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Abstract
We study an information aggregation setting in which a decision maker makes an informed binary
decision by merging together information from several symmetric agents. Each agent provides
the decision maker with a recommendation, which depends on her information about the hidden
state of nature. While the decision maker has a prior distribution over the hidden state and
knows the marginal distribution of each agent’s recommendation, the correlation between the
recommendations is chosen adversarially. The decision maker’s goal is to choose an information
aggregation rule that is robustly optimal.
We prove that for a sufficiently large number of agents, for the three standard robustness
paradigms – minimax, regret and approximation ratio – the robustly-optimal aggregation rule
is identical. Specifically, the optimal aggregation rule is the random dictator rule, which chooses
an agent uniformly at random and adopts her recommendation. For a small number of agents,
this result no longer holds – the random dictator rule can be suboptimal for minimizing the
regret even for two agents. We further characterize the minimal regret for any number of agents
through the notion of concavification, and demonstrate how to utilize this characterization in
the case of two agents.

1 Introduction
Every day, we receive conflicting forecasts regarding such issues as investment, health, or even the
weather. Based on these forecasts, we must make decisions like whether to buy or sell, to operate or not
to operate, to go out or stay home. In most cases, when basing our decisions on the predictions we have,
we are not aware of how the information obtained from different sources is correlated. A fundamental
challenge presented recently by [17] is – how to aggregate the forecasts and reach decisions despite this
knowledge gap.

The practice of information aggregation is a common technique used to improve the accuracy of
prediction models. Combining forecasts obtained from multiple sources can help account for the inherent
uncertainty and variability present in any forecasting task. There is a variety of methods for combining
forecasts, including simple averaging [15], median averaging [25], or weighting each forecast based on
its past performance [19]. Forecast aggregation has been extensively studied in many fields, such as
finance [9], marketing [4], and meteorology [34].

Given the multitude of approaches, to produce reliable and meaningful results one must carefully
consider the underlying assumptions and limitations of each aggregation method. A common way to
evaluate a solution to a decision problem under uncertainty in general, and to the problem of infor-
mation aggregation under uncertainty in particular, is via the methodology of robustness. That is, the
performance of a decision rule is evaluated according to the worst-case (a.k.a. adversarial) scenario.

Within the robustness methodology, there are two leading paradigms for quantifying the quality of a
decision under uncertainty: the minimax approach and the regret approach. The minimax approach [40,
23] involves choosing the option that minimizes the maximum possible loss. This approach is based on
the idea that the decision maker wants to optimize the worst-case outcome, and thus applying it does
not require a benchmark. Alternatively, the regret approach [36] sets an ambitious benchmark – the loss
from a decision made without the burden of uncertainty. It then aims to minimize the difference (known
as the regret) between the performance of the optimal decisions with and without uncertainty – that is,
to mimic as closely as possible the optimal informed decision.

In a typical scenario, the minimax course of action differs from the regret-minimizing course of action.
For example, the celebrated result of Carroll [13], establishing the minimax-optimality of selling items
separately in a combinatorial auction setting, does not hold for regret minimization (see Appendix B).
Such conflicting recommendations weaken the predictive, as well as prescriptive, power of the robust-
ness paradigm.

The methodology of robustness, and specifically – the minimax approach, is applied by De Oliveira
et al. [17] to an information aggregation setting. In this paper, we follow their lead by applying the
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complementary approach of regret to a basic information aggregation setting with symmetric agents.
Surprisingly, we show that the simple aggregation rule of randomly choosing an agent to make the
decision, known as the random dictator rule, is optimal for both robustness approaches – minimax
and regret – for a wide range of instances. This result can be viewed as strengthening the message
of [17]. Moreover, the same rule turns out to be asymptotically (in the number of agents) optimal for
the approximation ratio robustness approach, which is common in computer science [39] and some game
theory applications [35]. Our main takeaway is that in our binary decision setting, the random dictator
rule is universally optimal with respect to all standard robustness concepts.

1.1 Our Information Aggregation Setting
A leading example. We now demonstrate our basic information aggregation setting; many of the
simplifying assumptions can be relaxed (see Appendix A). Consider a decision maker (DM) facing the
decision of whether or not to implement a project. An unknown binary state of nature (or state for short)
indicates whether the project is beneficial or detrimental in terms of utility. As a concrete example,
consider the decision whether to implement containment measures during a pandemic in a certain region
(the project). This project’s utility depends on whether illness is on the rise in that region or not (the
state of nature). We consider an identical-interest scenario in which the DM and all forecasting agents
agree on the utility of the project in both the beneficial and detrimental states.

Each agent is privately exposed to some information about the state. For instance, this can be the
number of illness cases in an agent’s social network.1 Based on this information, the agents update
the probability with which they believe the beneficial state to hold. The agents are symmetric in the
sense that all agents who witness a rise (respectively, decline) in illness around them hold the same
belief regarding this probability. Formally, agents have identical marginal distributions of posterior
beliefs. Each agent anonymously fills in a survey reporting her true recommendation as to whether the
project should be implemented.2 The DM receives the statistics of the survey – i.e., the number of
agents recommending implementation. A (probabilistic) aggregation rule maps the survey’s outcome to
a probability with which the project will be implemented. Importantly, the aggregation rule can rely on
knowledge of the marginal distributions of posteriors, but not on the correlation among the agents.

Our goal is to optimize the aggregation rule under the robust (adversarial) approach. On the one hand,
the minimax approach aims to find an aggregation rule that performs well for all possible correlations
between the private information of different agents. The minimax-optimal aggregation rule has been
studied by De Oliveira et al. [17], who show that the optimal aggregation rule is to follow the best expert.
On the other hand, the regret minimization approach considers as a benchmark a hypothetical Bayesian
DM, who knows the true correlations between the agents’ private information; given the statistics of the
survey, the Bayesian DM can calculate the posterior distribution of the state, and take an optimal action
given the survey outcome. The goal is to minimize the difference between the utility of the Bayesian DM
and that of our ignorant DM who does not know the correlations.

The assumption of symmetric agents is common in many contexts in the literature [see, e.g., 12];
in our leading example, this assumption is reasonable since the agents are ordinary citizens who obtain
exogenous information with an unknown reliability level. Another possible interpretation of our model
involves a researcher (DM) repeatedly experimenting – making the symmetry assumption intrinsic. The
knowledge of the marginals corresponds to the knowledge of the false-positive and the false-negative
rates. Robustness to the correlation may be viewed as robustness to the sampling procedure according
to which the samples for the experiments are collected.

1.2 Outline of the Main Results
We begin by revisiting the work of De Oliveira et al. [17] on minimax-optimal aggregation, and developing
an analogue of their main result for symmetric agents. According to their result, the aggregator should
follow the best expert. In our symmetric analogue, the DM only needs to observe the aggregate statistics
of the agents’ recommendations. Even though the aggregator cannot follow any single agent (their
recommendations are treated anonymously), the aggregator can follow a random agent by adopting a

1During the height of the COVID-19 pandemic, such information was found to be extremely useful in forecasting the
spread of illness in the short term – see [38].

2We assume that agents’ recommendations are truthful – an agent recommends implementation of the project if and
only if according to her private information, the expected utility of the project is non-negative. This assumption is natural
for many surveys, e.g., if the agents are unaware of how the DM will aggregate their recommendations. See Subsection A.5
for further discussion of this issue.
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recommendation chosen uniformly at random (the random dictator rule). Since, by symmetry, all agents
are qualified to be best experts, such an aggregation rule is minimax-optimal.

Turning from minimax to regret, the analysis is more involved. One challenge for the aggregation
task is that the number of possible posterior belief realizations grows exponentially in the number of
agents. This is where treating the agents anonymously is helpful. We utilize a recent characterization
by [2] of feasible information structures to reduce the problem to a single-dimensional one. In contrast
to some cases with a small number of agents (as we demonstrate for two agents in Example 5.2), we
prove that for a large class of instances – in particular, for any sufficiently large number of agents – the
unique regret-minimizing aggregation function is the random dictator rule (Theorem 4.3).

To deal with the remaining instances, we apply a zero-sum game formulation to deduce a clean
formula for the minimal regret the DM can guarantee (Theorem 5.1). The optimal regret turns out
to be the maximum distance between a high-dimensional function P ∗ representing the expected utility
of a Bayesian DM and its concavification. This result implies a connection between minimizing regret
and the concavification technique that is usually applied in Bayesian persuasion [26]. Interestingly, even
though our DM is ignorant to the information structure, her regret is tightly related to the probability
with which a Bayesian DM correctly guesses the state of nature. The concavification formula allows us
to resolve the regret problem in instances in which the previous approach fails, i.e., cases with a small
number of agents.

While the anonymity assumption (by which the DM observes only the aggregate statistics of the
agents’ recommendations) is natural in the context of information aggregation, we also show that con-
sidering this anonymous version of the problem is without loss of generality (Appendix A.3).

1.3 Related Work
The most closely related paper to ours is [17]. The settings considered in the two works are similar.
The major difference is that our main focus is on the regret approach, which differs (conceptually and
technically) from their minimax approach. Another difference is that we assume symmetric agents.
Unlike [17], we also study an anonymous variant of the problem in which the aggregator observes the
statistics of recommendations rather than the entire recommendation vector.

A work that adopts the regret approach is Arieli et al. [3]. They study Blackwell-ordered [10, 11]
and conditionally i.i.d. information structures. Additional works that consider regret as a measure of
robustness include: Babichenko and Garber [7], which explores the class of partial-evidence information
structures in a repeated game setting; [14], which considers information structures with informational
substitutes; and Neyman and Roughgarden [33], which shows that under the projective substitutes
assumption, the principal can improve upon the random dictator mechanism considered by us.

