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Abstract

The paper studies a variety of domains of preference orders that are closely related to
single-peaked preferences. We develop recursive formulas for the number of single-
peaked preference profiles and the number of preference profiles that are single-
peaked on a circle. The number of Arrow’s single-peaked preference profiles is found
for three, four, and five alternatives. Random sampling applications are discussed.
For restricted tier preference profiles, a forbidden subprofiles characterization and
an exact enumeration formula are obtained. It is also shown that each Fishburn’s
preference profile is also single-peaked on a circle preference profile, and Fishburn’s
preference profiles cannot be characterized by forbidden subprofiles.

1 Introduction

Unidimensional unfoldoing is a classical problem in mathematical psychology [15, 16]. It
is a problem of converting the qualitative scale to a numerical one. There is a set of
individuals. Each agent has a preference order (a qualitative scale) represented by a linear
order. Representing dissimilarities as distances we locate both agents’ ideal points and
alternatives on a numerical scale. This numerical scale represents agents preferences if
each agent always prefers an alternative which is nearer to his/her ideal point according to
the numerical scale. A necessary and sufficient condition for unidimensional unfolding was
obtained by [47]. Doignon [21] proposed an algorithm for testing unidimensionality and for
constructing numerical scale representing given preferences, when it exists.

If we weaken requirement of existence of a numerical scale to existence of a qualitative
scale, we get single-peaked consistency problem [26]. Qualitative scale is represented by a
linear order of alternatives that is commonly called axis. Each agent has an ideal point
on this axis. The axis represents agents’ preferences if, for each agent and for each pair of
alternatives that lay on the same side of the axis with respect to the agent’s ideal point,
the agent always prefers an alternative which is nearer to his/her ideal point. Preferences
over alternatives from the different sides from the ideal point are not derived from the axis.
Agents with the same ideal point may have different preferences over pairs of alternatives
from different sides from the ideal point. This preference model is called the single-peaked
preferences. All upper contour sets of single-peaked preference orders are connected with
respect to the given axis. This fact is utilized in solution of the single-peaked consistency
problem [26].

The structured preferences approach is based on a similarity assumption. All agents
share a common representation of alternatives space. The idea that similarity among agents
is the basis for constructing a solution of aggregation problem comes from Arrow (see [4]).

Structured alternatives space leads to structured preferences. We analyze several struc-
tures of alternatives space and connect them with the structures of preference profiles.
Preference profile is a tuple of preference orders. We are interested in counting and char-
acterizing some classes of structured preference profiles. Finding the number of structured
preference profiles is aimed to estimate the relative frequency of different structures. By
finding the number of single-peaked preference profiles we find the probability that there
exists a solution for the single-peaked consistency problem.

By forbidden subprofiles characterization we get a detection algorithm. By detecting
structured preference profiles one can exploit the properties of a structured set of alterna-



tives. Structured preferences have wide applications in computational social choice [25, 38].
Single-peaked preferences imply median voter theorem [7], have vast computational ap-

plications [9, 27, 18], axiomatic justification [52], and forbidden subprofiles characterization
[3]. Single-peaked preferences are consistent with attribute-based choice rules [17, 2]. Due
to Fishburn’s book [31] single-peaked preferences are sometimes called in computer science
literature ”preferences derived from a psychological model” [5]. Simplicity and clear prop-
erties predetermine wide applications of single-peaked preferences in economics, political
science, psychology and computer science.

There were several attempts to find the number of single-peaked preference profiles. Du-
rand [23] found them for three and four alternatives. Lackner and Lackner [42] found the
number of single-peaked preference profiles with two agents. Karpov [37] solved the problem
for five alternatives. The problem of finding the precise number of single-peaked preference
profiles faces a high combinatorial complexity, because of the exponential number of differ-
ent axes (there are m!/2 different axes). Many combinatorial problems are computationally
intractable (see [56, 55] for the definition of #P-complete problems and corresponding exam-
ples). Up to now no computationally efficient method was known for counting single-peaked
preference profiles.

This paper solves the general problem of counting single-peaked preference profiles by
finding a recursive formula.

Single-peaked on a circle preferences were introduced by [50] and by [48] as a particular
case of the generalized single-peaked domain. This preference model has several computa-
tional applications. Utilizing our result for the single-peaked preference profiles, we obtain
a recursive formula for the number of preference profiles that are single-peaked on a circle.

