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Abstract

We propose a novel model for refugee housing respecting the preferences of the
accepting community and refugees themselves. In particular, we are given a topology
representing the local community, a set of inhabitants occupying some vertices of the
topology, and a set of refugees that should be housed on the empty vertices of the
graph. Both the inhabitants and the refugees have preferences over the structure of
their neighbourhood.
We are specifically interested in the problem of finding housing such that the prefer-
ences of every individual are met; using game-theoretical words, we are looking for
housing that is stable with respect to some well-defined notion of stability. We in-
vestigate conditions under which the existence of a stable outcome is guaranteed and
study the computational complexity of finding such a stable outcome. As the prob-
lem is NP-hard even in very simple settings, we employ the parameterised complexity
framework to give a finer-grained view of the problem’s complexity with respect to
natural parameters and structural restrictions of the given topology.

1 Introduction

According to the last report of the United Nations High Commissioner for Refugees (UN-
HCR), there were 89.3 million forcibly displaced persons at the end of 2021 [66]. It is the
highest number since the aftermath of World War II and it is for sure that these numbers
will even grow. In May 2022, UNHCR announced that a tragic milestone of 100 million dis-
placed persons was reached. They identified the war in Ukraine as the leading cause of the
dramatic growth in the last year [57]. Russian aggression not only forced many Ukrainians
to leave their homes, but even caused food insecurity and related population movement in
many parts of the world, since Ukraine is among the fifth largest wheat exporters in the
world [12].

It should be mentioned that political and armed conflicts are not the only causes of
forced displacement [66]. One of the most common reasons for fleeing is due to natural
disasters. To name just a few, in August 2022, massive floods across Pakistan affected at
least two-thirds of the districts and displaced at least 33 million people [54, 55]; the numbers
are not yet final. At the same time, a devastating drought in Somalia caused the internal
displacement of at least 755,000 people [66]. Furthermore, it is expected that, due to climate
change, extremes of the climate will become even more common in the near future [38].

Arguably, the best prevention against the phenomenon of forced displacement is not
allowing it to appear at all; however, the aforementioned numbers clearly show that these
efforts are not very successful. Therefore, in practise, three main solutions are assumed [43].
Voluntary repatriation is the most desirable but not very successful option. In many situa-
tions, repatriation is not even possible due to ongoing conflicts or a completely devastated
environment. Resettlement and integration in the country of origin or abroad are more
common. These two solutions require considerable effort from both the newcomers and the
host community sides.

1Part of this work has been published in the Proceedings of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS ’23) [45].



The very problematic part of forced displacement is the fact that 38% of all refugees2 are
hosted in only five countries [66]. And these are only the absolute numbers. For example, in
Lebanon, every one in four people is a refugee [59]. The redistribution of refugees seems to
be a natural solution to this imbalance; however, not all countries are willing to accept all
people. One such example can be the Czech Republic, which refused to accept any Syrian
refugees during the 2015 European migrant crisis, currently hosting the largest number of
Ukrainian refugees per capita [67].

Even with working and widely accepted redistributing policies, there is still a need
to provide housing in specific cities and communities. From the good examples of such
integration strategies [60] it follows that one of the most important characteristics is that
members of the accepting community do not feel threatened by newcomers.

Inspired by this, we propose a novel computational model for refugee housing. Our ulti-
mate goal is to find an assignment of displaced persons into empty houses of a community
such that this assignment corresponds to the preferences of the inhabitants about the struc-
ture of their neighbourhoods and, at the same time, our model also takes into consideration
the preferences of the refugees themselves, as refugees dissatisfied with their neighbourhood
have a strong intention to leave the community. More precisely, in our model, we are given
a topology of the community, which is an undirected graph, a set of inhabitants together
with their assignment to the vertices of the topology and preferences over the shape of their
neighbourhood, and a set of refugees with the same requirements on the neighbourhood
shape. We want to find a housing of refugees in the empty vertices of the topology such
that the housing satisfies a certain criterion, such as stability.

Refugee redistribution has gained the attention of mathematicians and computer sci-
entists very recently. The formal model for capturing refugee resettlement is double-sided
matching [27, 28, 8, 3]. That is, on the input we are given a set of locations with multidi-
mensional constraints and a set of refugees with multidimensional features. An example of
a constraint can be the number of refugees the locality can accept on one side and the size
of family on the refugee side. The question then is whether there exists a matching between
localities and refugees respecting all constraints. According to us, this formulation of the
refugees resettlement problem more concerns the global perspective of refugee redistribut-
ing, not the local housing problem, as we do in our paper. Aziz et al. [8] study mostly the
complexity of finding stable matching with respect to different notions of stability, and it
turns out that for most of the stability notions finding a stable matching is computationally
intractable (NP-hard, in fact). Kuckuck et al. [49] later refined the model of Aziz et al. [8]
in terms of hedonic games.