Information aggregation with uncertainty about the information structure has been studied in a
voting framework by Levy and Razin [28]. They consider a voter’s uncertainty about whether the signals
from different sources are fully correlated or conditionally independent. They show that such uncertainty
may encourage the voter to rely more on the information she gets and less on her political preference.

Robustness to correlations given fixed marginal distributions over the agents’ types (private informa-
tion) has been previously studied in the framework of mechanism design. Some examples include [13, 24],
studying the optimal robust mechanism for a principal, assuming that she knows the marginal distribu-
tions of the agents’ types, but not the joint distribution.

Forecast aggregation is a well-studied topic within statistics. Some works (see, e.g., [18, 37, 42])
examine how well simple aggregation rules perform. An alternative approach uses a training set to find
an optimal aggregation scheme within a parametric family of such schemes (e.g., [32]). In social choice,
judgment aggregation studies the aggregation of beliefs about whether logical statements are true or
false [21]. In economics, Levy and Razin [29] consider forecast aggregation with multiple experts. Their
aggregation scheme follows the assumption that the information structure of the experts is the one max-
imizing the likelihood of observing their realized forecasts. Further recent works on forecast aggregation
include Wang et al. [41], who study aggregation without being exposed to the past performance data
using peer assessment scores. In the correlation-robust framework, we should mention [30], who study
aggregation of information with uncertainty both about the joint information distribution and the set of
all possible signals.

The fundamental question of whether social choice rules aggregate well the information of the crowd
is an old topic in economics that goes back to Condorcet [16], who proves that the simple majority
rule is an asymptotically optimal aggregation rule when agents vote sincerely according to their private
information. However, Austen-Smith and Banks [6] demonstrate that Condorcet theorem strongly relies
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on the property that agents’ information is symmetric. In asymmetric information structures, even when
the signals are conditionally independent, the simple majority aggregation rule is far from being optimal.
These observations have initiated an extensive line of research that aims to understand which aggregation
rules aggregate well the information of the crowd (e.g., [31, 22, 27, 1], just to mention a few). Our paper
aims to address the same question, but in a setting with the correlation of signals being unknown. This
is in contrast to most of the existing research, which commonly assumes that the signals of the agents are
independent conditional on the state. Our result indicates the robust optimality of the random dictator
rule, and we show in Section 4 that in our symmetric setting, simple majority aggregation is far from
being optimal.

Paper organization. In Section 2, we introduce the formal mathematical model and basic definitions.
The model includes some simplifying assumptions; generalizations are discussed in Appendix A. Section 3
revisits the minimax robustness paradigm in our model, showing that the random dictator rule is always
optimal. In Section 4, we present an approach for analyzing regret minimization that is particularly
useful for a large number of agents. This approach allows to upper bound the regret of any specific
aggregation rule; we extend the main result of this section to the approximation ratio robustness paradigm
in Appendix A.4. Section 5 connects the regret-minimizing aggregation problem to the concavification
of a function; and Subsection 5.1 shows an application for two agents. Section 6 concludes and suggests
some questions for future work.

2 Preliminaries
Notation. For any set D, let ∆(D) be the set of all probability distributions over D.

2.1 Setting
We consider a binary space of states of nature Ω = {0, 1}, equipped with a publicly-known prior µ ∈ [0, 1]
– the probability that the (unknown) true state ω ∈ Ω is equal to 1. We extend our main results to an
arbitrary finite state space in Appendix A.2.

The model contains a decision maker (or DM, also known as an aggregator) and n informed agents.
The agents are numbered 1, . . . , n, with agent i observing a binary signal si ∈ S := {L, H} that represents
information about the state of nature. The agents truthfully report to the DM either H or L according to
their observed signal. The assumption that signals are binary is for simplicity of presentation – our results
can be extended to arbitrary sets of signals, including continuum-many signals (see Subsection A.1).

The joint distribution according to which the state and the n signals are generated is denoted by
π ∈ ∆(Ω × Sn), and is called the information structure. We use π(·) to denote the probability of a given
event according to the information structure. The information structure must be compatible with the
prior distribution – i.e., π(ω = 1) = µ.

The posteriors. Upon observing si = σ, agent i computes her posterior distribution over the states
as follows: the posterior probability of ω = 1 is π(ω=1,si=σ)

π(si=σ) . The agents are symmetric in the following
sense – the marginal distributions over posterior beliefs of all the agents are identical. The posterior of
agent i after observing the signal si = L is assumed to be fixed across all agents. Denote this posterior
by p1 and call it the low posterior. Similarly, the high posterior of an agent is p2. Note that for every
1 ≤ i ≤ n we have:

p1 = π(ω = 1, si = L)
π(si = L) ; p2 = π(ω = 1, si = H)

π(si = H) .

Throughout the paper we assume that p1 < 1
2 < p2 – otherwise, the agents’ reports do not affect the

DM’s guess regarding the state of nature, and the setting is degenerate.
As in [17], we assume that p1, p2 are known to the DM; this enables us to focus on the effect of not

knowing the correlations, which are captured by the information structure π that is not observed by
the DM.

Throughout the paper we use the following parameters a, b: Parameter a (respectively, b) represents
the probability of a single fixed agent to have the high posterior conditional on state ω = 0 (respectively,
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ω = 1). The parameters are deduced by straightforward calculations to be:3

a = (1 − p2)(µ − p1)
(1 − µ)(p2 − p1) ; b = p2(µ − p1)

µ(p2 − p1) . (1)

2.2 Information Aggregation
We consider an identical-interest scenario. Therefore, we assume that the agents truthfully report their
private signals to the DM.

However, we assume that the DM only observes the fraction of agents who report H, which is denoted
by ν ∈

{
0, 1

n , . . . , 1
}

. Following [2], we assume anonymous agents – the DM does not observe the identity
of the agents who report H. Note that this assumption is without loss of generality (see Subsection A.3).
It is introduced both for simplicity of presentation and for emphasizing the unimportance of the agents’
identities for understanding the optimal DM’ strategy.

The DM’s goal is to aggregate the information into a guess of the correct state, using her knowledge
of the fraction ν, as well as the prior µ and posteriors p1, p2. Namely, the DM’s utility is 1 if she guesses
the state correctly, and is 0 otherwise.4 The DM can use a mixed guessing strategy, captured by an
aggregation rule f :

{
0, 1

n , . . . , 1
}

→ [0, 1], where f(ν) denotes the probability that the DM guesses ω = 1
after observing a fraction of ν agents who report H.

The information structure π and state of nature ω induce a distribution over ν – that is, a distribution
over the possible fractions

{
0, 1

n , . . . , 1
}

of agents with the high posterior. Let π̂ ∈ ∆
(
Ω ×

{
0, 1

n , . . . , 1
})

denote the distribution over ω and ν induced by π. The corresponding distributions over ν conditional
on the state ω = 0 and ω = 1 are denoted by π̂0 and π̂1, respectively. For an information structure π and
an aggregation rule f , the probability of the DM to guess correctly is denoted by P (f, π), and equals:

P (f, π) := µEν∼π̂1 [f(ν)] + (1 − µ)Eν∼π̂0 [1 − f(ν)].

Note that Eν∼π̂1 [f(ν)] is the probability that the DM guesses ω = 1, on average over the observed fraction
ν given that the true state is 1. Similarly, Eν∼π̂0 [1 − f(ν)] is the probability that the DM guesses ω = 0,
on average over the observed fraction ν given that the true state is 0.

2.3 Regret and Minimax
Consider a Bayesian DM, i.e., a DM who knows the information structure π. Such a DM always guesses
the more likely state. Hence, her probability of guessing correctly equals:

P ∗(π) := Eν∼π̂[max{π̂(ω = 0|ν), π̂(ω = 1|ν)}].

The regret of an aggregation rule f for an information structure π is defined by:

Reg(f, π) := P ∗(π) − P (f, π).

Since the DM does not know π, she aims to design an aggregation rule with low regret for all
information structures. We define Reg(f) := maxπ Reg(f, π).5 That is, the regret of an aggregation rule
f is the regret – i.e., expected additive utility loss – in the worst-case scenario. We refer to the worst-case
information structure π as chosen by an adversary given f . Denote by Reg := minf Reg(f) the regret
of an optimal aggregation rule. Through most of the paper, we focus on computing Reg, and finding an
aggregation rule f (which may depend on p1, p2, and µ, but obviously not on π) that minimizes Reg(f).

We further define
Minmax := max

f
min

π
P (f, π)

to be the maximum probability of a correct guess by the DM under the worst possible information
structure chosen by an adversary. We say that an aggregation rule f is minimax-optimal if minπ P (f, π) =
Minmax.

3The probability of an agent to have each posterior is uniquely determined by the requirement that the expectation of
the posterior must be the prior.

4For a binary state space, it is easy to generalize all our results to arbitrary utilities; we further generalize our main
results to any finite state space and arbitrary utilities in Subsection A.2.

5The maximum exists as Reg(f, ·) is a continuous functional defined on a compact space.
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2.4 Concavification and Convexification
We recall the standard definitions of the concavification and convexification of a function [11, 5]. Let
D be some compact convex set and let h : D → R be a function. The concavification cav[h] : D → R
is the pointwise minimum of all the concave functions whose graph is weakly above h. Formally, cav[h]
is concave and for every concave function h̃ : D → R with h̃(x) ≥ h(x) for every x ∈ D, it holds that
h̃(x) ≥ cav[h](x) ≥ h(x) for every x ∈ D.6 Similarly, the convexification vex[h] : D → R is the pointwise
maximum of all the convex functions whose graph is weakly below h.