Arrow’s single-peaked preferences are single-peaked on each triple of alternatives. The
number of Arrow’s single-peaked preference profiles is found for three, four, and five alter-
natives.

Narcissistic preference profiles consist of m preference orders over m alternatives such
that all agents have different top choice alternatives. Narcissistic single-peaked preferences
are applied to some matching problems [5, 11]. We obtain some results about the number
of single-peaked narcissistic preference profiles and single-peaked on a circle narcissistic
preference profiles.

Some important restrictions of single-peaked and single-peaked on a circle preferences are
considered. Restricted tier preferences share common relation over groups of alternatives,
each of them contains one or two alternatives. Liu and Zeng [44] applied this preference
model to the probabilistic assignment problem. We prove that the restricted tier preference
profiles are single-peaked, and provide a forbidden subprofiles characterization.

Condorcet domains are sets of linear orders with the property that, whenever the pref-
erences of all agents belong to this set, the majority relation, induced by the preference
profile with an odd number of agents, has no cycles. Fishburn’s domain [32] is a nicely
structured Condorcet domain in which some triples of alternatives are single-peaked and
some are single-dipped. It is the largest Condorcet domain in case of a small number of
alternatives. Galambos and Reiner [35] showed that it is true up to seven alternatives, for
a higher number of alternatives it is still an open problem. Fishburn’s domain is a basis
for constructing large Condorcet domains [20, 40]. We proved that Fishburn’s domain is
single-peaked on a circle.

The related literature consists of counting results for the number of single-peaked for a
given axis narcissistic and single-crossing narcissistic preference profiles [12], group-separable
and group-separable narcissistic preference profiles [36], and enriched group-separable pref-
erence profiles [30]. Forbidden configurations characterization is known for single-peaked
preference profiles [3], group-separable preference profiles [3], single-crossing preference pro-
files [10], single-peaked single-crossing preference profiles [24], small one-dimensional Eu-



clidean preference profiles [13], and structured dichotomous preference profiles [54]. There
are polynomial time recognition algorithms for top-monotonic preference profiles [46], and
2-axes single-peaked preference profiles [58].

The structure of the paper is as follows. Section 2 contains the main result concerning
the number of single-peaked preference profiles. Section 3 counts single-peaked on a circle
preference profiles. Section 4 presents the calculation of the number of Arrow’s single-peaked
preference profiles. Section 5 contains the enumeration and characterization results for the
restricted tier preference profiles. Section 6 introduces Fishburn’s domain and proves that
it is a subset of single-peaked on a circle domain. Section 7 concludes and discusses an
application of combinatorial results to random sampling algorithms.

2 Single-Peaked Preferences

Let a finite set X = {1, . . . ,m} be the set of alternatives, and a finite set N = {1, . . . , n}
be the set of agents. Each agent i ∈ N has a preference order Pi over X (each preference
order is a linear order). Let L(X) be the set of all linear orders over X. An n-tuple of
preference orders is a preference profile P = (P1, . . . , Pn) ∈ L(X)n. For brevity, we will
write the preference order as a string, e.g. 12 . . .m, which means 1P2P3 . . . Pm.

A subset of preference orders D = {P1, . . . , Pk} ∈ L(X)k is called a domain of preference
orders. Each domain of single-peaked preferences is defined by an axis. An axis is a linear
order over X. A preference profile P is single-peaked with respect to an axis A, if, for all
i ∈ N , agent i’s upper-contour sets U(Pi, x) = {y ∈ X|yPix} are connected according to the
axis (this means that for any two elements from this set all elements between them according
to the axis belong to this set). A preference profile P is single-dipped with respect to an
axis A, if for all i ∈ N agent i’s lower-contour sets L(Pi, x) = {y ∈ X|xPiy} are connected
according to the axis.

A domain is called normal single-peaked if it contains preference order 12 . . .m and it
is a maximal single-peaked domain, i.e. there is no possibility to add a preference order
outside without violating single-peakedness. Each maximal single-peaked domain contains
2m−1 preference orders [41].

A domainD is called isomorphic to domainD′ if there is a permutation σ, which renames
alternatives, such that Dσ = D′, where Dσ is an image of domain D under renaming
permutation σ. For a given m, all maximal single-peaked domains are isomorphic to each
other (see, e.g., the work of [28]).

Let NSP(m,n) be the number of single-peaked preference profiles with m alternatives
and n agents, such that the first agent has preference order 12 . . .m (these preference profiles
are called normal single-peaked preference profiles). The number of single-peaked preference
profiles equals SP(m,n) = m!NSP(m,n).

