Instability Phenomena in Lipid Bilayers
and Lipid-DNA Complexes

Thesis submitted in partial fulfillment

of the requirements for the degree of
“DOCTOR OF PHILOSOPHY”

by

Yotam Yosef Avital

Submitted to the Senate of Ben-Gurion University of the Negev

Be’er-Sheva
October, 11, 2015



Instability Phenomena in Lipid Bilayers
and Lipid-DNA Complexes

Thesis submitted in partial fulfillment

of the requirements for the degree of
“DOCTOR OF PHILOSOPHY”

by

Yotam Yosef Avital

Submitted to the Senate of Ben-Gurion University of the Negev

Approved by the advisor, Prof. Oded Farago

Signature Date

Approved by the Dean of the Kreitman School of Advanced Graduate Studies

Signature Date

Be’er-Sheva
October, 11, 2015



This work was carried out under the supervision of Prof. Oded Farago In the Ilsa Kats Insti-
tute of Nanoscale Science and Technology and in the Department of Biomedical Engineering,

Faculty of Engineering



Research-Student’s Affidavit when Submitting the Doctoral The-

sis for Judgment

I Yotam Yosef Avital whose signature appears below, hereby declare that (Please mark the

appropriate statements):

— T have written this Thesis by myself, except for the help and guidance offered by my
Thesis Advisors.

_ The scientific materials included in this Thesis are products of my own research,

culled from the period during which I was a research student.

__ This Thesis incorporates research materials produced in cooperation with others,
excluding the technical help commonly received during experimental work. Therefore, I am
attaching another affidavit stating the contributions made by myself and the other participants

in this research, which has been approved by them and submitted with their approval.

Date October, 11, 2015 Student’s name Yotam Yosef Avital Signature:




Acknowledgements
I would like to express my gratitude to Prof. Oded Farago for his guidance and support
during my years of Ph.D. study. His combination of criticism and trust not only directed in
my research, but also allowed me to broaden my skills and field of interest. I would like also
like to thank Prof. Niels Grgnbech-Jensen. Our collaboration was rather fruitful, and he
provided many useful insights on my simulations and analysis.
I say thank you to the financial support of the Merage Foundation Scholarship and to the
Israeli Science Foundation (No. 1087/13).
I wish to express my appreciation for friends in Ben-Gurion University for their help in
research and personal life.
Finally, I say thank you to my family for their patience and acceptance of the long hours and

ever lasting problem solving lifestyle of a Ph.D. student.



Abstract

Lipid bilayers membranes, positioned between two solutions, are the barrier of the cell
and its internal components (organelles). Membranes define the cell limit and, by allowing
the existence of two different solutions in close proximity, enable their functions. Membranes
participate in various biological processes such as cell-cell adhesion, controlled ions transfer,
and signal transduction. The membrane role in these processes is not necessarily carried by the
membrane as a bulk, but rather via proteins incorporated into it, or a fraction of the consisting
lipids that have a unique property (e.g., charged).

Biological membranes experience forces that may cause the membrane instabilities, e.g.,
pore formation, buckling, and membranes fusion. Such instabilities take place in processes
such as endocytosis or cytokinesis, which are part of the cell function, or through an external
damaging factor, such as pore-forming toxins. A physical understanding of membrane insta-
bilities is of interest as it might be applied in many field of research and medicine e.g., causing
membrane rupture in cancer cells. Membrane instabilities are also of interest in the context of
artificial membranes since they dictate working and experimental parameters. Furthermore,
they may have a practical use, e.g., drug release.

The mechanical properties of membranes are traditionally studied through the framework
of Helfrich’s effective Hamiltonian. While this model has proved to be very useful for stable
membranes, instabilities are not well understood. Many insights from the Helfrich Hamiltonian
are gained for membranes that are stable, namely, weakly undulating intact membranes. This
thesis discussed instabilities in membranes outside of this regime, that is, buckled or ruptured
membranes. Computer simulations allow for such studies, but due to their nature, simulations
of lipid membranes require large amount of water molecules which. Due to the high cost
(in computation terms) associated with water molecules, the time and length scales of such
simulations are limited. High coarse-grained computer simulations, such as those used in this
thesis, treat the aqueous region implicitly (via effective hydrophobic interactions). This allows
us to overcome the limitations of “traditional” atomistic simulations.

Chapter 2 discusses instabilities of membranes under positive and negative surface tension,
chapter 3 discusses instabilities in charged membranes, and chapter 4 discusses a lipid-DNA
complex degradation. The thread line of the results reported in this thesis is the instabilities of
lipid-based systems, reported in all three chapters. However, even though the reported instabil-

ities can be roughly divided into pore formation and strong undulations or buckling, the cause



Abstract

of the instabilities and their “fine details” have some important differences. Studying such
instabilities allows for a better understanding of the biological, physical, and chemical mech-
anisms that involve lipid membranes. This, in turn, may be exploited for practical purposes
(e.g., drug delivery), where such instabilities may be essential.

Chapter 2 presents a simulation study of bilayer membrane response to the application of a
negative (compressive) mechanical tension. We used the simulation results to develop a simple
free energy model for membranes under negative tension. Instabilities of membranes due to
compressive surface tension is size dependent. It is known that negative tension destabilizes
the long wavelength undulation modes of giant vesicles, but such tension can be sustained
when small membranes and vesicles are considered. The negative tension simulation results
reveal two regimes: (i) a weak negative tension regime characterized by stretching-dominated
elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic be-
havior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration
experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys. Rev. Lett.
64, 2094 (1990)]. However, in GUVs, the crossover between the two elasticity regimes occurs
at a small positive surface tension, while in smaller membranes it takes place at a moderate
negative tension. Another interesting observation concerning the response of a small membrane
to negative surface tension concerns the relationship between the mechanical and fluctuation
tensions, which are equal to each other for non-negative values. When the tension decreases
to negative values, the fluctuation tension v drops somewhat faster than the mechanical ten-
sion 7 in the small negative tension regime, before it saturates (and becomes larger than 1)
for large negative tensions. The bending modulus exhibits an “opposite” trend. It remains
almost unchanged in the stretching-dominated elastic regime and decreases in the bending-
dominated regime. Both the amplitudes of the thermal height undulations and the projected
area variations diverge at the onset of mechanical instability.

In chapter 3, the same coarse-grained molecular model is used for studying the elastic
properties of charged membranes in solutions of monovalent and pentavalent counterions. The
simulation results of the two cases reveal trends opposite to each other. The bending rigidity
and projected area increase with the membrane charge density for monovalent counterions,
while they decrease for the pentavalent ions. These observations can be related to the degree
that the counterions screen the lipid. While the monovalent counterions only weakly screen the
Coulomb interactions, which implies a repulsive Coulomb system, the multivalent counterions
condense on the membrane and, through spatial charge correlations, the overall effective inter-

actions due to the charged lipids become attractive. The differences in the elastic properties
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of the charged membranes in monovalent and multivalent counterion solutions are reflected in
the mechanisms leading to their mechanical instability at high charge densities. In the former
case, the membranes develop pores to relieve the electrostatic tensile stresses, while in the
latter case, the membrane exhibits large wavelength bending instability.

In chapter 4, we study the physics of complexes (supermolecular assemblies) of cationic
membranes and DNA molecules. Such lipid-DNA complexes (lipoplexes) have attracted much
interest as gene delivery vectors because they are non-pathogenic and they are self-assembled
under conditions of thermal equilibrium. In the chapter, we focus on the driving forces gov-
erning the release of DNA molecules from a lipoplex trapped inside an endosome. The release
of DNA molecules is thought to be the limiting stage in the transfection process, which is
viewed as a three-stage process: (i) endocytosis, (ii) lipoplex breakdown, and (iii) DNA release
followed by gene expression. As successful transfection requires lipoplex degradation, it tends
to be hindered by the lipoplex thermodynamic stability; nevertheless, it is known that the
transfection process may proceed spontaneously. The relevant results chapter in this thesis
uses a simplified model to study the thermodynamic driving forces governing transfection. It
is demonstrated that after endocytosis [stage (i)], the lipoplex becomes inherently unstable.
This instability, which is triggered by interactions between the cationic lipids of the lipoplex
and the anionic lipids of the enveloping plasma membrane, is entropically controlled involving
both remixing of the lipids and positional entropy gain of counterions initially confined to the
surfaces. The detailed calculation in this chapter shows that the free energy gain during stage
(ii) is approximately linear in ®,, the mole fraction of cationic lipids in the lipoplex. This
free energy gain, AF', reduces the barrier for fusion between the enveloping and the lipoplex
bilayers, which produces a hole allowing for DNA release [stage (iii)]. The linear relationship
between AF and the fraction of cationic lipids explains the experimentally observed exponen-
tial increase of transfection efficiency with @, in lamellar lipoplexes.

