ∩ (W ∪ {p})) > µ(T )

⇔ µi(W ∪ {p}) > µi(T ).

Here, we have used p ∈ T ⊆ Ai and Lemma 2.1.
8Note that there is a typo in Definition 3.4 in the main text. The correct definition is as follows: An

outcome W ⊆ P satisfies µ-EJR-x if and only if, for every T -cohesive group N ′, either T ⊆ W or there is a
voter i ∈ N ′ such that µi(W ∪ {p}) > µi(T ) for every project p ∈ T \W . (The part “either T ⊆ W or” is
missing in Definition 3.4.)



Theorem 3.5. Let µ be a DNS function. Then MES[µ] satisfies µ-EJR-x.

Proof. The proof is similar to the proof of Theorem B.1. As in that proof, let (A,P, c, b) be
an ABB instance. Let W = {p1, . . . , pk} be the outcome output by MES[µ] on this instance
where p1 was selected first, p2 second etc. For any 1 ≤ j ≤ k, set Wj := {p1, . . . , pj}.
Consider N ′ ⊆ N , a T -cohesive group, for some T ⊆ P . We show that W satisfies µ-EJR-x
for N ′. If T ⊆ W then µ-EJR-x is satisfied by definition. We will thus assume that T ̸⊆ W .

In contrast to the proof of Theorem B.1 we assume this time that p∗ = min{c(p) | p ∈
T \W} is the cheapest project in T \W . Let k∗ be the first round, after which there exists
a voter i∗ ∈ N ′ whose load is larger than b

n − 1
c(p∗) . Such a round must exist as otherwise

MES[µ] would not have terminated as the voters in N ′ could still have afforded p∗. Let
W ∗ = Wk∗ . Our goal is to prove that there is a voter i∗ such that

µi∗(W
∗ ∪ {p∗}) > µi∗(T ). (2)

Because µ is additive, the first condition of DNS implies that if this holds for p∗ it must
hold for all p ∈ T \W . Therefore, as S and T were chosen arbitrarily, proving (2) suffices
to prove the theorem.

We observe that the derivation of equation (15) from (10) in the proof of Theorem B.1
did not depend on the specific choice of p∗. Therefore, by the same arguments, we can prove
(2) by showing the following:

qmin ·
∑

p∈W∗\T

γi∗(p) > q∗max ·
c(T \ (W ∗ ∪ {p∗}))

|N ′|
. (3)

First, we observe that
∑

p∈W∗\T γi∗(p) >
c(T\(W∗∪{p∗}))

|N ′| follows by the same argumentation

as in the previous proof. To show that qmin ≥ q∗max we first observe that qmin ≥ q∗(p∗)
holds, because in every round up to k∗ the voters in N ′ could have paid for p∗ on their own,
yet p∗ was not selected. Next, we claim that for all p ∈ T \ W ∗ we have q∗(p) ≤ q∗(p∗).
First, observe that by definition

q∗(p) =
µ(p)
c(p)
|N ′|

= |N ′|µ(p)
c(p)

.

Now, by the choice of p∗ we know that c(p∗) ≤ c(p) for all p ∈ T \W ∗. Therefore, as µ is a
DNS function, we have for all p ∈ T \W ∗:

|N ′|µ(p
∗)

c(p∗)
≥ |N ′|µ(p)

c(p)
.

This proves the claim that q∗(p) ≤ q∗(p∗) for all p ∈ T \W ∗. From this, we can conclude
that q∗(p∗) = q∗max, which means that we have qmin ≥ q∗(p∗) = q∗max. This concludes the
proof of (3) and hence the theorem

Proposition 4.3. Let µ be a strictly increasing satisfaction function. Then,

(i) µ-PJR implies µ-PJR-x, and

(ii) for unit-cost instances if µ is cost-neutral, µ-PJR-x is equivalent to µ-PJR.

Proof. For (i), assume that W satisfies µ-PJR. This means that for any T -cohesive group
N ′, we have

µ(
⋃
i∈N ′

Ai ∩W ) ≥ µ(T ).



