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ABSTRACT: Much recent literature is concerned with how variation
among individuals (e.g., variability in their traits and fates) translates
into higher-level (i.e., population and community) dynamics. Al-
though several theoretical frameworks have been devised to deal with
the effects of individual variation on population dynamics, there are
very few reports of empirically based estimates of the sign and mag-
nitude of these effects. Here we describe an analytical model for size-
dependent, seasonal life cycles and evaluate the effect of individual
size variation on population dynamics and stability. We demonstrate
that the effect of size variation on the population net reproductive
rate varies in both magnitude and sign, depending on season length.
We calibrate our model with field data on size- and density-depen-
dent growth and survival of the generalist grasshopper Melanoplus
femurrubrum. Under deterministic dynamics (fixed season length),
size variation impairs population stability, given naturally occurring
densities. However, in the stochastic case, where season length ex-
hibits yearly fluctuations, size variation reduces the variance in pop-
ulation growth rates, thus enhancing stability. This occurs because
the effect of size variation on net reproductive rate is dependent on
season length. We discuss several limitations of the current model
and outline possible routes for future model development.
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Ecological entities are organized hierarchically into differ-
ent levels of organization, such as the individual, the pop-
ulation, and the community (MacMahon et al. 1987; Allen
and Hoekstra 1992; Pickett et al. 1994). The way in which
these different organizational levels combine to influence
the dynamics of natural systems remains a fundamental
research topic in ecology (Lomnicki 1988; Nisbet et al.
1989; Abrams 1995; Levin et al. 1997; Schmitz 2001). Such
research is motivated by the need to understand the level
of mechanistic biological detail that must be included in
ecological theory as well as how much can be safely ab-
stracted while still achieving biologically faithful and quan-
titatively accurate descriptions of population and com-
munity dynamics.

In the past 30 years, ecologists have become increasingly
interested in linking individual phenotypic variation (in
behavior, morphology, physiology, and life history) to pop-
ulation and community dynamics (e.g., Lomnicki 1978;
Metz and Diekmann 1986; Begon and Wall 1987; Ebenman
and Persson 1988; Nisbet et al. 1989; Bjornstad and Han-
sen 1994; Uchmanski 1999; Schmitz 2000; de Roos et al.
2003). Specifically, many theoretical studies have dem-
onstrated how age, stage, and size structure; cohort effects;
and other forms of individual variation (e.g., in devel-
opmental and growth rates or in competitive ability) have
important consequences for population dynamics, stabil-
ity, and persistence (e.g., Bellows 19864, 1986b; Lomnicki
1988; Bjornstad and Hansen 1994; de Roos 1997; Uch-
manski 2000; Kendall and Fox 2001; Grimm and Uch-
manski 2002; Lindstrém and Kokko 2002; Kendall and
Fox 2003). For example, Persson et al. (1998) have shown
how competitive interactions among different-sized co-
horts may cause several types of population cycles. At the
community level, Begon and Wall (1987) showed how
variation in competitive ability within species facilitates
coexistence.

Body size is a fundamental physiological trait that struc-
tures populations and influences all facets of an individ-
ual’s function and performance, such as foraging (e.g.,
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Belovsky 1997), growth rate (e.g., Pfister and Stevens
2002), and survival (e.g., Ovadia and Schmitz 2002). In-
variably, besides variation linked to ontogenetic stage, phe-
notypic variation in body size exists within any natural
population (e.g., Uchmanski 1985). This size variation
translates into variation in survival and reproduction and
may be both the cause and the consequence of differences
in growth and competitive ability among individuals. For
example, in a study of the dynamics of size variability in
three distantly related organisms—a kelp, a whelk, and a
sculpin—Pfister and Stevens (2002) showed marked var-
iation in growth rates among individuals that often led to
increasing size variability over time (i.e., growth depen-
sation).

Wall and Begon (1987a) showed that there is substantial
variation in size-related life-history traits (e.g., weight at
maturity and time to maturity) within grasshopper pop-
ulations. Such variation has important consequences for
grasshopper population dynamics (Joern and Gaines
1990). Ovadia and Schmitz (2002) found that the survival
rates of the grasshopper Melanoplus femurrubrum change
as a function of body size. In addition, theoretical work
at the community level showed that size variation mark-
edly influences the strengths of trophic interactions as me-
diated through mean herbivore survival (Ovadia et al.
2007). Overall, both empirical studies and theoretical work
emphasize that size variability is a fundamental property
of natural populations, which has important ramifications
for understanding the dynamics and stability of ecological
systems.

Concerning population stability, Uchmanski (1999,
2000) and Grimm and Uchmanski (2002) investigated the
effect of variability in body size on the stability and per-
sistence of populations, using an individual-based model
of consumer-resource dynamics. They demonstrated how
variability in body size produces “imperfect regulation”
that may enhance stability and persistence, that is, causes
longer extinction times in comparison with homogenous
populations. These results support earlier investigations
that had already established the stabilizing consequences
of individual variability on population dynamics (e.g.,
Lomnicki 1988). Bjernstad and Hansen (1994), however,
developed a general analytical framework for dealing with
trait-related variation in vital rates. They have concluded
that individual variation may have either a stabilizing or
a destabilizing effect on population dynamics, depending
on the form of trait dependence of survival and repro-
duction (i.e., either concave or convex). Similar conclu-
sions have been reached by Lindstrom and Kokko (2002)
in the context of cohort effects and by Kendall and Fox
(2001, 2003) concerning demographic stochasticity.