Chapter 5 summarizes this thesis. In this chapter, the similarities and differences between
the instabilities in the different systems are underlined. Insights from this comparison are

concluded with a possible future simulation study.
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Chapter 1

Introduction

1.1 Physical Understanding of Lipid Membranes

Lipid bilayer membranes allow biological systems to separate two chemical solutions which
are of distinctly different chemical composition. The most obvious example of that is the cell
plasma membrane which separates the (acidic) cytoplasm from the external (alkaline) envi-
ronment. Lipid membranes are formed spontaneously due the hydrophobic nature of the lipid
tails that are shielded from water molecules when the membrane is formed [1, 2]. Composed of
two monolayers that face each other and expel water molecule from the aliphatic tails, bilayer
membranes may assume several structures: planer, cylindrical, and spherical. Furthermore,
the bilayer phase occupies a small part of a rather complex phase diagram which includes
further morphologies [3]. The structure of the lipid bilayer is controlled by the characteristics
of its constituting lipids e.g., tail length, tail rigidity, and hydrophilic head size [1]. At room
temperature, biological membranes are fluid: the lipids tails are disordered and they can diffuse
within the monolayer. Also in fluid membranes, lipids can slowly transfer between the two
monolayers in a process known as “flip-flop.” In their fluid state, membrane might develop
instabilities that hinder their function; the two most commonly known are buckling and pore
formation. Understanding membrane instabilities is important as they commonly occur when
the membrane is participating in a far from equilibrium processes. In addition, there are cases,
such in drug and gene delivery applications, where—upon a certain condition (e.g., endocytosis
by the target cell)—it is desirable to trigger instabilities.

Theoretical studies of bilayer membranes commonly use Helfrich’s effective Hamiltonian
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which describes 2D manifolds, such as membranes, in 3D space [4]
1 2,
H = dsS oo + 5%0 (Cl + Ccoy — 2C0) + KoC1C2| , (11)
A

where the integration is carried over the membrane’s total area, A. In this model, the constants
are the surface tension, oy, the bending modulus, kg, the saddle splay, <y, and the spontaneous
curvature, c¢g. The variables ¢; and co, are the local principal curvatures. The discussion in
this thesis is limited for conditions where ¢y = 0 (symmetric membrane) and to membrane
deformations that preserve the membrane topology, which means that the total energy of the

contribution due to the last term is constant. Under these conditions, one can simplify eq. (1.1)
1 9 1
H = dS oo + 5%0 (Cl + CQ) = O'()A + §KQJ s (12)
A

where J, defined via J? = [dS (c; +¢2)?, is the integrated square total curvature, and A
is the total area of the membrane. Helfrich Hamiltonian provides a successful framework
for describing many features of bilayer membranes and vesicles, including their large-scale
shapes and the transformations between them [3], membrane-membrane interactions [5], and
membrane-mediated forces between proteins (“inclusions”) [6]. Equations (1.1) and (1.2) are
applicable when studying the elastic properties of a nearly flat membrane with low curvature.
This thesis discusses some instabilities and phenomena that are not always described properly
by these equations. Chapters 2 and 3 of this thesis discuss phenomena that occur as a result
of compression [7], and inclusion of charged lipids in the membrane [8]. In chapter 4, a
possible mechanism for DNA release from lipid-DNA complexes is proposed [9]. The DNA
release requires both a high bending degree and pore formation in regimes are relevant to
those discussed in chapters 2 and 3.

The remainder of this introduction provides a general background relevant to this thesis
research. Surface tension in the context of bilayer membranes, a general view of charged mem-
branes in solution, the effect of electrostatic interactions on the bending modulus, and finally,
the role of charged membranes in drug delivery. This chapter is followed by three results chap-
ters; the response of small membranes to negative surface tension, the effect of electrostatics on
the stability of membranes, and a thermodynamic analysis of lipoplexes in various stages of the
gene delivery process. Following these, chapter 5 summarizes the entire thesis and underlines

the similarities and differences between the various instabilities phenomena.
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List of Symbols

A Membrane total area N Number of lipids in monolayer
Ao Membrane preffered area D, linital mole fraction of x

A, Membrane projected area X Mole fraction of x

a Porjected area per lipid by Simulation interaction distance
L Simulation “box” size q Fourier’s mode wave vector

[ Simulation grid cell size ﬁ Fourier’'s mode wave number
0o Surface tension (0 Electric potential

o Renormalized surface tension vi Number density of ion ¢

T Frame tension AD Debye length

Ku Area stretching modulus Ao Gouy-Chapman length

Ko Bending rigidity AB Bjerrum length

K Renormalized bending rigidity (x) Mean value of x

O0Ke Electrostatic contribution to h Amplitude of z

v Fluctuation tension e Electron unit charge

F Arrhenius free energy €0 Vacuum permitivity

F, Electrostatic contribution to F €w Dielectric constant of water

f F per unit of area € Dielectric constant of oil

G Gibbs free energy € Dielectric constant of vacuum
O Surface charge density kg Boltzmann’s constant

qQ DNA:cationic lipids charge ratio T Temperature

1.2 Membranes Under Surface Tension

The surface tension, ¢ appearing in egs. (1.1) and (1.2), originates from similar concepts
to liquid phases context, though it has different, less intuitive, physical interpretation The
definition of surface tension for two liquid phases that are in contact with each other, like a
water-oil interface, is the energy per unit area required to maintain the area of contact [10].
It is calculated by the energetic cost of interaction between the two solutions per unit area
compared to their energy in the respective bulk phases. Lipid bilayers mark the barrier between
two solutions and as such, they appear to be applicable to this reasoning. However, applying
it to derive the surface tension term in eq. (1.1), ¢, is not straightforward [7]. Increasing

the area of a membrane can be achieved by adding more lipid molecules into the membrane,
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while maintaining the area density of the lipids fixed. However, lipids concentration in aqueous
solution is low (~ 107%). An alternative interpretation is the increase of the lipid area density,
which greatly differs from the meaning “surface tension” in a liquid phase context.

To understand surface tension in the context of lipid membranes, it is important to recognize
that og, ko are material properties and they are coupled with the membrane total area, A, and
square total curvature, J?, respectively. It is possible to renormalize oy and kg into o and &

respectively using Helfrich’s free energy
_ 1 —

where A and J are the area and the squared total curvature of the mean profile of the mem-
brane. Membranes with a flat profile (i.e., not subjected to bending forces) feature J = 0 and
A is equal to the projected area A,. In this case, eq. (1.3) takes the form of F' = 0A, and
o = 0F/0A,. Generally, the property coupled with the membrane projected area is the frame
tension, 7 = 0F/0A,, and for symmetric membranes 7 = o. Unlike A, A, is well defined, and
insensitive to small protrusion, thus its measurements, and that of the 7 are simpler. Another
quantity that can be identified as the membrane surface tension is the, so called, ¢* coefficient
v, also known as the fluctuation tension. The fluctuation tension can be measured from the
Fourier spectrum of the membrane height function with respect to the plane projection (see
also chapter 2). For a membrane with a mean flat profile, the thermal average of the amplitude

of a Fourier mode with wave vector ¢ satisfies: (hg) = 0 and

kpTA,
(7¢* + Kq* + Oq°)

(hal) = 7 (14)
where kp is Boltzmann constant, 7" is the temperature, and [ is a microscopic cutoff length.
Membranes with flat profiles under non negative surface tension exhibit 7 = v = o [11, 12].
The Giant Unilamellar Vesicles (GUV) experiment [13] provided some of the key insights
about surface tension in the context of membranes. The experiment, carried out by measuring
the projected area of vesicle stretch to various degrees, revealed two regimes of surface tension
which are made distinct by the response of the projected area to stretching. When relatively
low surface tension is applied to GUVs in the entropy dominated regime, the membrane is
stretched by reducing the fluctuation amplitudes. When 7 is low, the membrane exhibits a
strong increase in A, in response to small changes in surface tension. With regard to the high
surface tension regime, on the other hand, the membrane exhibits direct elastic compliance. In

this regime, the membrane exhibits a linear increase of the projected area with surface tension.
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This is due to the stretching of the membrane which “irons” out its undulation and an increase
in the membrane area occurs through increase in the total area per lipid of the membrane.

In chapter 2, we present the results of Monte-Carlo simulations of small membranes under
negative surface tension. The reported results feature properties that resemble those of GUVs
under positive tension. Equation (1.4) predicts that under negative surface tension, the Fourier
modes of long wave length (small wave number) will develop mechanical instabilities. However,
small membranes with linear size L < (27r K/ 7') , should have a stability range in the negative
tension regime. The results section of chapter 2 explores the features of stable membranes under
moderate negative surface tension, as well as the buckling which occurs when strong negative

tension is applied to the membrane.

1.3 Membranes in Charged Environments: The
Poisson-Boltzmann Theory

Biological membranes are charged due to presence of charged lipids and proteins. The mem-
branes are surrounded by ionic aqueous solutions, e.g., the cytoplasm, and electrostatic inter-
actions affect their stability and mechanical properties. Furthermore, electrostatic interactions
take place when two membranes interact, e.g., in cell-cell adhesion. While not accurate, the
mean field approximation is convenient to gain the essential properties of charged membranes.
Within this approximation, the charges included in the membrane are “smeared” to give sur-
face charge density o., and the concentration of ions in solution is taken as continuous. The
relation between the potential v () and the charge distribution p (7) = > (;»; is given by the
Poisson equation
e

V2 (F) = Z Gii (1.5)

€w€o

where €,, ~ 80 is the water dielectric constant, ¢y is the vacuum permittivity, e is the electron
unit charge, and for specie i, v; and (; are number density and valency, respectively. For
fixed charges, p(7) is known, and eq. (1.5) determines the electric potential. However, ions in
solutions are mobile and thus, even for fixed surface charge density o., ions will adjust their
positions to minimize the system’s free energy. At equilibrium, the concentration of the mobile
ions is described by the Boltzmann distribution. Assuming that the only positional energy is

the electrostatic one, the number density v; (7) of ion i reads

v; = l/(()i) exp (7;%?) . (1.6)
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Thus, the Poisson-Boltzmann equation is derived by combining egs. (1.5) and (1.6)

V3 () = —% Z;QVS“ exp (_623—1/;@) . (1.7)

This equation provides a good approximation of many settings that are relevant to physiological
conditions, specifically when the (; = +1 [14]. For a system at contact to electrolyte reservoir
with a 1:1 salt and (; = £1 ratio, for example negatively charged membrane in NaCl solution,

eq. (1.7) is simplified to be

V2 (7) = — 22 ginh (e¢ (F)) . (1.8)

€w€o kT

where 1 is the number charge density of the salt at the reservoir (far away from the membrane).
For a small surface potential, or high concentration of salt eq. (1.8), can be linearized to the

Debye-Hiickel equation
V2 () = Ap*, (1.9)

where A\p = (2vpe? /ewcok BT)fl/ %isthe Debye screening length. At distances much greater than
Ap, the electric field of the membrane is screened by the cloud of counterions that surrounds
the membrane.