If T ⊆ W , then the requirement of µ-PJR-x is satisfied. If not, let p ∈ T \ W . By strict
increasingness, we have

µ(
⋃
i∈N ′

Ai ∩W ∪ {p}) > µ(
⋃
i∈N ′

Ai ∩W ) ≥ µ(T ),

and thus µ-PJR-x holds.
For (ii), we need to show that µ-PJR-x implies µ-PJR. Consider an outcome W ⊆ P

satisfying µ-PJR-x and a T -cohesive group N ′. If T ⊆ W , then µ((W ∩
⋃

i∈N ′ Ai)) ≥ µ(T )
trivially holds. Therefore, assume that T \W ̸= ∅ and consider p ∈ T \W . Using Lemma 2.1,
we get

µ((W ∩
⋃
i∈N ′

Ai) ∪ {p}) > µ(T )

⇔ |(W ∩
⋃
i∈N ′

Ai) ∪ {p}| > |T |

⇔ |W ∩
⋃
i∈N ′

Ai|+ 1 > |T |

⇔ |W ∩
⋃
i∈N ′

Ai| ≥ |T |

⇔ µ(W ∩
⋃
i∈N ′

Ai) ≥ µ(T ).

Since N ′ was chosen arbitrarily, this implies that W satisfies µ-PJR.

Theorem 4.4. Let W be an outcome such that there is a price system {B, d} with B > b.
Then W fulfills µc-PJR-x.

Proof. Assume that W does not satisfy µc-PJR-x. Then there is a T -cohesive group of
voters N ′ and a p ∈

⋂
i∈N ′ Ai \W such that

c(W ∩
⋃
i∈N ′

Ai)) + c(p) = µc((W ∩
⋃
i∈N ′

Ai) ∪ {p})

≤ µc(T ) ≤ |N ′|b
n

.

We know that B > b. Therefore, we get that

∑
i∈Np

B∗
i ≥

∑
i∈N ′

B∗
i ≥ |N ′|B

n
−

∑
i∈N ′

∑
p′∈P

di(c
′)


≥ |N ′|B

n
− µc(W ∩

⋃
i∈N ′

Ai)

≥ |N ′|B
n

− µc(T ) + c(p)

>
|N ′|b
n

− |N ′|b
n

+ c(p) = c(p)

This is a contradiction to axiom C5. Hence, W must satisfy µc-PJR-x.

Theorem 4.5. Let W ⊆ P be a C6-priceable outcome with price system {B, d} such that
B > b. Then, W satisfies µ-PJR-x for all DNS functions µ.



Proof. For the sake of a contradiction, assume that W does not satisfy µ-PJR-x. Then there
is a T -cohesive group of voters N ′ and some p ∈ T \W such that

µ((W ∩
⋃
i∈N ′

Ai) ∪ {p}) ≤ µ(T ). (4)

For ease of notation, let W ′ := W ∩
⋃

i∈N ′ Ai be the set of projects in W that are approved
by at least one voter in N ′. Furthermore, we let Np denote the set of approvers of p.

The proof proceeds in two parts. First, we show that if the voters in N ′ would addi-
tionally buy p, then they would spend more than c(T ). To prove this, we mainly use the
priceability of W . Second, we show that there is an unchosen project in T which would give
the voters in N ′ a better satisfaction-to-cost ratio. For this part, C6 will be crucial, as it
guarantees that cheaper projects are bought first; since µ is a DNS function, this leads to a
higher satisfaction per cost. Together, these two parts contradict (4).

For the first part, we want to show the following claim:

c(p) +
∑
i∈N ′

∑
p′∈W ′

di(p
′) > c(T ). (5)

Since B > b, we obtain from C5 that

c(p) ≥
∑
i′∈N ′

B

n
−

∑
p′∈P

di(p
′) =

|N ′|B
n

−
∑

p′∈W ′

∑
i∈N ′

di(p
′).

Rewriting this inequality gives us

c(p) +
∑

p′∈W ′

∑
i∈N ′

di(p
′) ≥ |N ′|B

n
>

|N ′|b
n

≥ c(T ).