In this study, we consider the effects of variation in
individual size on population dynamics and stability of a

generalist herbivore in a seasonal environment. A recent
synthesis by Murdoch et al. (2002) has demonstrated that
the dynamics of generalist consumers can be captured us-
ing single-species models rather than consumer-resource
models. That is, the dynamics of the resource can be safely
abstracted when considering generalist consumers. There-
fore, we develop a single-species model using previous
analytical formulations of seasonal life cycles (Sibly and
Monk 1987; Grant et al. 1993; Willott and Hassal 1998).
We incorporate size variation by using the theoretical
framework of Bjornstad and Hansen (1994) and explore
how size variation affects the mean net reproductive rate,
that is, the expected rate of population increase between
seasons. A major issue in our study is the effect of size
variation on the stability properties of population dynam-
ics. We calibrate our analytical model with results of field
observations and experiments on the generalist grasshop-
per M. femurrubrum inhabiting old fields in Connecticut
(e.g., Schmitz et al. 1997; Schmitz and Suttle 2001; Ovadia
and Schmitz 2002).

Our main theoretical conclusion is that the interaction
between size variation and variability in season length
among years determines both the sign and the magnitude
of the effect of size variation on population stability. Size
variation may either stabilize or destabilize population dy-
namics, depending on the range of possible season lengths
and the functional forms of survival and time to maturity,
with respect to initial size. For M. femurrubrum, we find
that size variation should enhance population stability by
decreasing the magnitude of relative fluctuations in den-
sity.

Model Development
Basic Formulations

We consider univoltine, seasonal life cycles that are char-
acteristic of many insects living in seasonal environments,
for example, temperate (Howard and Harrison 1984;
Monk 1985) and arid (Antoniou 1978; Whitman 1988).
Specifically, we consider a typical grasshopper life cycle
(e.g., Sibly and Monk 1987), in which eggs overwinter in
a state of embryonic diapause; first instars emerge in early
summer; and growth, maturation, and reproduction occur
within a relatively short time, often terminated by the
seasonal onset of frosts that kill the arthropod community
and cause herbaceous plants to senesce. Thus, the between-
year population growth can be described mathematically
using a discrete-time model: N(t + 1) = N x N() (where
t is measured in years). The net reproductive rate A may
depend on time ¢, population density N, and population
structure f(z), which is a frequency distribution function
describing variation in some trait z of the individuals mak-



ing up the population (i.e., A = N[N, 1, f(2)]). Specifically,
we refer here to variation in body size; therefore, z will
represent individual size. (We note that f(z) can describe
the distribution of either continuous size or discrete size
classes; see also “Model Calibration.”)

First we examine a homogenous population in which
all the individuals share the same size throughout the entire
season. We also assume both here and below (when we
consider size variation) that all individuals begin their life
at the same time (i.e., at the beginning of the season). For
a homogenous population, we obtain A = AN, 1, z,),
where z, represents the initial size of individuals (e.g.,
hatchling size). Individuals reach maturity at size z,, that
is, adult size, after time T,,. The time to maturity depends

on initial size z, and final size z,; hence, T, =
T,.(zy> z,,). Additionally, since individuals may die before
reaching maturity, survival to maturity is represented by
S..(25> 2.,), which decreases as either initial size z, decreases
or size at maturity z,, increases.

After reaching maturity, a female starts laying clutches
at regular time intervals until the end of the season at
t = T (i.e., season length is denoted by T). The length of
these interclutch intervals, T, is the time required for pro-
ducing a clutch once the females are mature. Consequently,
the maximal number of clutches that a mature female can
produce is the integer part of (T — T,)/T., denoted by
v(T,, T). In addition, adults suffer mortality at a rate given
by p,, which may depend on adult size (i.e., u, =
Bm(Zim))-

Given standard life-table formulations (see appendix in
the online edition of the American Naturalist), we can
obtain the following expression for the net reproductive
rate:

Nz, z,,) = C x S,(z,, z,,) *x RLS(T,, T), )

m

where C is a constant (considered below), and RLS is the
expected reproductive life span of mature females. The
RLS is the expectancy of the duration of successful repro-
duction, evaluated at the time of maturation. It accounts
for the fact that reproductive allocation between consec-
utive ovipositions may fail to be translated into actual
(successful) reproduction, because the female may die dur-
ing the interclutch interval (see appendix). Consequently,
RLS depends on adult mortality u,, and the duration of
interclutch intervals T, in the following manner (see ap-
pendix for derivation):

RLS(T,, T) = RLS,_,, x (1 — ¢ *=T*TmD) " (23)

e*MmTc

RLS,, = T. x ———. (2b)
1 — gt
-
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In addition, equations (2) demonstrate how RLS de-
pends on season termination, that is, on the maximal time
available for reproduction: T — T,. Overall, the RLS (eq.
[2a]) decreases with adult mortality u,, and time to ma-
turity T, and increases with season length T to an as-
ymptote, given by RLS;_.. (eq. [2b]). The dependence of
RLS on season length is presented in figure 1 for a set of
parameter values estimated from data on Melanoplus fe-
murrubrum (see “Model Calibration”). As expected, be-
cause of punctuated reproduction in discrete clutches, RLS
increases in a steplike fashion with season length. The
magnitude of each increment in the RLS decreases grad-
ually as seasons become longer, representing the asymp-
totic approach to RLS;_... This asymptote occurs at very
long seasons, because adult life expectancy is then deter-
mined only by adult mortality, regardless of season length
or time to maturity, and reproductive activity is terminated
by individual death within the season and not by season
end. Finally, the decrease in RLS with increasing time to
maturity is evident in figure 1 on comparison of the three
curves for small, average, and large initial sizes (for which
time to maturity is long, intermediate, and short, respec-
tively).

