
Identifying and Eliminating Majority Illusion

in Social Networks

Umberto Grandi, Lawqueen Kanesh, Grzegorz Lisowski, M.S. Ramanujan
and Paolo Turrini

Accepted as full paper at AAAI’23.

Abstract

Majority illusion occurs in a social network when the majority of the network vertices
belong to a certain type but the majority of each vertex’s neighbours belong to a
different type, therefore creating the wrong perception, i.e., the illusion, that the
majority type is different from the actual one. From a system engineering point of
view, this motivates the search for algorithms to detect and, where possible, correct
this undesirable phenomenon. In this paper we initiate the computational study
of majority illusion in social networks, providing NP-hardness and parametrised
complexity results for its occurrence and elimination.

1 Introduction

Social networks shape the way people think. Individuals’ private opinions can change as a
result of social influence and a well-placed minority view can become what most people come
to believe [28]. The COVID-19 vaccination debate has brought to the fore the dramatic
effects that misperception can have [19], highlighting the importance of social networks
where participants receive the most unbiased information possible.

When individuals use their social network as a source of information, it may be the
case that minority groups are more “visible” as a result of being better placed. This makes
them over-represented, and even appear to be majorities in many friendships’ groups – a
phenomenon known as majority illusion. Majority illusion was originally introduced by
Lerman et al. [26], who studied the existence of social networks in which most agents belong
to a certain binary type, but most of their peers belong to a different one. Thus, they
acquire the wrong perception, i.e., the illusion, that the majority type is different from the
actual one. Figure 1 shows an example of this.

Figure 1: An instance of majority illusion. The well-placed red (shaded) minority is per-
ceived as majority by everyone.

Majority illusion has important consequences when paired with opinion formation. If,
for example, individuals change their mind based on what their friends say, e.g., they follow
a threshold model [16], then majority illusion means that strategically placed minorities
may well become stable majorities. As such it is important to predict its occurrence in a
network and, crucially, to see to it that this undesirable phenomenon is eliminated.

The graph structure of majority illusion was analysed by Lerman et al. [26], who studied
network features that correlate with having many individuals under illusion. They demon-
strated how disassortative networks, i.e. those in which highly connected agents tend to link
with lowly connected ones, increase the chances of majority illusion. However, no algorithms
have yet been provided to check whether majority illusion can occur in a social network.

Likewise, the approach of eliminating undesirable properties by network transformation
is not new, and extensively pursued in the context of election manipulation (see, e.g., Cas-
tiglioni et al. [8]), influence maximisation [30], anonymisation (see, e.g., Kapron et al. [21])
and of k-core maximisation (see, e.g., Chitnis and Talmon [9] and Zhou et al. [31]). How-
ever, such natural operations have yet to be studied in the context of eliminating majority
illusion.

All in all, the computational questions of checking whether a network admits majority
illusion and how this can be eliminated, are still unexplored.

Our Contribution. In this paper we initiate the algorithmic analysis of majority illusion
in social networks, focusing on two computational questions. We first consider the problem
of verifying the possibility of illusion, i.e., deciding whether there is a labelling of the vertices
such that a set majoritarian fraction of agents are under illusion, and we prove it to be NP-
complete. Our NP-hardness proof techniques also imply NP-hardness on bipartite networks,
planar networks, networks of constant maximum degree and networks of constant c-closure.
In light of these negative results, we aim to identify tractable restrictions of the problem
by carrying out a parametrised complexity analysis involving well-established graph width
measures and their variants. In particular, we obtain a fixed-parameter algorithm (FPT
algorithm) for this problem parametrised by the maximum degree of the network plus its
tree width, as well as by the size of the minimum vertex cover. Along the way, we show that
for every constant value of the network’s tree width, the problem can be solved in polynomial
time (i.e., an XP algorithm parametrised by the tree width). These two results are of specific
interest to sparse networks. We then also consider dense networks by parameterising by the
neighborhood diversity of the input network and obtain an FPT algorithm. Finally we move
to the problem of eliminating illusion, which we model as edge transformation by bounded
Hamming distance. We show this problem to be NP-complete in general and W[1]-hard
when parametrised by arguably the most natural parameter, i.e., the number of modified
edges.

Related Work. Our results are grounded in a number of research lines in artificial in-
telligence, notably those dealing with the computational analysis of agent interaction and
collective decision-making.

Opinion Manipulation. Our work is directly related to computational models of social
influence. The closest work is that of Auletta et al. [4], who identify networks and initial
distributions of opinions such that an opinion can become a consensus following local ma-
jority updates. Observe in this respect that when all vertices are under majority illusion,
a synchronous majoritarian update causes an initial minority to evolve into a consensus in
just one step. However, checking for the possibility of majority illusion does not correspond
to checking whether a minority colour can be adopted by the majority of agents, as studied
by Auletta et al. [2, 3]. Note also that the minority colour can be adopted by the majority
in one step even if only a small fraction of agents is under majority illusion.

Other notable models include the work of Doucette et al. [11] who studied the propa-
gation of possibly incorrect opinions with an objective truth value in a social network, and
the stream of papers studying the computational aspects of exploiting (majoritarian) social
influence via opinion transformation [22, 6, 4, 7].