Our Contribution. Partly continuing the line of research in refugee resettlement, we
introduce a novel model focused on the local housing of new refugees. Previous models [8,
3, 28] can be seen and used as a very effective model on the (inter-) national level to distribute
refugees to certain locations, such as states or cities3. However, our model can be assumed
as the second level of refugee redistribution; once refugees are allocated to some community,
we want to house them in a way that respects preferences of both inhabitants and refugees.

In particular, we introduce three variants of refugee housing, each targeting a certain per-
spective of this problem. Our simplest model, introduced in Section 3, completely eliminates
the preferences of refugees and studies only the stability of the housing with respect to the
preferences of the inhabitants. We call this variant anonymous housing. Since refugees are

2From the strict sociological point-of-view, not all forcibly displaced persons are classified as refugees.
Slightly abusing the terminology, we will use the term refugee and displaced person interchangeably.

3In fact, the American resettlement agency HIAS use the matching software AnnieTM Moore which was
later improved by Ahani et al. [3].



assumed to be indistinguishable, inhabitants have preferences over the number of refugees
in their neighbourhood.

As stated above, the most successful refugee integration projects have the following
property in common; they try to make both inhabitants and refugees as satisfied as possible
by various activities to ensure that both groups get to know each other. We believe that
our hedonic model, where the preferences of both inhabitants and refugees are based on the
identity of particular members of the second group, supports and leads to more stable and
acceptable housing. This model is formally defined and studied in Section 4.

The two introduced models have some disadvantages. The first is disrespectful to the
refugees’ preferences, while the second is not very realistic, as it is hard to make all inhabi-
tants familiar with all refugees and the other way around. Therefore, our last model can be
seen as a compromise between these two extremes. In the diversity setting, introduced in
Section 5, all agents (union of inhabitants and refugees) are partitioned into k types, and
preferences are over the fractions of agents of each type in the neighbourhood of each agent.
Another advantage of this approach is that it nicely captures also the settings where we
already have number of integrated refugees and the newcomers want to have some of them
in the neighbourhood, or the case of an internally displaced person.

In all the aforementioned variants of the refugee housing problem, agents have dichoto-
mous preferences; that is, they approve some set of alternatives and do not distinguish
between them. It can be seen as if the neighbourhood of some agent does not comply
with his approval set, he would rather leave the local community, which is very undesired
behaviour on both sides.

For all assumed variants, we show that an equilibrium is not guaranteed to exist even
in very simple instances. Thus, we study the computational complexity of finding an equi-
librium or deciding that no equilibrium exists. To this end, we provide polynomial-time
algorithms and complementary NP-hardness results. In order to paint a more comprehen-
sive picture of the computational tractability of the aforementioned problems, we employ a
finer-grained framework of parameterised complexity to give tractable algorithms for, e. g.,
instances where the number of refugees or the number of inhabitants is small, or for certain
structural restrictions of the topology. Additionally, we complement many of our algorithmic
results with conditional lower-bounds matching the running-time of these algorithms.

Statements where proofs or details are omitted due to space constraints are marked with ⋆.
A version containing all proofs and details is available in [46].

Related Work. Our model is influenced by a game-theoretic reformulation of the famous
Schelling’s model [61, 62] of residential segregation introduced by Agarwal et al. [2]. Here,
we are given a simple undirected graph G and a set of selfish agents partitioned into k types.
Every agent wants to maximise the fraction of agents of her own type in her neighbourhood.
The goal is then to assign agents to the vertices of G so that no agent can improve her
utility by either jumping to an unoccupied vertex or swapping positions with another agent.
Follow-up works include those that study the problem from the perspective of computational
complexity [48, 32] and equilibrium existence guarantees [15, 16, 44].

The second main inspiration for our model is the Hedonic Seat Arrangement prob-
lem and its variants recently introduced by Bodlaender et al. [17]. Here, the goal is to find
an assignment of agents with preferences to the vertices of the underlying topology. The
desired assignment should then meet specific criteria such as different forms of stability,
maximising social welfare, or being envy-free. In our model, compared to Hedonic Seat
Arrangement of Bodlaender et al. [17], inhabitants already occupy some vertices of the
topology and we have to assign refugees to the remaining (empty) vertices in a desirable
way.

Next, the problem of house allocation [1] or housing market [64] has been extensively



studied in the area of mechanism design. Here, each agent owns a house and the objective
is to find a socially efficient outcome using reallocations of objects. Later, You et al. [69]
introduced house allocation over social networks that follows current trend in mechanism
design initiated by Li et al. [51], where each individual can only communicate with his
neighbours. As stated before, the house allocation is studied mainly from the viewpoint of
mechanism design and as such is far from our model.