It is also possible to solve eq. (1.7) when there is no added salt and Ap diverges. This
scenario is relevant to the simulation results reported in chapter 3, which correspond to neg-
atively charged membrane in solution of cations with no added electrolytes. To consider this
in eq. (1.7), one can set ¢ = 1, and 1y is the reference ions number density where ) = 0. The
total number of ions should be set so that the system will remain neutral. Without added salt,

eq. (1.7) is simplified

V) () = —:”600 exp (‘?ﬁ}”) . (1.10)

Since there is no inherit difference between positive and negative charges in the mean field
picture, setting o, to be positive would require negative ions but would result in the same
equation.

Equations (1.8) and (1.10) are solvable in several geometries applicable to membranes, the
most simple of which is that of a flat surface of charge density o.. The surface is placed in the
x —y plane at z = 0, and the field is allowed only at the positive part of z by setting €,~9 = €,
and in the oily part of the membrane €,.o = 0. Under these conditions, and assuming overall

neutral system, the electric field vanishes as z — oo. At the surface, the electric field has to
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satisfy as well

= — . 1.11
0z |, Ew€o ( )

The dielectric discontinuity in the lipid tails part is most easily taken by considering two com-
pletely decoupled monolayers, namely where the electric field is excluded from the hydrophobic
region. This is specifically justified for thick membranes [15, 16]. Assuming decoupled mono-
layers, the dielectric constant in the oil part is set to 0, thus excluding the electric field from
it. Under these conditions, the potential and the counterion concentration without added

electrolyte can be derived from eq. (1.10). The electric potential reads

A 2ksT
1/ VOQB (z—i—)\gg)] = f log (z + Age) + o (1.12)

where 1 is the reference potential that is dictated by vy in eq. (1.10). The characteristic lengths

Ago = 2kgTeyco/e|oe| (Gouy-Chapman), and A\g = €?/4nkpTe, 60 ==~ 0.7nm (Bjerrum) are
defined as the distance where an elementary charge experiences an electric force of magnitude
1kgT due to surface of charge density o, (Gouy-Chapman) or another elementary charge
(Bjerrum). These two length scales arise naturally when electrostatic interactions are discussed
since the former is a measure of the surface charge density and the latter defines the strength
of electrostatic interactions in comparison to other forces. Note that the log function used
here, and throughout this thesis, is the natural logarithm. The ions distribution, calculated

by applying eq. (1.12) to eq. (1.6), reads

1

= . 1.13
271')\3 (Z + Agc)Q ( )

v(2)

Applying the same conditions to a membrane in contact with a reservoir of monovalent

electrolytes, the electric potential can be derived from eq. (1.8)

_ 2kgT 1 +ne=2/*p

where the parameter 7 is the positive root of the quadratic equation

2Xqe

2
+
n Y

n—1=0

Aﬁ /\2& + 1.
Ap 22
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Using eq. (1.14), deriving the ions number density is straightforward,

)

)2. (1.16)

The concentration of the ions in the solutions is affected by the presence of charged membranes,

. (—=/Ap)
v (2) = ( (/7o)

_ o, (L=nexw(=2/Ap)
R b=

14+ nexp

1+nexp

1.15
1 —nexp ( )

as one intuitively expects. The membrane counterions are attracted to it resulting with con-
densation of ions on the surface that neutralize its charge [eq. (1.15)]. The membrane coions are
repelled from the it although it is not 0 next to the surface [as described by eq. (1.16)]. Due to
the appearance of 7 in eqgs. (1.15) and (1.16), the equations are hard to understand intuitively.
Generally speaking, 1 determines the level of deviation from the bulk concentration: At the
weak screening regime, where the Ap > Agc (low 1y or high o.), n — 1 and the concentration
of the ions next to the surface deviate significantly from their bulk concentration. At the strong
screening regime, where A\p < Age (high vy or low ¢.), n — 0 and the concentration of the
ions is fixed at v in the entire solution.

Completely coupled flat surfaces, where ¢, = ¢, are not discussed in this thesis !. Note
though that this system is solvable as well using the same methods. This is so because the
electric field of the bilayer is a linear sum of the electric field of the two monolayers. Thus, the
equations above are applicable after correcting the surface charge density of each monolayer
o. by adding the one of the other monolayer. As demonstrated in section 3.2, for symmetric
systems, where the surface charge density of each monolayer is the same, and the total ion
sum on each charge is the same, the electric field does not penetrate the oily part due to the
Symmetry.

The electrostatic free energy per unit are, f,, of flat charge surface in ionic solution reads

€ oY 2
fe—T <$) dZ+kBT/

where the first term is the electrostatic energy and the second term is the entropy loss of ions

;Vi log (Z—;) — (v — Vo)] dz, (1.17)

due to their deviation from uniform concentration, composed of nonuniform concentration
term and “counting” term. The latter term, is the local charge density in the solution, and
the integral [ (3", v — 1p) dz is equal to o. The integration over the latter term results in

the charge density of the membrane. Appendix A demonstrates how for any flat surface, the

!The simulations in chapter 3 are handled under such conditions; however, due to the symmetry of the
bilayers and the ion solution above and below it, the electric field inside the membrane is negligible as in the
decoupled case.

10
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electrostatic contribution is matched by the shift in concentration of the two ions

2
5 (5) @t [ Sntn-ma -

In a salt-free solution, these two terms are equal to 1kgT', which is the usually attributed cost
of bound counterions. This equality indicates that bound counterions maintain some of their
configurational entropy at the cost of electrostatic energy. Neutralizing this charge by macro
molecules would allow the counterions to leave without electrostatic penalty. This counterions

release mechanism is the driving force of many biological processes [17].

1.4 Membranes in Charged Environments: Beyond

Mean Field

Thus far, the discussion was limited to the mean field framework where both charge densi-
ties and ion densities are smeared, and fluctuations in charge and ion densities were ignored.
Assuming such fluctuations are not correlated, this approach is valid. However, when such
correlations do exist, e.g., when the charge carriers in the electrolyte are multivalent, the mean
field picture is not necessarily valid [18]. Such correlations result with the rather surprising phe-
nomena, termed like-charged attraction [19, 20, 21, 22, 23], where two macromolecules of the
same charge sign attract each other through mutual attraction to the counterions in the inter-
mediating solutions. The key to understanding this phenomena lies in the analysis of charged
surfaces and counterion condensation which reveals a coupling parameter = = 27(3\p, o, [18].
This coupling parameter distinguishes between the weak coupling regime, where = < 1, and
the mean field approximation holds true, to the strong coupling regime, where = > 1 and
charge charge correlations might become significant.

The physical origin of the coupling parameter is the opposite influence the charged surface
and the ions have on an individual ion [24]. While all the ions are attracted to the surface,
they also repel each other. If all the ions adhere to the surface, the average area per ion is
(/oe, with the characteristic length o = \/%. When the ions are multivalent, and = > 1,
the ions condense on the surface in a structure of a hexagonal two dimensional crystal [18]
that maximizes the distances between the ions. In this configuration, the electric field of the
ions almost vanishes due to symmetry, and each ion experiences mostly the field of the charged
surface.

Consider now two such surfaces that are close proximity to one another. The surfaces are
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flat and parallel to each other, separated along the z axis by distance d < «. Due to the short
distance between the surfaces, the counterions on each surface correlate their position to form
a Wigner crystal where the area per ion is halved (compared to the Wigner crystal on a single
surface) and the Wigner crystal characteristic length is updated to be o/ = a/v/2. It turns out
that when d/a < 24, the interaction between ions in their crystal structure is still negligible
while the combined potential between the two surfaces is uniform. Unlike the z —y positioning
of the ions which is still fixed, the ion distribution in the z direction changes. The ions can
now unbind from the surface and explore the space between the two surfaces without electrical
energy cost. This allows the ions to unbind from the surfaces and adopt uniform distribution
between them [25]. It is important to note that the criterion d/a < =4 may be satisfied
when the distance between the two plates is greater than Agc.

The unbound ions in the water slab cast inter-plates pressure, P, on the surfaces

P o 2mo2e? 2 ao
— =2-° ¢ —971)\po? —-1]). 1.19
kpT — “Cd  eweoksT B ( d (1.19)
In addition to the ideal gas-like pressure of the ions, which push the plates further apart,
away from each other (increasing d), the ions also attract the two plates (decreasing d). When
d > 2)\gc, the pressure between the plate is negative and the plates are attracted to one
another. This attraction stems from correlated local charge arrangement on the two surfaces

in the x — y plane and cannot be accounted for within the mean field approach.