Network Manipulation. An important research line has looked at how to transform a
social network structure with applications in the voting domain. Wilder and Vorobeychik
[29], e.g., studied how an external manipulator having a limited budget can select a set of
agents to directly influence, to obtain a desired outcome of elections. In a similar setting,
Faliszewski et al. [12] studied bribes of voters’ clusters. In Section 4 we take a similar
approach, with the specific objective of eliminating a majority illusion.

There are also various other accounts of paradoxical effects in social networks which
are related to our work, such as the friendship paradox, according to which, on average,
individuals are less well-connected than their friends (see, e.g. Hodas et al. [18], Alipourfard
et al. [1]). Exploiting a similar paradox, Santos et al. [27] recently showed how false consensus
leads to the lack of participation in team efforts. Parametrised complexity of problems
related to social networks is an established research direction (see, e.g., Bredereck and
Elkind [6]).

Paper Structure. Section 2 provides the basic setup and definitions. Section 3 focuses
on checking if illusion can occur in a network while Section 4 studies illusion elimination.
Section 5 concludes the paper presenting potential future directions. In the interest of space
some proofs are omitted and can be found in the extended version of this paper1.

2 Preliminaries

Our model features a set N of agents, connected in a graph (N,E), with E ⊆ N2. For
convenience, we also denote |N | as n. Throughout the paper we will consider undirected
graphs, requiring E to be symmetric. Furthermore, we assume that E is irreflexive, i.e., that
E does not include self-loops. We call such a graph a social network. For i ∈ N we denote
as N(i) = {j ∈ N : (i, j) ∈ E} the set of agents that i is following We assume that each of
the agents on the network has an opinion, which we model as a labelling. Throughout the
paper we assume a binary set of colours {b, r} (blue and red, respectively).

Definition 1 (Labelled Social Network). A labelled social network is a tuple (N,E, f),
where (N,E) is a social network and f : N → {b, r} is a labelling which assigns an alter-
native to each agent.

In a graph where every vertex is labeled blue or red, the blue surplus of a vertex is the
number of its blue neighbours minus the number of its red neighbours. For a vertex set X
and a labelling f : X → {b, r}, we define the red neighbourhood of a vertex i under f as
the set of neighbours of i in X that are assigned the label r by f , and this set is denoted
by NX

f,r(i). The analogue of this definition for blue neighbourhood is symmetric. Moreover,

for a set S ⊆ N , RS
f is the set of red vertices in S, while BS

f is the set of blue vertices in S.
We drop the explicit reference to X or f in this notation if clear from the context.

Majority Illusion. A colour k ∈ {b, r} is a strict majority winner in a labelled social
network (N,E, f) if there are strictly more vertices coloured with k than with k′ such that
k′ = {b, r} \ k. We use W(N,E,f) to denote such a winner if it exists. Similarly, a colour k
is a strict majority winner in i’s neighbourhood if i’s k surplus is strictly positive. We use
W i

(N,E,f) to denote such a winner if it exists. We say that an agent i ∈ N is under illusion if
they have a wrong perception of the majority winner. So, for agent i to be under illusion in
a (N,E, f), we must have that: W(N,E,f) and W i

(N,E,f) exist, and that W i
(N,E,f) ̸= W(N,E,f).

In this paper we are concerned with the proportion of agents in a network that are under
illusion. For that we define the concept of q-majority illusion.

1shorturl.at/aisxB

Definition 2 (q-majority illusion). For a given social network (N,E), fraction q and la-
belling f : N → {b, r}, we say that f induces a q-majority illusion, if at least q·|N | agents
are under illusion in (N,E, f).

If there is a labelling of a network (N,E) which induces a q-majority illusion, then we say
that (N,E) admits a q-majority illusion. Henceforth, we assume that the majority colour
is blue, whenever one exists.

Parametrised Complexity. We say that a problem with an input I is fixed-parameter
tractable (FPT), or that it is in the class FPT, for a parameter k, if it is solvable in time
O(f(k) · |I|c) for some computable function f and constant c independent of k. Moreover, a
problem is in XP for a parameter k, if there exists an algorithm solving this problem running
in time |I|f(k) (called an XP-algorithm), where f is some computable function. Note that
FPT ⊆ XP. Further, the W-hierachy defines a series of complexity classes extending XP
and showing that a problem is hard for any class in this hierarchy is evidence that the
problem is unlikely to be in FPT. To define W[1]-hardness, let us recall the definition of
the classic k-clique problem. There, given a graph G, it is checked whether G includes
a clique of size k as a subgraph. In the context of our paper, we say that a problem P is
W[1]-hard parametrised by r, if there is a many-one reduction to it from k-clique [10] in
time f(k) · |I|O(1) (where I is the instance of k-clique), with r ≤ g(k) some computable
function g.

Tree Decomposition. Tree width is a fundamental graph parameter, useful for the design
of parametrised algorithms, which is crucial in our analysis. Intuitively, this measurement
indicates how “close” a graph is to a tree. Then, an FPT (or even XP) algorithm for
a problem parametrised by the tree width implies a polynomial-time algorithm on “tree-
like” graphs. Given a graph G, let V (G) and E(G) denote the vertex and edge set of G,
respectively. For a rooted tree T and a non-root vertex t ∈ V (T), by parent(t) we denote
the parent of t in the tree T . For vertices u, t ∈ T , we say that u is a descendant of t,
denoted u ⪯ t, if t lies on the unique path from u to the root. Note that every vertex is its
own descendant. If u ⪯ t and u ̸= t, then we write u ≺ t.