Having shown (5), we now advance to the second part of the proof. Here we want
to compare the satisfaction per unit of money between W ′ ∪ {p} and T . Since both the
satisfaction function µ and the cost function c are additive, we can ignore the projects that
appear both in W ′ ∪ {p} and T when doing so. Let TW = T ∩W ′. Then, we first observe
that (4) implies by the additivity of µ that

µ(W ′ \ TW ) ≤ µ(T \ (TW ∪ {p})). (6)

We apply the same idea to (5). Since for all p′ ∈ W ′ it holds that
∑

i∈N ′ di(p
′) ≤ c(p′) we

get that ∑
i∈N ′

∑
p′∈W ′\TW

di(p
′) > c(T \ (TW ∪ {p})). (7)

We now show that T \ (TW ∪ {p}) ̸= ∅. Assume for contradiction that T \ (TW ∪ {p}) = ∅,
then µ(T \ (TW ∪ {p})) = 0. By (6) this implies µ(W ′ \ TW ) = 0 and hence W ′ \ TW = ∅
Then, however, both sides of (7) evaluate to 0; a contradiction. Thus, we know that
c(T \ (TW ∪ {p})) > 0.

By putting (6) and (7) together, we get that

µ(W ′ \ TW )∑
p′∈W ′\TW

∑
i∈N ′ di(p′)

<
µ(T \ (TW ∪ {p}))
c(T \ (TW ∪ {p}))

.

Since µ and c are additive, we can rewrite this inequality as∑
p′∈W ′\TW

µ(p′)∑
i∈N ′ di(p′)

<
∑

t∈T\(TW∪{p})

µ(t)

c(t)
.



Now we use the fact that min(ac ,
b
d ) ≤

a+b
c+d ≤ max(ac ,

b
d ) to obtain the following:

min
p′∈W ′\TW

{
µ(p′)∑

i∈N ′ di(p′)

}
≤

∑
p′∈W ′\TW

µ(p′)∑
i∈N ′ di(p′)

<
∑

t∈T\(TW∪{p})

µ(t)

c(t)
≤ max

t∈T\(TW∪{p})

{
µ(t)

c(t)

}
.

Let pmin = argminp′∈W ′\TW

{
µ(p′)∑

i∈N′ di(p′)

}
and tmax = argmaxt∈T\TW

{
µ(t)
c(t)

}
. Then it

follows that
µ(pmin)

c(pmin)
≤ µ(pmin)∑

i∈N ′ di(pmin)
<

µ(tmax)

c(tmax)
. (8)

In other words, pmin has a lower normalized satisfaction than tmax. Since µ is a DNS
function, we can conclude that c(tmax) ≤ c(pmin). By the first condition of DNS functions,
this implies µ(pmin) ≥ µ(tmax). However, then for the second inequality of (8) to hold, we
must have

∑
i∈N ′ di(pmin) > c(tmax), a contradiction to C6.

Proposition 4.8. Let µ be an additive satisfaction function that is not a DNS func-
tion. Then there exists an ABB instance (A,P, c, b) with satisfaction function µ such that
MES[µ#] violates µ-PJR-x.

Proof. We formally want to show that for any function s : R+ → R+, which is not DNS in
the sense that there are either values x, x′ ∈ R with x ≤ x′ such that

(i) µ(x) > µ(x′) or

(ii) µ(x)
x < µ(x′)

x′ .

there is some PB instance, with µ(p) = s(c(p)) such that MES[µ#] does not satisfy µ-PJR-x.
For readability we will just write µ instead of s.

Since µ is not DNS, there are values x, x′ ∈ R with x ≤ x′ such that

(i) µ(x) > µ(x′) or

(ii) µ(x)
x < µ(x′)

x′ .

Case (i). If x ≤ x′ but µ(x) > µ(x′). Without loss of generality, we can scale the instance
such that x = 1 and µ(x) = 1. Let p

q ∈ Q ∩ [x′ − 1, x′ − 1 + ε] for a sufficiently small ε (we

will see later what “sufficiently small” means). Next, since µ(x′) < 1 we can choose β ∈ N
large enough such that

µ(x′) +
1

β
< 1 (9)

We set the budget to b = β(x′ + ε). There are 2β + 2 projects in total; half of them cost 1
and half of them cost x′. There are q + p voters; q voters approve all projects and p voters
approve only the projects of cost x′.