The constant parameter C in equation (1) encompasses
the rate of egg production by mature females, egg mortality
during overwintering, hatching success, sex ratio (repre-
senting the fact that only females produce eggs), and any
additional vital rates that must be considered in the life
cycle and are assumed to be independent of initial size z,
Note that although fecundity is expected to change with
size at maturity z,, (e.g., Roff 2002, pp. 198-199), it can
be included in the constant C because z,, is a fixed pa-
rameter in the model expressed by equation (1). Addi-
tionally, when we consider variation in initial size z, size
at maturity z, remains a fixed parameter, and therefore,
fecundity can still be incorporated through the parameter
C. A similar argument holds for adult mortality; that is,
because z,, is the same for all individuals, u,, (which may
depend on z,) is also a fixed parameter. Finally, including
a continuous rate of egg production may at first seem
incompatible with the usual discontinuous mode of grass-
hopper reproduction, that is, a discrete number of
clutches, each containing several eggs that are oviposited
simultaneously. However, this element has already been
accounted for in the RLS (see appendix).

Reproductive Life Span and Definition of
Long and Short Seasons

We explore two variants of equation (2a) for two extreme
cases of season length. A long season is characterized by
a long postmaturation period and/or high adult mortality
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Figure 1: Reproductive life span (RLS) as a function of season length for three initial sizes (denoted “small,” “average,” and “large”). The specific
curves displayed were obtained using parameter values for Melanoplus femurrubrum, as described in “Model Calibration.” Notice that RLS increases
discontinuously with season length because of the discontinuous mode of reproduction in clutches (one egg pod every 10 days). Steps occur whenever
season length increases enough to allow yet another clutch to be produced before the end of the season (i.e., »(T,,, T) increases by 1). In addition,
the three RLS curves for the three size classes are, in fact, identical in form but are displaced along the season length (i.e., time) axis relative to
one another. This is because of the differences in time to maturity between the three size classes. Finally, all curves asymptotically approach

RLS;_.. (=23.86 days) as season lengths increase.

rate, such that u, (T — T,,) > 1. In that case, for the long-
season scenario, equation (2a) reduces to

RLS = RLS,_... (3)

Similarly, for short seasons, where p (T — T,) < 1, that
is, a short postmaturation period and/or low adult mor-
tality, we obtain an equation for the short-season scenario:

RLS = RLS,_.. x u,T. x »(T,, T). )

Note that for long seasons, the RLS does not depend
on season length or time to maturity. Rather, it depends
only on adult mortality and the duration of the interclutch
interval. All individuals mature, reproduce, and die during
the course of the season, and they rarely survive to the
end of the long season. Therefore, increasing season length
will have no effect on the RLS. In contrast, when the season
is short, most mature individuals die at the end of the
season rather than during it. Therefore, an increase in
season length translates into a significant increase in the
RLS. Moreover, a decrease in the time to maturity also
translates into an increase in the RLS (eq. [4]).

Substituting either equation (3) or equation (4) into the
expression for the net reproductive rate (eq. [1]) shows
that for long seasons, the initial size of individuals z, affects
population dynamics only through survival to maturity,
Sm- Conversely, for short seasons, initial size affects pop-
ulation dynamics via its effects on both survival to ma-
turity and time to maturity (ie., both S, and T,). In
natural systems, season length will probably fluctuate be-
tween those two extremes, taking a range of intermediate
values. Therefore, the sensitivity of population growth to
variation in time to maturity may vary between years. Our
general conclusion is therefore that season length may have
important consequences for the effect of size variation on
population dynamics, because N may depend differently
on initial size, depending on season length. This is the
subject of the next subsection.

Incorporating Size Variation

Given variation in the initial size of individuals, that is, a
distribution of initial sizes (f(z,)), the population finite
rate of increase becomes (Bjornstad and Hansen 1994)



A = C x E[S,(z0) x RLS(z,)], ®)

where E(-) represents averaging over the initial size dis-
tribution (cf. eq. [1]). We note that in equation (5), only
the dependence of S,, and RLS on z, is considered, because
size at maturity z,, adult mortality p,,, interclutch duration
T., and season length T are set as fixed parameters. We
wish to describe how E(S, x RLS) (i.e., the right-hand
side of eq. [5]) changes with the mean E(z,) and variance
¢? of the initial size distribution.

Specifically, we wish to identify whether the population
finite growth rate (A\; eq. [5]) increases or decreases when
variation in initial size is introduced (i.e., as { increases)
while holding the mean initial size (E(z,)) fixed. As the
variance in initial size increases, both individuals that are
larger then average (z,> E(z,)), and individuals that are
smaller then average (z,< E(z,)) increase in frequency.
Because S, x RLS is expected to increase with initial size
(due to higher survival to maturity and shorter time to
maturity), larger (than average) individuals will tend to
increase the mean population growth rate (i.e., eq. [5]),
while smaller individuals will tend to decrease it. De-
pending on the shape of S, x RLS with respect to z, (i.e.,
convex, concave, or linear), the increase in A due to larger
individuals may overcompensate for, undercompensate
for, or balance exactly the reduction due to smaller in-
dividuals. Therefore, N may either increase, decrease, or
remain unchanged as we increase the variance in ini-
tial size, {*. This is the essence of Jensen’s inequality,
which states that the mean of a nonlinear function is not
equal to the value of this function evaluated at the mean.
(For additional explanations of Jensen’s inequality, see
Bjernstad and Hansen 1994; Kendall and Fox 2001, 2003;
Lindstrém and Kokko 2002; Ovadia et al. 2007.)