Definition 3. A tree decomposition of a graph G is a pair (T, β) of a tree T (whose vertices
are called nodes) and a function β : V (T) → 2V (G), such that: (i)

⋃
t∈V (T) β(t) = V (G),

(ii) for every edge e ∈ E(G), there exists a node t ∈ V (T) such that both endpoints of e
belong to β(t), and (iii) for every vertex v ∈ V (G), the subgraph of T induced by the set
Tv = {t ∈ V (T) : v ∈ β(t)} is a tree.

The width of (T, β) is maxv∈V (T){|β(v)|} − 1. The tree width of G, which we also refer
to as tw(G), is the minimum width of a tree decomposition of G.

Let (T, β) be a tree decomposition of a graph G. We always assume that T is a rooted
tree and so, we have a natural parent-child and ancestor-descendant relationship among
vertices in T . The set β(t) is the bag at node t. For a node t ∈ V (T), by Vt, we denote the
set

⋃
t′⪯t β(t

′), i.e., the set of all the vertices in the bags in the subtree of T rooted at t.
When designing algorithms using tree decompositions, it is helpful to work with a nice tree
decomposition.

Definition 4. Let (T, β) be a tree decomposition of a graph G, where r is the root of T .
The tree decomposition (T, β) is called a nice tree decomposition if the following conditions
are satisfied.

1. β(r) = ∅ and β(ℓ) = ∅ for every leaf node ℓ of T ;

2. Every non-leaf node (including the root node) t of T is of one of the following types:

• Introduce node: The node t has exactly one child t′ in T and β(t) = β(t′)∪{v},
where v /∈ β(t′).

• Forget node: The node t has exactly one child t′ in T and β(t) = β(t′) \ {v},
where v ∈ β(t′).

• Join node: The node t has exactly two children t1 and t2 in T and β(t) =
β(t1) = β(t2).

We note that, using a well-known, polynomial-time algorithm, we can convert any given
tree decomposition to a nice tree decomposition of the same width [10].

Further Graph Parameters. Another graph parameter we consider is the neighbourhood
diversity [24] which captures the number of “twin classes” in the graph. We say vertices u
and v are twins if they have the same neighbours, i.e. N(u) \ {v} = N(v) \ {u}.

Definition 5. The neighbourhood diversity (ND) of a graph G (which we also denote as
nd(G)), is the minimum w such that V (G) can be partitioned into w sets of twin vertices.
Each set of twins, called a module, is either a clique or an independent set. We call these
clique modules and independent modules respectively.

Note that graphs of bounded tree width are sparse. That is, the number of edges in a
graph of tree width k is O(kn). On the other hand, graphs of bounded ND can be dense. For
instance, a complete graph has a ND of 1, but has Ω(n2) edges. Moreover, note that ND is
“incomparable” with tree width. That is, there are graphs of constant ND with unbounded
tree width (e.g., a clique) and graphs of constant tree width with unbounded ND (e.g., a
path).

We will further consider a property of a social networks that has gained importance in
recent years, i.e., the c-closure [13, 14, 23]. For a natural number c, We say that a network is
c-closed, if every pair of vertices in this network that have at least c neighbours in common
are adjacent. This concept was introduced to capture the spirit of “social-network-like”
graphs without relying on probabilistic models. Note that c-closure generalises one of the
most agreed-upon properties of social networks—triadic closure, the property that when
two agents in social network have a friend in common, they are likely to be friends. Fox
et al. [14, Table A.1], and later Koana et al. [23, Table 1], showed that several social and
biological networks are c-closed for small values of c.

3 Verifying the Possibility of Illusion

We are interested in the problem of checking, for a specific q, if a given network admits
q-majority illusion. Formally:

q-majority illusion:
Input: Social network (N,E).
Question: Is there a labelling f : N → {b, r} such that f induces a q-majority
illusion?

3.1 Hardness

We now prove that q-majority illusion is NP-hard for every rational q ∈ (12 , 1], by
reduction from the NP-hard problem 2P2N-3-SAT for every such q. In 2P2N-3-SAT

we check the satisfiability of a given CNF formula in which all clauses have exactly three
literals, and in which every variable appears exactly twice in the positive, and twice in the
negative form, i.e., it is in 2P2N-3-CNF (see [5]). In our reduction, which can be found in
the extended version of this paper, we construct an encoding of a formula φ in 2P2N-3-CNF,
which is a social network admitting 1-majority illusion if and only if φ is satisfiable.

To this end, we construct what we call a variable gadget, for every variable pi in φ.
Within these structures we distinguish two literal vertices, corresponding to pi and to ¬pi
respectively. Also, for every clause Cj in φ, we create what we call a clause gadget. There,
one of the vertices is adjacent to all vertices corresponding to the literals in Cj . We also use
what we call a balance gadget, a structure whose vertices are labelled r, if a labelling induces
a 1-majority illusion in the encoding of φ. We obtain that a labelling of the encoding which
we construct induces 1-majority illusion only if exactly one of the literal vertices in each
variable gadgets is labelled r, and a vertex in every clause gadget is adjacent to some literal
vertex labelled r. It follows that the encoding of φ admits 1-majority illusion if and only if
φ is satisfiable.

We then obtain NP-hardness of q-majority illusion for every rational q ∈ (12 , 1] using
the fact that, for every such q, we can extend the encoding Eφ of φ by a number of pairs
of vertices such that a labelling of this extended network induces q-majority illusion if and
only if all of the vertices in Eφ, and half of the vertices in the additional pairs, are under
illusion. We also obtain that the problem is NP-hard for bipartite networks by ensuring
that all of the components of the construction are bipartite. We defer the full proof to the
extended version of this paper.