3 Minimax-Optimal Aggregation Revisited
In this section, we revisit the work of De Oliveira et al. [17], who study minimax-optimal information
aggregation rules. Unlike us, they do not assume that the agents’ distributions over posteriors are
identical. The main result of [17] states that the minimax-optimal aggregation rule is to follow the
recommendation of the best agent (and ignore the remaining agents); “best agent” here means the agent
with the most informative private signal. We now give an analogue of this result in our symmetric
setting, and provide a simple standalone proof for completeness.

The simple key observation in our symmetric setting is as follows. Since all agents have identical dis-
tributions of posteriors, they all qualify as “best agents”. By choosing an agent uniformly at random and
following her recommendation (an aggregation rule for which anonymous statistics suffice), we essentially
follow the recommendation of a best agent. 7 Therefore, the minimax-optimal aggregation rule is the
random dictator rule – choosing an agent uniformly at random and relying only on her recommendation.
Formally:

Definition 3.1. The random dictator aggregation rule is the function f :
{

0, 1
n , . . . , 1

}
→ [0, 1] satisfying

f
(

k
n

)
= k

n for 0 ≤ k ≤ n.

For example, if the fraction of agents with signal H is ν = 1/3, the probability of guessing ω = 1 is
f(1/3) = 1/3, which is equivalent to choosing one of the n agents uniformly at random and following
her recommendation.

In the symmetric setting we study, one can analyze optimal aggregation for the minimax paradigm
straightforwardly, without relying on the results of [17]. It is informative to consider in this case the best
information structure from the perspective of an adversary who tries to fail the DM. Such an information
structure is fully-correlated, that is, it sends all the agents the same signal, thus revealing the minimal
possible amount of information to the DM. The DM then has nothing better to do than following the
unanimous recommendation of all agents.

Proposition 3.2 (A special case of the main result of [17]). For every information aggregation setting
with prior µ, the random dictator aggregation rule is minimax-optimal. Moreover, Minmax = (1 − µ) ·
(1 − a) + µ · b for a, b as defined in Eq. (1).

Proof. We first prove that the random dictator rule guesses ω correctly with expected probability of
exactly (1 − µ) · (1 − a) + µ · b. Indeed, when ω = 0, the expected fraction of agents with the low
posterior is 1 − a. Moreover, when ω = 1, the expected fraction of agents with the high posterior is
b. Since the DM follows the recommendation of a uniformly chosen agent, the law of total expectation
yields that the expected probability of a correct guess is (1 − µ) · (1 − a) + µ · b, as desired.

It remains to show that for every aggregation rule f , the adversary can ensure that the probability
of a correct guess is at most (1 − µ) · (1 − a) + µ · b. Indeed, let the adversary pick the fully-correlated
information structure – that is, s1 ≡ s2 ≡ . . . ≡ sn. In this case, the random dictator rule is trivially
optimal, as all the agents get the same signal. Since, as shown, this rule guesses the correct state with
expected probability of exactly (1 − µ) · (1 − a) + µ · b, the claim follows.

This straightforward analysis no longer holds for the regret minimization paradigm. Indeed, for the
fully-correlated information structure, our ignorant DM can perform as well as the hypothetical Bayesian
DM, and the regret is 0. The next two sections provide two complementary approaches to tackle regret
minimization.

6See [20] for algorithmic aspects of computing the concavification of a set function.
7We assume the DM only observes anonymous data. As we show in Subsection A.3 for regret minimization – this

assumption is not essential. Analogous considerations apply to minimax-optimal aggregation rules.
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4 Main Result
In this section, we present a general approach for finding the minimum regret Reg, which – quite sur-
prisingly – turns the optimization into a single-dimensional problem. We prove that for many settings,
the uniquely optimal aggregation rule f is the random dictator rule (Theorem 4.3). In particular, it is
always true for a sufficiently large number of agents n (Corollary 4.4).

We start with a preliminary bound on the regret of a given aggregation rule f ; see Figure 1.

ν

f

1
n

2
n

n−1
n

1

1

a

a

b

b

a b

ω = 0

ω = 1

Figure 1: An aggregation rule f . The blue function is cav[f ]. The red function is vex[f ]. The length of
the left (resp., right) green line captures the minimal probability – across all information structures – of
the aggregation function f to guess correctly the state ω = 0 (resp., ω = 1).

Proposition 4.1. For every a, b, n, µ, and f :

Reg(f) ≤ 1 − (1 − µ) · (1 − cav[f ](a)) − µ · vex[f ](b).

To prove this result, we first note that the set of feasible distributions over frequencies of posteriors
has a neat characterization according to a recent result by Arieli and Babichenko [2]. More formally, we
say that a pair of distributions (ρ̂0, ρ̂1) ∈

(
∆

({
0, 1

n , . . . , 1
}))2 is feasible if there exists an information

structure π such that ρ̂ω = π̂ω for ω = 0, 1. The parameters a and b defined in Section 2 play a central
role in the characterization of feasible distributions.
Theorem 4.2 (Arieli and Babichenko [2]). A pair of conditional distributions (ρ̂0, ρ̂1) ∈(
∆

({
0, 1

n , . . . , 1
}))2 is feasible if and only if E[ρ̂0] = a and E[ρ̂1] = b.

As the adversary can spread b to the grid of empirical posteriors in any way she prefers provided
that the expectation of the spread is b, and the probability of a correct guess by the DM of the state
ω = 1 is the expectation of f over the spread – to minimize the correct guess probability, the adversary
would prefer to spread b to points on the convexification of f . Similarly, to minimize the correct guess
probability for ω = 0, the adversary should spread a to points on the concavification of f .

Proof of Proposition 4.1. Let π be an information structure that induces the distributions of frequencies
(π̂0, π̂1). By Theorem 4.2, we know that E[π̂0] = a and E[π̂1] = b.

Since E[π̂0] = a, the function f guesses the state with probability of at least 1 − cav[f ](a). Indeed,
cav[f ] captures the maximial probability of a mistake (across all possible π̂0). Similarly, as E[π̂1] = b,
the function f guesses the state with probability of at least −cav[−f ](b) = vex[f ](b): vex[f ] captures
the minimal probability of a correct guess.

Therefore, the probability of a correct guess of ω under the information structure π is at least:

1 − (1 − µ) · (1 − cav[f ](a)) − µ · vex[f ](b).

With the trivial bound of 1 on the correct guess probability of the state, we get for every π:

Reg(f, π) ≤ 1 − (1 − µ) · (1 − cav[f ](a)) − µ · vex[f ](b).

Since it is true for every π, the proposition follows.
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Tightness of Proposition 4.1. The bound of Proposition 4.1 is tight in many cases. For instance,
consider the function f that is depicted in Figure 1. By Theorem 4.2, the adversary can choose the
information structure π such that π̂0 will be supported on the two points a, a, and π̂1 will be supported
on the two points b, b. For such an information structure, the Bayesian DM knows to guess the state
with probability 1 because {a, a} ∩

{
b, b

}
= ∅. Moreover the aggregation function f guesses the state

ω = 0 (respectively, ω = 1) with probability 1 − cav[f ](a) (vex[f ](b)) exactly. Hence, the bound of
Proposition 4.1 is tight. In fact, such an argument will prove tightness of the bound in Proposition 4.1
whenever the supports of the concavification of f at a and of the convexification of f at b are disjoint.
This is a key observation to deduce the regret-minimizing f for a large class of instances in the case of
many agents (i.e., when n is large).

4.1 Regret Minimization of the Random Dictator Rule
In this section, we prove that if 1

n ≤ a < b ≤ n−1
n – then the uniquely optimal aggregation rule is

random dictator. As we have already noted in Section 3, this aggregation rule is the natural analogue
in our symmetric setting of “following the best agent”, which is shown to be minimax-optimal by [17].
Moreover, it follows that random dictator is the unique approximation ratio-optimizing aggregation rule
when 1

n ≤ a < b ≤ n−1
n . Thus, for fixed prior and marginal posteriors, the random dictator rule is

asymptotically uniquely optimal regardless of the studied robustness paradigm.

Theorem 4.3. Suppose 1
n ≤ a < b ≤ n−1

n . Then random dictator is the unique regret-minimizing
aggregation rule. Moreover, Reg = 1 − (1 − µ) · (1 − a) − µ · b.

In particular, this theorem implies an asymptotic result when the marginals remain fixed, but the
population of agents grows.

Corollary 4.4. For every µ, p1 and p2, there exists N s.t. for every n ≥ N , the random dictator rule is
the unique regret-minimizing aggregation rule. Specifically, N = max

{
(1−µ)(p2−p1)
(1−p2)(µ−p1) , µ(p2−p1)

p1(p2−µ)

}
.

In particular, N is large when one of the marginal posteriors is close to an extreme point of the
interval to which it might belong – the prior, 0 or 1. Intuitively, when one of the possible signals either
reveals almost no information or reveals almost full information – some intricate aggregation rules might
be required, giving, respectively, less or more weight to the recommendations of the agents with this
extreme signal.

Intuitively, the proof of the theorem relies on the tightness of Proposition 4.1 discussed above. We
show that whenever the constants a and b lie in the segment

[ 1
n , n−1

n

]
– the adversary has sufficient

flexibility to choose an information structure π with disjoint supports for π̂0 and π̂1; that will drop
the DM’s probability of guessing (weakly) below the one that is achieved by the random dictator rule.
Because of the disjointness property, such an information structure has an ideal performance for the
Bayesian DM (that is – always guesses the state). Hence, the DM has no better aggregation rule than
the random dictator. The full proof of Theorem 4.3 appears in Appendix C.