1.5 Elastic Properties of Charged Membranes

The elastic moduli appearing in egs. (1.1) to (1.4) are primarily governed by the short range
intermolecular forces between the lipids [11]. Electrostatic interactions, however, are long
ranged and are expected to make a contribution both to the bending rigidity (k. = k + dke)
and to the saddle splay (ke = & + dR.). The contributions k. and &, are governed by the
electrolytes behaviour [20]. For example, the free energy barrier for membrane fusion includes
the high energy associated with strongly-bent membranes. This barrier is reduced when the
two lipid membranes are oppositely charged due to the strong attraction between the two
surfaces. A possible presence of counterions in the space between the two surface will change
the degree of reduction of the energy barrier. Listed here are some of the key insights about

the effect of electrostatic interactions on the bending energy 2.

2The results in chapter 3 discuss only the effect on bending rigidity, 6. and as such, the effect on the saddle
splay is not discussed here.
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The simplest method to obtain k. is solving the Poisson-Boltzmann equation for specific
geometries, and calculating the free energy using eq. (1.17). Alternatively, one can find the

free energy associated with charging the surface

fe = /an ws (Ue,) dO‘el, (120)

where 1), is the surface potential. Note that the charging energy in eq. (1.20) includes implicit
contributions resulting from the increase of electrolyte concentration in the solution as the
system remains charge neutral. Once the free energy is obtained, one can rearrange the terms
to resemble the free energy of neutral membrane which has a bending-like, dx. term and a
curvature-like term. The electrostatic contribution to the bending modulus in the case of
spherical or cylindrical membranes was calculated using a perturbation technique to a second
order on the Poisson-Boltzmann equation [26]. In these geometries, the charge-free bending

energy of a charge-free membrane reads [26]
1 (2 ?
=3 (5 - 20) (121
cylinder 1 1 ?
o = 5f (E - Co) ) (1.22)

where R is the sphere or cylinder radius. The general contribution to dx. obtained for these

geometries is

 1ksTAp <\/1 + pf — 1) («/1+pl2+2>

Oke = 3 (1.23)
2mAp ( 1+p7 + 1) V1i+p?
where p; is related, through some variable changes, to boundary condition (1.11)
2T ABAp |oe O
p = 20l 3 (1.24)
e vy

Equation (1.23) is applicable in any general condition of electrolyte concentration, vy, and
surface charge density, o.. Specifically, for cases when p; < 1 (low |o.| or large vy), or p, > 1

(large |oe| or low 1), 0k, is simplified to

kpT3mApA3,0.2
Skip = —2 7;5 D7 , m <1 (1.25)
kpTA
ko = ;A D p> 1 (1.26)
B

Within the mean field approach, the electrostatic contribution in both cases, and in the general
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case, is always positive, implying that the membrane become stiffer upon charging. The same
conclusion for these geometries was found for the linearized Poisson-Boltzmann equation, for
both fully coupled and fully decoupled geometries [16, 15].

A geometry more relevant to the studies reported in this thesis, which is harder to solve,
is that of a flat but undulating bilayer. In this case, it is more convenient to consider the
Fourier spectrum of the membrane height function, as in eq. (1.4), where the bending energy

associated with each mod ¢ of amplitude hz is

1
fbend = Z'%th'qZL- (127)

The electrostatic effect on the bending modulus was derived by a method similar to the one used
to derive egs. (1.25) and (1.26): One calculates the free energy using eq. (1.17) or eq. (1.20) and
looks at the coefficients of ¢* in the Fourier space. For decoupled membranes, where ¢ — 0,
and for long wavelengths (kg > 27), after redefining p; to be Agc/Ap, dk. is approximated to
be [27]

)\DkBT 2 2]??
Oke = 1—2p7 + ——L . 1.28
2T Ap < D 112 2 ( )

Note that, similarly to the spherical and cylindrical geometries, the k. is always positive and
the bending modulus increases with o.. The same holds for the coupled system where the
electric field is allowed to penetrate the membrane under the assumption that it is constant
inside the membrane [28]. Once again, we reach the conclusion that within the mean field
approximation—and regardless of their electric permeability, ions concentration, or charge
density—membranes become stiffer when charged.

The discussion in this section is limited for solutions of delocalized charge that are applicable
only to monovalent charge. Chapter 3 presents computer simulations of charged membranes in
salt-free solution (in the presence of counterions). The simulated system allowed for undulation
and considered the cases of monovalent (( = 1) and multivalent(¢ = 5) counterions. The
quality of measurement in the simulation isn’t good enough for a quantitative comparison
to the equations above, but they show the same qualitative trend; an increase in the bending
rigidity upon membrane charging when monovalent counterions are present. When multivalent
counterions are presents, the opposite trend is observed and the bending rigidity decreases upon
membrane charging. The difference in the trends stems from the different behaviour of the
counterions. When the counterions are monovalent, they don’t fully condense on the membrane

and they don’t fully mask its charge. Bending the membrane brings charges closer and thus,
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the membrane is stiffened. On the other hand, pentavalent counterions are adsorbed to the
membrane which allow for charge-charge and charge-height correlations leading to membrane

softening.

1.6 Lipid-DNA Complexes

Complexes constituting DNA and lipids (both neutral and charged) are an example where
electrostatic interactions affect the mechanical properties of lipids. Such complexes might be
applicable for gene therapy, a medical approach that aims to replace a damaged gene with a
properly functioning one. This holds great promise for future medical applications including,
for example, new treatments for various inherited diseases and cancers [29]. The core of the
process, called transfection, includes the key steps of transferring foreign DNA into a target
cell, followed by the expression of the genetic information. Lipid-DNA complexes, designated
lipoplexes, or CL-DNA complexes constitute one of the most promising non-viral gene delivery
systems [30, 31, 32]. Although their transfection efficiency (TE) is, in general, inferior to that
of viral vectors, lipoplexes have the advantage of triggering minimal immune response and
being non-pathogenic [32, 33, 34, 35]. Furthermore, lipoplexes allow for the transfer of larger
DNA segments. Their production does not require sophisticated engineering since they form
spontaneously in aqueous solutions when DNA molecules are mixed with cationic and neutral
lipids (NLs) [36, 37]. X-ray diffraction experiments have revealed several liquid crystalline
phases of CL-DNA complexes.

Figure 1.1 depicts the most prominent structures: (i) alamellar phase (L), with 2D smectic
array of DNA within lipid bilayers [36], and (ii) an inverted hexagonal phase (H), where the
DNA rods are packed in a hexagonal lattice and the lipids form monolayers around them [37].
The lipoplex structure is largely determined by the bending rigidity and spontaneous curvature
of the lipids [38]. The main thermodynamic driving force for lipoplex formation is the entropic
gain stemming from the release of the tightly bound counterions from the DNA and the lipid
bilayers, as mentioned in section 1.3.

Isoelectric complexes, where the total charge on the DNA molecules exactly matches the
total charge of the CLs, are the most stable ones because they enable nearly complete counteri-
ons release [40]. Thermodynamically stable lipoplexes are easier to produce and maintain their
integrity while outside the cell, but once inside the cell, lipoplex degradation is required but
slowed due to its stability. The thermodynamic stability of a lipoplex is not the only property
of lipoplexes that affect their TEs. The lipoplex liquid crystalline structure and its charge
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Figure 1.1: The two most prominent structures of lipid DNA complexes. Left, the lamellar
phase, Lac, where the DNA molecules are ordered in smectic array between the lipid bilayers.
Right, the inverted hexagonal phase, Hﬁ, where the DNA rods are packed in a hexagonal phase
lattice and the lipids “fill the gaps“ between them. Images are taken from [39].

density (per unit area) are also of importance [39, 41]. Generally speaking, HS complexes
exhibit higher TEs than Lg complexes and increasing the lipoplex charge density also results
in higher TEs.

In spite of the insights about the transfection efficiency, the mechanism is not yet known.
A key question is why the stable lipoplex becomes unstable after endocytosis, as evident by
the spontaneous DNA release from the trapped lipoplex? Chapter 4 analyzes the essential
thermodynamic driving forces of the three stages of lipoplex-based cell delivery [39, 42, 43]:
(i) endocytosis, (ii) lipoplex breakdown that involves membrane fusion, and (iii) DNA release.
Endocytosis, stage (i), is triggered by the adhesion of the lipoplex to the plasma membrane
which occurs via electrostatic interactions and counterion release. Stage (i) results in a sys-
tem that is thermodynamically different from a lipoplex in solution. The two membranes, the
negatively charged plasma membrane and the positively charged lipoplex external membrane,
are in close proximity. This allows for free energy gain due to mixing of lipids between the
lipoplex and the plasma membrane. This free energy gain reduces the free energy barrier to
membrane fusion which allows for stage (iii) DNA release. The release occurs through elec-
trostatic interactions between the DNA molecules and the oppositely charged macromolecules

that reside in the cytoplasm.
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Chapter 2

Small Membranes Under Negative

Surface Tension.