Finally, hedonic games [31, 20, 21] are a well-studied class of coalition formation games
where the goal is to partition agents into coalitions and where the utility of every agent
depends on the identity of other agents in his coalition. In anonymous games [11, 20], the
agents have preferences over the sizes of their coalition. The most recent variants of hedonic
games are the so-called hedonic diversity games [22, 19] where agents are partitioned into k
types and preferences are over the ratios of each type in the coalition. The main differ-
ence between our model and (all variants of) hedonic games is that in the latter model all
coalitions are pairwise disjoint; however, in our case, each agent has his own neighbourhood
overlapping with neighbourhoods of other agents.

2 Preliminaries

Let N denote the set of positive integers. Given two positive integers j, j′ ∈ N, with j ≤ j′,
we call the set [j, j′] = {j, . . . , j′} an interval, and let [j] = [1, j] and [j]0 = [j] ∪ {0}. Let S
be a set. By 2S we denote the set of all subsets of S and, given k ≤ |S|, we denote by

(
S
k

)
the set of all subsets of S of size k.

Let R = {r1, . . . , rm} be a non-empty set of refugees and I = {i1, . . . , iℓ} be a set
of inhabitants. The set of all agents is defined as N = R ∪ I. A topology is a simple
undirected graph G = (V,E), where |V | ≥ |N |. For a vertex v, we denote by N(v) the set
of its neighbours, formally N(v) = {u | {u, v} ∈ E}. The size of the neighbourhood of a
vertex v is called its degree and is defined as deg(v) = |N(v)|. The closed neighbourhood of
vertex v is defined as N [v] = N(v)∪{v}. In this work, we follow the basic graph-theoretical
terminology [29].

An inhabitants assignment is an injective function ι : I → V . The set of vertices occupied
by the inhabitants is denoted VI and, given an inhabitant i ∈ I, we denote the set of
unoccupied vertices in his neighbourhood Ui = N(ι(i)) \ VI . The set of all vertices that are
not occupied by inhabitants is denoted VU = V \ VI .

The goal of every variant of our problem is to find a mapping of refugees to vertices that
are not occupied by inhabitants. Formally, housing is an injective mapping π : R → VU . A
set of vertices occupied by refugees with respect to housing π is denoted Vπ = {π(r) | r ∈ R}.
We denote by ΠG,ι the set of all possible housings, and we drop the subscript whenever G
and ι are clear from the context.

Parameterised Complexity. We study the problem in the framework of parameterised
complexity [25, 30, 58]. Here, we investigate the complexity of the problem not only with
respect to an input size n, but even assuming some additional parameter k. The goal is to
find a parameter which is small and the “hardness” can be confined to this parameter. The
most favourable outcome is an algorithm with running time f(k) · nO(1), where f is any
computable function. We call this algorithm fixed-parameter tractable and the complexity
class containing all problems that admit algorithms with such running time is called FPT.

Not all combinations of parameters yield to fixed-parameter tractable algorithms. A
less favourable outcome is an algorithm running in nf(k) time, where f is any computable
function. Parameterised problems admitting such algorithms belong to complexity class XP.
To exclude the existence of a fixed-parameter tractable algorithm, one can show that the



parameterised problem is W[t]-hard for some t ≥ 1. This can be done via a parameterised
reduction from any problem known to be W[t]-hard. It could also be the case that a param-
eterised problem is NP-hard even for a fixed value of k; we call such problems para-NP-hard
and, assuming P ̸= NP, such problems do not admit XP algorithms.

Our running-time lower-bounds are based on the well-known Exponential Time Hypoth-
esis (ETH) of Impagliazzo and Paturi [41]; see also Impagliazzo et al. [42] and the survey of
Lokshtanov et al. [52]. This conjecture states that, roughly speaking, there is no algorithm
solving 3-SAT in time sub-exponential in the number of variables.

3 Anonymous Refugees

In our simplest model of refugee housing, we assume refugees to be non-strategic and concern
only the preferences of inhabitants. In this sense, the refugees are, from the viewpoint of
inhabitants, anonymous, and the preferences only take into account the number of refugees
in the neighbourhood of each inhabitant.

We formally capture this setting in the computational problem called the Anonymous
Refugees Housing problem (ARH for short). A preference of every inhabitant i ∈ I is
a set Ai ⊆ [deg(ι(i))]0 of the approved numbers of refugees in the neighbourhood. Our
goal is to decide whether there is a housing π : R → VU that respects the preferences of all
inhabitants.

Definition 1. A housing π : R → VU is called inhabitant-respecting if for every i ∈ I we
have |N(ι(i)) ∩ Vπ| ∈ Ai.

If the approval set Ai for an inhabitant i ∈ I consists of consecutive numbers, we say
that the inhabitant i approves an interval.

Example 1. Let the topology be a cycle with four vertices. There are two inhabitants
assigned to neighbouring vertices. One of these inhabitants, call her h1, has approval
set Ah1

= {0, 1}, and the second one, say h2, is not approving any refugees in his neigh-
bourhood, that is, Ah2 = {0}. We have R = {r}. The only valid housing is next to the
inhabitant h1 as housing r in the neighbourhood of h2 clearly does not respect his preference.
Also note that in this particular example, all the inhabitants approve intervals.