Proposition 1. For m ≥ 3, we have

NSP(m,n) = 2m−22(m−1)(n−1) −
m−1∑
k=2

m−k−1∑
i=0

(
m− k − 1

i

)(
m− k

i

)n−1

NSP(k, n),

with NSP(2, n) = 2n−1.

Proof. Each maximal single-peaked domain is associated with two axes that have reversed
order of alternatives. We consider such axes as equivalent. This means that axes 123 and
321 and corresponding domains are the same. An axis is normal if it associated with a
normal single-peaked domain and has m at the right end. For m = 3, axes 123, 213 are
normal.
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Figure 1: Binary representation and partitions of normal axes for m = 5 .

We first count naively summing the number of preference profiles that are associated
with all normal axes. This result leads to over-counting, as one profile can be single-peaked
with respect to multiple axes. Dealing with over-counting problem, we consider a series of
partitions of the normal axes that are based on a bijection between normal axes and binary
strings of length m − 2, and use it to count the number of profiles that are single-peaked
with respect to two or more axes.

In each normal axis, sets of alternatives {1, 2, . . . , k}, k ∈ {2, . . . ,m − 1} form intervals
according to the axis. For each pair of alternatives k, k + 1, there are two possibilities for
mutual arrangement: consecutive k and k + 1 (in any order) and separated k and k + 1 (in
any order). There are m − 2 pairs, and for each of them consecutive/separated positions
are independent. Hence, the number of normal axes is 2m−2. Defining a correspondence:
consecutive k, k + 1 is 0, separated k, k + 1 is 1, we get a binary representation of normal
axes. The position of alternatives 2 and 3 defines the lowest-order bit, and the position of
alternatives m− 1 and m defines the highest-order bit. Numbers from 0 to 2m−2 − 1, which
are expressed in the base-2 numeral system, define the order of axes. Let Am be the set of
normal axes with m alternatives. A5 is presented in Figure 1.

Each set of normal axes Am can be obtained from the previous set Am−1 by the following
operation. The first 2m−3 axes are obtained from the previous set by adding the alternative
m to the right end. The second 2m−3 axes are obtained from the previous set by reversing
them and adding the alternative m to the right end. The first subset consists of axes where
m and m − 1 appear consecutively; the high-order bit in their binary representation is 0.
The second subset consists of axes where m and m− 1 are separated; the high-order bit in
their binary representation is 1.

We define m− 2 partitions of Am. There are 2k−1 axes in each part. Each part consists
of consecutive axes according to the order of the binary representation. Each part contains
axes, which have common m − k − 1 highest order bits in the binary representation. For
m = 5, these partitions are presented in Figure 1. Each part contains all possible normal axes
on alternatives 1, . . . , k and identical remainder (suborder on alternatives {k + 1, . . . ,m}).
Consecutive and separating positions of pair k, k + 1 define two possibilities for connecting
1, . . . , k and the remainder. Because of identical remainder all possible normal subaxes on
alternatives 1, . . . , k of the part start from the same position. For m = 5, subaxes 12, 21
start from position 0 in the first part, and from position 1 in the second part, etc. Each
normal subaxis on alternatives 1, . . . , k occurs exactly two times (in reversed versions).

We will find the number of normal single-peaked preference profiles that are associated
with each part starting from the smallest one.

Each normal single-peaked preference profile in which sets {1, . . . , k}, {k+1, . . . ,m} form
intervals in each preference order from the profile, and set {1, . . . , k} is an upper-contour
set in each preference order from the profile, is associated with two axes in which subaxes
on alternatives 1, . . . , k are reversed. Thus, each such a preference profile is associated with
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Figure 2: Structure of intersections for m = 5 .

two axes from different parts of the previous partition (for the finest partition we simply
have two different axes).

Suppose, that there exists a preference profile that associated with to two axes: one
from the first part of the smaller size, and one from the second part of the smaller size; and
this preference profile contains a preference order P̃ , which does not have upper contour
set {1, . . . , k}. If P̃ starts from an alternative from set {k + 1, . . . ,m}, then consecutive
and separated positions of k, k + 1 lead to different position of k in order P̃ (it is the
worst from alternatives {1, . . . , k} in one case, and is the best from alternatives {1, . . . , k}
in another case). If P̃ starts from an alternative from set {1, . . . , k} and {1, . . . , k} is not
an upper contour set, then consecutive and separated positions of k, k + 1 lead to different
best alternatives from set {k + 1, . . . ,m}. We get a contradiction.