2.1 Background

In chapter 1, the Helfrich’s effective Hamiltonian was introduced
1 9  _
H = dS og + 5/43() (Cl + Cco — 260) + KociCa | . (11)
A
For symmetric membranes that maintain their topology, the Hamiltonian is simplified
1 9 1,
H = dS oo + 5/430 (Cl + Cz) = U()A + §I€QJ s (12)
A

Where o and kg are the surface tension and bending rigidity of the membrane respectively,
¢; and ¢y are the main curvature, A is the membrane total area, and J? = [dS (¢; + cy)? is
the integrated square total curvature. Measurement of o(, which is a material property, has
proved to be problematic as it is coupled to the membrane total area, a property that is not
well defined due undulations and molecular-size protrusions. The property coupled with the

membrane projected area A, is defined via the Helfrich free energy
1,

where o and k are, the renormalized surface tension and bending rigidity of the membrane,
respectively, A is the mean area, and J? is the mean square curvature. For symmetric mem-
branes A = A, and J? = 0, the free energy takes the form F = oA, and the surface tension is

equal to frame mechanical tension o = 7 = 0F/0A, which is the force per unit length exerted
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on an edge of a bilayer.
Another quantity of interest is the fluctuation tension, ~, which is derived from the Fourier
expansion of a weakly undulating membrane. The 2D Fourier transform of such membrane

reads

hg=1/LY  h(F)exp(—if-F), (2.1)

where the wave vector ¢ = 2nii/L, 7 = (ng,ny), with n,,n, = —4,-3,...,2,3, and 7 being
the two dimensional position vector. After the transform, Hamiltonian 1.2 is given by

. 12 2 4 h 2 29

H=5> (vla* +sla’) (2.2)

—

q

and applying the equipartition theorem results with

keTA,
(v¢* + rq* + Og°)

(1hal) = 7 (14
This fluctuation tension in egs. (1.4) and (2.2), v, can also be identified as the membrane
surface tension, and for a symmetric membrane under positive surface tension it is found
that v+ = 7 = o [11, 12]. This equality holds true for non-negative values of . When the
surface tension vanishes, ¢ = 0, the membrane is “free to choose” the equilibrium projected
area A, that minimizes the free energy eq. (1.3). This chapter concerns the instabilities and
elastic response of the membrane to a further decrease in the frame area, which involves the
application of a negative surface tension. Based on eq. (1.4), one may argue that for v < 0,
the membrane always becomes mechanically unstable because the amplitude of any mode with
q< \/T/I{ diverges. But such modes exist only in sufficiently large membranes; hence, small
membranes can always sustain some negative surface tension. For instance, consider a square
membrane of linear size L with k = 25kpT ~ 10°J. From eq. (1.4), one finds that such a
membrane can withstand negative surface tension of size v = 5 x 103N /m [which is comparable
in magnitude to the typical positive rupture tension [13]], provided that L < (27)+/k/y ~30
nm. This is the characteristic size of actual small liposomes and of bilayers in highly coarse-
grained simulations. Thus, the above estimation highlights the fact that the question of elastic
response to negative surface tension is not only interesting for its theoretical aspects, but is
relevant to current experimental and computational studies.

The derivation of eq. (1.4), and the proof that the fluctuation and mechanical tensions
coincide with each other, involves several assumptions that do not necessarily remain valid

when o becomes negative. Specifically, it is based on the investigation of the linear response of
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a mechanically-stable flat membrane to small normal forces and is restricted to configurations
with smooth (twice differentiable) height functions h (7). But when o < 0, the membrane can
relieve the free energy cost of compression by buckling. Note that in the absence of normal
forces (which is the case under consideration here), the system is not expected to undergo
spontaneous symmetry breaking similar to that occurring, in e.g., Ising spin systems below the
critical point. The reason is that the membrane height profile h (7) is a continuous field and,
therefore the transition between different buckled configurations (e.g., from buckled “upward”
to “downward”) does not require the crossing of a free energy barrier. Thus, the system
remains ergodic for negative tension, and due to the symmetry of the bilayer, (hs) = 0 for all
the Fourier modes. The questions that remain are as follows.

1. Does eq. (1.4) still hold for ¢ < 07 It is not expected to remain valid for strongly
compressed membranes since the quadratic approximation of Helfrich’s Hamiltonian [eq. (1.1)]
is not valid. However, considering the fact that it holds for o = 0, there is no apparent reason
why it should not hold for small negative o.

2. Are the mechanical and fluctuation tensions still equal to each other? (Obviously, this
question is relevant only if the answer to question no. 1 is “yes.”) As noted above, the proof
of this equality depends on the surface tension being positive. Now that it is negative, the
membrane prefers more buckled configurations with larger mean squared amplitudes. Does
this imply that the fluctuation tension v drops faster (i.e., becomes more negative) than the
mechanical tension 77

3. What happens to the bending modulus x under compression? The coefficient appearing
in eq. (1.4) is the renormalized bending modulus which, just like the tension 7, may vary with
the frame area A,. For positive tensions, the variations in x are usually negligible, but this may
not be the case for negative tensions when the membrane becomes increasingly more buckled.
Does the increase in the degree of buckling under larger compressive stresses involve a decrease
in kK?

4. Does the membrane exhibit linear (Hookean) elastic response to negative mechanical
tension? In response to a positive tension, the membrane becomes stretched and the rela-
tionship between the change in the area (strain) and the stress is indeed linear. However,
the lipids constitute a dense two-dimensional fluid and therefore, the membrane can be barely
compressed below its most favorable physical area Ag. When, under the application of a neg-
ative tension, the physical area A reaches Aj, the negative tension causes the membrane to
buckle and more and more area is “stored” in the out-of plane fluctuations. This could lead

to a highly non-linear elastic response.
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The following section provides the essential details about the Monte-Carlo simulation

method employed for the results and discussion sections of this chapter.

2.2 Monte Carlo Simulation Details

The Monte Carlo (MC) simulations reported here, a sample snapshot of which appears in
fig. 2.1, constitute N = 1,000 lipids in each monolayer. To allow for simulation of these
relatively large membranes, the Cooke-Deserno model [44, 7] was used. This highly coarse-
grained model assumes each lipid to be a trimer consisting of one hydrophilic (head) and two
hydrophobic (tail) beads of size b;. The solvent is modeled implicitly and the hydrophobic
pair potential [eq. (4) in [44]] parameters are ¢ = 1.05kgT (potential depth) and w, = 1.35b,
(potential length). As can be seen in the sample snapshot (taken under surface tension) in
fig. 2.1, these parameters yield a soft membrane with k ~ 8kgT. This value of k, though it is
lower than the typical value of biological membranes, allows greater sensitivity to changes in
a membrane’s physical properties while maintaining its stability. The simulation parameters
also determine the unit of energy, kgT', and the unit of length, b;, which is the parameter of
the repulsion potential [eq. (1) in [44]].

The membranes are simulated in a square box of size L = L, = L,, with periodic boundary

conditions in the x — y plane. The lipids are placed randomly within two flat monolayers and

Figure 2.1: A sample snapshot of the simulated membrane with zero surface tension. The
white beads are hydrophilic head particles and the gray ones the hydrophobic tail particles.
The solvent is simulated implicitly.
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allowed to equilibrate for 1 x 105 MC units of time. On average, each MC time unit consists of
N translation (with additional small intermolecular displacement) and rotation move attempts
carried out on randomly chosen lipids. The membrane is simulated at constant frame tension
7, which is accomplished by incorporating several collective move attempts, per time unit, to
change the frame area, A,, of the membrane [45]. Another collective move attempt in the
simulations is the “mode excitation” attempt that accelerates the slow dynamics of the long-
wavelength Fourier modes [46]. The quantities of interest, as detailed below, were sampled at
intervals of 200MC over 1.5 x 10® MC for each value of 7.

The membrane simulations carried over the range —0.3 < 7 < 0.5 (in kgT'/b? units) where
they were mechanically stable. Relation to physical units can be made by setting b; = 0.65 nm,
which corresponds to membrane thickness of 2 x 3b; ~ 4nm and gives the unit of the surface
tension kT /b? ~ 10 mN/m. For 7 > 0.5, the membranes rupture, while for 7 < —0.3, they
exhibit large normal undulations leading to the collapse of the membrane and the dissociation of
lipids. The simulations included also measurements of the mean and variance of the projected
area distribution ((A,), and (§A2) = (A2) — (A,)% respectively).

The Fourier transform of the height undulations is also measured by dividing the mem-
brane into 8 x 8 grid cells and calculating the local mean height of the bilayer within
each grid cell. The Fourier transform of h () in wavenumber space, i = ¢ (L/2m), where

[ = (N, 1y ); Ny 1y = —4,—3,...,2,3] is defined by

s — % S h(7)exp (~2rit /L) (2.3)

Notice that to maintain constant frame tension in the simulations, the linear size of the frame
L, appearing in the definition of hz, isn’t constant, but rather fluctuates. Thus, at each
measurement, the instantaneous value of L is used. Also notice that hz defined in eq. (2.3) is
dimensionless, due to the L™ prefactor that does not exist in the more commonly used hg of

eq. (1.4). In terms of the variable hz, eq. (1.4) takes the form

o (L) kT
<|hﬁ| > B ( [ ) v (Ap) (27m)2 + K (27m)4. 24)

There are four different modes of corresponding to each value of |7i|. This number is reduced
to two if |n,| = |n,| or if one of the components of 77 is zero. The results in section 2.3, for
|hiz| (and other related quantities) represent averages over these distinct modes. In eq. (2.4),

is the grid size, which implies that L/l = 8, independently of the instantaneous value of L.
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Due to molecular-scale protrusion, the physical area of the membrane cannot be unambigu-

ously determined. Therefore, the following approximation for (A) is used:

143 (1) Teem) <\hﬁ|>] 25)

N
n

which is the physical area “visible” up to the resolution of the grid. One can also define the
effective area-stretch modulus of the membrane, K4, by assuming that the free energy cost
due to small variations in the projected area from (A,) can be approximated by the quadratic
form

1. (A-A4,)°

Fstretch - _KA

5 - (2.6)

P

Under this approximation, the coefficient K4 can be extracted from the fluctuation statistics

of K4 by using the equipartition theorem

_ kBT <Ap>
Ky= W (2.7)

2.3 Results and Discussion

Section 2.1 brought up several questions concerning the elastic and fluctuation behavior of
membranes under negative mechanical tension. In this section, the results of a coarse-grained
computer simulation address those questions.