Supermajority aggregation. A common class of aggregation functions that is considered both in
practice and in the theoretical literature is the class of supermajority rules. Namely, f(ν) = 1ν≥τ for
some threshold τ . We note that supermajority rules might perform very bad in terms of regret. For
example, fix a = 1

2 − 1
n , b = 1

2 + 1
n and µ = τ = 1

2 . The regret of the majority rule is as high as
1 − O

( 1
n

)
; namely, there exists an information structure for which the Bayesian aggregator guesses the

state with probability 1, while the majority rule guesses the state with probability O
( 1

n

)
. To show this,

one may consider an information structure for the adversary with π̂0 supported on 0 and on a grid point
ν0 ∈

( 1
2 , 1

2 + O
( 1

n

))
, and with π̂1 supported on 1 and on a grid point ν1 ∈

( 1
2 − O

( 1
n

)
, 1

2
)
. Note that

conditional on state ω, with probability 1 − O
( 1

n

)
the realized fraction of high reports will be νω, which

will cause the majority rule to fail. In contrast, the random dictator rule will guess the state correctly
with probability of 1

2 + 1
n .

Alternative robustness approaches. Our proof of Proposition 4.1 immediately implies a stronger
result than Proposition 3.2 – under the minimax paradigm, random dictator is always the unique optimal
aggregation rule. Moreover, note that it follows from Theorem 4.3 proof that whenever 1

n ≤ a < b ≤ n−1
n ,

the adversary has an optimal strategy that allows the Bayesian DM to guess the state correctly with
probability 1. Therefore, the regret-minimizing aggregation rule is also approximation ratio-optimizing
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– see Appendix A.4. Hence, given any fixed prior and marginal posteriors, for a large enough number of
agents n, the random dictator rule is uniquely optimal for all three robustness paradigms: minimax, regret
and approximation ratio. It highlights the universal nature of robust optimality of random dictator.

5 General Regret Analysis
In the previous section, we showed how to compute the minimal regret for a large number of agents. In
this section, we characterize the minimal regret as the maximal difference between the concavification of a
function P ∗ – representing the correct guess probability of the Bayesian DM – and P ∗ itself (Theorem 5.1).
The formula uses the concavification of the function P ∗ defined on a 2n+1-dimensional set; it allows to
explicitly compute Reg for a small number of agents.

Define, as is standard, [n] := {1, . . . , n}. Note that the set of information structures with the given
prior µ and given posteriors p1, p2 for both agents is a polygon C ⊂ R2n+1 that is defined by the following
equations:

C := {x = (xω
D)D⊆[n], ω=0,1 :xω

D ≥ 0,
∑

D⊆[n]

x0
D = 1 − µ,

∑
D⊆[n]

x1
D = µ,

∀i ∈ [n] :
∑

D: i∈D

x0
D = (1 − µ)a,

∑
D: i∈D

x1
D = µb},

where the terms (1 − µ)a and µb represent the unconditional probability weight that is assigned to the
high signal at states 0 and 1, correspondingly. We now present a closed formula for the optimal regret.

We slightly abuse notation and consider P ∗(π), the probability of a correct guess by a Bayesian DM,
to be a function P ∗ : C → [0, 1]. Note that we have for every x = (xω

D)D⊆[n], ω=0,1 ∈ C:

P ∗(x) =
n∑

i=0
max

 ∑
D: |D|=i

x0
D,

∑
D: |D|=i

x1
D

.

Note that P ∗ is a convex function, as a sum of n + 1 functions each of which is a maximum of linear
functions. The following theorem characterizes the optimal regret.

Theorem 5.1. For every number of agents n ≥ 2 it holds that Reg = maxx∈C [cav[P ∗](x) − P ∗(x)].8

The theorem is somewhat surprising because it connects the minimal regret of a DM who is ignorant
of the information structure to the function P ∗ that reflects the probability of a correct guess of a
Bayesian DM who is aware of the information structure.

Proof of Theorem 5.1. The regret minimization problem can be viewed as a zero-sum game between the
DM who chooses an aggregation rule f and an adversary who chooses the information structure π (or,
equivalently, x ∈ C). Concretely, deterministic aggregation rules f :

{
0, 1

n , . . . , 1
}

→ {0, 1} are the pure
strategies of the DM, and information structures x ∈ C are the pure strategies of the adversary. The
payoff as a function of the DM’s mixed strategy f and the adversary’s mixed strategy ϕ is:

Reg(f, ϕ) := Ex∼ϕ

[
n∑

i=0

max

 ∑
D⊆Ω: |D|=i

x0
D,

∑
D⊆Ω: |D|=i

x1
D


−

(1 − fi) ·
∑

D⊆Ω: |D|=i

X0
D + fi ·

∑
D⊆Ω: |D|=i

x1
D

 ]
.

The value of this zero-sum game is Reg.
By the minimax theorem, Reg equals to the maximum over all mixed strategies of the adversary

followed with a best-response of the DM. Note that the DM’s best response to a mixed strategy over
8An analogue of this theorem remains valid in a more general setting in which we drop the symmetry assumption among

the agents; i.e., the setting that has been considered by De Oliveira et al. [17]: Every agent has a different information
structure and reports her recommendation. The probability of a correct guess by a Bayesian DM P ∗ is well-defined, and
the theorem states that Reg = maxx∈C [cav[P ∗](x) − P ∗(x)]. The validity of this generalization follows Theorem 5.1 proof
relying on minimax arguments only, which can be applied in the non-symmetric case without any modifications.
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information structures is her Bayesian guessing of a state given the known mixed strategy of the adversary.
Formally, let ϕ ∈ ∆(C) be a mixed strategy of the adversary. Then the DM’s utility under best response
is P ∗(E[ϕ]). The hypothetical Bayesian DM will apply a Bayesian guessing in each realization of x ∼ ϕ.
Hence, her expected probability of guessing the state is Ex∼ϕ[P ∗(x)]. Overall, we deduce that:

Reg = max
ϕ∈∆(C)

[Ex∼ϕ[P ∗(x)] − P ∗(E[ϕ])] = max
y∈C

[cav[P ∗](y) − P ∗(y)],

where the second equality follows from taking y = E[ϕ] at the maximizing mixed strategy.

5.1 Example: The Two-Agent Case
In this subsection, we demonstrate the use of the duality method on which Theorem 5.1 is based for
computing the best aggregation function for n = 2 agents and a uniform prior. The result easily
generalizes to an arbitrary prior, and a similar methodology can be used to find a closed expression for
Reg for small values of n.9

a

b

1/2 1

1/2

1

(1) (2)

(5)

(7)
(8)

(6)
(4)

(3)

Figure 2: The partition of the values of (a, b) into regions according to the cases in Example 5.2.

Example 5.2. For n = 2 agents and a uniform prior µ = 1/2, the optimal aggregation function f
satisfies f(0) = 0 and f(1) = 1. The value of f

( 1
2
)

and the minimal regret Reg are given by:10

1. f
( 1

2
)

= a+2b
2(a+b) , Reg = a(a+2b)

2(a+b) if a < b ≤ 1
2 and 2a ≤ b.

2. f
( 1

2
)

= 3b−a
2(a+b) , Reg = a2+4ab−b2

2(a+b) if a < b ≤ 1
2 and 2a ≥ b.

3. f
( 1

2
)

= 2−3a+b
2(2−a−b) , Reg = −a2+4ab+b2−2a−6b+4

2(2−a−b) if 1
2 ≤ a < b and 1 + a ≥ 2b.

4. f
( 1

2
)

= 3−2a−b
2(2−a−b) , Reg = (1−b)(3−2a−b)

2(2−a−b) if 1
2 ≤ a < b and 1 + a ≤ 2b.

5. f
( 1

2
)

= 1−b
1+a−b , Reg = a(1−b)

1+a−b if a ≤ 1
2 ≤ b and b ≥ max

{
2a, a+1

2
}

.

6. f
( 1

2
)

= 2−2a−b
2(1+a−b) , Reg = (1−b)(4a−b)

2(1+a−b) if a ≤ 1
2 ≤ b and 2a ≥ b ≥ a+1

2 .

7. f
( 1

2
)

= −1+a+2b
2(1+a−b) , Reg = a(3+a−4b)

2(1+a−b) if a ≤ 1
2 ≤ b and a+1

2 ≥ b ≥ 2a.

8. f
( 1

2
)

= 3−a−3b
2(1+a−b) , Reg = a2−6ab+b2+5a−b

2(1+a−b) if a ≤ 1
2 ≤ b and b ≤ min

{
2a, a+1

2
}

.
9Note that in the special case of a uniform prior, the assumption p1 < 1

2 < p2 trivially holds unless p1 = p2 = a = b = 1
2 .

10When multiple cases apply – all the corresponding possibilities for f are optimal.
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Example 5.2 demonstrates that for a small number of agents (n = 2), the regret-minimizing aggrega-
tion rule is quite a complex object (see Figure 2 for illustration). This is in a sharp contrast to considering
the minimax-optimal aggregation rule, which is always random dictator (Proposition 3.2). Note that in
particular, there might be more than one regret-minimizing f . As follows from the previous section, this
is a side effect of the number of agents being small.