Theorem 1. q-majority illusion is NP-complete for every rational q in (12 , 1], even on
bipartite graphs.

Moreover, by inspecting all pairs of vertices in the construction in the proof of Theorem
1, we get that q-majority illusion is NP-complete also for networks in which minimum
c-closure is bounded by a constant.

Observation 1. q-majority illusion is NP-complete for every rational q in (12 , 1] even
for networks with minimum c-closure bounded by 3.

Furthermore, again by examining the reduction used in the proof of Theorem 1, we get
that q-majority illusion is NP-complete even if the maximum degree of a vertex in a
network is bounded by a constant.

Observation 2. q-majority illusion is NP-complete for every rational q in (12 , 1] even
for networks with maximum degree bounded by 6.

It is important to note that in order to obtain Observations 1 and 2, we crucially use
the fact that the formulas we encode are 2P2N-3-CNF.

We further show that the q-majority illusion problem is NP-complete also for planar
networks. This result rules out using the genus of the graph or other generalisations of
planarity as possible structural restrictions to get polynomial-time algorithms. We show
it by reduction from Planar 3-SAT where one is given a formula φ in 3-CNF such that
the incidence graph of φ is planar, and the goal is to decide whether φ is satisfiable. The
reduction that we use to prove this result is similar to the one used in the proof of Theorem
1. However, it is non-trivial to design appropriate planar gadgets to ensure that the reduced
instance is planar. The proof can be found in the extended version of this paper.

Theorem 2. q-majority illusion is NP-complete for every rational q in (12 , 1] even for
planar networks.

Then, from the fact that networks with clique size greater than 4 are not planar, we get
the following observation.

Observation 3. q-majority illusion is NP-complete even for networks with maximum
clique-size bounded by some constant greater than 4, for every rational q ∈ (12 , 1].

3.2 Parametrised Complexity

The NP-completeness results for q-majority illusion motivate the study of this problem
from the perspective of parametrised complexity, aiming at identifying restrictions on the
input that allow for tractability. Note that our result that q-majority illusion is NP-
hard on networks of constant max-degree implies that, unless P=NP, q-majority illusion
does not even have an algorithm with running time nf(∆) for any computable function f ,
where ∆ is the max-degree. So, q-majority illusion is Para-NP-hard parametrised by ∆.
Hence, we must extend this parameterisation using other structural properties of the graph.
Our first FPT result (Theorem 3) states that there exists a FPT algorithm for q-majority
illusion parametrised by the max-degree and tree width of the input network.

We next sketch this algorithm. Suppose that the input network has tree width k and
we have a nice tree decomposition (T, β) for it of width at most w = O(k). This can be
computed using known results in time 2O(k)nO(1). We define a boolean function H whose
domain is the set of all tuples where each tuple comprises a node t ∈ V (T), a labelling
col : β(t) → {red, blue} of vertices in the bag β(t), a function esurp : Vt → {−∆, . . . ,∆},
where esurp(v) = 0 for all v ̸∈ β(t), a function isurp : β(t) → {−∆, . . . ,∆}, some α ∈ [n], and
some ℓr ∈ [n]. If β(t) = ∅, then col, esurp, isurp = ∅. We defineH(t, col, esurp, isurp, α, ℓr) = 1
if and only if there is a labelling ρ : Vt → {red, blue} such that the following hold:

1. for every i ∈ β(t), ρ(i) = col(i),

2. the size of the set RVt
ρ = {i ∈ Vt : ρ(i) = r} is ℓr,

3. α is the size of the set {i ∈ Vt : |NVt
ρ,r(v)| > |NVt

ρ,b(i)|+ esurp(i)},

4. for every i ∈ β(t), isurp(i) = |NVt

ρ,b(i)| − |NVt
ρ,r(i)| is the internal blue surplus of every

vertex in β(t) under ρ.

The intuition behind the description of the function is the following. Take a hypothetical
labelling γ for the (N,E) that witnesses that (N,E) admits q-majority illusion, fix a bag
β(t) and let δ be the restriction of γ to the set Vt. Then,

• col is the restriction of δ to the vertices of the bag β(t).

• The function esurp (read external surplus) describes the blue surplus for the vertices
in Vt that is provided by the vertices outside the set Vt. Note that only vertices of
the bag β(t) get non-zero blue surplus from outside Vt (since only these vertices have
any neighbours at all outside Vt by the definition of a tree decomposition) hence, we
may assume a value of 0 “external” blue surplus for all vertices not in β(t). On the
other hand, since the max-degree of the graph is ∆, the “external” blue surplus of any
vertex in β(t) is at least −∆ and at most ∆.

• The value of ℓr is simply the number of vertices of Vt that are assigned red by γ, and
hence also by δ.

• The number α is the number of vertices of Vt that are under illusion under γ. This
includes all vertices in Vt \ β(t) that have more red neighbours than blue neighbours
under δ and all vertices in β(t) for which, if we add up the blue surplus given by
vertices in Vt (which can be deduced from col) and the blue surplus from outside Vt

(which is given by the function esurp), we get at most -1.

• The function isurp (i.e., internal surplus) describes the blue surplus for the vertices in
β(t) provided by the vertices within Vt. As for esurp, since the max-degree is ∆, the
range of the function lies in {−∆, . . . ,∆}.