The first question to be answered is the validity of eq. (1.4) [and eq. (2.4)] for negative
frame tensions. Figure 2.2 displays the results for the fluctuation spectral intensity, (|hz|)*,
as a function of n? for membranes under three different mechanical tensions 7 = —0.24,0,
and 0.24. The fits of the computational results to eq. (2.4) are displayed with dotted-dashed
lines. The quality of each fit in the range —0.3 < 7 < 0.5 was quite good, and this dictates
the range of stability. This demonstrates that, for stable membranes, eqs. (1.4) and (2.4)
adequately describe the fluctuation behavior of bilayer membranes under both positive and
negative tensions.

From the fitting curves, one can extract the values of the parameter £ and the product v (A,)
as a function of 7. One can obtain the fluctuation tension v by measuring (A,) independently.
Attempts to use k as a single fitting parameters by forcing v = 7 (and using the measured value

of (A,)) resulted in poor fitting for negative tensions. This is due to the nonlinear response of

(A,) to T as plotted in the inset of fig. 2.2. The observed increase in (A,) with 7 is anticipated
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Figure 2.2: The spectral intensity as a function of the wavenumber for membranes under
frame tension of 7 = —0.24 (squares), 0 (circles), and 0.24 (triangles). The dotted-dashed
curves represent the best fits of the results to eq. (2.4) over the first four modes. The inset
shows the mean projected area per lipid as a function of 7.

and will be discussed in detail later. Figure 2.3 depicts the fluctuation tension 7 as a function of
7. The values reported in fig. 2.3 are based on fitting analysis over the four longest fluctuation
modes (smallest wave numbers), and the error bars represent the intervals over which the fitting
parameters, v and k, can be (mutually) varied while still producing reasonable fits up to the
accuracy of the computational results. For nonnegative tensions, the results in fig. 2.3 agree
very well with the simple relationship 7 = . As noted in section 2.1, there is no reason for
this equality to remain valid for negative tensions. The analysis summarized in fig. 2.3 reveals
that, indeed, v # 7 when the tensions are negative. Figure 2.3 demonstrates that v < 7 and,
as also argued above, it is likely that the more rapid decrease in v compared to 7 is related to
the tendency of the membrane to form buckled configurations under negative tensions. The
equality between v and 7 is regained for 7 ~ —0.15 and v becomes larger than 7.

A closer inspection of the behavior of 7 vs. 7 curve depicted in fig. 2.3 reveals that it may
be divided into three regimes: (i) a linear v = 7 regime for 7 > 0, (ii) a non-linear regime
where v < 7 < 0 for mildly negative frame tensions, and (iii) a plateau regime (v ~ const)
for larger negative values of 7. Saturation of the negative tension for strongly compressed
membranes was previously observed [47], and will be detailed along with the discussion about
the physical area in fig. 2.5. The fluctuation tension in fig. 2.3 is extracted from eq. (2.4), where

it appears in the coefficient 472y (A,) of the n? term in the denominator. Naively, one may
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Figure 2.3: The fluctuation tension v as a function of the frame mechanical tension 7. The
solid line represents the equality v = 7, which is expected to hold for positive tensions. The
inset shows the spectral intensity of the longest Fourier mode (n = 1), <\h1|2> as a function of
T.

expect the saturation of the fluctuation tension v to result in the leveling-off of the fluctuation
spectral intensity |hﬁ]2. However, the computational results indicate that the amplitudes of
the normal undulations continue to grow for decreasing values of 7, as shown in the inset of
fig. 2.3. This apparent discrepancy can be only partially resolved by the trend in (A4,), whose
value is reduced by about 10% in the plateau regime of . The main factor explaining the
increase in the undulation amplitude in the constant v regime is the decrease in the effective
bending modulus k, the value of which is plotted in fig. 2.4. Note though, x is not a material
but rather a thermodynamic quantity. For a tensionless membrane, the thermal undulations
reduce (renormalize) the bending rigidity by 0k = — (3/4w) kT log (L/l), which is a small
correction [48]. For 7 < 0, the amplitude of the fluctuations increase and therefore, this
correction term should become larger (in absolute value), which explains the drop in the value
of k seen in fig. 2.4. To state it in other words, just like the rapid decrease in k, reported
above in fig. 2.3 for membranes under negative tension, the reduction in & is also related to
the increasing thermal roughness of the membrane and the tendency of the membrane to form
more buckled configurations.

The results of figs. 2.3 and 2.4 point to an interesting difference between the elastic coeffi-
cients v and . The former decreases faster than 7 for small negative tensions and levels off at

large negative tensions. The latter exhibits “opposite” behavior and remains fairly constant
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Figure 2.4: The bending rigidity x as a function of the frame tension 7. The dotted-dashed
line is a guide to the eye.

in the small negative tension regime, and then decreases for strongly compressed membranes.
The crossover between the regimes occurs at 7 ~ —0.15. Some light may be shed on these
observations by the results of fig. 2.5 depicting the mean projected and total areas as a func-
tion of 7. The results for the mean projected area, (A,), were measured directly from the
simulations, while the data for the mean total area, (A), were calculated using eq. (2.5). For
7 > 0, a nearly linear dependence of both (A,) (see also the dotted-dashed line) and (A) on 7
is observed.

This behavior agrees very well with the experimental results of Evans and Rawicz, who also
measured linear elastic response of giant unilamellar vesicles (GUVs) under positive mechanical
tension[13]. Notice, however, an important difference between the origins of linear elasticity in
GUVs and small bilayer membranes. In both cases, the linear elastic response is energetic in
nature and dominated by the area elasticity of the membrane, while the entropy and bending
energy of the height fluctuations play a secondary role in the response to stretching. In GUVs,
this happens after the height fluctuations have been ironed by a very weak positive tension
scaling inversely with A,. In small membranes, the height fluctuations are not dumped and
in fact, the simulation results in fig. 2.5 reveal that the excess area “stored” in the height
fluctuations, (A) — (A,), decreases only weakly with 7. This implies that the entropy and
bending energy of small membranes do not vanish (as in GUVs under tension), but simply

exhibit relatively weak dependence on the frame tension (and, therefore, contribute weakly to
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Figure 2.5: Measured area as a function of the frame tension 7. Solids circles and squares
denote, the results for the frame and total areas, respectively. The former was measured
directly from the simulation, while the latter was derived from the computed data for the
spectral intensity, by using eq. (2.5). The open circle marks the optimal area of a flat tensionless
membrane, Ay. The dotted-dashed line is a linear fit for the results for (A,) , while the
horizontal dotted line marks Ay. All areas plotted in the figure are normalized per lipid.

the elastic response).

In addition to the simulations of fluctuating membranes, a flat, tensionless (7 = 0) mem-
brane was simulated by running an MC code with moves allowing only local protrusions of
lipids, but completely suppressing the longer scale bending modes (i.e., ensuring h; = 0 for all
n). For a flat membrane, A = A,. The measured area of the flat tensionless membrane, Ay, is
denoted by the open circle and the horizontal dotted line in fig. 2.5. This is the area that mini-
mizes the elastic energy of the membrane. Figure 2.5 provides an interesting interpretation for
the weak and strong negative tension regimes. The weak negative tension regime is essentially
a continuation of the positive tension regime. The mean area of a tensionless fluctuating mem-
brane is slightly larger than Ay which implies that, in fact, the membrane is stretched despite
the negative mechanical tension. Therefore, the area-dependent elastic energy continues to
decrease with 7 into the weak negative tension regime. The strong negative tension regime
begins when the total physical area reaches Aj. Since the membrane constitutes a dense fluid
of lipids, it cannot be much further compressed, and in order to maintain the total area at Ay,
more area must be expelled into the height fluctuations. Notice that eq. (2.5) is actually the
Taylor expansion of (A) about weakly fluctuating membranes. In this regime, the relatively

strong undulation cause greater deviation from the real value of (A). This partially explains
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the continued decrease of (A) in this regime. At this point, the elastic response becomes dom-
inated by the height fluctuations bending elasticity and entropy. This causes the apparent
reduction in the effective bending modulus, «, instead of the reduction in the now constant
fluctuation tension . The saturation of the membrane’s physical area, and its correlation with
that of the surface tension, was previously reported [47]. Figure 2.5 demonstrates that this
occurs when (A) reaches the value of Ay, which provided an intuitive explanation for these
observations. Notice that the rapid decrease in the projected area A, with 7 in this regime
occurs simultaneously with the increase in the projected area fluctuations. The resulting rapid
decrease in the effective stretch modulus K4, defined by eq. (2.7), is plotted in fig. 2.6. The
increase in the membrane buckling in the plateau regime results also in the apparent decrease
in K4. Hence, the vanishing of K4 in fig. 2.6 should not be interpreted as changes in the
material stiffness of the membrane, but rather as another signal for the onset of mechanical

instability.