The proof relies on Theorem 5.1, which allows us to calculate Reg by maximizing the difference
cav[P ∗] − P ∗. The function P ∗ turns out to be two-dimensional; hence, the calculations are relatively
easy. Note that Theorem 5.1 does not characterize the regret-minimizing aggregation rule f . To deduce
f , we use the fact that f must induce indifference between the information structures that the adversary
chooses with positive probability. This pins down f when it is combined with the educated guess that
f(0) = 0 and f(1) = 1. All these calculations are relegated to Appendix D.

The analysis of Example 5.2 in Appendix D suggests the following interpretation of the optimal f
for n = 2 and µ = 1

2 – the adversary should randomize between two information structures; in each of
the two information structures, in one state the adversary should fully correlate the signals, while in the
other state she should anticorrelate the signals as much as possible.

6 Conclusions and Future Work
We initiate the study of regret minimization for aggregating information. While the regret minimization
approach turns out to be fundamentally different from the minimax approach for a small number of
symmetric agents – with the former being much more intricate – they are equivalent for a sufficiently
large number of such agents. Moreover, the approximation ratio robustness approach is also equivalent
to these approaches when the number of agents is large.

Our work suggests many natural open questions. The tractability of our analysis crucially relies on
the fact that the decision of the DM is binary. It remains an open problem how to analyze settings with
more than two actions for the DM. Weakening the assumption that the agents are symmetric is another
interesting direction for the regret approach. Furthermore, an online variant of our setting – with the
DM trying to learn the optimal aggregation rule – remains unexplored. Another interesting challenge is
to come up with mild limitations on the power of the adversary under which natural aggregation rules –
such as supermajority – perform better than the random dictator and potentially are robustly optimal.
Finally, the existence of a universally robust strategy (aggregation rule in our case) that is optimal
under several robustness approaches is a seemingly rare phenomenon, which we have found to hold in
the information aggregation problem. We do not know of any other setting in which such a universally
robust strategy exists. It will be interesting to find other settings with this phenomenon and explore
underlying reasons.
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A Extensions
In this appendix, we discuss the generality of our results from the paper body. We start by showing
that all our results hold even without the assumption of binary marginal posteriors (Subsection A.1).
We proceed by showing that our main results on the optimality of random dictator (Theorem 4.3 and
Corollary 4.4) hold for an arbitrary state space (Subsection A.2). Then we establish that throughout the
paper, one can drop the assumption that agents’ reports to the DM are anonymous (Subsection A.3).
Finally, we show how the proof of Theorem 4.3 implies that for a sufficiently large number of agents, the
random dictator aggregation rule also optimizes the approximation ratio (Subsection A.4). We conclude
that for a large enough number of agents, the random dictator rule is the unique optimal aggregation
rule regardless of the robustness paradigm – minimax, regret or approximation ratio. Finally, we discuss
the truthfulness assumption on the agents in Subsection A.5.
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A.1 Non-Binary Signals
As we mentioned in Section 2, we assume that |S| = 2 purely for simplicity. Here, we show that all our
results continue to hold in a much more general setting, provided that the agents still submit binary
recommendations.

We consider the model described in Section 2 with the following differences. We take an arbitrary
set of signals S ⊆ [0, 1], with each signal labeled by the marginal posterior it induces on an agent
observing it. We consider identical distributions over marginal posteriors π1, . . . , πn of agents no. 1, . . . , n
(respectively), with πi ∈ ∆(Ω × S) being the projection of π ∈ ∆(Ω × Sn) to the first and the i + 1-th
coordinates. We assume that min{Prq∼π1 [q < 1/2], Prq∼π1 [q > 1/2]} > 0, where q denotes the marginal
posterior probability for ω = 1.11

Each agent makes a reports in {H, L}. Specifically, if her marginal posterior q ∈ S satisfies q ≥ 1/2 –
she chooses the high report (H), which is interpreted as ω = 1 being the likely possibility; otherwise, she
chooses the low report (L). Similarly to the basic setting, our ignorant DM only observes the fraction
of agents with the H report, but not the report of each agent separately. Moreover, the DM knows the
distribution over marginal posteriors, but not the full information structure π. In contrast, the Bayesian
DM observes the report of each agent separately, and she also knows the full information structure π.12

Denote p1 := Eq∼π1 [q|q < 1/2] and p2 := Eq∼π1 [q|q ≥ 1/2] (both are well-defined by our assumption
on the marginal distributions). Then p1 < 1/2 < p2. We claim that all the proofs we presented in the
paper work in this more general setting.

First, note that given an information structure π in the general setting and the induced information
structure π′ with the only possible marginal posteriors being p1, p2 – each aggregation function f satisfies:

Eν∼π̂1 [f(ν)] = Eν∼π̂′1
[f(ν)],

and:

Eν∼π̂0 [1 − f(ν)] = Eν∼π̂′0
[1 − f(ν)].

Indeed, the ignorant DM can emulate any aggregation function from the basic setting also in the new
setting without making any changes, and vice versa.

Denote by sB(·) the state that the Bayesian DM guesses as a function of ν. To finish modifying our
proofs to the general setting – it is enough to prove an analogous condition to the above for the Bayesian
DM, which is provided by the following lemma.13

Lemma A.1. Fix ω′ ∈ Ω. Then for any information structure π in the general setting and the corre-
sponding induced information structure π′ in the binary-posterior setting from Section 2, it holds that:

Eν′∼π̂′
ω′

[
Pr

[
sB(ν′) ̸= ω′]] = Eν∼π̂ω′

[
Pr

[
sB(ν) ̸= ω′]]

Proof. The key idea is that the Bayesian DM cannot decrease the mistake probability knowing π com-
pared to π′ as she does not observe the exact posterior of each agent, but only her recommendation. We
shall only prove the lemma for ω′ = 1 (the case ω′ = 0 is analogous).

Indeed, we have:

Eν′∼π̂′1

[
Pr

[
sB(ν′) ̸= 1

]]
= Pr

q∼π′(ω=1)
[q < 1/2] = Pr

q∼π′(ω=1)
[q = p1] =(∗)

Pr
q∼π(ω=1)

[q < 1/2] = Eν∼π̂1

[
Pr

[
sB(ν) ̸= 1

]]
,

where (∗) holds by definition of π′.

A.2 Arbitrary State Space and Utilities
In this section, we weaken the assumption that the state space is binary and the DM just tries to guess
the correct state. Rather, we just assume that Ω is finite, and the state space is equipped with some
prior distribution µ = (µω)ω∈Ω. The DM has to choose between a default action yielding her a constant

11If, e.g., all the elements of S induce posteriors not below 1/2 – the DM clearly should just always guess ω = 1.
12We stress that neither the ignorant nor the Bayesian DM observe the exact marginal posteriors of the agents, but only

their recommendations.
13Note that the expected utility of the ignorant DM in both settings is the convex combination of the two quantities

above, with respective weights µ and 1 − µ.
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utility of 0 regardless of the state, and an optional action yielding her a state-dependent utility according
to some function u : Ω → R.14

Each agent recommends taking one of the actions. An agent with a posterior belief q ∈ ∆(Ω)
recommends taking the optional action if in expectation over q, the DM is weakly better off taking
it. Formally: Eω∼q[u(ω)] ≥ 0. Otherwise, she recommends taking the default action. The (marginal)
information structure πi for a single agent is identical for all agents and is given as follows. Agent
i (i ∈ [n]) gets a binary private signal si ∈ {L, H} = S, with the corresponding posteriors being
pL =

(
pL

ω

)
ω∈Ω, pH =

(
pH

ω

)
ω∈Ω. We shall assume that Eω∼pH [u(ω)] > 0 and Eω∼pL [u(ω)] < 0 – that is,

upon observing H the agent would recommend taking the optional action, while upon observing L she
would recommend the default action.15 Denote by ΩH ⊆ Ω the set of states for which the DM is weakly
better off taking the optional action, and define ΩL := Ω \ ΩH . That is, ΩH = {ω′ ∈ Ω : u(ω′) ≥ 0} and
ΩL = {ω′ ∈ Ω : u(ω′) < 0}.

The ignorant DM and the Bayesian DM both observe the fraction of agents recommending H. The
ignorant DM knows just the identical marginal information structure πi ∈ ∆(Ω × S), while the Bayesian
DM is aware of the joint information structure π ∈ ∆(Ω × Sn). The aggregation rule f gets as input the
fraction of agents recommending H and outputs the probability of taking the optional action.

For any state ω′ ∈ Ω, the probability of a specific agent to have the high posterior pH conditional on
the state ω′ is:

aω′ =
pH

ω′

(
µω′ − pL

ω′

)
µω′

(
pH

ω′ − pL
ω′

) .

The regret of an aggregation rule f , Reg(f), is the difference between the expected utilities of a Bayesian
DM knowing π and the ignorant DM not knowing π. The following generalization of Theorem 4.3 holds.

Theorem A.2. Suppose 1
n ≤ aω′ ≤ n−1

n for every ω′ ∈ Ω. Then the random dictator aggregation rule
is uniquely optimal. Moreover:

Reg =
∑

ω′∈ΩH

µω′u(ω′) −
∑

ω′∈Ω
µω′aω′u(ω′).

Let us describe the intuition behind the proof of Theorem A.3, which follows similar ideas to the proof
of Theorem 4.2 (the binary case). We first note that the set of feasible distributions over frequencies of
posteriors has an analogous neat characterization for an arbitrary state space (rather than binary).

Theorem A.3 (Arieli and Babichenko [2] - A generalization of Theorem 4.2). Let (ρ̂ω′)ω′∈Ω ∈(
∆

({
0, 1

n , . . . , 1
}))|Ω| be a tuple of conditional distributions over frequencies of the H-signal. There

exists an information structure π with π̂ω′ = ρ̂ω′ for every ω′ ∈ Ω if and only if E[ρ̂ω′ ] = aω′ for every
ω′ ∈ Ω.