Thus, preference profiles that are associated with two parts of the smaller size have
the the following structure. Top k alternatives of each order form a normal single-peaked
subprofile, bottom m− k alternatives of each order form a normal single-peaked with given
axis and one or two given top alternatives subprofile (these two alternatives are neighbouring
to alternatives {1, . . . , k} in all axes of the part).

The number of normal single-peaked subprofiles on set {1, . . . , k} is NSP (k, n).
The number of normal single-peaked subprofiles on set {k+1, . . . ,m} depends on starting

position of subaxis on alternatives 1, . . . , k. The number of single-peaked preference orders

starting from position i on the axis with m− k + 1 alternatives equals

(
m− k

i

)
[6].

Thus, the number of normal single-peaked preference profiles that are associated with

two parts of the smaller size is

(
m− k

i

)n−1

NSP (k, n), where i is the starting position of

alternatives {1, . . . , k} in all axes from the part.
The structure of partitions leads to the structure of intersections (for m = 5, it is

presented in Figure 2). The first column of numbers starting from −NSP(2, n) represents
numbers of normal single-peaked preference profiles that are associated with both axes
from the part. The second column of numbers represents numbers of normal single-peaked
preference profiles that are associated with at least one axis from the first part of the
finer partition and at least one axis from the second part of the finer partition. The same
interpretation for the last column.

For m alternatives, the number of parts of the kth partition with axes that have alterna-
tives {1, . . . , k} starting from position i ∈ {0, . . . ,m−k−1} is the number of ways to put the
alternatives {k+1, . . . ,m} to the left and to the right from alternatives {1, . . . , k}, knowing
that m must be on the extreme right, and exactly i elements must be on the left. For each
combination of alternatives there is exactly one way to order them (in descending order
before alternatives {1, . . . , k} and in ascending order after alternatives {1, . . . , k}). Thus,



(
m− k − 1

i

)
is the number of parts of the kth partition with axes that have alternatives

{1, . . . , k} starting from position i ∈ {0, . . . ,m− k − 1}.

Since there are

(
m− k − 1

i

)
parts with

(
m− k

i

)n−1

NSP(k, n) preference profiles that

are associated with two parts of the smaller size we subtract

m−k−1∑
i=0

(
m− k − 1

i

)(
m− k

i

)n−1

NSP(k, n)

to get the number of normal single-peaked preference profiles associated with axes from the
next level partition. Starting from 2m−22(m−1)(n−1) normal single-peaked preference profiles
associated with 2m−2 normal axes and consequently deducting cardinality of intersections
we get the final answer

NSP(m,n) = 2m−22(m−1)(n−1) −
m−1∑
k=2

m−k−1∑
i=0

(
m− k − 1

i

)(
m− k

i

)n−1

NSP(k, n),

with NSP(2, n) = 2n−1.

For a small number of alternatives, we have

SP(3, n) = 3!(2 · 4n−1 − 2n−1),

SP(4, n) = 4!(4 · 8n−1 − 3 · 4n−1),

SP(5, n) = 5!(8 · 16n−1 − 6 · 8n−1 − 3 · 6n−1 + 2 · 4n−1),

SP(6, n) = 6!(16 · 32n−1 − 12 · 16n−1 − 9 · 12n−1 + 8n−1 + 6 · 6n−1 − 4n−1).

The first three formulas were already presented in the literature, the last one is novel. The
probability of occurrence of a single-peaked preference profile under the Impartial Culture
assumption equals SP(m,n)/(m!)n. If we reverse each preference order in a single-peaked
preference profile then we obtain a single-dipped preference profile. Thus, we have also
found the number of single-dipped preference profiles.

A narcissistic preference profile is a preference profile with m alternatives and m agents
such that alternative j is the most preferred alternative for agent j. There are (m − 1)!m

narcissistic preference profiles [12]. There are
∏m−1

i=2

(
m− 1
i− 1

)
single-peaked for a given axis

narcissistic preference profiles [12], where

(
m− 1
i− 1

)
is the number of single-peaked preference

profiles starting from position i on the axis [6].
In each normal narcissistic preference profile agent 1 has preference order 1 . . .m.

Proposition 2. For m ≥ 3, the number of normal single-peaked narcissistic preference
profiles equals

NSPN (m) =
m

2

m−1∏
i=2

(
m− 1
i− 1

)
,

the number of single-peaked narcissistic preference profiles equals

SPN (m) =
m!