As our first result, we observe that even in a very simple settings, it is not guaranteed
that any inhabitant-respecting refugees housing exists.

Proposition 1. There is an instance of the ARH problem with no inhabitant-respecting
refugees housing even if all inhabitants approve intervals.

To prove Proposition 1, assume an instance with one inhabitant i and two refugees r1
and r2. Let the topology be K3, the inhabitant i be assigned to an arbitrary vertex,
and let Ai = {0}. There are exactly two possible refugees housings and in any of them
the inhabitant i has two neighbouring refugees; therefore, there is no inhabitant-respecting
housing.

In the previous example, we used the fact that the inhabitant i does not approve any
refugees in his neighbourhood. We call such inhabitants intolerant. Despite the fact that
the instance does not have an inhabitant-respecting housing even if Ai = {1}, we observe
that intolerant inhabitants can be safely removed.

Proposition 2 (⋆). Let I = (G, I,R, ι, (Ai)i∈I) be an instance of the ARH problem, j ∈ I
be an inhabitant with Aj = {0}, and Fj = {ι(j)} ∪ Uj. I admits an inhabitant-respecting
housing iff the instance I ′ = (G\Fj , I\{j}, R, ι, (Ai)i∈I\{j}) admits an inhabitant-respecting
housing.



Due to the definition of approval sets, inhabitants without unoccupied neighbourhood
are necessarily assumed intolerant and therefore can be safely removed by Proposition 2.
Hence, we assume only instances without intolerant inhabitants where every inhabitant has
at least one unoccupied vertex in her neighbourhood.

Proposition 3 (⋆). Let I = (G, I,R, ι, (Ai)i∈I) be an instance of the ARH problem
and {u, v} ∈ E(G) be an edge such that either u, v ∈ VI or u, v ∈ VU . Then I admits an
inhabitant-respecting housing iff the instance I ′ = ((V (G), E(G) \ {{u, v}}), I, R, ι, (Ai)i∈I)
admits an inhabitant-respecting housing.

Proposition 3 directly implies that all graphs assumed in this section are naturally bi-
partite.

Theorem 1 (⋆). Every instance of the ARH problem where the topology is a graph of
maximum degree 2 can be solved in polynomial-time.

Proof sketch. Our algorithm is based on the dynamic programming approach combined with
the gradual elimination of inhabitants’ approval sets and exhaustive application of Propo-
sition 2. Observe that graph of maximum degree 2 is a collection of paths and cycles [29].
We first introduce an algorithm that solves the problem on paths and then show how to
improve the algorithm to solve cycles.

Let the topology be a path P = v1v2 . . . vk, k ≥ 3, and suppose that the vertex v1 is
occupied by an inhabitant i ∈ I. We distinguish two cases based on Ai and show how the
algorithm proceeds. If Ai = {1}, then we have to house a refugee on v2. However, this
adds one refugee in the neighbourhood of the inhabitant j occupying the vertex v3. To
capture this, we decrease the value of all elements in Aj . If there are any negative numbers
in Aj after this operation, we remove all of them from the list. Then we delete v1 and v2
from P , decrease |R| by one, and solve the problem for P ′ = v3 . . . vk. If Ai = {0, 1}, we
have to try both possibilities. That is, we run the algorithm once with Ai = {0} and once
with Ai = {1}. If any run of the algorithm finds a solution, we also have a solution for the
original instance.

The described algorithm is exponential in the worst case. To improve the running time,
we tabularise the computed partial solutions. Our dynamic programming table DP has
three dimensions: the first for an inhabitant, the second for an actual value of |R|, and
the third for a shape of approval set. The stored value is either yes or no depending
on whether the combination of indices yields to a inhabitant-respecting housing. There
are O(n) inhabitants, the value of |R| is also in O(n), and there are at most 2 different
approval sets possible for each inhabitant on the path. Therefore, the size of the table is at
most O(n2), which is also the running time of our algorithm.

Unfortunately, as the following theorem states, the bounded-degree condition from The-
orem 1 cannot be relaxed any more.

Theorem 2 (⋆). The ARH problem is NP-complete even if the topology is a graph of max-
imum degree 3 and all inhabitants approve intervals.

Proof sketch. For NP-hardness, we present a polynomial-time reduction from a variant of
the 2-Balanced 3-SAT problem which is known to be NP-complete [65, 37, 14]. In this
variant of 3-SAT, we are given a propositional formula φ with n variables x1, . . . , xn and m
clauses C1, . . . , Cm such that each clause contains at most 3 literals and every variable
appears in at most 4 clauses – at most twice as a positive literal and at most twice as a
negative literal. Later in this paper, we will refer to this reduction as basic reduction.