The crux of our correctness is that, if we could find a labelling ρ for Vt that is not
necessarily δ, but has the same “signature” of δ in terms of col, ℓr, α, isurp given the same
esurp, then we can “cut” δ from γ and replace it with ρ to get another labelling of G with
exactly the same number of vertices under illusion as γ. This gives us the so-called optimal
substructure property, crucial for dynamic programming.

Note that there are 2w+1 · (2∆ + 1)2(w+1)nO(1) = ∆O(w)nO(1) possible tuples. This is
because each bag contains at most w + 1 vertices, implying at most 2w+1 possibilities for
col at any bag. Since, for any bag, esurp can only have at most 2∆ + 1 possible values for
any vertex in a bag, we get that there are at most (2∆+1)w+1 possibilities for esurp at any
bag. The same bound extends to isurp. The remaining elements of the tuple, α and ℓr, are
bounded by n. So, there are at most n2 possibilities for them at any bag.

Now, suppose that we have computed H(t, col, esurp, isurp, α, ℓr) for all possible valid
values of the arguments. Notice that if this is achieved, then we can answer whether G
admits q-majority illusion by examining the table entries corresponding to the root bag
β(t⋆), which by the definition of a nice tree decomposition, is empty. Then, we have that
(N,E) admits q-majority illusion if and only if there exists values ℓr ∈ [n] and α ∈ [n] such
that α ≥ ⌈qn⌉, lr < n

2 , and H(∅, ∅, ∅, α, ℓr) = 1.
Our algorithm relies on the fact that we can compute the table entries at each bag

assuming that all the table entries at all descendant bags have been computed correctly
(the base case is leaf bags, which are by definition empty). The details of this procedure can
be found in the extended version of this paper. We note that time taken to fill the entries
for any one bag is bounded by ∆O(w)nO(1) and we have already argued that there is a total
of ∆O(w)nO(1) possible tuples corresponding to each bag. The stated running time follows.

Theorem 3. q-majority illusion can be solved in time ∆O(k)nO(1) on networks of tree
width k and max-degree ∆.

We next discuss some immediate implications of the above result. First of all, notice
that ∆ ≤ n. Hence, our FPT algorithm parametrised by ∆ and the tree width is in fact an
XP algorithm parametrised by the tree width alone.

Corollary 1. q-majority illusion can be solved in time nO(k) on networks of tree width k.

Then, consider the following relation between tree width and the parameter
cliquewidth [17] (denoted by cw(G)) on bounded-degree graphs.

Proposition 1. [17] Let G be a graph that does not contain the complete bipartite graph
Kd,d as a subgraph. If cw(G) ≤ k, then tw(G) ≤ 3k(d− 1)− 1.

Since graphs with max-degree ∆ exclude K∆+1,∆+1 as a subgraph, Proposition 1 along
with Theorem 3 implies that q-majority illusion is FPT parametrised by the maximum
degree and cliquewidth of the input graph.

Corollary 2. q-majority illusion can be solved in time ∆O(∆·k)nO(1) on networks of
max-degree ∆ and cliquewidth k.

Neighbourhood Diversity. Here, we show that q-majority illusion is FPT
parametrised by ND. We will use as a subroutine the well-known FPT algorithm for ILP-
Feasibility. The ILP-Feasibility problem is defined as follows. The input is a matrix
A ∈ Zm×p and a vector b ∈ Zm×1 and the objective is to find a vector x̄ ∈ Zp×1 satisfying
the m inequalities given by A, that is, A · x̄ ≤ b, or decide that x̄ does not exist.

Proposition 2. [25, 20, 15] ILP-Feasibility can be solved using O(p2.5p+o(p)·L) arithmetic
operations and space polynomial in L, where L is the number of bits in the input and p is
the number of variables.

We further rely on the following facts capturing the relation between vertices of the same
module in a labelled social network (proof in the extended version of this paper).

Lemma 1. Let (N,E) be a social network, and let T = {T1, . . . , Tk} denote a partition of
N into k modules. Further, let f : N → {r, b} be a labelling, where b is the majority colour.
Then, the following hold:

1. If a vertex of an independent module is under illusion under f , then every vertex of
this module is under illusion.

2. If a blue vertex (i.e, vertex labelled b) of a clique module is under illusion under f ,
then all blue vertices in this module are also under illusion.

3. If a red vertex of a clique module is under illusion under f , then every vertex in this
module is also under illusion.

Let (N,E) be the given input social network and let T = {T1, . . . , Tk} be the partition
of N into k modules (k is the neighborhood diversity), each of which is a clique or an
independent set. The set T can be computed in polynomial time [24]. For every i ∈ [k],
let adj(i) be the set {j ∈ [k] : j ̸= i and ∃u ∈ Ti, v ∈ Tj : (u, v) ∈ E}. That is, adj(i)
comprises the indices of all modules Tj in which least one vertex (and hence all vertices) is
adjacent to a vertex of Ti (and hence to all vertices of Ti). Let χ = ⌈qn⌉ denote the required
number of vertices to be under illusion to have a q-majority illusion. The main idea is to
construct 2O(k) instances of ILP-Feasibility each with O(k) variables such that if there is
a q-majority illusion, then the solution to one of these ILP-Feasibility instances can be
used to get a solution to the given instance of q-majority illusion.

Let C denote the set of all clique modules in T and let I denote the set of all independent
modules in T .