The q voters approving everything are cohesive over β of the projects of cost 1, because

bq

p+ q
=

(β(x′ + ε))q

p+ q
≥ (β(x′ + ε))q

(x′ − 1 + ε)q + q

=
β(x′ + ε)

(x′ + ε)
= β



Let us consider how MES[µ#] behaves on this instance. Since

qx′

p+ q
≤ qx′

q + q(x′ − 1)
= 1,

we have 1
q ≥ x′

p+q . Therefore, MES[µ#] selects projects of cost x′ until the whole budget

is used. We can choose ε small enough, such that βε < 1. Then, MES[µ#] would choose
exactly β of the projects of cost x′ after which only βε budget is left, which is not enough
to afford any other project. Following this, all voters have a satisfaction of βµ(x′). Thus,
using (9), we obtain that βµ(x′) + 1 < β and therefore µ-PJR-x is not satisfied.

Case (ii). Next, we assume that x ≤ x′ but µ(x)
x < µ(x′)

x′ . In this case we only need a
single voter for whom MES[µ#] only buys projects of cost x, while this single voter values
projects of cost x′ more. We again scale the instance such that x = 1 and µ(x) = 1. Thus,

we know that µ(x′)
x′ > 1. Due to this, there must exist a β ∈ N with x′

µ(x′) < β−1
β . We set

the budget b = βx′.
It is easy to see that the single voter is cohesive over β projects of cost x′ with a utility

of βµ(x′). However, MES[µ#] would instead buy at most b projects of cost 1, resulting in a

satisfaction of b = βx′. Since x′

µ(x′) < β−1
β , we thus obtain βx′ + µ(x′) < βµ(x′), and hence

µ-PJR-x is not satisfied.

B A strengthening of µ-EJR-1

In this section, we consider a slightly stronger version of µ-EJR-1 that we call µ-EJR-1+.
The only difference to µ-EJR-1 is that we require the project p to come from T .

Definition B.1. An outcome W satisfies µ-EJR-1+with respect to an satisfaction function
µ and an ABB instance (A,P, c, b) if and only if for every T -cohesive group N ′ either T ⊆ W
or there exists a voter i ∈ N ′ and a project p ∈ T \W such that

µi(W ∪ {p}) > µi(T ).

By definition, µ-EJR-1+implies µ-EJR-1 and is implied by µ-EJR-x. We show that
MES[µ] satisfies µ-EJR-1+for additive satisfaction functions. The proof of this result will
also serve as a blueprint for proving Theorem 3.5

Theorem B.1. Let µ be an additive satisfaction function. Then MES[µ] satisfies µ-EJR-
1+.

Proof. Let (A,P, c, b) be an ABB instance. Let W = {p1, . . . , pk} be the outcome output
by MES[µ] on this instance where p1 was selected first, p2 second etc. For any 1 ≤ j ≤ k,
set Wj := {p1, . . . , pj}. Consider N ′ ⊆ N , a T -cohesive group, for some T ⊆ P . We show
that W satisfies µ-EJR-1+for N ′. If T ⊆ W , then µ-EJR-1+is satisfied by definition. We
will thus assume that T ̸⊆ W .

Let p∗ = max{c(p) | p ∈ T \ W} the most expensive project in T that is not in W .
Let k∗ be the first round after which there exists a voter i∗ ∈ S whose load is larger than
b
n − 1

c(p∗) . Such a round must exist as otherwise MES[µ] would not have terminated as the

voters in N ′ could still have afforded p∗. Let W ∗ = Wk∗ . Our goal is to prove that W ∗

satisfies µ-EJR-1+for S as there is a voter i∗ such that

µi∗(W
∗ ∪ {p∗}) > µi∗(T )



Due to the additivity of µ this is equivalent to

⇔ µi∗(W
∗) > µi∗(T \ {p∗})

⇔ µi∗(W
∗ ∩ T ) + µi∗(W

∗ \ T ) >
µi∗(T ∩W ∗) + µi∗(T \ (W ∗ ∪ {p∗}))

⇔ µi∗(W
∗ \ T ) > µi∗(T \ (W ∗ ∪ {p∗})). (10)

We now work on each side of inequality (10) to eventually prove that it is indeed satisfied.

We start by the left-hand side of (10). Let us first introduce some notation that allows
us to reason in terms of satisfaction per unit of load. For a project p ∈ W , we denote by
α(p) the smallest α ∈ Q>0 such that p was α-affordable when MES[µ] selected it. Moreover,
we define q(p)— the satisfaction that a voter that contributes fully to p gets per unit of
load—as q(p) := 1

α(p) .