Therefore, the effect of size variation ({*) on population
growth depends on the shape of S, x RLS with respect
to z, along the relevant range of z, values. If S, x RLS
is a concave function of z, (i.e., concave down, as some
authors prefer; e.g., Kendall and Fox 2001; i.e., negative
second derivative), then increasing size variation ({*) leads
to a decrease in A. If the relationship is convex (i.e., con-
cave up; positive second derivative), then size variation
raises A. If the relationship is linear (i.e., zero second de-
rivative), then variation has no effect on A. Finally, it is
also possible that S, x RLS will be of a sigmoid form,
where the relationship is convex over some range of initial
sizes and concave over another. In that case, the relation-
ship will be either concave or convex, depending on where
the actual initial sizes of individuals cluster.

In order to establish how S x RLS varies with initial
size z, we refer to the extreme cases of long and short
seasons outlined above. For long seasons, S, x RLS =
Sm(z,) x RLS;_.. (eq. [3]); that is, the relationship be-
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tween A and initial size depends only on survival to ma-
turity. Generally, survival to maturity monotonically in-
creases with initial size; however, the form of the
relationship, that is, either concave or convex, is not as
easily determined. Based on empirical observations, we
obtain a concave relationship (see “Model Calibration”),
but in general, both options are feasible.

In terms of underlying biology, the form of the rela-
tionship S, (z,) depends on the ratio u(z)/g(z), that is,
size-specific mortality over size-specific growth (Werner
and Gilliam 1984; see appendix). Therefore, whether the
form of S_(z,) is convex, concave, or linear is determined
by how growth and mortality are distributed among initial
sizes. Roughly speaking, if at small initial sizes mortality
is high and growth is slow, while at intermediate and large
initial sizes mortality is low and growth is fast, the resulting
curve S (z,) is likely concave. Similarly, if mortality is
concentrated at large initial sizes and growth is fastest at
small initial sizes, we obtain a convex form of S, (z,). How-
ever, there are additional, more subtle points concerning
the relationship between u/gand the shape of S, (z,). These
are considered in the appendix.

For short seasons, the RLS depends strongly on time to
maturity (eq. [4]). Therefore, A is affected by size variation
through both survival to maturity and time to maturity.
The shape of S,, x RLS can again be either concave or
convex, depending now on the shape of both S, (z,) and
RLS(z,), as determined by size-specific growth and mor-
tality rates. Finally, for intermediate season length, that is,
(T — T,) ~ 1, the RLS is given by equation (2a). As in
short seasons, the relationship between \ and z, also de-
pends on both survival to maturity and time to maturity.
However, the sensitivity of the relationship to time to ma-
turity is lower than that for the short-season scenario (eq.
[4]), and it vanishes altogether as the long-season limit is
approached (eq. [3]; fig. 1).

Therefore, it is expected that the effect of size variation
on A will vary among years, depending on season length.
It is also conceivable that size variation may increase the
net reproductive rate for some season lengths (i.e., for
which S, x RLS is convex) but decrease it for others (i.e.,
for which S, x RLS is concave). Therefore, the effect of
size variation on population growth depends on season
length and may change in both magnitude and sign as
season length fluctuates.

Incorporating Density Dependence

Finally, density dependence is incorporated into the model
through density-dependent factors that multiply survival
to maturity, time to maturity, or both. Therefore, we as-
sume that the effects of initial size and initial density act
multiplicatively (as Bjornstad and Hansen 1994 did in their
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example of variation in clutch size). In other words, the
survival to maturity of individuals of all sizes is influenced
by density in a similar manner, that is, through the same
multiplicative factor. Although such an assumption may
not hold in general, for example, under the influence of
frequency-dependent effects, we do not know enough
about how such effects function in our M. femurrubrum
system. Therefore, we consider a simple and tractable
model that nonetheless fits observed patterns (see “Model
Calibration”).

We use the Ricker model (e.g., Gurney and Nisbet 1998,
p- 27) to describe the density dependence of survival to
maturity:

Sm(zo» N) = S,.(z4,0) x exp (—aN). ©6)

Equation (6) shows that the survival to maturity of an
individual with initial size z, at density N is given by its
maximal survival at zero density multiplied by a factor
that decreases as density increases, that is, exp (—aN). The
parameter « is a measure of the strength of density reg-
ulation. We demonstrate in the appendix that such a form
of density dependence (i.e., eq. [6]) provides an excellent
description of the survival data of figure 2 (see “Model
Calibration”).

A similar expression using a multiplicative density-
dependent factor may also exist for time to maturity. How-
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ever, we show in the appendix (see “Model Calibration”)
that for our grasshopper species, density dependence of
time to maturity is not observed. Therefore, in subsequent
calculations, we consider only density dependence in
survival.

Substituting expression (6) into equation (5) gives the
density dependence relationship of the population growth
rate \. Note that because of the way density dependence
is introduced, survival to maturity of all initial sizes in-
creases or decreases by the same multiplicative density-
dependent factor. As such, the density-dependent term can
be written outside of the averaging term in equation (5),
that is, outside the E(...) term. Hence, it does not affect
the form of S, x RLS with respect to z, and therefore
does not influence the way size variation affects A.

Model Calibration Based on Data for Melanoplus
femurrubrum in Northeastern Connecticut

We now quantify the components of the model, using
results and observations from our reference system of M.
femurrubrum in northeastern Connecticut. We first em-
phasize that the above model is formulated in terms of a
distribution of any arbitrary initial size, which can be either
a continuous distribution of continuous size, or a set of
frequencies of discrete size classes. Therefore, users of the
model may choose to work with either a continuous size

1 2 3
Size Class

Figure 2: Size-dependent survival to maturity for Melanoplus femurrubrum second instars, based on field experiments (Ovadia and Schmitz 2002;
O. Ovadia, unpublished data). Survival to maturity is given for three different initial nymphal densities. Left, survival to maturity as a function of
initial body length (mm). Right, Survival to maturity as a function of size class (for a definition of size class values, see “Model Calibration” and

the appendix in the online edition of the American Naturalist).



measure (e.g., body length/mass) or discrete size classes,
depending on the nature of their experimental setup and
available data. We choose here to use discrete size classes,
based on the data available to us from experiments and
observations in the M. femurrubrum field system.