We construct an equivalent instance I of ARH as follows. We represent every variable xi

by a single variable gadget Xi that is a path tivifi. The vertex vi is occupied by an inhabitant



with approval set {1}. All other vertices are empty and we call the vertex ti the t-port and
the vertex fi the f -port. Every clause Cj is represented by a single vertex cj occupied by
an inhabitant hj who approves the interval [1, |Cj |] and is connected to the t-port of the
variable gadget Xi if the variable xi occurs as a positive literal in Cj and to the f -port
of Xi if xi occurs as a negative literal in Cj , respectively. To complete the reduction, we
set |R| = n.

Since the above results clearly show that the problem is very hard even in simple settings,
we turn our attention to the parameterised complexity of the ARH problem. In particular,
we study the problem’s complexity from the viewpoint of natural parameters, such as the
number of refugees, the number of inhabitants, the number of empty vertices, and various
structural parameters restricting the shape of the topology.

Theorem 3 (⋆). The ARH problem is W[2]-hard parameterised by the number of refugees |R|
even if all inhabitants approve intervals. Moreover, unless ETH fails, there is no algorithm
that solves ARH in f(|R|) · no(|R|) time for any computable function f .

Proof sketch. We reduce from the Dominating Set problem, which is known to be W[2]-
complete [30] and, unless ETH fails, cannot be solved in f(k) · no(k) time for any com-
putable function f [24]. The instance I of Dominating Set consists of a simple undirected
graph G = (V,E) and an integer k ∈ N. The goal is to decide whether there is a set D ⊆ V
of size at most k such that each vertex v ∈ V is either in D or at least one of its neighbours
is in D.

We construct an equivalent instance I ′ of the ARH problem as follows. We start by
defining the topology. For each vertex v ∈ V we add two vertices ℓv and pv. The vertex ℓv
represents the original vertex and is intended to be free for refugees. The vertex pv is
occupied by an inhabitant hv with Ahv

= [1, |N [v]|]. This inhabitant ensures that there is at
least one refugee housed in the closed neighbourhood of pv. The edge set of the topology G′

is
⋃

v∈V {{pv, ℓw} | w ∈ NG[v]}. To complete the construction, we set |R| = k.

We complement Theorem 3 with an algorithm that runs in time matching the lower-
bound given in this theorem.

Proposition 4. The ARH problem can be solved in nO(|R|) time, where n = |V (G)|. That
is, ARH is in XP parameterised by the number of refugees.

Proof. Our algorithm is a simple brute-force. Let VU = V (G) \ VI be the number of empty
vertices and let n = |V |. Note that |VU | ≤ n. We try all subsets of VU of size |R| and for
each such subset, we check in linear time whether the housing is inhabitant-respecting. This
gives us the total running time nO(|R|).

As the number of refugees is not a parameter promising tractable algorithms even if
all inhabitants approve intervals, we turn our attention to the case where the number of
inhabitants is small. Our algorithm is based on integer linear programming formulation of
the problem and we use the following result of Eisenbrand and Weismantel [33].

Theorem 4 ([33, Theorem 2.2]). Integer linear programme Ax ≤ b, x ≥ 0, with n variables
and m constraints can be solved in

(m∆)O(m) · ||b||2∞

time, where ∆ is an upper-bound on all absolute values in A.

Theorem 5. If all inhabitants approve intervals, then the ARH problem is fixed-parameter
tractable parameterised by the number of inhabitants |I|.



Proof sketch. We solve the ARH problem using an integer linear programming formulation
of the problem. We introduce one binary variable xv for every empty vertex v ∈ VU repre-
senting if a refugee is housed on v or not. Next, we add the following constraints.

∀i ∈ I :
∑

v∈NG(ι(i))

xv ≥ low(i) (1)

∀i ∈ I :
∑

v∈NG(ι(i))

xv ≤ high(i) (2)

∑
v∈VU

xv = |R|, (3)

where for an inhabitant i ∈ I the value low(i) stands for lower-end and high(i) stands for
upper-end of the approved interval by inhabitant i, respectively. Equations (1) and (2)
ensure that the number of refugees in the neighbourhood of each inhabitant is in its ap-
proved interval, while Equation (3) ensures that all refugees are housed somewhere. Using
Theorem 4 we see that the given integer programme can be solved in time |I|O(|I|) · nO(1),
as m = 2|I| + 1, ∆ = 1, and ||b||∞ ≤ n. That is, ARH is in FPT parameterised by the
number of inhabitants |I|.

Note that it would be possible to provide a different ILP formulation of the problem
and use the famous theorem of Lenstra Jr. [50] to show membership in FPT, however, this
would yield to an algorithm with much worse (i. e., doubly-exponential) running-time.

The result from Theorem 5 cannot be easily generalised to the case with inhabitants
approving general sets. However, we can show that if the number of intervals in each
approval set is bounded, the problem is still fixed-parameter tractable.

Theorem 6 (⋆). The ARH problem is fixed-parameter tractable when parameterised by the
combined parameter the number of inhabitants |I| and the maximum number of disjoint
intervals δ in the approval sets.

In our next result, we show that the parameter δ from Theorem 6 cannot be dropped
while keeping the problem tractable.