Following the same outline as of Proposition 4.1 proof, with the uses of Theorem 4.2 replaced by The-
orem A.3, we deduce the following result (the proof is omitted due to the similarity to Proposition 4.1).

Proposition A.4. For every {aω′}ω′∈Ω, n, µ, and f :

Reg(f) ≤
∑

ω′∈ΩH

µω′u(ω′) −
∑

ω′∈ΩL

µω′cav[f ](aω′)u(ω′) −
∑

ω′∈ΩH

µω′vex[f ](aω′)u(ω′).

Similarly to the binary-state case, whenever there exists an optimal information structure π for which
the supports of π̂ω′ with ω′ ∈ ΩH are disjoint from the supports of π̂ω′ with ω′ ∈ ΩL – the inequality in
Proposition A.4 is tight. Turning this idea into Theorem 4.2 proof is similar to Theorem 4.3 proof. We
start with a lemma lower-bounding Reg(f).

Lemma A.5. Fix f and let l be the line passing through (0, f(0)) and (1, f(1)). Suppose there exist
distinct x1, x2, x3, x4 ∈

{
0, 1

n , . . . , 1
}

s.t. x1 ≤ aω′ ≤ x2 for every ω′ ∈ ΩL and x3 ≤ b ≤ x4 for every
ω′ ∈ ΩH . Suppose further that (x1, f(x1)), (x2, f(x2)) is not below l and (x3, f(x3)), (x4, f(x4)) not above
l. Then:

Reg(f) ≥ Reg(l) =
∑

ω′∈ΩH

µω′u(ω′) −
∑

ω′∈Ω
µω′(aω′(f(1) − f(0)) + f(0))u(ω′).

14Note that the normalization of the DM’s utility in one of the actions to be constantly 0 is w.l.o.g.
15If an agent would (weakly) recommend the same action regardless of the signal, then the DM can just ignore the

recommendations.
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Proof. Assume that there exist x1, x2, x3, x4 as described. As in Lemma C.1 proof, we get that the
Bayesian DM’s expected utility under l is independent of the information structure π; moreover, the
Bayesian DM’s expected utility equals its maximum possible value

∑
ω′∈ΩH µω′u(ω′) for π inducing the

distributions (π̂ω′)ω′∈Ω over values of ν with respective expectations equal to aω′ such that supp(π̂ω′) =
{x1, x2} for ω′ ∈ ΩL and supp(π̂ω′) = {x3, x4} for ω′ ∈ ΩH (note that the distributions π̂ω′ are uniquely
determined). Thus, it is enough to prove that for the above π, the expected ignorant DM’s utility under
f is at most as under l.

Indeed, by the assumption on x1, x2, x3, x4, the ignorant DM’s utility loss in some ω′ ∈ ΩL for taking
the optional action compared to taking the default action is at least aω′(f(1) − f(0))−f(0)|u(ω′)|, while
her utility gain in some ω′ ∈ ΩH for taking the optional action compared to the default action is at most
(aω′(f(1) − f(0)) + f(0))u(ω′). Therefore, the expected utility of the ignorant DM under f is at most∑

ω′∈Ω µω′(aω′(f(1) − f(0)) + f(0))u(ω′), which is her expected utility under l.

Proof of Theorem A.2. Let l be the line passing through (0, f(0)) and (1, f(1)), and let f(x) ≡ mx + k
(for constants m, k) be its equation. The proof that for any choice of f , the inequality ensured by
Lemma A.5 holds is done exactly as in Theorem 4.3 proof, with a and b replaced by the sets of aω′ for
which ω′ ∈ ΩL and ω′ ∈ ΩH , respectively. In particular, there exists an optimal f which is linear.

Note that k = f(0) and m = f(1) − f(0). From Lemma A.5, we have for any f :

Reg(f) ≥
∑

ω′∈ΩH

µω′u(ω′) − m
∑

ω′∈Ω
µω′aω′u(ω′) − k

∑
ω′∈Ω

µω′u(ω′).

Moreover, for a linear f we have equality.
The only constraints on m, k are k = f(0) ∈ [0, 1] and m + k = f(1) ∈ [0, 1]. To minimize the bound,

we must either have k = 1 and m ∈ {−1, 0}, or k = 0 and m ∈ {0, 1}. Therefore, for any f :

Reg(f) ≥
∑

ω′∈ΩH

µω′u(ω′) − max
{ ∑

ω′∈Ω
µω′aω′u(ω′),

∑
ω′∈Ω

µω′(1 − aω′)u(ω′),
∑

ω′∈Ω
µω′u(ω′), 0

}
.

Note that
∑

ω′∈Ω µω′aω′u(ω′) can be viewed as the expected utility of a DM in a setting with just a
single agent. As for any posterior, an agent recommends the weakly better action, this expected utility
is greater or equal to the utility of any fixed action. That is:

∑
ω′∈Ω

µω′aω′u(ω′) ≥ max
{ ∑

ω′∈Ω
µω′u(ω′), 0

}
.

Moreover, we have:∑
ω′∈Ω

µω′aω′u(ω′) +
∑

ω′∈Ω
µω′(1 − aω′)u(ω′) =

∑
ω′∈Ω

µω′u(ω′) <
∑

ω′∈Ω
µω′aω′u(ω′),

which implies
∑

ω′∈Ω µω′(1 − aω′)u(ω′) < 0. Thus, for any f :

Reg(f) ≥
∑

ω′∈ΩH

µω′u(ω′) −
∑

ω′∈Ω
µω′aω′u(ω′).

Furthermore, for f(x) ≡ x equality holds. Therefore, the random dictator rule is optimal. The uniqueness
follows from the same arguments as in Theorem 4.3 proof, with Lemma C.1 replaced by Lemma A.5,
which can be done since ΩL = {ω′ ∈ Ω : u(ω′) < 0}, ΩH = {ω′ ∈ Ω : u(ω′) ≥ 0} and there exists ω′ ∈ ΩH

for which a strict inequality holds.

As a corollary of Theorem A.2, given any fixed prior and marginal posteriors – for a large enough
number of agents n, the random dictator rule is uniquely optimal. One can further drop the assumption
that each agent gets a binary signal (as was done in Subsection A.1).

A.3 Non-Anonymity
We now prove that the assumption that the DM does not observe the identities of the agents is w.l.o.g.
Namely, let us consider a setting in which the DM’s aggregation rule f : 2[n] → [0, 1] depends also on the
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identity of the agents, where the domain of f is the set of all agents getting the high signal.16 Denote
by P̂ ∗(π), P̂ (f, π), R̂eg(f, π), R̂eg(f) and R̂eg the following quantities in the non-anonymous setting,
respectively: the probability of a correct guess by the Bayesian DM under the information structure
π, the probability of a correct guess by the ignorant DM under the information structure π and the
aggregation rule f , the regret under f and π, the maximum regret of f and the minimal regret in the
setting. We claim that Reg = R̂eg.

For a permutation τ on [n], an aggregation rule f and a distribution over information structures ϕ,
let fτ and ϕτ be, respectively, the aggregation rule and the information structure obtained from f and
ϕ upon applying τ on the agents’ identities. We need the following lemma.

Lemma A.6. Consider the two-player zero-sum game between the DM and the adversary in which the
DM chooses a non-anonymous aggregation rule f , the adversary chooses a distribution over information
structures ϕ, and the payoff is Eπ∼ϕ

[
R̂eg(f, π)

]
. Then there exist optimal DM’s and adversary’s strategies

f∗ and ϕ∗, respectively, such that f∗ = f∗
τ and ϕ∗ = ϕ∗

τ for any permutation τ on [n].

Note that Lemma A.6 immediately implies Reg = R̂eg. Indeed, let f∗ and ϕ∗ be non-anonymous
optimal aggregation rule and distribution over information structures (respectively) invariant un-
der agents’ permutations. If f∗ is suboptimal in the anonymous setting, then there exists ϕ with
Eπ∼ϕ[Reg(f∗, π)] > Eπ∼ϕ∗ [Reg(f∗, π)]. However, we have Eπ∼ϕ[Reg(f∗, π)] = Eπ∼ϕ

[
R̂eg(f∗, π)

]
and

Eπ∼ϕ∗ [Reg(f∗, π)] = Eπ∼ϕ∗

[
R̂eg(f∗, π)

]
, implying Eπ∼ϕ

[
R̂eg(f∗, π)

]
> Eπ∼ϕ∗

[
R̂eg(f∗, π)

]
, a contradic-

tion. Similarly, we get that ϕ∗ is optimal in the anonymous setting.

Proof of Lemma A.6. Fix an optimal aggregation rule f . Define f∗ : 2[n] → [0, 1] by f∗(S) :=
∑

τ
fτ (S)

n! .

Then trivially f∗(S) =
∑

S′⊆[n]:|S′|=|S|
f(S)

( n
|S|)

depends only on |S| – i.e., it is invariant under permutations
on the agents’ identities. Let ϕ be an adversary’s optimal strategy.