We note that because survival to maturity is obtained
for second instars (see next paragraph), the population
dynamics model will refer to that stage; that is, N, rep-
resents the density of second-instar nymphs. Similarly,
“initial size” will refer to that of second instars and not
to size at hatching. We consider three initial-size classes
of second-instar nymphs based on body length (after Ova-
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dia and Schmitz 2002), which are numerically denoted 1,
2, and 3 for initially small, average, and large individuals,
respectively (see table 1 and the appendix for more details).
Additionally, three different forms of initial-size distri-
bution are considered, as described in table 1. We note
that the mean size class value for all three distributions is
2, and only the variance in initial size varies. This allows
us to study the effect of size variation alone, without the
confounding effects of changes in mean initial size.
Survival data from field experiments provides a concave
(i.e., concave down) relationship between survival to ma-
turity and initial size of second instars, given three different

Table 1: Values used in calibrating the model to the Melanoplus femurrubrum system

Values Reference
Initial-size classes 1,2, 3 Ovadia and Schmitz 2002; appendix
Initial-size distributions (i.e., levels of size variation;
numbers denote size classes) Appendix
None: 1: 0%
2: 100%
3: 0%
Natural: 1: 15%
2: 70%
3: 15%
Uniform: 1: 33.33%
2: 33.34%
3: 33.33%
Survival to maturity See figure 2 Ovadia and Schmitz 2002; O. Ovadia,
unpublished data
Time to maturity (days; size classes 1-3) Appendix
T, estimate 1: 1: 44.1
2: 41.5
3: 41.5
T, estimate 2: 1: 45.4
2: 41.6
3: 36.2
Interclutch interval (T, days)® 10 Beckerman 1999, 2002
No. of eggs per pod (clutch size) 20 Pfadt 1994
Daily rate of egg production 2 No. eggs per pod divided by the interclutch
interval
Sex ratio (fraction of females among second instars)® .5 Joern and Gaines 1990
Overwinter egg survival .29 Appendix
Survival from hatching to second instar stage* 29 Appendix
Fixed parameter C (day™") .084 Appendix (eq. [A4])
Coefficient of density dependence (« in eq. [6], m?) .0152 Appendix
Adult mortality (u,, day™") .035 Oedekoven and Joern 1998
Season length (T, days) 55-120 Beckerman 1999; Ovadia and Schmitz 20045

Note: Additional information on model calibration is provided in the appendix in the online edition of the American Naturalist.

* Beckerman (1999, 2002) found that under favorable conditions, each female M. fermurrubrum laid about four clutches during a 6-week
period. Therefore, we set the interclutch period to be T. = 10 days. This value is in agreement with the observed duration of the preoviposition

period in this species (Pfadt 1994).
" Based on general observations in many grasshopper species.

¢ Beckerman (1999, 2002) reported on size-dependent survival of M. femurrubrum first instars from the same system of old fields in
northeastern Connecticut. However, his results are based on experiments designed to study the effect of a pure grass diet on the survival of

first instars. It is therefore difficult to transform the size-dependent mortality that Beckerman reports on to the naturally occurring situation

in which herbs are also available for consumption.
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initial densities (fig. 2; Ovadia and Schmitz 2002; O. Ova-
dia, unpublished data). Consequently, for long seasons,
the net reproductive rate N\ will decrease as variation in
initial size increases.

Finally, the remaining components of the model are
considered in table 1 and the appendix. The reader should
note that there are two different estimates of size-depen-
dent time to maturity (table 1). These are based on two
different sources, as described in the appendix, and are
termed “T,, estimate 1” and “T, estimate 2.” In the fol-
lowing, we present results for both of these estimates of
time to maturity. (We note that for the small- and average-
size classes, the two estimates give very close values. The
main difference is in time to maturity of large individuals.)

Results

In figure 3, we present how time to maturity, reproductive
life span, and size-specific reproductive rate (A(z,); eq. [1])
change with initial-size class and season length, given the
two estimates of time to maturity (table 1). Note that for
the first estimate (fig. 3a-3c¢), time to maturity does not
vary greatly among size classes (fig. 3a). As a result, for
most values of season length, RLS is independent of initial
size (fig. 3b), and if it does vary among size classes, it is
always described by a concave relationship (fig. 3b; T =

T [dy]

RLS [dy]

63, 72). Such forms of RLS(z,) are a direct consequence
of the discontinuous mode of reproduction, that is, in
discrete clutches. Coupled with the concave form of size-
specific survival (fig. 2), we find that A(z,) is concave for
all season lengths (fig. 3¢). This means that the population
finite rate of increase (eq. [5]) always decreases when size
variation is introduced (fig. 4a).

In contrast, considering the second estimate of time to
maturity (fig. 3d-3f), convex forms of RLS may occur (fig.
3e) as a result of both the discontinuous mode of repro-
duction and the now larger differences in time to maturity
among the three size classes (cf. fig. 34, 3d). Consequently,
we may obtain convex forms of A(z,) when the season is
short (fig. 3f; T = 60 days). This means that for some
(short) season lengths, the population net reproductive
rate (eq. [5]) may actually increase with size variation (fig.
4b).

These latter results support our theoretical expectation
that the effect of size variation on the population growth
rate may vary in both magnitude and sign, depending on
season length (see “Model Development”). Next, we ex-
plore implications for population stability.