Since before round k∗, voter i∗ contributed in full for all projects in W ∗ (as ℓi∗ < b
|S|

after each round 1, . . . , k∗), we know that α(p) · µi∗({p}) equals the contribution of i∗ for p
for any p ∈ W ∗. We thus have:

µi∗(W
∗ \ T )

=
∑

p∈W∗\T

µi∗({p})

=
∑

p∈W∗\T

α(p) · µi∗({p}) ·
1

α(p)

=
∑

p∈W∗\T

γi∗(p) · q(p), (11)

where γi∗(p) denotes the contribution of i∗ to any p ∈ W , defined such that if p has been
selected at round j, i.e., p = pj , then γi∗(p) = γi∗(Wj , α(pj), pj).

Now, let us denote by qmin the smallest q(p) for any p ∈ W ∗ \ T . From (11), we get

µi∗(W
∗ \ T ) ≥ qmin

∑
p∈W∗\T

γi∗(p). (12)

We now turn to the right-hand side of (10). We introduce some additional notation for
that. For every project p ∈ T , we denote by q∗(p) the share per load that a voter in S
receives if only voters in N ′ contribute to p, and they all contribute in full to p, defined as

q∗(p) =
µv(p)
c(p)
|N ′|

,

where v is any voter in N ′.
We have

µi∗(T \ (W ∗ ∪ {p∗}))

=
∑

p∈T\(W∗∪{p∗})

µi∗(p)

=
∑

p∈T\(W∗∪{p∗})

µi∗(p)
c(p)
|N ′|

· c(p)
|S|

=
∑

p∈T\(W∗∪{p∗})

q∗(p) · c(p)
|N ′|

(13)



Setting q∗max to be the largest q∗(p) for all p ∈ T \ (W ∗ ∪ {p∗}), (13) gives us:

µi∗(T \ (W ∗ ∪ {p∗})) ≤ q∗max ·
c(T \ (W ∗ ∪ {p∗}))

|N ′|
. (14)

In the aim of proving inequality (10), we want to show that

qmin ·
∑

p∈W∗\T

γi∗(p) > q∗max ·
c(T \ (W ∗ ∪ {p∗}))

|N ′|
. (15)

Note that proving that this inequality holds, would in turn prove (10) thanks to (12) and
(14). We divide the proof of (15) into two claims.

Claim 1. qmin ≥ q∗max.

Proof. Consider any project p′ ∈ T \ (W ∗ ∪ {p∗}). It must be the case that p′ was at
least 1

q∗(p) -affordable in round 1, . . . , k∗, for all p ∈ W ∗, as all voters in N ′ could have fully

contributed to it based on how we defined k∗.
Since no p′ ∈ T \ (W ∗ ∪ {p∗}) was selected by MES[µ], we know that all projects

that have been selected must have been at least as affordable, i.e., for all p ∈ W ∗ and
p′ ∈ T \ (W ∗ ∪ {p∗}) we have:

α(p) ≤ 1

q∗(p′)

⇔ q(p) ≥ q∗(p′)

⇔ qmin ≥ q∗max.

This concludes the proof of our first claim. ■

Claim 2.
∑

p∈W∗\T

γi∗(p) >
|T \ (W ∗ ∪ {p∗})|

|N ′|
.

Proof. From the choice of k∗, we know that the load of voter i∗ at round k∗ is such that

ℓi∗(W
∗) +

c(p∗)

|N ′|
>

b

n
.

On the other hand, since N ′ is a T -cohesive group, we know that

c(T )

|N ′|
=

c(T \ {p∗})
|N ′|

+
c(p∗)

|N ′|
≤ b

n
.

Linking these two facts together, we get

ℓi∗(W
∗) >

c(T \ {p∗})
|N ′|

.

By the definition of the load, we thus have:

ℓi∗(W
∗) =

∑
pj∈W∗

γi∗(pj) >
c(T \ {p∗})

|N ′|
.



This is equivalent to∑
pj∈T∩W∗

γi∗(pj) +
∑

pj∈T\W∗

γi∗(pj) >

c(T ∩W ∗)

|N ′|
+

c(T \ (W ∗ ∪ {p∗}))
|N ′|

(16)

Now, we observe that every voter in N ′ contributed in full for every project in W ∗. It
follows that the contribution of every voter in N ′ for a project pj ∈ T ∩ W ∗ is smaller or
equal to the contribution needed if the voters in N ′ would fund the project by themselves.
In other words, for all p ∈ T ∩W ∗ we have

γi∗(p) ≤
c(p)

|N ′|
.