By the agents’ symmetry, the aggregation rule fτ is optimal for any permutation τ on [n]. Thus,
R̂eg = Eπ∼ϕ

[
R̂eg(fτ , π)

]
for any τ , implying R̂eg = Eπ∼ϕ

[
R̂eg(f∗, π)

]
. Therefore, f∗ is an optimal

aggregation rule invariant under agents’ permutations.
Define ϕ∗ to be a distribution over information structures choosing uniformly at random a permutation

τ on [n] and then choosing an information structure according to ϕτ . Since f∗ is invariant under any per-
mutation τ on the agents, and the agents are symmetric – we get Eπ∼ϕτ

[
R̂eg(f∗, π)

]
= Eπ∼ϕ

[
R̂eg(f∗, π)

]
for any permutation τ , implying Eπ∼ϕ∗

[
R̂eg(f∗, π)

]
= Eπ∼ϕ

[
R̂eg(f∗, π)

]
= R̂eg. Thus, ϕ∗ is an optimal

adversary’s strategy invariant under agents’ permutations, as needed.

A.4 Approximation Ratio
In this section, we consider an alternative robustness paradigm – approximation ratio. This approach
differs from regret analysis by considering the ratio of the probabilities of the correct guesses of the
ignorant and the Bayesian DM, rather than their difference. Formally, the approximation ratio of the
aggregation rule f in an information structure π is Appr(f, π) := P (f,π)

P ∗(π) . The approximation ratio of an
aggregation rule f is Appr(f, π) := minπ Appr(f, π).17

Proposition A.7. Suppose 1
n ≤ a < b ≤ n−1

n .18 Then random dictator is the unique approximation
ratio-maximizing aggregation rule. Moreover, Appr = (1 − µ) · (1 − a) + µ · b.

Proof. Let f be an aggregation rule. By the proof of Theorem 4.3, for 1
n ≤ a < b ≤ n−1

n – when the
adversary targets maximizing the regret, there always exists an optimal adversary’s information structure
π for which the supports of π̂0 and π̂0 are disjoint. Such a strategy reveals the value of ω to a Bayesian
DM with the maximum possible probability of 1. Therefore, Appr(f) is at most the probability of a
correct guess of ω under f , which is shown in Proposition 3.2 to be at most (1 − µ) · (1 − a) + µ · b, with
this bound achieved exclusively by the random dictator rule.

16Note that as in the previous two subsections, one can extend the results to arbitrary posteriors, and extend Theorem 4.3
and its corollaries to arbitrary finite state spaces.

17Note that this minimum exists since Appr(f, ·) is a continuous functional defined on a compact space.
18Note that this condition holds for all n ≥ max

{ (1−µ)(p2−p1)
(1−p2)(µ−p1) ,

µ(p2−p1)
p1(p2−µ)

}
.
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Conversely, let the DM use the random dictator rule. Then the proof of Proposition 3.2 implies that
the DM guesses ω correctly with probability (1 − µ) · (1 − a) + µ · b. In particular, the approximation
ratio of random dictator is lower-bounded by this value, as needed.

We should also mention that one can get an analogous result in the setting with arbitrary state space
and utilities presented in Subsection A.2 – the random dictator rule remains optimal.

A.5 Strategic Agents
We have assumed that agents simply report the better recommendation conditional on their information.
Our robustness analysis advocates the usage of the random dictator rule as an aggregation rule even for
strategic agents. Here we highlight another desirable property of the random dictator rule: If agents are
strategic and they know that the aggregation rule is the random dictator, then it is a dominant strategy
for them to report the better recommendation conditional on their information. Namely, in addition to
being robustly optimal the random dictator, it is also immune to scenarios in which some (or all) agents
start acting strategically instead of truthfully.

B Minimax versus Regret
In this appendix, we demonstrate that the celebrated result of Carroll [13] on the minimax-optimality
of selling goods separately does not extend to regret optimality. We further discuss another setting ([8])
in which different notions of robustness lead to different robustly optimal strategies.

Carroll [13] consider a classical combinatorial auction setting. A single seller suggests n goods to a
single buyer. The buyer’s valuation for the goods is additive, and it is described by a vector v = (vi)i∈[n]
that specifies her utility for each good. The vector v is drawn according to a distribution π. By the direct
revelation principle, a mechanism for selling the goods might be described as a (possibly infinite) menu
M from which the buyer picks a single item. Each menu item takes the form m = (q1, ..., qn, p) ∈ M ,
where qi ∈ [0, 1] specifies the probability of the good to be allocated to the buyer, and p > 0 is the price
of this menu item. We denote by M∗(π) the optimal mechanism (menu). Let s(M, π) denote seller’s
revenue in case she uses mechanism M .

Carroll [13] study a scenario in which the seller does not know π (and hence cannot pick M∗(π)), but
only knows the marginal distribution of valuations on each good separately. Namely, the seller knows πi,
where πi is the distribution of vi. The correlation between the vis is unknown to the seller. The seller
chooses a mechanism M as a function of ((π1, ..., πn) only. The seller’s goal is to choose a mechanism
that performs robustly well; namely, for all possible correlations. Therefore, the minimax guarantee and
the regret guarantee of a mechanism M are defined by

Minmax(M) = inf
π with marginals (π1,...,πn)

s(M, π)

Reg(M) = sup
π with marginals (π1,...,πn)

[s(M∗(π), π) − s(M, π)]

The result of [13] states that selling the goods separately (with an optimal price on each good i that is
determined by πi only), which is denoted by Msep, is minimax-optimal – i.e., it maximizes Minmax(M)
across all mechanisms). Below we demonstrate an example in which Msep is not regret-optimal (i.e., it
does not minimize Reg(M)).

Consider the case in which n is even and πi is the uniform distribution over {1, 2} for all goods i ∈ [n].
An optimal price for each good separately is 1, and it ensures a deterministic revenue of 1. Hence, the
total revenue is n. We argue that Reg(Msep) = n

2 . Indeed, let π be the uniform distribution over the two
vectors {v, v′}, where v = (1, 2, 1, 2, . . . , 1, 2) and v′ = (2, 1, 2, 1, . . . , 2, 1). Selling all goods as a single
bundle at a price of 3n

2 , which is denoted by Mbun, ensures selling with probability 1, yielding a revenue
of 3n

2 for the seller. Moreover, the seller cannot extract more than 3n
2 revenue, because the revenue is

bounded by buyer’s expected value for the entire bundle.
Assume by way of contradiction that Msep minimizes regret; i.e., the minimal regret is n

2 . We view the
regret-minimization problem as a zero-sum game between the seller (who chooses M) and the adversary
(who chooses π). A (mixed) strategy of the adversary in this zero-sum game is a distribution ϕ over πs. By
the minimax theorem, there exists a mixed strategy ϕ for the adversary such that for every M , we have:
Eπ∼ϕ[s(M∗(π), π) − s(M, π)] ≥ n

2 . In particular, this should hold for M = Msep. Note, however, that
s(M∗(π), π) ≤ 3n

2 (because it is buyer’s expected value for the entire bundle) and that s(Msep, π) = n.
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Therefore, to achieve the n
2 difference ϕ must be supported on πs for which s(M∗(π), π) = 3

2 . This can
happen only if all goods are sold with probability 1 (otherwise the full revenue cannot be extracted) and
we must have v1 + ... + vn = 3n

2 with probability 1 (again because otherwise the full revenue cannot
be extracted). Therefore, ϕ is supported on πs for which buyer’s value for the entire bundle is 3n

2 with
probability 1. Therefore, against the mixed strategy ϕ the seller can use Mbun and have a regret of 0,
which is a contradiction.

Further discussion. Another example that demonstrates the differences of the robustness approaches
appears in Babichenko et al. [8]. Babichenko et al. [8] study the Bayesian persuasion problem ([26])
with uncertainty of the sender about the receiver’s utility. In this setting the minimax approach is very
pessimistic: It is hopeless to have a non-trivial upper bound when the number of states is large. The
regret approach succeeds in providing non-trivial asymptotic (in the number of states) bounds on the
regret. Interestingly, in the same setting providing non-trivial asymptotic bounds on the approximation
ratio turns to be impossible, whereas for a constant number of states bounds are provided.

C Proof of Theorem 4.3
We first lower-bound Reg under the assumption that one can separate the supports of π̂0 and π̂1. We
shall show that the DM betters off by replacing f with the segment connecting the points (0, f(0)) and
(1, f(1)).

Lemma C.1. Fix f and let l be the line passing through (0, f(0)) and (1, f(1)). Suppose there exist
distinct x1, x2, x3, x4 ∈

{
0, 1

n , . . . , 1
}

s.t. x1 ≤ a ≤ x2, x3 ≤ b ≤ x4 with (x1, f(x1)), (x2, f(x2)) not below
l and (x3, f(x3)), (x4, f(x4)) not above l.19 Then:

Reg(f) ≥ Reg(l) = 1 − (1 − µ) · (1 − a(f(1) − f(0))) − µ(b(f(1) − f(0))) − (2µ − 1)f(0).

Proof. Assume that there exist x1, x2, x3, x4 as described. Note first that since l is a linear function,
P (l, π) is independent of the information structure π. Moreover, P ∗(π) = 1 for π inducing the dis-
tributions π̂0, π̂1 over values of ν with supp(π̂0) = {x1, x2} and supp(π̂1) = {x3, x4}, and respective
expectations a, b (note that the distributions π̂0, π̂1 are uniquely determined). Indeed, separating these
supports allows the Bayesian DM to guess ω correctly with probability 1. Thus, Reg(l) = 1 − P (l, π) for
the above π. As Reg(f) ≥ Reg(f, π), it is enough to prove that P (f, π) ≤ P (l, π).

Indeed, by the assumption on x1, x2, x3, x4, we have EX0∼π̂0 [1 − f(X0)] ≤ (1 − a(f(1) − f(0)))−f(0).
Similarly, we get EX1∼π̂1 [f(X1)] ≤ b(f(1) − f(0)) + f(0).