Population Stability: Deterministic Case

Given a time-invariant season length, the equilibrium den-
sity N* is given by A(N™) = 1. The local stability of such

Mz,)

48 25
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Figure 3: Time to maturity (T,; a, d), reproductive life span (RLS; b, ), and size-specific net reproductive rate (A\(z,); ¢ f) as functions of initial-
size class, for two estimates of time to maturity (top row vs. bottom row). Time to maturity and reproductive life span are given in days. Reproductive
life span and size-specific reproductive rate are given for five different season lengths (key in a).
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Figure 4: Natural logarithm of overall population net reproductive rate (A; eq. [5]) as a function of size variation (none, naturally occurring, and
uniform size distribution). Curves of In\ versus size variation are given for two estimates of time to maturity (a vs. b) and for five different season
lengths (see key in fig. 3a). Note that N always decreases with size variation for T,, estimate 1 (a). In contrast, for T, estimate 2 and when the
season is short enough, N can increase with size variation (b, bottom curve).

an equilibrium point is determined by the eigenvalue &,
which depends on the derivative of N with respect to den-
sity (Bjernstad and Hansen 1994). The closer to zero that
the absolute value of & (denoted as |e|) is, the faster the
population density returns to its equilibrium value fol-
lowing a perturbation.

Table 2 presents values of € for the three types of within-
population variation and for three values of season length.
Additionally, we consider three different equilibrium field
densities (achieved by modifying the value of Cin eq. [5];
table 2; appendix). An inspection of table 2 reveals that
rates of convergence to equilibrium density differ among
cases. Specifically, considering the effect of size variation,
we observe that for low field density (e.g., the naturally
occurring density 16 m~?), the general trend is for |e| to
grow with increasing size variation. The trend is reversed,
however, for medium and high field densities (95 and 130
m % see fig. 5). Therefore, when population density is low,
stability decreases with size variation, while for higher den-
sities, stability increases as size variation is introduced into
the population (fig. 5).

Additionally, we observe that when population density
is high, it is possible to obtain nonconverging periodic
oscillations (i.e., € < —1) when the population is homog-
enous (no size variation) but converging oscillations (i.e.,
—1 < & < 0) for a population with individual size variation
(table 2: N* = 130 m™>, T = 90 days; fig. 5¢). Therefore,

the stability properties of the population may also vary
qualitatively as size variation changes.

We conclude this subsection by reinforcing the general
expectation of Bjernstad and Hansen (1994) that individ-
ual variation does not necessarily enhance population sta-
bility. As we showed here, under naturally occurring con-
ditions (N* = 16 m™?), size variation is expected to impair
population stability and cause longer return times to equi-
librium density following a perturbation. This result, how-
ever, has been obtained using classical stability concepts
of deterministic population models (as in Bjornstad and
Hansen 1994). Because stochastic environmental variabil-
ity is especially important in seasonal environments, we
consider next population stability when season length var-
ies randomly among years.

Population Stability: Stochastic Case

The stability of population dynamics when the environ-
ment varies stochastically is not adequately described by
e. Stochastically varying environments cause random fluc-
tuations in population density; hence, a useful measure
of population stability may be the magnitude of relative
fluctuations in density. Either the root mean square of
relative fluctuations (e.g., May 1973) or the variance of
log (density) (e.g., Lande et al. 2003) may be used as mea-
sures of stability (or rather, instability) in the stochastic
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Table 2: Eigenvalue ¢ for three different season lengths (T), three forms
of within-population variation in initial size, and three different equilib-
rium densities

Equilibrium density® T = 60 days T = 90 days T = 120 days
16 m™ %
None P 723 .530
Natural L .757 .575
Uniform .0 .800 .634
95 m %
None 458 (.442)° —.478 —.671
Natural .396 (.493)¢ —.444 —.625
Uniform .324 (.558)¢ —.401 —.567
130 m™ %
None —.073 (—.090)¢ —1.010¢ —1.203¢
Natural —.136 (—.040)° —.976 —1.157¢
Uniform —.208 (.026)° —.933 —1.099¢

Note: The & values in the table are given for T, estimate 2 (see footnotes).

* The different equilibrium densities were obtained by varying the value of the param-
eter C such that the specified density was achieved for naturally occurring size variation
when season is 90 days long (appendix).

® In such a deterministic model, the short-season case (T = 60 days) for an equilibrium
density of 16 m™> shows a monotonic decay of population density to 0, that is, population
extinction, regardless of the type of size variation.

¢ Values in parentheses are € values for T, estimate 1, given the same combination of
season length, equilibrium density, and size variation. We note that for short seasons (the
T = 60 column), there are pronounced differences in the & values between the two
estimates of time to maturity. In addition, we find opposite stability trends, that is, an
increase in |&| with size variation for one estimate of time to maturity and a decrease
for the other. These differences arise because of the opposite effects of size variation on
population growth for the two estimates of time to maturity when seasons are short (cf.
T = 60 days in fig. 4a, 4b). For long seasons (T = 90 or 120 days), there are very slight
differences in the value of & between the two estimates of time to maturity (not shown),
because for long seasons, size variation affects population growth mainly though survival
to maturity.

4 In these cases, £ < —1; therefore, the population exhibits nonconverging periodic
oscillations around the equilibrium density.

case. Regardless of the specific measure used, the mag-
nitude of relative fluctuations in density increases with
increasing environmental variance, represented by the var-
iance of the density-independent part of In A (for brevity,
we will refer to it as the variance of In \).