2

m−1∏
i=2

(
m− 1
i− 1

)
.



Proof. Each maximal single-peaked domain contains only one preference order that starts
from the first alternative of the axis and only one preference order that starts from the
last alternative of the axis. Each single-peaked narcissistic preference profile contains two
totally reversed preference orders, which coincide with axis and reversed axis. There is no
single-peaked narcissistic preference profile that is associated with two axes. Having m!/2
axes we multiply the number of single-peaked for a given axis narcissistic preference profiles
by m!/2 and get the number of single-peaked narcissistic preference profiles.

All single-peaked narcissistic preference profiles can be partitioned on sets with different
first preference orders. Since there are (m − 1)! distinct first preference orders, we have
NSPN (m) = SPN (m)/(m− 1)!.

Proofs of the subsequent theorems are moved to the appendix.
Since single-dipped preference profiles have at most two distinct top alternatives, there

are no single-dipped narcissistic preference profiles for m ≥ 3.

3 Preferences Single-Peaked on a Circle

A preference profile P is single-peaked on a circle (SPOC) with respect to a circular permuta-
tion of alternatives C if, for all i ∈ N , agent i’s upper-contour sets U(Pi, x) = {y ∈ X|yPix}
are intervals according to the circular permutation. Lower contour sets also form inter-
vals according to the circular permutation. Therefore, SPOC preferences and preferences
single-dipped on a circle are equivalent.

For a given circular permutation of alternatives, the number of preference orders that
start from alternative 1 equals 2m−2. Each other alternative leads to the same number of
preference orders that start from this alternative. Thus, the number of preference orders in
each maximal SPOC domain equals m2m−2. Each maximal SPOC domain is symmetric, i.e.
for each order, its reverse also belongs to the domain (see [19, 39] for studies of symmetric
Condorcet domains).

Because each maximal SPOC domain is invariant to rotating and flipping a circle, there
are at most (m− 1)!/2 maximal SPOC domains. The corresponding circular permutations
are free circular permutations (free means that circular permutations are invariant to flip-
ping). Let us prove, that we have (m− 1)!/2 distinct maximal SPOC domains. For m = 3,
we have only one maximal SPOC domain. Suppose that for m − 1 alternatives we have
(m − 2)!/2 different maximal SPOC domains. For each maximal SPOC domain on m − 1
alternatives we construct m − 1 different maximal SPOC domains on m alternatives by
inserting alternative m in one of m − 1 possible positions of free circular permutation on
m− 1 alternatives. Thus, there are (m− 1)!/2 different maximal SPOC domains.

All maximal SPOC domains of equal size are isomorphic to each other.
Maximal SPOC domains are neither Condorcet domains nor subcyclic domains (do-

mains that contain at most five suborders in each restriction to triple of alternatives, see
[34]). SPOC domains contain all six suborders in each restriction to triple of alternatives.
Therefore, SPOC domains are a dictatorial [49].

A domain is called normal SPOC if it contains preference order 12 . . .m and it is a
maximal SPOC domain. Let NSPOC (m,n) be the number of SPOC preference profiles
with m alternatives and n agents such that the first agent has preference order 12 . . .m.
These preference profiles are normal SPOC. The corresponding free circular permutations
are called normal. We represent normal free circular permutations as a string, with m − 1
m at the right end.



Proposition 3. For m ≥ 4, we have

NSPOC (m,n) = 2m−3(m2m−2)n−1 −
m−2∑
k=2

2m−k−22(m−k)(n−1)NSP(k, n),

with NSPOC (2, n) = 2n−1,NSPOC (3, n) = 6n−1,SPOC (m,n) = m!NSPOC (m,n).

For a small number of alternatives, we have

SPOC (3, n) = 3! · 6n−1;

SPOC (4, n) = 4!(2 · 16n−1 − 8n−1);

SPOC (5, n) = 5!(4 · 40n−1 − 4 · 16n−1 + 8n−1);

SPOC (6, n) = 6!(8 · 96n−1 − 12 · 32n−1 + 5 · 16n−1).

There are 2m(m−2) narcissistic preference profiles that are SPOC for a given free circular
permutation.