2.4 Conclusions

In this chapter, we used coarse-grained computer simulations to study the behaviour of small
membranes under negative surface tension. Based on the results in section 2.3, one can identify

two regimes of negative tension with distinct features:
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Figure 2.6: The stretch modulus K4, measured from eq. (2.7), as a function of the frame
tension 7. The dotted-dashed line is a guide to the eye.

27



Small Membranes Under Negative Surface Tension. 2.4

2.0— ‘
- 4+ Total free energy

— - = Bending free energy :
@ 1.57@4@ Stretching free energy : ¢ |
= !
= :
b Eii ; ¢
2 1.0} + + ; |
> T 4 b
GL) ; A x Y
c
@ 0.5} |
g W

0.0/ AL L *

124 1.26 1.28 130 1.32 1.34 1.36 1.38
Projected area (per lipid)

Figure 2.7: The bending, stretching, and total free energies (see definitions in the text) per grid
cell, as a function of mean projected area A, per lipid. The data for the total free energy have
been shifted vertically by 0.3 for clarity. The vertical dotted-dashed line marks the measured
projected area for 7 = 0.

(i) For weak negative tensions, the fluctuation tension 7 drops somewhat faster than the
mechanical tension 7. This behavior, which stand in contrast to the positive tension
behavior: v = 7, is attributed to the fact that in this regime, the membrane is still
effectively stressed ((A) > Ap). Under negative surface tension, the membrane tends to

buckle, which is achieved by reducing the free energy associated with strong undulations.

(ii) In the strong negative tension regime, while the fluctuation tension saturates, the effective
bending rigidity begins to fall. Additionally, the total membrane area in the simulations

reported here reaches the optimal value of Ay and does not continue to drop much.

The different response that membranes exhibit to negative values of o, compared to positive
ones, indicates that the elastic free energy (eq. (1.3) in section 1.2), isn’t applicable in the
negative regime. However, a free energy model for the negative regime can be rationalized in
the same spirit by considering the sum of two terms associated with stretching and bending.

The former is given by the quadratic form

Fureten = (1/2)KA[(A) — Ag)?/ Ao, (2.8)
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while the latter may be evaluated by
Frena = (1/2)5 ) _n* (|h3[)- (29)

These two contributions and their sum are plotted in fig. 2.7 as a function of (A,). Notice
that both Fipeten, and Fpeng depend on (A,) the former explicitly, and the latter implicitly
through the Fourier modes calculations. The free energies in fig. 2.7 provide insight into
the computational results in this chapter. First, the total free energy attains a minimum at
(F') /N ~ 1.32 (marked by the vertical dotted dashed line), which is the mean projected area
measured for 7 = 0. This must be the case since 7 = 0F/0A,. Second, the bending free energy
decreases with 7, which considering fig. 2.2, is expected since, upon stretching, the thermal
bending undulations tend to be suppressed. The stretching free energy increases with A, in
the weak negative and positive tensions regimes, i.e., when (A) > Ajy. Under strong negative
tensions, Fy.cren vanishes, which is associated with the observation that the total physical area
remains at the optimal value and does not change in this regime.

A crossover from bending- to stretching-dominated membrane elasticity has also been ob-
served in micropipette aspiration experiments on GUVs [13]. There are, however, several
key differences between the elastic behaviors of small membranes, such as reported here, and
large ones. The former can withstand a (size-dependent) negative tension while the latter are
destabilized due to the strong undulations of the large bending modes. The negative surface
tension that causes undulations in the small membranes may be comparable in magnitude to
the positive rupture tension. In giant membranes, bending-dominated elasticity is limited to
extremely small positive tensions that are typically two orders of magnitude smaller than the
rupture tension. In small membranes, the crossover from bending-dominated to stretching-
dominated elasticity is smoother and occurs at small negative tensions. In other words, the
stretching-dominated elasticity regime extends into negative tensions, which stems from the
fact that at zero tension, the membrane is still slightly stretched. Bending-dominated elasticity
is observed at larger negative tensions. It is characterized by a decrease in the effective bending
rigidity and stretch modulus of the membrane that ultimately leads to mechanical instability

and membrane collapse.
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Chapter 3

Rigidity of Charged Membranes.

3.1 Background.

Section 1.5 in chapter 1 discusses the the electrostatic effects on the bending rigidity (k. =
K + 0k.) of a membranes upon charging while its other properties remain the same. That
discussion was limited to the relatively well understood mean field picture and its underling
conclusion was that dx, > 0 regardless of the membrane morphology, the surface charge density,
or the ions concentration in solution. This is so because without its counterions, charged
membrane would become significantly more rigid (dk. > x) [20] and the counterions, due to
their distribution, does not mask the membrane charges, and thus, not fully negate this effect.

In section 1.4, the charge-like attractions phenomena, which is not accounted for using the
mean field approach, was discussed. The mean field solution ignores charge density fluctuations
and their spatial correlations. While such correlations are negligible when monovalent counteri-
ons are discussed, this is no longer true with multivalent ions and lipids (z; > 2). Studying the
effect of multivalent counterions proves to be rather challenging, partially due to the multiple
predictions that, while they don’t fully contradict each other, are not at full agreement either.
Including charge fluctuations in the Poisson-Boltzmann equation may lead to a reduction in
the bending modulus dk, < 0 [21]. The same trend is predicted by the opposite assumption
of “freezing” counterions in a Wigner crystal structure on a uniformly charged membrane and
allowing for some correction terms [20]. Allowing for compressibility of the charge fluctuations
resulted in a prediction of membrane buckling due to long-range electrostatic interactions [22].
Taking a different approach and applying a second order perturbation to a general two-body
potential resulted in the possibility of membrane softening due to electrostatic interactions
[49].

Similarly to the charge-like attraction phenomenon discussed in section 1.4, the appearance
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of negative k. in bilayer membranes is attributed to multivalent counterions condensation and
their spatial correlation. Membrane softening involves both charge-charge and height-charge
correlations. The details of this effect are not fully understood, but it is generally believed to
be small and thus, hard to measure experimentally. Furthermore, the effect is overshadowed by
intermolecular interactions which are not screened and Ap is long [21, 22]. The results reported
in this chapter were gained through coarse-grained computer simulations that allowed exploring
the effect in the absence of excess salt and other influences. The reported results support the
picture that spatial correlation in the charge density due to the presence of highly multivalent

counterions tend to soften membranes and reduce their bending rigidity.

3.2 Monte Carlo Simulation Details

The method of simulations and variable measurements in this chapter are the same as those
detailed in section 2.2, with the addition of electrostatic calculations. To simulate a charged
membrane, a fraction of the lipid ®_ is charged by introducing a charge of —e at the center of
the lipid heads. To maintain overall charge neutrality of the system, monovalent or pentavalent
counterions are placed in the simulation box with no added salt ! In terms of simulation length
unit (b, = 6.3A), the Bjerrum length reads Ag ~ 7.1A = 1.1b;. The short range potential used
for lipids was applied for the ions as well, with the radius of interaction set to b;on_neaqa = 0.50;
when interacting with the hydrophilic heads and b;,, 4y = 1.50; when interacting with the
hydrophobic tail beads. This choice of parameters allows the ions to approach the surface of the
head beads, while excluding them from the hydrophobic core of the bilayer. The membranes are
simulated at zero surface tension using the same method as in section 2.2 [45]. The membranes
are generated as two flat bilayers with N = 1,000 lipids in each monolayer. The monolayers
are placed in the middle of the simulation box, with the counterions distributed evenly above
and below the membrane. The simulation length and move attempts were as described in
section 2.2 with the addition of ion displacement attempts. The thermalization period was 10°
MC time units; and the simulation lasted for 1.8 x 10® MC time unit; the quantities of interest
were sampled at 50 MC time unit intervals.

Electrostatic interactions were computed using Lekner summations [50]. The dielectric

constant of water, €, = 80, is taken as the only dielectric constant in the simulation since it

'We choose pentavalent counterions because the effects under investigation are quite weak, and can be com-
putationally observed when the counterions are of high valency. We also include in fig. 3.3 some results obtained
from simulations of trivalent counterions, which exhibit “intermediate” behaviour between the monovalent and
pentavalent counterions.
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is practically impossible to calculate image charges for a fluctuating surface. This neglect of
discontinuities between the aqueous solution and the membrane interior, however, is justified
for a nearly flat surface (as is the case here) due to symmetry. To understand this, consider
two flat, uniformly charged surfaces (of charge density o.) positioned at the z — y plains z;
and zy. Ionic solutions surround the two surfaces and exactly neutralize the surfaces. For the
conditions of the simulated system (o, < 0 and positive solvated counterions), the electric field

at position z is equal to £ = dy/dz = 7./2¢,€y where &, is equal to

) [ey (z') + Z 000 (2 — zl)] dz' — /00 [e v (') + Z 000 (2 — z;)| d2' =

=9 ’ [61/ (2") — + Z 0ei0 (2 — zl)] d7 .