Theorem 7 (⋆). The ARH problem is W[1]-hard parameterised by the number of inhabi-
tants |I|.

By careful guessing, we can prove that for the combined parameters the number of
refugees and the number of inhabitants, we may obtain fixed-parameter tractable algorithm.
Observe that this parameterisation do not bound the instance size, as the number of vertices
of the topology can be much larger than |I| + |R|.

Lemma 1 (⋆). The ARH problem is fixed-parameter tractable when parameterised by the
number of refugees |R| and the number of inhabitants |I| combined.

The last assumed natural parameter is the number of empty vertices the refugees can be
assigned to. Note that |VU | ≥ |R|. This parameterisation yields, in contrast to Theorem 3,
to a simple algorithm running in FPT time which is, despite its simplicity, optimal assuming
the Exponential Time Hypothesis.

Theorem 8 (⋆). The ARH problem can be solved in 2O(|VU |) · nO(1) time and, unless ETH
fails, there is no algorithm solving ARH in 2o(|VU |) · nO(1) time even if all inhabitants approve
intervals.



In the remainder of this section, we present complexity results concerning various struc-
tural restrictions of the topology. Arguably, the most prominent structural parameter is
the tree-width of a graph that, informally speaking, expresses its tree-likeness, and which is
usually small in real-life networks [56]. Unfortunately, we can show the following stronger
intractability result.

Many problems that are computationally hard with respect to tree-width are studied
from the viewpoint of less restrictive parameters. Vertex cover number is a frequent rep-
resentative of such parameters [53, 23, 47]; however, in the ARH problem, not even this
restriction of the topology leads to a tractable algorithm.

Theorem 9 (⋆). The ARH problem is W[1]-hard parameterised by the vertex cover num-
ber vc(G) of the topology.

It is well-known, and easy to see, that the tree-width of a graph is at most its vertex-cover
number. Hence, due to Theorem 9, we directly obtain the following result for tree-width.

Corollary 1. The ARH problem is W[1]-hard parameterised by the tree-width tw(G) of the
topology G.

Nevertheless, if we additionally restrict the approval sets, we obtain the following algo-
rithmic result.

Theorem 10. The ARH problem is fixed-parameter tractable parameterised by the vertex
cover number vc(G) if all inhabitants approve intervals.

Proof sketch. Let M ⊆ V be a minimum size vertex cover of G and let k = |M |. First,
we guess the number k′ ≤ k of refugees assigned to the modulator vertices (by guessing we
mean an iteratively trying all possibilities). Next, we guess a k′-sized subset S ⊆ M ∩VU of
empty vertices that are occupied by refugees in our hypothetical solution. If no such set S
exists, we return no.

Otherwise, we remove all empty vertices from M , all vertices occupied by inhabitants
that are not part of the vertex cover M , and, finally, use Theorem 5 to solve the reduced
instance with k − k′ refugees. It is easy to see that both steps can be performed in FPT
time and the theorem follows.

By the same argumentation used in the proof of Theorem 10, we obtain the following
last result of this section.

Corollary 2 (⋆). The ARH problem is fixed-parameter tractable when parameterised by the
vertex cover number vc(G) and the maximum number of disjoint intervals δ combined.

4 Fully Hedonic Preferences

Our second model of refugee housing improves upon the previous model by introducing
individual preferences of refugees. Naturally, refugees are no longer anonymous and the
identity of every particular refugee matters. The preferences of the inhabitants are again
dichotomous, and for every inhabitant i ∈ I the approval set is a subset of 2R. Similarly,
for a refugee r ∈ R, the approval set Ar is a subset of 2I . Our goal is to find housing that
conforms to the preferences of both groups.

Definition 2. A housing π : R → VU is called respecting if for every i ∈ I we have N(ι(i)) ∈
Ai and for every r ∈ R we have N(π(r)) ∈ Ar.



In other words, a housing π is respecting if every inhabitant and every refugee approves
its neighbourhood. We study the problem of deciding whether there is a respecting housing
in the instance with hedonic preferences under the name Hedonic Refugees Housing
(HRH for short).

Example 2. Let the topology be a cycle with four vertices. There are two inhabi-
tants h1 and h2 assigned to neighbouring vertices and two refugees r1 and r2 to house.
The approval set of inhabitant h1 is Ah1 = {{r1}, {r2}}, that is, h1 approves only one
refugee in her neighbourhood regardless of the identity. The second inhabitant approves the
set Ah2

= {{r2, }, {r1, r2}}. In other words, the inhabitant h2 is dissatisfied with having
only the refugee r1 in the neighbourhood; however, he is fine with neighbouring with both the
refugees. For the refugees, we have Ar1 = {{h1}} and Ar2 = {{h2}}. Housing r1 in the
neighbourhood of h1 and r2 in the neighbourhood of h2 is clearly respecting.