Proposition 4. [50] A preference profile is SPOC if and only if it avoids three configurations
({x, y} means, that alternatives are situated in any order)

(i) there are two agents i, j ∈ N and five alternatives x, y, z, t, r ∈ X such that

{x, y}PizPi{t, r},

{x, t}PjzPj{y, r};

(ii) there are three agents i, j, k ∈ N and four alternatives x, y, z, t ∈ X such that

{x, y}Pi{z, t},

{x, z}Pj{y, t},

{x, t}Pk{y, z};

(ii) there are three agents i, j, k ∈ N and four alternatives x, y, z, t ∈ X such that

{y, z}Pi{x, t},

{x, z}Pj{y, t},

{x, y}Pk{z, t}.

Condition (i) of proposition 4 is a condition on pairs of preference orders. It can be
rewritten in terms of permutation patterns. A permutation σ ∈ Sn contains pattern τ ∈ Sk

if there is a tuple (x1, . . . , xk) ∈ {1, . . . , n}k such that 1 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ n and
for all i, j ∈ {1, . . . , k} we have σ(xi) < σ(xj) if and only if τ(i) < τ(j). For each pair of
preference orders (P, P ′) ∈ L(X) there is a permutation σ ∈ Sn, which renames alternatives,
such that Pσ = P ′. From Condition (i) of Proposition 4 we have pair of preference orders
(P, P ′) that is not SPOC, then σ avoids permutation patterns 14325, 14352, 15324, 15342,
24315, 24351, 25314, 25341, 41325, 41352, 42315, 42351, 51324, 51342, 52314, 52341. This
permutation pattern is called square permutations, and their number (it is found in [22]) is
equal to the number of two-agents normal SPOC preference profiles

NSPOC (m, 2) = (m+ 2)22m−5 − 4(2m− 5)

(
2m− 6
m− 3

)
.



4 Arrow’s Single-Peaked Preferences

Arrow [1] used a local single-peakedness condition, requiring only the single-peakedness on
each triple of alternatives. Slinko [53] discovered the structure of Arrow’s single-peaked
domains for three, four, and five alternatives. Karpov and Slinko [40] discovered a recursive
structure of Arrow’s single-peaked domains. Each maximal Arrow’s single-peaked domain
contains 2m−1 preference orders [53].

Let ASP(m,n) be the number of Arrow’s single-peaked preference profiles with m alter-
natives and n agents. For m =, single-peakedness coincides with Arrow’s single-peakedness,
therefore, ASP(3, n) = 3!(2 · 4n−1 − 2n−1).

Up to isomorphism, there are two types of maximal Arrow’s single-peaked domains
with four alternatives. The first type is the single-peaked domain. The second type is the
following:

D4,2 = {1234, 2134, 2314, 3214, 2341, 3241, 2431, 4231}.

From Section 2 we know that there are four single-peaked domains that contain order
1234. For the second type, there are eight renaming permutations that lead to a domain
with order 1234 (one permutation for each order from D4,2). Four permutations in which
we have σ(4) = 4 lead to different domains. Four permutations in which we have σ(4) = 1
lead to the same set of domains. Thus there are only four maximal Arrow’s single-peaked
domains that contain order 1234.

Computing all intersections of the eight normal domains, we obtain

ASP(4, n) = 4!(8 · 8n−1 − 6 · 6n−1 − 4n−1).

ASP(4, n) is also calculated in ([23] p. 586).
Durand [23] on p. 590 claimed that there are

m(m− 1)

2
2(m−2)(m−3)3(m−2)(m−3)(m−4)/6

maximal Arrow’s single-peaked domains. Because all domains have equal cardinality, and
all preference orders have equal frequency, there are

m(m− 1)

2
2(m−2)(m−3)3(m−2)(m−3)(m−4)/62m−1/m!

maximal normal Arrow’s single-peaked domains. For m ≥ 7, it is not an integer that is
impossible. This result shows that the asymptotic formula for the number of maximal
Arrow’s single-peaked preference profiles from [23] is erroneous. For a small number of
alternatives, the number of maximal Arrow’s single-peaked domains was found by Liversidge
[45].

For m = 5, we computationally found all intersections of maximal normal Arrow’s single-
peaked domains, and obtain the number of Arrow’s single-peaked preference profiles

ASP(5, n) = 5!(64 · 16n−1 − 56 · 14n−1 − 24 · 12n−1 + 20 · 10n−1

−8 · 8n−1 + 6 · 6n−1 − 4n−1).

Because Arrow’s single-peaked preferences have no restrictions to pairs of preference
orders (see [53]), we get ASP(m, 2) = m!2.