It follows that ∑
pj∈T∩W∗

γi∗(pj) ≤
c(T ∩W ∗)

|N ′|
.

For (16) to be satisfied, we must have that∑
pj∈W∗\T

γi∗(pj) >
c(T \ (W ∗ ∪ {p∗}))

|N ′|

This concludes the proof of our second claim. ■

Putting together these two claims immediately shows that inequality (15) is satisfied,
which in turn shows that (10) holds. Since N ′, T and p∗ were chosen arbitrarily, this shows
that MES[µ] satisfied µ-EJR-1+.

C Sequential Phragmén and the Maximin Support
Method

Finally, we introduce two more priceable rules satisfying µ-PJR-x and C6. The first one
is a generalization of Phragmén’s sequential rule [5], the second one a generalization of the
maximin support method [20].

For an ABB instance (A,P, c, b) and a vector l = (li)i∈N , define

t(l, A, p, c) :=
c(p) +

∑
i∈Np

li

|Np|

Generalized Sequential Phragmén, introduced to PB by Los et al. [15], selects all outcomes
W that can result from the following iterative procedure:

W := ∅
for a l l i ∈ N :

li := 0
P := {p ∈ P :

∑
i∈N li + c(p) ≤ b}

while W \ P ̸= ∅ :
i f e x i s t s p′ ∈ argminp∈P\W t(⃗l, A, p, µ) s.t. c(W ∪ p′) > b :



break
else

for some p′ ∈ argminp∈P\W t(⃗l, A, p, µ) :

for a l l i ∈ Vp′ :
li := t(l, A, p′, µ)

W := W ∪ {p}
return W

The (generalized) maximin support method can be seen as a variant of (generalized)
sequential Phragmén in which the loads are rebalanced in each iteration.9 To define the
maximin support method, for a given outcome W we define a collection l = (li)i∈N of
functions to be a set of loads for W if li : W → R+ for each i ∈ N and the following
conditions hold:

•
∑

i∈N li(p) = c(p) for every p ∈ W

• li(p) = 0 if p /∈ Ai for every i ∈ N

For a given set of loads l, we let s(l) denote the maxmial total load of a voter, i.e., s(l) =
maxi∈N

∑
p∈W li(p).

The maximin support method now iteratively works as follows (in line 4, l denotes a set
of loads for W ∪ {p}):

W := ∅
P := {p ∈ P :

∑
p′∈W c(p′) + c(p) ≤ b}

while P ̸= ∅ :
i f e x i s t s p′ ∈ argminp∈P, loads l s(l) s.t. c(W ∪ p′) > b :

break
for some p′ ∈ argminp∈P, loads l s(l) :

W := W ∪ {p}
return W

Corollary 4.7. Sequential Phragmén and the maximin support method provide µ-PJR-x
for all DNS functions µ.

Proof. Consider Sequential Phragmén first. Los et al. [15] have shown that Sequential
Phragmén is priceable. We modify their proof to show that there always exists a price
system with B > b that satisfies C6. Consider an outcome W of Sequential Phragmén. We
can assume W ̸= P as otherwise µ-PJR is trivially satisfied. Then, Sequential Phragmén
terminated because there was a project p′ such that p′ ∈ argminp∈P\W t(⃗l, A, p, µ) and
c(W ∪ p′) > b. Consider the load distribution defined by li := t(l, A, p′, µ). We claim
that the following is a valid price system for W : Let B = n · maxi∈N (li). Furthermore,
let p1, . . . , pk be an enumeration of W in the order in which the projects are selected by
Sequential Phragmén and let lji be the load of voter i before project pj is selected. Finally,
let l0i = 0 for all i ∈ N . Then we define for all i ∈ N

di(p) =

{
lji − lj−1

i if p = pj for some j ≤ k

0 else.

9When Aziz et al. [3] allegedly generalized Phragmén’s sequential rule, they in fact generalized the
maximin support method because they employed rebalancing.