ILP Instance. We are now ready to start describing the design of the ILP-Feasibility
instances. For every:

• Clique-col: C → {red, blue, both},

• Clique-maj: C → {blue, all, none}, and

• Ind-maj: I → {all, none},

we construct one ILP-feasibility instance for which the set of variables and constraints will
be discussed shortly. We first sketch the intuition behind these functions. Let ρ : V (G) →
{red, blue} be a labelling that places at least χ vertices under illusion (if one exists). Then,
the function Clique-col expresses, for every clique module, whether it contains both red and
blue vertices according to ρ (in which case this module is mapped to both) or it contains
only red vertices (in which case this module is mapped to red) or it contains only blue

vertices (then this module is mapped to blue). The function Clique-maj expresses, for every
clique module, whether no vertices are under illusion (mapped to none) or only blue vertices
are under illusion (mapped to blue) or all vertices are under illusion (mapped to all) under
ρ. Recall from the second and third statements of Lemma 1 that these are the only three
possibilities. The function Ind-maj expresses, for every independent module, whether all
vertices in the module are under illusion (mapped to all) in the optimal labelling or none of
them are under illusion (mapped to none). Recall from the first statement of Lemma 1 that
these are the only two possibilities. If ρ exists, then a “correct” triple of these functions
exist. Notice that there are at most 3k possibilities for Clique-col and Clique-maj and at
most 2k possibilities for Ind-maj. Hence, we may iterate over all possible at most 18k triples
of functions and we know that at least one of these triples is the “correct” one if ρ exists.

Now, let us fix the functions Clique-col, Clique-maj, Ind-maj and describe the ILP-
Feasibility instance corresponding to it. In order to better understand the constraints
we will design, we encourage the reader to consider the three selected functions to be the
“correct” ones that correspond to ρ. We will also assume that these functions are consistent
with each other. That is, if Clique-col (Ti) is red (respectively, blue), then it cannot be the
case that Clique-maj (Ti) is blue (respectively, red). In other words, if we guess that every
vertex of Ti is labelled red, then we will not guess that all the blue vertices of Ti will be
under illusion. Moreover, we have a convention that in Clique-maj, all takes “priority” over
red or blue. That is, if Clique-col (Ti) is blue, then Clique-maj (Ti) is either none or all and
never blue. This is because setting it to all achieves the same effect as setting it to blue since
all vertices in Ti are blue. Any triple of functions where these conditions are not satisfied is
discarded.

Constraints in the Instance. We now describe the ILP-Feasibility instance. For
every i ∈ [k], let si denote the size of V (Ti). We know the value of each si since we know
T . The set of variables in this instance is

⋃
i∈[k]{ri, bi, pi}. The intuitive meaning of these

variables is the following. Recall that ρ is a hypothetical optimal labelling that places at
least χ vertices under illusion. Then, for every module Ti, ri represents the number of
vertices of Ti labelled red by ρ. Also, bi is the number of vertices in Ti labelled blue by
ρ and pi is used to represent the number of vertices of Ti that are under illusion under ρ.
Notice that we have 3k variables in total. This lets us formulate a number of constraints
such that if we solve the ILP-Feasibility instance corresponding to some triple, then we
can recover a labelling admitting q-majority illusion (which may not be the same as ρ).
Among others, we encode constraints saying that the number of blue and red vertices is in
each module is equal to the size of that module, and that blue is the strict majority colour.
We also ensure that the number of vertices under illusion from each Ti is at least pi and
the total number of vertices under illusion is at least χ. Also, for clique and independent
modules, we add constraints ensuring that the number of vertices under illusion in these
modules is consistent with Ind-maj and Clique-maj. The formal description of the constraints
can be found in the extended version of this paper.

The running time is bounded by the time required to compute T (polynomial) plus
18k multiplied by the time required to construct an ILP-Feasibility instance and exe-
cute Proposition 2 (which is bounded by 2O(k log k)nO(1)). This gives an overall bound of
2O(k log k)nO(1) on our algorithm, giving us the following result.

Theorem 4. q-majority illusion can be solved in time 2O(k log k)nO(1) on networks of
neighbourhood diversity k.

Since graphs with vertex cover number (VC) at most k have ND at most k + 2k [24],
Theorem 4 gives us an FPT algorithm parametrised by VC as a corollary.

Corollary 3. q-majority illusion can be solved in time 22
O(k)

nO(1) on networks with VC
equal to k.

Table 1 shows an overview of the parametrised complexity results obtained in this section.

Parameters

FPT ∆ + tw, ∆ + cw, ND, VC

XP tw

Para-NP-Hard ∆, c-closure, max-clique-size

Table 1: Main parametrised complexity results in Section 3.

4 Eliminating Illusion

We now turn to the problem of reducing the number of vertices under illusion in a given
labelled network, by modifying the connections between them. Namely, we consider the
problem of checking if it is possible to ensure that a q-majority illusion does not hold in a
labelled network by altering only a bounded number of edges.

q-Illusion Elimination:
Input: (N,E, f) such that f induces q-majority illusion in (N,E, f), k ∈ N such
that k ≤ |E|.

Question: Is there a (N,E′, f) such that |{e ∈ N2 : e ∈ E iff e /∈ E′}| ≤ k and f
does not induce q-majority illusion in (N,E′, f)?