Therefore:

P (f, π) ≤ (1 − µ) · (1 − a(f(1) − f(0)) − f(0)) + µ(b(f(1) − f(0)) + f(0)) = P (l, π),

and the lemma statement follows.

Now we are ready to prove Theorem 4.3. We first show, using Lemma C.1, that there always exists
an optimal f which is a linear function; the required x1, x2, x3, x4 from Lemma C.1 statement would be
chosen from the set

{
0, 1

n , 1 − 1
n , 1

}
. Then we prove that the optimal f must be random dictator.

Proof of Theorem 4.3. Let l be the line passing through (0, f(0)) and (1, f(1)). We shall first prove that
for any choice of f , the inequality ensured by Lemma C.1 holds. To find x1, x2, x3, x4 as needed in
Lemma C.1, consider the possible cases regarding the graph of f :

1.
( 1

n , f
( 1

n

))
is not above l and

(
n−1

n , f
(

n−1
n

))
is not below l. Then one may take x1 = 0, x2 =

n−1
n , x3 = 1

n , x4 = 1 (note that n > 2).

2.
( 1

n , f
( 1

n

))
is strictly above l, and

(
n−1

n , f
(

n−1
n

))
is not below l. This time, one can take x1 =

1
n , x2 = n−1

n , x3 = 0, x4 = 1.

3.
(

n−1
n , f

(
n−1

n

))
is strictly below l, and

( 1
n , f

( 1
n

))
is not above l. This case is symmetric to the

previous one.

4. Otherwise,
( 1

n , f
( 1

n

))
is strictly above l and

(
n−1

n , f
(

n−1
n

))
is strictly below l. One can take

x1 = 1
n , x2 = 1, x3 = 0, x4 = n−1

n .
19Formally, e.g., f(x1) ≥ (f(1) − f(0))(x − x1) + f(0).
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Therefore, there exists an optimal f which is linear – i.e., f coincides with l. Fix an optimal linear
f and write f(x) = mx + k for some constants m, k.

As k = f(0) and m = f(1) − f(0), we get:

Reg(f) = 1 − ((1 − µ) · (1 − a(f(1) − f(0))) + µ(b(f(1) − f(0))) + (2µ − 1)f(0)) =
µ + k · (1 − 2µ) + m · ((1 − µ)a − µb).

The only constraints on m, k are k = f(0) ∈ [0, 1] and m + k = f(1) ∈ [0, 1]. Note that (1 − µ)a − µb =
(µ−p1)(1−2p2)

p2−p1
< 1 − 2µ as p1 < 1

2 , µ < p2. Therefore, to minimize Reg(f), one should take k = 0.
Moreover, as p2 > 1

2 , one should take m = 1. Thus:

Reg(f) ≥ 1 − (1 − µ)(1 − a) − µb.

Since the right-hand side is exactly the regret of the random dictator rule, the optimality of random
dictator follows.

To show uniqueness, consider some optimal f . If f is not the random dictator rule, there exists some
i ∈ [n] with

(
i
n , f

(
i
n

))
either strictly above l or strictly below l. Assume w.l.o.g. That the former holds.

The inequality in Lemma C.1 must be tight and the lower bound provided by this lemma must equal
1−(1 − µ)(1 − a)−µb. Thus, we must have that for any choices of x1, x2, x3, x4 satisfying the conditions
of Lemma C.1: i ̸= x1, x2, x3, x4. In particular, 1 < i < n − 1. Note that either i

n ≤ a or i
n ≥ a. Assume

w.l.o.g. that the former holds. Then re-selecting x1 form the value in
{

0, 1
n

}
in Lemma C.1 proof to

x1 = i
n prevents from the inequality in Lemma C.1 to be tight, as the restriction of f to x1, x2, x3, x4 is

not linear.

D Analysis of Example 5.2
Proof. Similarly to the proof of Theorem 5.1, we consider a two-player zero-sum game between the DM
and the adversary. The DM’s pure strategies are choices of an aggregation function f :

{
0, 1

n , . . . , 1
}

→
{0, 1} and the adversary’s pure strategies are choices of x ∈ C (which represent admissible information
structures). We denote the mixed strategy of the adversary by ϕ; note that mixtures over admissible
information structures are themselves admissible information structures. The payoff function is:

Reg(f, ϕ) = Ex∼ϕ

[ 2∑
i=0

max

 ∑
D⊆{0,1}: |D|=i

x0
D,

∑
D⊆{0,1}: |D|=i

x1
D


−

(1 − fi) ·
∑

D⊆{0,1}: |D|=i

X0
D + fi ·

∑
D⊆{0,1}: |D|=i

x1
D

 ]
.

Denote the function f described in the proposition statement by f∗. We shall show that there exists ϕ∗

s.t. (f∗, ϕ∗) is a mixed Nash equilibrium, which would complete the proof (after further computing the
game value). We divide the proof to three cases according to the order between a, b, 1/2.

Case 1: a < b ≤ 1/2. First, note that each x ∈ supp(ϕ) that is a best reply to f satisfying f(0) = 0,
f(1) = 1 must be a solution of the following convex program:20

max
p∈[0,a/2], q∈[0,b/2]

{
max{1/2 − a + p, 1/2 − b + q} + 2 max{a/2 − p, b/2 − q} + max{p, q}

− (1/2 − a + p) − 2(a/2 − p)(1 − f(1/2)) − 2(b/2 − q)f(1/2) − q

}
.

Denote the above target function by h(p, q). As h is a convex function – it obtains its maxi-
mum at an extreme point of the domain. Hence, the only candidates for solutions are (p, q) ∈
{(0, 0), (a/2, 0), (0, b/2), (a/2, b/2)}. Note that:

• h(0, 0) = (b − a)(1 − f(1/2)).
20We denote p := x0

1,2, q := x1
1,2 and use the definition of C.
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• h(a/2, 0) = a/2 + b(1 − f(1/2)) >For a>0 h(0, 0).

• h(0, b/2) = max{1/2 − a, 1/2 − b/2} + a − 1/2 + af(1/2).

• h(a/2, b/2) = 0 <For a>0 h(a/2, 0).
Therefore, the only remaining candidates for maximizers of h are (a/2, 0) and (0, b/2), regardless of f .
A straightforward check implies that for the f minimizing max{h(a/2, 0), h(0, b/2)}, it must hold that
h(a/2, 0) = h(0, b/2). If 2a ≤ b, we get f(1/2) = a/2+b

a+b = a+2b
2(a+b) and Reg = a(a+2b)

2(a+b) . Otherwise, we get
f(1/2) = 3b−a

2(a+b) and Reg = a2+4ab−b2

2(a+b) .
Write x ∈ C as x =

(
x0

∅, x0
1, x0

2, x0
1,2, x1

∅, x1
1, x1

2, x1
1,2

)
. Given an adversary’s (pure) strategy x ∈ C,

let δx be the embedding of x into the space of adversary’s mixed strategies; that is, δx is a distribu-
tion over elements of C assigning probability 1 to x. From the arguments above, it follows that any
distribution of the form: ϕ∗ = αδxa + (1 − α)δxb , with xa := (1/2 − a, a/2, a/2, 0, 1/2 − b/2, 0, 0, b/2),
xb := (1/2 − a/2, 0, 0, a/2, 1/2 − b, b/2, b/2, 0) and α ∈ [0, 1], is a best reply to f∗. If remains to show
that f∗ is a best reply to ϕ∗ for a suitable α. To this end, note that from linearity of expectation and the
payoff function in the values of f , necessarily there exists a best reply f to ϕ∗ getting values in {0, 1}.
Take α = b

a+b .
Consider the following cases:
• If 2a ≤ b – by inspection, one can check that f(0) = f(1/2) = 0, f(1) = 1 is a best reply to ϕ∗.

Moreover, it yields expected payoff of 0 · b
a+b + 2b+a

2 · a
a+b = a2+2ab

2(a+b) = Reg(f∗, ϕ∗). Hence, f∗ is
also a best reply to ϕ∗, as desired.

• Otherwise, a straightforward check implies that f(0) = f(1/2) = 0, f(1) = 1 is a best reply to ϕ∗,
yielding expected payoff of 2a−b

2 · b
a+b + 2b+a

2 · a
a+b = a2+4ab−b2

2(a+b) = Reg(f∗, ϕ∗); thus, f∗ is also a
best reply to ϕ∗, as needed.

Case 2: 1/2 ≤ a < b. This case is symmetric to the previous one, with a replaced by 1 − b, and b
replaced by 1 − a.

Case 3: a ≤ 1/2 ≤ b. We argue similarly to Case 1. The definition of h stays exactly the same,
but this time the constraints on p, q are p ∈ [0, a/2] and q ∈ [b − 1/2, b/2]. By analogous arguments to
Case 1, we get that for the optimal f it holds that h(a/2, b − 1/2) = h(0, b/2). That is:

1/2 − a/2 + 1 − b + max{a/2, b − 1/2} − (1/2 − a/2) − 2(1/2 − b/2)f(1/2) − b + 1/2 =
max{1/2 − a, 1/2 − b/2} + a − 1/2 + af(1/2).

A straightforward computation yields the value of f(1/2) as in the proposition statement, with the
adversary’s best reply being αδxa +(1 − α)δxb , with xa := (1/2 − a, a/2, a/2, 0, 1/2 − b/2, 0, 0, b/2), xb :=
(1/2 − a/2, 0, 0, a/2, 0, 1/2 − b/2, 1/2 − b/2, b − 1/2) and α = b

a+b .
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