When season length fluctuates among years, the range
of values of In\ either increases or decreases with size
variation, depending on the estimate of time to maturity
used (cf. fig. 44, 4b). Similarly, if we assume that season
length varies uniformly among the five different values of
figure 4, then the variance of In\ increases with size var-
iation for T, estimate 1 (fig. 4a) but decreases for T,
estimate 2 (fig. 4b; table 3). In other words, for our second
estimate of size-dependent time to maturity, the magni-
tude of fluctuations in population density decreases as
variation in initial size is introduced into the population.
Hence, stability is enhanced by size variation.

However, figure 4 presents only a partial view of how
size variation interacts with season length and other pa-

rameters to affect the population rate of increase. For ex-
ample, considering figure 4b, if season length does not get
as short as 60 days, we do not obtain an increase in
In N with increased variation in size (fig. 4b, T = 60 days).
Consequently, the variance of In A will not necessarily de-
crease with size variation, and therefore, variation in size
might not enhance stability.

In figure 6a, we present curves of population growth
rate versus size variation (as in fig. 4) for all values of
season length between 55 and 120 days (in 1-day incre-
ments). Figure 6b-6d presents the same information, but
the minimum season length is gradually increased from
55 (fig. 6a) to 69 (fig. 6d) days. The most important con-
clusion, illustrated by figure 6, is that the total range of
population growth rates (In \) may either increase (fig. 64,
6¢) or decrease (fig. 6b, 6d) with size variation, depending
on the range of possible season lengths. As discussed
above, this may have important consequences for popu-
lation stability when season length fluctuates randomly
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Figure 5: Magnitude of deviation from equilibrium density as a function of time, given an initial perturbation. Magnitude of deviation is given by
the absolute value of (N, — N*). The initial perturbation to population density is obtained by setting N(t = 0) = N* + 1(m?), that is, via an increase
in population density by 1 (m™) above the equilibrium level. Curves are given for three different equilibrium densities (a—c) and for the three
forms of size variation (refer to key in c). Note the logarithmic scale of the Y-axis. When equilibrium density is low (a), the perturbation decays
faster as size variation is decreased; that is, size variation causes density perturbations to persist for longer times. The opposite is true for high

equilibrium densities (b, ¢). Curves are based on T, estimate 1.

between years. Yet the variance in In X decreases with size
variation for all four cases of season-length variability (ta-
ble 4), despite the increase in the range of In A values for
two of these cases (fig. 6a, 6¢). Therefore, size variation
enhances population stability regardless of the range of
season lengths (but the effect varies in magnitude among
cases; see table 4).

Discussion

We developed an analytical model aiming to investigate
the effect of body size variation on population dynamics
and stability in a seasonal environment. We calibrated the
model based on field observations and experiments per-
formed in an old-field system, in which the generalist
grasshopper Melanoplus femurrubrum is a dominant con-
sumer (e.g., Schmitz et al. 1997; Schmitz and Suttle 2001).
Using data on density- and size-dependent survival and
growth (Beckerman 2000, 2002; Ovadia and Schmitz 2002;
appendix) we quantified the effects of size variation on
M. femurrubrum population dynamics. We found that in
the case of deterministic dynamics (i.e., a fixed season
length), size variation tends to destabilize population dy-
namics, that is, causes slower return to equilibrium density
after a perturbation (fig. 5a). In the stochastic case, how-

ever, size variation interacts with stochastic variation in
season length and through that tends to stabilize popu-
lation dynamics in all cases considered.

From a theoretical perspective, our main conclusion is
that the effect of size variation on the net reproductive
rate can change in both magnitude and sign as season
length changes. For long seasons, population dynamics are
relatively insensitive to time to maturity. Consequently,
the primary influence of size variation on population
growth is via size-dependent survival to maturity. In this
study, variation in initial size caused a decrease in mean
survival because of the concave form of size-dependent
survival (fig. 2). In contrast, when the season is short,
population dynamics are strongly affected by both survival

Table 3: Environmental standard deviations of In\ (SD,, ,; i.e.,
square root of the variance in In\), based on figure 4

T, estimate 1 T,, estimate 2

None 4369 99.48% 4369 108.91%
Natural 4392 100.00% 4012 100.00%
Uniform 4437 101.04% .3683 91.81%

Note: Values are presented for each of the two estimates of time to maturity.
Additionally, values are also presented in the form of percentages normalized
to SDy,, of the naturally occurring size variation, a form of presentation that
demonstrates better the relative effect of size variation on population stability.
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Figure 6: Logarithm of overall population net reproductive rate (\) as a function of size variation for four different ranges of season length. In
each case, all possible curves of In\ versus size variation are presented, given that season length is varied in 1-day increments within the specified
range. Season lengths are given in days. Only T,, estimate 2 was used in these graphs. Note that the number of different curves of In\ versus size
variation is much smaller than the total number of season lengths considered. For example, in a, we consider 66 different values of season length,
which result in only 21 different curves. This is a direct consequence of the discontinuous mode of reproduction in clutches. In addition, for each
value of In\ in a homogenous population (None), there are up to three corresponding different values when size variation is not zero (Natural or
Uniform). For example, based on a, when there is no size variation (None),In X has only seven different values, depending on season length. However,
under the influence of size variation, In\ takes on 21 different values because of differences in survival and time to maturity among the different

size classes.

to maturity and time to maturity. The size dependence of
time to maturity can then counter the negative effect of
size variation on survival to the extent that the population
growth rate can increase with size variation (figs. 3d-3f,
4). Such season-length-dependent effects of size variation
have important consequences for stability. Collectively,
they constitute the mechanism behind the trends of en-
hanced stability with increasing size variation evident in
the stochastic case (i.e., when season length fluctuates
among years; tables 3, 4).