5 Restricted tier preferences

A preference profile P is restricted tier if there is an weak order of alternatives (ordered
partition) such that the cardinality of each equivalence class (part) does not exceed two, and
each preference order inherits the weak order. Form = 3, domains {123, 213} and {123, 132}
are maximal restricted tier domains. In the first domain we have weak order with equivalence
classes {1, 2}, {3}, and the first one is preferable. Restricted tier domains are applied in
random assignment problem (the problem of assignment of n indivisible items among n
agents). Liu and Zeng [44] proved that under restricted tier preferences the probabilistic
serial rule [8] is uniquely characterized by strategy-proofness, efficiency and equal treatment
of equals. For m ≥ 3, each maximal restricted tier domain is not a maximal Condorcet
domain, but Condorcet consistency does not matter in random assignment problem.

A preference profile P is group-separable if for each subset of X of cardinality of at least
two there is a partition of the subset on two nonempty sets such that, for each agent, we have
either the agent prefers each alternative from the first set of the partition to each alternative
from the second set of the partition or the agent prefers each alternative from the second set
of the partition to each alternative from the first set of the partition. {123,213,312,321} is an
example of maximal group-separable domain. {1, 2} and {3} is partition of the general set.
Each group-separable domain is a Condorcet domain, and it has an application in matching
theory [43].

Proposition 5 links group-separable and single-peaked domains by showing that restricted
tier domain is simultaneously group-separable and single-peaked.

Proposition 5. Restricted tier domain is simultaneously group-separable and single-peaked.

There exists group-separable and single-peaked domain that is not restricted tier (e.g.
{1234, 2314, 3214, 4321}).

Proposition 6. The number of restricted tier preference profiles equals

RT (m,n) = m!

⌊m
2 ⌋∑

k=0

(
m− k

k

)
(2n−1 − 1)k.

Proposition 6 provides the exact number of restricted tier preference profiles, and gives
a lower bound for the number of single-peaked group-separable preference profiles. The
following proposition provides a characterization of restricted tier preference profiles via
forbidden subprofiles (configurations).

Proposition 7. A preference profile is restricted tier if and only if there is no two distinct
agents i, j ∈ N and three distinct alternatives a, b, c ∈ X such that

aPibPic and

cPjbPja, or cPjaPjb, or bPjcPja.

Configuration from proposition 7 corresponds to a permutation pattern that avoids pat-
terns 231, 321, 312. Such permutations are called free permutations and are counted in the
Fibonacci sequence [51].

For m ≥ 3, there are no narcissistic restricted tier preference profiles.



6 Fishburn’s preferences

A domain is called Fishburn’s domain if it satisfies an alternating scheme [32, 33]: there exists
a linear ordering of alternatives a1 . . . am such that for all i, j, k with 1 ≤ i < j < k ≤ m the
restriction of the domain to set {ai, aj , ak} is single-peaked with never-bottom alternative
aj if j is even, and it is single-dipped with never-top alternative aj if j is odd, or it is single-
peaked with never-bottom alternative aj if j is odd, and it is single-dipped with never-top
alternative aj if j is even.

Having the natural ordering of alternatives we obtain the following maximal Fishburn’s
domains:

F3 = {123, 213, 231, 321},
F4 = {1234, 1243, 2134, 2143, 2413, 2431, 4213, 4231, 4321},
F5 = {12345, 12354, 13245, 13254, 13524, 13542, 31245, 31254, 31524, 31542, 35124,

35142, 35412, 35421, 53124, 53142, 53412, 53421, 54312, 54321}.
The reversed domains are also Fishburn’s domains. [35] gave the exact formula for the

cardinality of Fm:

|Fm| = (m+ 3)2m−3 −

{
(m− 3

2 )
(
m−2
m
2 −1

)
for even m;

(m−1
2 )

(m−1
m−1

2

)
for odd m.

For a big m, it is approximately two times smaller than the cardinality of maximal SPOC
domain, which equals m2m−2. The union of F4 and its reverse constitute a maximal SPOC
domain with free circular permutation 2134. The union of F5 and its reverse has strictly less
preference orders than maximal five-alternatives SPOC domain. For m = 5, orders 21354
and 45312 belong to the maximal SPOC domain with free circular permutation 31245, but
do not belong to the Fishburn’s domains.

A domainD satisfiesmaximal width if it contains a pair of completely reversed preference
orders [52]. A domain D is semi-connected if it satisfies maximal width and it contains
a sequence of preference orders such that the first and the last preference orders in this
sequence are completely reversed and each pair of consecutive preference orders differs by
only one swap of consecutive alternatives.