Observe that, since both inhabitants and refugees have preferences only over the other set
of individuals, we can remove all edges between empty and occupied vertices, respectively.
Hence, all graphs assumed in this section are again bipartite.

Now, we show how the results from Section 3 carry over to the hedonic setting studied
in this section. Our first theorem shows that the hedonic setting is also computationally
hard on graphs of constant degree. The construction is very similar to the one used to prove
Theorem 2.

Theorem 11 (⋆). The HRH problem is NP-complete even if the topology is a graph of
maximum degree 3.

From the proof of Theorem 11, we can easily distil the following general reduction from
the ARH problem to the HRH problem. Let I be an ARH instance. For every empty
vertex v ∈ VU we add into R′ one refugee rv with approval set Arv = N(v). Next, for every
inhabitant i ∈ I we add a new inhabitant hi approving the set Ahi

= {
(
Rhi
a

)
| a ∈ Ai},

where Rhi
= {rv | v ∈ N(v) ∩ VU}. To ensure that only |R| refugees are housed, we

extend the construction by a single star with |VU | − |R| leaves and occupy the centre of the

star with an inhabitant g approving the set
(

R′

|VU |−|R|
)
. Moreover, we have to add {g} to

the approval set of every refugee rv ∈ R′. It is not difficult to see that the instances are
indeed equivalent; however, the reduction is not polynomial-time, the approval sets can be
at worst exponential in the number of empty vertices. Hence, the reduction works only in
cases where the number of empty vertices is at most logarithmic in the size of the topology.
Unfortunately, this is not the case for most of our polynomial-time reductions, however, we
are able to show similar results using different techniques.

Theorem 12 (⋆). The HRH problem is W[1]-hard when parameterised by the combined
parameter the vertex cover number vc(G) of the topology and the number of inhabitants |I|.

Proof sketch. We reduce from the W[1]-hard Multicoloured Clique problem [36]. We
recall that here we are given a k-partite graph G = (V1 ∪ · · · ∪ Vk, E) and the goal is to find
a complete sub-graph with k vertices such that it contains a vertex from every Vi, i ∈ [k].

Let G = (V1∪ · · ·∪Vk, E) be an instance of the Multicoloured Clique problem such
that all colour classes Vi are of the same size nG. We construct an equivalent instance I ′

of the HRH problem as follows. For every vertex set Vi, where i ∈ [k], we introduce a
vertex-selection gadget Si which is a star with nG leaves. We call an arbitrary but fixed
leaf a selection leaf. This selection leaf serves for a vertex of colour i that should be part
of the clique and is the only connection of the vertex-selection gadget with the rest of the
topology. Let {v1i , . . . , v

nG
i } be a set of vertices in the colour class Vi. We introduce one

refugee rpi for every vpi , p ∈ [nG] and one inhabitant si which is assigned to the centre ci
of Si and approves the set {{r1i , . . . , r

nG
i }}. Every refugee rpi approves the set {{si}}.



Then, for every pair of distinct colours i, j ∈ [k], we introduce one additional guard
vertex gi,j securing that there is an edge between vertices selected in incident vertex-
selection gadgets. We connect this guard vertex gi,j to selection leaves of vertex-selection
gadgets Vi and Vj . Moreover, we introduce an inhabitant hi,j assigned to gi,j with approval
set {{rpi , r

q
j} | {vpi , v

q
j} ∈ E and p, q ∈ [nG]}. That is, hi,j approves exactly those pairs of

vertices from Vi and Vj that are connected by an edge.
To be able to house any refugee to selection leaves, we have to extend their approval

sets. Thus, for every refugee rpi , where i ∈ [k] and p ∈ [nG], we add to the approval set the
set {si} ∪ {hi,j | j ∈ [k] \ {i}}. This finishes the construction.

As a final result of this section, we prove that the HRH is NP-hard even for graphs of
tree-width at most 3.

Theorem 13 (⋆). The HRH problem is para-NP-hard parameterised by the tree-width tw(G)
of the topology.

5 Diversity Preferences

In the anonymous refugee housing, we are not assuming the preferences of individual
refugees. Thanks to this property, the model is as simple as possible. The fully hedonic set-
ting from Section 4 precisely captures preferences of both the refugees and the inhabitants.
On the other hand, the fully hedonic model is not very realistic, as it is hard to acquaint all
inhabitants with all refugees.

Hence, we introduce the third model of refugees housing, where both the inhabitants
and the refugees are partitioned into types and agents from both groups have preferences
over fractions of agents of each type in their neighbourhood.

Such diversity goals, where agents are partitioned into types and the preferences of agents
are based on the fraction of each type in their neighbourhood or coalition, was successfully
used in many scenarios such as school choice [7, 9, 10], public housing [13, 40], hedonic
games [22, 18, 19, 26, 39], multi-attribute matching [4], or employee hiring [63].

Before we formally define the computational problem of our interest, let us introduce
further notation. Let N = I ∪R be a set of agents partitioned into k types T = T1, . . . , Tk.