We observe that C1-C4 are satisfied by construction, similar to the proof of Los et al. [15].
For C5 we first observe that for p′ we have by construction.∑

i∈Np′

B∗
i =

∑
i∈Np′

t(⃗l, A, p′, µ)−
∑

p∈Ai∩W

di(p) =

∑
i∈Np′

t(⃗l, A, p′, µ)− lki = c(p′)

Further, assume that there is a p′′ ∈ P \W such that
∑

i∈Np′′
B∗

i > c(p′′). Then, we have

the following: ∑
i∈Np′′

B∗
i > c(p′′)

∑
i∈Np′

t(⃗l, A, p′, µ)− lki > c(p′′)

|Np′′ |t(⃗l, A, p′, µ)−
∑

i∈Np′′

lki > c(p′′)

t(⃗l, A, p′, µ) >
c(p′′) +

∑
i∈Np′′

lki

|Np′′ |
t(⃗l, A, p′, µ) > t(⃗l, A, p′′, µ)

However, this contradicts p′ ∈ argminp∈P\W t(⃗l, A, p, µ). It follows that C5 is satisfied.
Now consider C6. For the sake of a contradiction, assume there are pj , pk such that

pj ̸∈ W , pk ∈ W and
∑

i∈Nj
di(pk) > c(pj). Furthermore, let lki be the load of voter i before

pk was selected. and lk+1
i be the load of voter i after pk was selected. Then, we have the

following:

t(l⃗k, A, pj , µ) =
c(pj) +

∑
i∈Npj

lki

|Nj |

<

∑
i∈Nj

di(pk) +
∑

i∈Npj
lki

|Nj |

=

∑
i∈Nj

(lk+1
i − lki ) +

∑
i∈Nj

lki

|Nj |

=

∑
i∈Nj

lk+1
i

|Nj |
= t(l⃗k, A, pk, µ)

This is a contradiction to pk ∈ argminp∈P\W t(⃗l, A, p, µ) in the round where pk is selected.
It remains to show that B > b. We know that

∑
i∈Np′

 B

|N |
−

∑
p∈P

di(p)

 = c(p′)



Moreover, we know b < c(W ∪ p′). Using this, we get the following:

b < c(W ∪ p′) = c(p′) +
∑
i∈N

∑
p∈P

di(p)

= c(p′) +
∑

i∈Np′

∑
p∈P

di(p) +
∑

i∈N\Np′

∑
p∈P

di(p)

=
∑

i∈Np′

B

|N |
+

∑
i∈N\Np′

∑
p∈P

di(p)

≤
∑

i∈Np′

B

|N |
+

∑
i∈N\Np′

B

|N |
= B

This concludes the proof for Sequential Phragmén.
Similarly, for the maximin support, there had to be a p′ ∈ argminp∈P, loads l s(l) with

c(W ∩{p′}) > b. We can take the load l for this argmin and again set B = n·maxi∈N (li). We
can again construct the prices based on the loads, which satisfies C1-C4 by construction.
Further, same as for the first case, a candidate p′′ with

∑
i∈Np′′

B∗
i > c(p′′) would be a

better choice for the load l and thus also for all loads. Hence, p′ would not have been in
the argmin. Similarly, for C6 the candidate pj would immediately lead to a better load
distribution. Further, b < B also holds by the same proof.

D Local-BPJR

Aziz et al. [3] defined the following relaxation of µ-PJR (for µ = µc).

Definition D.1. An outcome W satisfies µ-Local-BPJR with respect to a satisfaction func-
tion µ and an ABB instance (A,P, c, b) if and only if there is no T -cohesive group N ′ such
that for any W ∗ ⊆ P with

⋃
i∈N ′ Ai ∩W ⊊ W ∗ it holds that

W ∗ ∈ argmax

{
µ(W ′) | W ′ ⊆

⋂
i∈N ′

Ai ∧ c(W ′) ≤ c(T )

}

Aziz et al. [3] show that this property is satisfied by the (generalized) maximin support
method (see Appendix C). In the unit-cost setting, µc-Local-BPJR does not imply PJR, as
the following example illustrates.