Proposition 8. [20] Each maximal Fishburn’s domain is semi-connected.

A Condorcet domain D is copious if for each triple of alternatives the restriction of
domain D to this triple has four distinct orders [53]. Because of semi-connectedness, each
restriction of a maximal Fishburn’s domain to three alternatives is connected, and contains
a pair of reversed orders (each restriction is a maximal single-peaked domain or a maximal
single-dipped domain). Thus, each maximal Fishburn’s domain is copious.

Proposition 9. Each maximal Fishburn’s domain is a subset of a maximal SPOC domain.

Fishburn’s domains receive clear SPOC interpretation and inherits all algorithmic appli-
cations of SPOC domains from Peters and Lackner [50]. The following proposition describes
the structure of corresponding free circular permutation.

Proposition 10. For a maximal Fishburn’s domain with ordering a1 . . . am, the cor-
responding free circular permutation of alternatives of a SPOC domain that contains
this Fishburn’s domain equals, for odd m, a1a2 . . . am−1amam−2 . . . a3, and, for even m,
a1a2 . . . am−2amam−1 . . . a3.

Proposition 11. The set of maximal Fishburn’s domains is not closed under removing
candidates operation.



Some restrictions of the Fishburn’s domain to a subset of alternatives do not constitute
a maximal Fishburn’s domain on this subset, or even a subset of a maximal Fishburn’s
domain. Thus, there is a configuration that is forbidden for a small number of alternatives
and is permitted for a higher number of alternatives. It leads to the following proposition.

Proposition 12. There is no forbidden configurations characterisation for Fishburn’s pref-
erence profiles.

In addition to configurations from proposition 4 Fishburn’s preference profiles avoid two
configurations that guarantees that there are no never-top alternative, and never-bottom
alternative.

Proposition 13. Fishburn’s preference profiles avoid two configurations
(iv) (never-middle pattern) there are four agents i, j, k, l ∈ N , and three alternatives x, y, z ∈
X such that xPiyPiz, xPjzPjy, zPkyPkx, yPlzPlx;
(v) (Condorcet cycle) there are three agents i, j, k ∈ N , and three alternatives x, y, z ∈ X
such that xPiyPiz, yPjzPjx, zPkxPky.

For m ≥ 4, there are no narcissistic Fishburn’s preference profiles. For m = 3, there are
no narcissistic single-dipped preference profiles, and all narcissistic Fishburn’s preference
profiles are narcissistic single-peaked preference profiles.

7 Conclusion

We have considered a preference profile as a tuple of preference orders. The obtained
numbers of structured preference profiles can be used for counting probabilities under the
Impartial Culture assumption.

SP(m,n), SPOC (m,n), ASP(m,n) can be presented as a sum of bns with some co-
efficients, where b is the number of preference orders in an intersection of some domains.
The number of multisets of the same preference orders equals

(
b+n−1

n

)
. Thus, replacing bn

with
(
b+n−1

n

)n
, we get the number of structured preference profiles under the Impartial

Anonymous Culture assumption.
There are several random sampling algorithms for single-peaked preference profiles.

Conitzer [14] developed a random sampling algorithm for single-peaked preference pro-
files with a given axis that preserves the uniform distribution of the first-choice votes (for
unrestricted domain this approach is known as the Uniform Plurality Culture assumption
introduced by Karpov [37]). Walsh [57] developed a random sampling algorithm for single-
peaked preference profiles with a given axis under the Impartial Culture assumption. Uni-
form sampling of axes and independent sampling of single-peaked preference profiles leads
to the over-representation of preference profiles with identical preference orders, because
these preference profiles are associated with several axes.

The presented nested structure of the partitions of normal axes can be applied for a
random sampling algorithm of single-peaked preference profiles with an unknown axis un-
der the Impartial Culture assumption. We can generate single-peaked preference profiles
iteratively starting from the two alternatives case. On each iteration, we find probabilities
of the occurrence of a preference profile with a common upper contour set of cardinality k
and utilize the single-peaked preference profiles generated in the previous iterations. After
finding the conditional probabilities of the subaxis starting position and conditional prob-
abilities of different axes, we can apply an algorithm to generate single-peaked preference
profiles with a given axis, which can guarantee the identity/diversity of lower/upper contour
sets. A close conditional probabilities approach was applied for random sampling algorithm
of group-separable preference profiles [29].
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