For a set S ⊆ N , we define a palette as a k-tuple
(

|Ti∩S|
|S|

)
i∈[k]

if |S| ≥ 1 and k-

tuple (0, . . . , 0) if S = ∅. Given an agent a ∈ N , her approval set is a subset of the

set

{(
|Ti∩S|
|S|

)
i∈[k]

| S ⊆ 2N
}

.

Definition 3. A housing π : R → VU is called diversity respecting if for every inhabitant i ∈
I the palette for the set {h ∈ I | ι(h) ∈ N(ι(i))} ∪ {r ∈ R | π(r) ∈ N(ι(i))} is in Ai, and
for every refugee r ∈ R the palette for the set {h ∈ I | ι(h) ∈ N(π(r))} ∪ {r′ ∈ R | π(r′) ∈
N(π(r))} is in Ar.

The Diversity Refugees Housing problem (DRH for short) then asks whether there
is a diversity respecting housing π. Note that this time, we are not allowed to drop edges
between two inhabitants or two refugees and, thus, the graphs assumed in this section are
no longer bipartite.

Example 3. Let the topology be a cycle with four vertices. There are two agents of type T1.
One of these agents is an inhabitant h1 approving {(1, 0), (1/2, 1/2)} and the second one
is a refugee r approving only agents of his own type, that is, Ar = {(1, 0)}. The type T2

contains one inhabitant h2 approving the set {(1, 0)}. Inhabitants are assigned such that



they are neighbours. There are two possible housings for the refugee r. She can be either
neighbour of h1 or h2. Since she accepts only agents of her own type in the neighbourhood,
the only diversity respecting housing is next to inhabitant h1.

Note that the topology in the diversity setting is no longer bipartite graph. We can
show, using similar construction as in Theorem 2, that the tractability condition based on
the bounded degree cannot be surpassed even in this model.

Theorem 14 (⋆). The DRH problem is NP-complete even if the topology is a graph of
maximum degree 3.

In Theorem 14 we exploit the number of types to ensure that every refugee is housed
in the right house. Therefore, the number of types was as large as the number of empty
vertices. In the following result, we show that the DRH problem is computationally hard
even if the number of types is small.

Theorem 15 (⋆). The DRH problem is NP-complete even if there are two types of agents.

Proof sketch. Given an instance I = (U,F , k) of the Set Cover problem, we construct an
equivalent instance I ′ of DRH as follows. For every element ui ∈ U we add one vertex vi and
assign to it an inhabitant hi. The inhabitant hi is of type T1 and his approval set is {(0, 1)}.
Next, for every subset F ∈ F , we create one vertex vF that is adjacent to every vi such
that ui ∈ F . To finalise the construction, we add k refugees r1, . . . , rk of type T2 approving
the set {(1, 0)}.

Note that the NP-hardness proved in Theorem 15 can be strengthened to a single type
of agents; however, we find this situation not very natural in the context of DRH.

Additionally, it is known that the Set Cover problem is W[2]-complete and cannot be
solved in f(k) ·no(k) time, unless the ETH fails [25]. This gives us the following final result.

Corollary 3 (⋆). The DRH problem is W[2]-hard when parameterised by the number of
refugees |R| even if there are only two types of agents and, unless ETH fails, there is no
algorithm solving DRH in f(R) · no(R) time for any computable function f .

6 Conclusions

We initiated the study of a novel model of refugee housing. The model mainly targets the
situations where refugees need to be accommodated and integrated in the local community.
This distinguishes us from the previous settings of refugee resettlement.

Our results identify some tractable and intractable cases of finding stable outcomes from
the viewpoint of both the classical computational complexity and the finer-grained frame-
work of parameterised complexity. To this end, we believe that other notions of stability
inspired, for example, by the model of Schelling games of Agarwal et al. [2] or by exchange-
stability of Alcalde [5], should be investigated.

Natural way to tackle the intractability of problems in computational social choice is
to restrict the preferences of agents [35]. One such restriction that should be investigated,
especially in the case of anonymous setting, are the single-peaked preferences [6] that were
successfully used in similar scenarios; see, e.g., [15, 68, 22] or the survey of Elkind et al. [35].
Beside that, we are interested in the anonymous setting in which every inhabitant i ∈ I
approves an interval [0, ui], where ui ≥ 0 is an inhabitant-specific upper-bound on the
number of refugees in her neighbourhood.

Finally, there are many notions measuring quality of an outcome studied in the literature
in both the context of Schelling and hedonic games [34, 2, 8], and we believe that these
notions should be investigated even in the context of refugee housing. In this line, the most
prominent notion is the social-welfare of an outcome.
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[45] Dušan Knop and Šimon Schierreich. Host community respecting refugee housing. In
Proceedings of the 2023 International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’23, pages 966–975, Richland, SC, 2023. International Founda-
tion for Autonomous Agents and Multiagent Systems. ISBN 9781450394321.
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