We also consider two refinements of this problem, Addition q-Illusion Elimination
in which we restrict the possible actions to adding edges and Removal q-Illusion Elimi-
nation for removing edges.

4.1 Hardness

In this section we show that q-Illusion Elimination is NP-complete. In fact, our con-
struction implies that this problem is also W[1]-hard parametrised by the number of changed
edges in a social network, which we denote as m. We obtain that by providing the required
reduction from k-clique.

Let us present the high-level description of this proof, which can be found in the extended
version of this paper. First, for a given graph G = (NG, EG), we construct an instance ENG

of q-Illusion Elimination, i.e., a labelled social network (N,E, f), and a natural number
k′, such that G contains a k-clique if and only if it is necessary and sufficient to eliminate
edges between the vertices in a k-clique in the structure which we call a G-gadget to ensure
that there are at most |NG − k| vertices under illusion in the modified network. So, k′ is
interpreted as an allowed number of edge alternations. To define the G-gadget, we take G,
with all vertices in G labelled r, as a subnetwork of ENG. Then, for every vertex i in this
gadget we construct a number of red and blue vertices adjacent to i such that red has the
majority of k− 1 in i’s neighbourhood. We also ensure that the only vertices under illusion
are the vertices in the G-gadget by constructing additional vertices in ENG. Setting k′ to
k2 − k, i.e., the number of edges in a k-clique, we get that if there exists a k-clique in G,
then it is sufficient to eliminate edges within this clique to ensure that k of its members are
not under illusion anymore. Then, if there is no k-clique in the G-gadget, we demonstrate

that eliminating illusion from k vertices in this encoding requires the modification of at least
k2 − k + 2 edges. This concludes the proof of the claim.

We further extend the previously discussed construction to show that the NP-hardness
of q-Illusion Elimination holds for every rational q ∈ (0, 1). So, for every graph G,
and for every such q, we provide an instance I of q-Illusion Elimination, for which the
answer is positive if and only if G contains a k-clique. Towards this end, take a graph G and
consider the encoding ENG. To ensure that the claim holds, we extend ENG with a what we
call an m-pump-up, or with what we call an m-pump-down gadget. The m-pump-up gadget
is a structure such that, if an m-pump-up gadget is embedded in a network in which b is
the majority winner, then m + 4 vertices are under illusion in the gadget, while 4 are not.
Also, for every vertex i in the m-pump-up gadget which is labelled b, r has the majority of
4 in i’s neighbourhood. In addition, if the m-pump-down gadget is embedded in a network
in which blue is the majority winner, then all m members of the structure are not under
illusion. Moreover, if a vertex labelled b in the gadget would be adjacent to an additional
vertex labelled r, then it would be under illusion. The properties of these gadgets help us to
ensure that the illusion needs to be eliminated from exactly k vertices for q-majority illusion
not to hold, while it is only possible by ensuring that vertices in a k-clique are not under
illusion. So, by extending ENG with one of these gadget, which depends on the number of
vertices under illusion in ENG, we ensure that the answer to I, with k′ = k2 − k, is positive
if and only if illusion can be eliminated from members of a k-clique in the G-gadget by
removing all of the edges between its members. Thus the claim holds. Finally, we notice
that the number of changed edges in the constructed instance of q-Illusion Elimination
is a quadratic function of k, which implies W[1]-hardness of this problem.

Theorem 5. For all q ∈ (0, 1) q-Illusion Elimination is W[1]-hard parametrised by the
solution size k.

Using similar reductions we get W[1]-hardness of Addition and Removal q-Illusion
Elimination.

Theorem 6. For all q ∈ (0, 1), Addition and Removal q-Illusion Elimination are
W[1]-hard.

5 Conclusion

We showed the algorithmic hardness of checking (Theorems 1 and 2) and eliminating (The-
orems 5 and 6) majority illusion, together with a number of parametrised algorithms for the
verification problem (Table 1) and W[1]-hardness for elimination (Theorems 5 and 6).

The central take away message is that even if illusion identification is a hard problem
in general, there are various natural constraints that make it feasible. For elimination, the
hardness persists for some natural restriction, and finding good parametrisations is still an
interesting challenge. Another open challenge is to lift the assumption of binary labelling.
Surprisingly there are social networks that do not admit a majority illusion but do admit
a “plurality” illusion, i.e., agents have a wrong perception of the plurality winner, when
more than two colours are allowed (see extended version of this paper). This is particularly
relevant for voting contexts such as elections with multiple candidates. Furthermore, the
problem of establishing the complexity of checking if a network admits q-majority illusion for
q ≤ 1

2 remains open (cf. Theorem 1). Finally, exploring the connections between majority
illusion and opinion diffusion is a natural and important follow up.

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council (grant
numbers EP/V007793/1 and EP/V044621/1). Umberto Grandi acknowledges the support
of the ANR JCJC project SCONE (ANR 18-CE23-0009-01). This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 101002854).

References

[1] Nazanin Alipourfard, Buddhika Nettasinghe, Andrés Abeliuk, Vikram Krishnamurthy,
and Kristina Lerman. Friendship paradox biases perceptions in directed networks.
Nature communications, 11(1):1–9, 2020.

[2] Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli, Clemente Galdi, and
Giuseppe Persiano. Minority becomes majority in social networks. In International
Conference on Web and Internet Economics, pages 74–88. Springer, 2015.