In general, however, size variation can either stabilize
or destabilize population dynamics, depending on how the
shape of the relationship between net reproductive rate
and initial size (i.e., N(z,)) changes with season length.
Specifically, net reproductive rate always increases with
season length, regardless of initial size (as longer seasons
provide more opportunities for reproduction). When A\(z,)
of long seasons is concave but that of short seasons is
convex, size variation reduces the high population growth
rates of long seasons while increasing the low growth rates
of short seasons. Therefore, size variation is likely to en-
hance population stability in this case, because it decreases
the between-year variability in population growth rates. If

the opposite occurs (i.e., A(z,) is convex for long seasons
but concave for short seasons), size variation will tend to
destabilize population dynamics.

In the above analyses, we argued that specific results are
consequences of the discontinuous mode of reproduction
in clutches (e.g., figs. 3, 4). Therefore, our conclusions
regarding the effect of size variation on stability may
change if reproduction becomes more continuous. Sub-
stituting T, = 1 (day) in the expression for RLS (eqq. [2];
instead of 10 days as in table 1), we found that size var-
iation still enhances population stability (by decreasing the
variance in In\; see appendix). However, the effect was
weaker for continuous reproduction, compared with the
effect for reproduction in clutches (cf. table 4 with table
Al in the online edition of the American Naturalist). That
is, the discontinuous mode of grasshopper reproduction
magnifies the stabilizing effect of size variation.

In our model, all individuals begin their life at the same
time, and their development (i.e., time to maturity) is de-
termined only by their initial size. Previous studies consid-
ered the demographic consequences of developmental var-
iance, that is, of differences among individuals in rates of
growth and maturation, such as variation in instar durations
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Table 4: Environmental standard deviations of In\ (SD,,,; i.e., square root of the variance
in In\), based on figure 6 (discontinuous reproduction), assuming that all season lengths

within a given range occur with equal probability

55 < T< 120 59 < T< 120 64 < T< 120 69 < T< 120
None 3441 104.84% .2820 106.51% .1967 102.60% .1606 105.00%
Natural 3282 100.00% .2648 100.00% .1917 100.00% .1529  100.00%
Uniform .3166 96.46%  .2486 9391% .1889 98.55%  .1456 95.23%

Note: Season lengths (T) are given in days.

in insects (Nisbet and Gurney 1983; Bellows 19864, 1986b).
Moreover, high variability in hatching date is commonly
observed in insects with seasonal life cycles (e.g., Pickford
1960; Joern and Gaines 1990). We predict that such vari-
ation, superimposed on the variation in initial size, will
cause a situation similar to continuous reproduction (pre-
vious paragraph), because there will be variation in time to
maturity, not only between size classes but also within each
size class. As a result, the effect of size variation on pop-
ulation dynamics may become weaker.

In addition, we assumed that all individuals mature at
the same size and perform similarly as adults. Additional
sources of individual variation may be related to differ-
ences in size at maturity and adult performance (i.e., adult
mortality or fecundity). Such differences in performance
can be caused by changes in resource quality and avail-
ability or in the duration of the daily thermal window, as
the season progresses (e.g., Stauffer and Whitman 1997
and references therein). For instance, several studies on
grasshoppers have documented monotonic reductions in
plant food quality and quantity during the growing season
(e.g., Joern and Gaines 1990; Belovsky and Slade 1995;
Oedekoven and Joern 2000). Consequently, the reproduc-
tive capacity of individuals that mature late in the season
decreases not only owing to shorter reproductive life span
but also because of poorer conditions (Wall and Begon
1987b; Joern and Gaines 1990; Stauffer and Whitman
1997). Such additional sources of variation will inflate dif-
ferences in reproductive capacity among size classes. How-
ever, it remains to be seen how they modulate the effect
of size variation on population dynamics and stability.

We directly introduced density dependence via a factor
that modifies size-dependent survival, assuming that den-
sity influences all size classes similarly (eq. [6]). In that
sense, it is a model of “perfect” regulation (sensu Uch-
manski 2000) that overlooks lower-level details (e.g., in-
teractions among individuals). As we demonstrate, how-
ever, this simplified form of density dependence can be
readily estimated using field and experimental data, and
in the case of M. femurrubrum, it provides an adequate
description of survival in the field. Nonetheless, such phe-
nomenological density dependence is caused by within-
season interactions, which influence individual growth and

survival. Specifically, the indirect effects of resource ex-
ploitation (e.g., Grimm and Uchmanski 2002) is the likely
mechanism driving density regulation (e.g., causing asym-
metric competition, which also influences the within-
season body size distribution; Grimm and Uchmanski
2002). Indeed, empirical observations examining density-
dependent effects in grasshoppers found no evidence of
direct interference (e.g., Belovsky and Slade 1995; Branson
2003). Therefore, the explicit formulation of within-season
dynamics represents a profitable extension of the basic
model we described in this study.

In conclusion, our model captures and quantifies the
effect of size variation on population dynamics and sta-
bility, based on an appropriate formulation of the organ-
ismal life cycle. The components of the model that de-
termine the dynamics at the population level are all
individual-level traits (i-state variables) that can be readily
measured in the field. A fully factorial experiment testing
for the effects of body size and density on the survival and
growth of individuals should enable the calibration of this
model, which will aid in predicting the dynamics of many
other organisms with seasonal life cycles. In this way, quan-
titative predictions regarding population stability can be
generated. The next logical step would be to extend the
current model to account for additional sources of indi-
vidual variation, as well as to add an explicit description
of within-season demographic dynamics and the subse-
quent effects on resources. We suggest that developing and
applying such analytical models will enable us to arrive at
a more tractable understanding of how trait variation af-
fects population and community dynamics.
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