Example D.1. Consider the unit-cost ABB instance with three voters, projects P =
{p1, p2, p3, p4}, and the following approval sets: A1 = A2 = {p1, p2, p3} and A3 = {p1, p2}.
Let b = 2. Then W = {p3, p4} satisfies µc-Local-BPJR, as for any T -cohesive group N ′,
such that

T ∈ argmax{µ(W ′) | W ′ ⊆
⋂
i∈N ′

Ai ∧ c(W ′) ≤ |N ′| · 2
n

},

it either holds that

•
⋃

i∈N ′ Ai ∩W ̸⊆
⋂

i∈N ′ Ai or

• |
⋃

i∈N ′ Ai ∩W | ≥ |T |, thus maximal

However, W does not satisfy PJR because

• N = {1, 2, 3} is {p1, p2}-cohesive and



• |
⋃

i∈N Ai ∩W | = 1 < 2 = µc({p1, p2}).

In the unit-cost setting, µ-PJR-1 and µ-PJR-x are equivalent to µ-PJR for cost-neutral
and strictly increasing µ. Therefore, µ-PJR-1 and µ-PJR-x are not implied by µ-Local-BPJR
either.

The following example shows that, for µ = µc, µ-PJR-1 does not imply µ-Local-BPJR;
as a result, the two concepts are incomparable.

Example D.2. Consider the following ABB instance (A,P, c, b) with 1 voter, three projects
and budget b = 4:

p1 p2 p3
c(·) 2 2 3
µ(·) 1 1 1

We observe that the single voter is {p1, p2}-cohesive. We claim that {p1} satisfies µc-
PJR-1. Indeed, p3 ∈ Av \ {p1} and µc({p1, p3}) = 5 > 4 = µc({p1, p2}). On the other hand,
{p1} does not satisfy µc-Local-BPJR as Av ∩ {p1} ⊊ {p1, p2} and

{p1, p2} ∈

argmax

{
µc(W ′) | W ′ ⊆

⋂
v∈S

Av ∧ c(W ′) ≤ c({p1, p2})

}

D.1 Relation between µ-PJR-x and µ-Local-BPJR

We first show that µ-PJR-x is a strengthening of µ-Local-BPJR:

Proposition D.1. Given an ABB instance (A,P, c, b) and a satisfaction function µ, if W
satisfies µ-PJR-x, then it also satisfies µ-Local-BPJR.

Proof. Assume that W satisfies µ-PJR-x. For the sake of a contradiction, assume that µ-
Local-BPJR is violated and let N ′ be a T -cohesive group that witnesses this violation. That
means that there is an outcome W ∗ such that

(1)
⋃

i∈N ′ Ai ∩W ⊊ W ∗,

(2) W ∗ ⊆
⋂

i∈N ′ Ai, and

(3) c(W ∗) ≤ c(T ).

Condition (3) implies

c(W ∗) ≤ |N ′|b
n

,

which, together with (2) means that N ′ is W ∗-cohesive. Finally, from (1) it follows that
there is a p ∈ W ∗ \W , which by (2) must also be in

⋂
i ∈ N ′Ai. This means that N ′ is a

W ∗-cohesive group such that there is a p ∈
⋂

i ∈ N ′Ai \W for which

(W ∩
⋃
i∈N ′

Ai) ∪ {p} ⊆ W ∗

and hence by the definition of an approval-based satisfaction function

µ((W ∩
⋃
i∈N ′

Ai) ∪ {p}) ≤ µ(W ∗).

This contradicts the assumption that W satisfies µ-PJR-x.



Moreover, µc-PJR-x (i.e., PJR-x for the cost-based satisfaction function µc) on its own
implies µ-Local-BPJR for all satisfaction functions µ.

Proposition D.2. Consider an ABB instance (A,P, c, b) and W ⊆ P . If W satisfies
µc-PJR-x, then W satisfies µ-Local-BPJR for all satisfaction functions µ.

Proof. Assume that W satisfies µc-PJR-x and N ′ is a T -cohesive group, such that⋃
i∈N ′

Ai ∩W ⊆
⋂
i∈N ′

Ai

Then by µc-PJR-x, there is no p ∈
⋂

i∈N ′ Ai\W , such that

µc(
⋃
i∈N ′

Ai ∩W ∪ {p}) ≤ µc(
⋃
i∈N ′

Ai ∩ T ).

Therefore, there is no W ′, such that⋃
i∈N ′

Ai ∩W ⊂ W ′ ⊆
⋂
i∈N ′

Ai

for which c(W ′) ≤ c(T ) holds. Thus, W satisfies µ-Local-BPJR.