[3] Vincenzo Auletta, Ioannis Caragiannis, Diodato Ferraioli, Clemente Galdi, and
Giuseppe Persiano. Information retention in heterogeneous majority dynamics. In
International Conference on Web and Internet Economics, pages 30–43. Springer, 2017.

[4] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. On the complexity of rea-
soning about opinion diffusion under majority dynamics. Artificial Intelligence, 284:
103–288, 2020.

[5] Piotr Berman, Marek Karpinski, and Alexander Scott. Approximation hardness of
short symmetric instances of MAX-3SAT. Technical report, Weizmann Institute of
Science, 2004.

[6] Robert Bredereck and Edith Elkind. Manipulating opinion diffusion in social networks.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJ-
CAI), 2017.

[7] Matteo Castiglioni, Diodato Ferraioli, and Nicola Gatti. Election control in social
networks via edge addition or removal. In The 34th AAAI Conference on Artificial
Intelligence (AAAI), 2020.

[8] Matteo Castiglioni, Diodato Ferraioli, Nicola Gatti, and Giulia Landriani. Election
manipulation on social networks: Seeding, edge removal, edge addition. Journal of
Artificial Intelligence Research, 71:1049–1090, 2021.

[9] Rajesh Chitnis and Nimrod Talmon. Can we create large k-cores by adding few edges?
In Fedor V. Fomin and Vladimir V. Podolskii, editors, Computer Science – Theory and
Applications, pages 78–89, Cham, 2018. Springer International Publishing.

[10] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[11] John A. Doucette, Alan Tsang, Hadi Hosseini, Kate Larson, and Robin Cohen. Inferring
true voting outcomes in homophilic social networks. Autonomous Agents and Multi-
Agent Systems, 33(3):298–329, 2019.

[12] Piotr Faliszewski, Rica Gonen, Martin Koutecký, and Nimrod Talmon. Opinion diffu-
sion and campaigning on society graphs. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI), 2018.

[13] Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques
in social networks: A new distribution-free model. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, ICALP, volume 107, pages
55:1–55:15, 2018.

[14] Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques
in social networks: A new distribution-free model. SIAM J. Comput., 49(2):448–464,
2020.

[15] András Frank and Éva Tardos. An application of simultaneous diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

[16] Mark Granovetter. Threshold models of collective behavior. American journal of soci-
ology, 83(6):1420–1443, 1978.

[17] Frank Gurski and Egon Wanke. The tree-width of clique-width bounded graphs without
Kn, n. In 26th International Workshop in Graph-Theoretic Concepts in Computer
Science, volume 1928 of Lecture Notes in Computer Science, pages 196–205. Springer,
2000.

[18] Nathan O Hodas, Farshad Kooti, and Kristina Lerman. Friendship paradox redux:
Your friends are more interesting than you. In Seventh International AAAI Conference
on Weblogs and Social Media, 2013.

[19] Neil F. Johnson, Nicolas Velásquez, Nicholas Johnson Restrepo, Rhys Leahy, Nicholas
Gabriel, Sara El Oud, Minzhang Zheng, Pedro Manrique, Stefan Wuchty, and Yonatan
Lupu. The online competition between pro- and anti-vaccination views. Nature, 582
(7811):230–233, 2020.

[20] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

[21] Bruce Kapron, Gautam Srivastava, and S Venkatesh. Social network anonymization
via edge addition. In 2011 International Conference on Advances in Social Networks
Analysis and Mining. IEEE, 2011.

[22] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory Comput., 11:105–147, 2015.

[23] Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Exploiting c-closure in
kernelization algorithms for graph problems. SIAM Journal on Discrete Mathematics,
36(4):2798–2821, 2022.

[24] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

[25] H. W. Lenstra and Jr. Integer programming with a fixed number of variables. Math.
Oper. Res., 8(4):538–548, 1983.

[26] Kristina Lerman, Xiaoran Yan, and Xin-Zeng Wu. The “majority illusion” in social
networks. PloS one, 11(2), 2016.

[27] Fernando P Santos, Simon A Levin, and Vı́tor V Vasconcelos. Biased perceptions
explain collective action deadlocks and suggest new mechanisms to prompt cooperation.
Iscience, 24(4):102375, 2021.

[28] Alexander J. Stewart, Mohsen Mosleh, Marina Diakonova, Antonio A. Arechar,
David G. Rand, and Joshua B. Plotkin. Information gerrymandering and undemo-
cratic decisions. Nature, 573(7772):117–121, 2019.

[29] Bryan Wilder and Yevgeniy Vorobeychik. Controlling elections through social influ-
ence. In Proceedings of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2018.

[30] Xiaotian Zhou and Zhongzhi Zhang. Maximizing Influence of Leaders in Social Net-
works, page 2400–2408. Association for Computing Machinery, New York, NY, USA,
2021.

[31] Zhongxin Zhou, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Chen Chen. K-core
maximization: An edge addition approach. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), 2019.

Umberto Grandi
Université Toulouse Capitole
Toulouse, France
Email: umberto.grandi@irit.fr

Lawqueen Kanesh
IIT Jodhpur
Jodhpur, India
Email: lawqueen@itj.ac.in

Grzegorz Lisowski
AGH University
Kraków, Poland
Email: glisowski@agh.edu.pl

M.S. Ramanujan
University of Warwick
Coventry, United Kingdom
Email: r.maadapuzhi-sridharan@warwick.ac.uk

Paolo Turrini
University of Warwick
Coventry, United Kingdom
Email: p.turrini@warwick.ac.uk