=1

(3.1)

The systems as reported here are symmetric, o.; = 0.9, and on average the total number
of ions on each side of the membrane are equal. Thus, the electric field vanishes inside the
membrane (z; < z < z3). The simulated membranes undulate and the electric field does not
vanish inside the membrane. However, since the undulations are relatively small, the effect of

neglecting the electric discontinuities should be small as well.

Figure 3.1: Equilibrium configurations of membranes with charge density ®_ = 0.08 in solu-
tions of monovalent (A) and pentavalent (B) counterions. The head and tail beads of the lipids
appear in white and gray colors, respectively, while the ions are presented as black spheres
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3.3 Results and Discussion

Equilibrium configurations of membranes with charge density ®_ = 0.08 in solutions of mono-
valent (¢ = 1,A) and pentavalent (¢ = 5,B) counterions are displayed in fig. 3.1. In the latter
case, the ions tend to condense on the membrane, forming a thin Gouy-Chapmann “double
layer” [51, 18].

Figure 3.2(A) depicts the spectral intensity [eq. (1.4)] of the membrane’s thermal undula-
tions computed for the bilayers with ®_ = 0.08, whose snapshots are shown in fig. 3.1 (the
graphs have been vertically shifted for clarity). Both graphs exhibit the power law |h§]2 ~n?
(= ¢(L/2m), where [i = (ng,ny);ng,ny, = —4,-3,...,2,3]) in agreement with the form of
eq. (1.4) for v = 0. By fitting the simulation results to eq. (1.4), one can extract the value of
k. The charge fraction range 0 < ®_ < 0.16 are summarized in fig. 3.2(B), showing x as a
function of ®_ for membranes in solutions of monovalent (circles) and pentavalent (squares)
counterions. The dashed line denotes the value of k for a neutral membrane (®_ = 0). Note
that the error bars on x measurements are quite large, reflecting not only the difficulty in
obtaining good statistics for the spectral intensity of the thermal undulations, but also uncer-
tainties in fitting the data to the functional form of eq. (1.4). Therefore, it is impossible to draw

quantitative conclusions from the data regarding the variations of x with ®_. Nevertheless, the
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Figure 3.2: (A) Spectral intensity as a function the squared wave number n?. Data has

been obtained from simulations of charged membranes with surface charge density &_ = 0.08
in solutions of monovalent (circles) and pentavalent (squares) counterions. The solid lines
indicates a fit to the power law <]hﬁ\2> ~ n' based on the four largest Fourier modes. For
clarity, the graph corresponding to the monovalent counterions simulations is vertically shifted
by multiplying the spectral intensities by a factor of 5. (B) The bending rigidity  as a function
of the charge density ®_ for membranes with monovalent (circles) and pentavalent (squares)

counterions. The horizontal dashed line indicates the value of x for neutral membranes (¢_ =
0).
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data in fig. 3.2 clearly supports the picture that the bending modulus of charged membranes
increases from its value for &_ = 0 when the counterions are monovalent. This observation is
consistent with the Poisson-Boltzmann results as summarized in section 1.5, although it should
be acknowledged that previous theoretical calculations of 0k, were done for systems with extra
salt and for stationary (non-undulating) membranes [14].

As mentioned in section 1.4, the Poisson-Boltzmann theory is expected to break down
when the so-called dimensionless coupling parameter = = 27(3A\3®_ /a; (where q; is the area
per lipid, and ( is the counterion valance) becomes much larger than unity. Given the strong
dependence of = on (, it is not surprising that simulations with pentavalent counterions reveal a
very different trend of reduction in x due to electrostatic effects. As in the case of monovalent
counterions, the large error bars preclude quantitative analysis of the variation of x with
®_. The observation that the bending modulus is reduced when the membrane is charged
and suspended in a multivalent counterions solution agrees with previous theoretical studies
20, 21, 22, 49]. The fact that the magnitude of the negative electrostatic contribution to
K is fairly small (kgT') is also in general agreement with existing theoretical calculations. As
discussed in section 3.1, the negative electrostatic contribution to dx, in pentavalent counterions
solutions has been attributed to the attraction due to spatial charge correlations in the double
layer, which allows the membrane to bend more easily [22].

The picture emerging from fig. 3.2(B) is also consistent with the measurements of the equi-

librium projected area per lipid, a; = A,/N, depicted in fig. 3.3. In the presence of monovalent
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Figure 3.3: Projected area per lipid a; as a function of ®_ for membranes with monovalent
(circles), trivalent (triangles), and pentavalent (squares) counterions.
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counterions, the area per lipid increases linearly with ®_. The increase in a; arises from the
repulsive electrostatic interactions between the charged lipids, the strength of which is en-
hanced with the increase in the density ®_ of the charged lipids. The pentavalent counterion
simulations feature markedly different behavior, exhibiting a slight decrease in a; with ®_.
The decrease in a; in this case indicates that the effective electrostatic interactions between
the lipids and counterions in the double layer become attractive due to spatial charge corre-
lations. Also shown in the figure are results of similar simulations with trivalent counterions
which exhibit intermediate behavior between the monovalent and pentavalent counterions. The
observed increase in a; may be attributed to the fact that the coupling parameter correspond-
ing to the trivalent counterions simulations satisfies = < 10, which is still within the range
where, usually, mean-field theory still holds. The same trend of “intermediate” behavior of
trivalent counterions is also observed in the results for the bending rigidity (data not shown in
fig. 3.2(B)), in which the electrostatic contribution was found to be vanishingly small.

The increase in area per lipid reported in fig. 3.3 can be intuitively explained by recognizing
that the electric contribution to the free energy, F,; = kgT®_N, is independent of the surface
area A. The repulsion arises from the entropy of the counterions which, to an approximation,
can be viewed as confined within a volume of size V' = AAqc around the surface. The associated
free energy contribution is F., ~ kgTNlog(V) = —kgT®_Nlog (A%/¢N), where the last
equality is due to the fact that A\gc ~ (N®_ /A)_l. Introducing the area per lipid a;, and
expanding the logarithm around a* = a; (®_ = £0), results in the area-dependent part of this
free energy is Fp = —ckgT®_N (a; — a*) /a*, where ¢ is a numerical prefactor and the minus
sign accounts for the fact that this free energy is repulsive. Adding this F¢; to the elastic energy
of the uncharged membrane [eq. (2.6)], yields the following expression for the elastic energy

per lipid f = F/N:

1 _ * 2 _ *
ol laza) e (@=d) (3.2)
2 a* a*
This stretching free energy attains a minimum at the area per lipid
a"™ = a* +c®_ (kgT/Ka), (3.3)

which grows linearly with ®_, as depicted in fig. 3.3.

Interestingly, both experiments [52] and atomistic simulations [53] found the area of mono-
valently charged phosphatidylserine (PS) lipids to be smaller than the area of their neutral
phosphattidylcholine (PC) analogs. This counterintuitive result was primarily attributed to

the formation of transient intra-molecular hydrogen bonds between the amine and carboxylate
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Figure 3.4: Top view of a simulated membrane with a pore. The membrane, with charge
density ®_ = 0.2, is in contact with a solution of monovalent counterions (not displayed).
Color coding is similar to fig. 3.1.

groups of the PS head-group. The course-grained model used here allows the hydrogen bonding
effect to be “turned oftf” and for the “isolation” of the Coulombic contribution, which turns out
to be repulsive in monovalent systems. In the course-grained simulations reported here, the
repulsive electrostatic interactions are balanced by relatively soft hydrophobic interactions.
Because of the weakness of these attractive interactions, for ®_ > 0.16, the areal strain in
the monovalent counterions simulations exceeds the rupture strain of the bilayer membrane,
leading to the formation of pores, as demonstrated in fig. 3.4. The rupture value of ®_ could
be increased by including hydrogen bonding in the coarse-grained model or, alternatively, by
strengthening the hydrophobic interactions, but this will also lead to an undesirable increase
in k. Real PS bilayers have x ~ 20 — 50kgT which is several times larger than that of the
membrane simulated here. Assuming a linear relationship between the area stretch modulus
K4 and bending rigidity x: k& ~ Kad?, where d is the bilayer thickness [54] , one can expect
the stretch modulus of real bilayers to also be a few times larger than in simulations. This
feature of real PS bilayers, together with the extra attractive interaction provided by the hy-
drogen bonds, explains their mechanical stability at all charge densities, including for ¢ = 1.
The magnitude of the hydrogen bonding interactions (per lipid) can be roughly estimated by

adopting egs. (3.2) and (3.3) derived for the case of repulsive electrostatic interactions, with a
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Figure 3.5: Sample snapshots of strongly undulating charged bilayers with pentavalent coun-
terions (not displayed). Color coding is similar to fig. 3.1.

modified (negative rather than positive) constant c. For fully-charged membrane (&_ = 1) PS
bilayers, the area stretch modulus is typically K4 ~ 0.15J/m?, and the H-bond interactions
reduce the area per lipid from a* ~ 0.72nm? to a; ~ 0.65nm? [52]. Substituting these values
into eq. (3.3) yields ¢ ~ —2.5. Using this value of ¢ in the second term on the r.h.s. of eq. (3.2)
gives an estimate for the H-bonding free energy contribution which is fyg_, ~ —0.25kgT.
Pore formation, as exhibited in fig. 3.4, is not observed when the charged membranes are
simulated with pentavalent counterions. Therefore, such membranes can be simulated at much
higher values of ®_. However, the multivalent counterion simulations feature a different type
of mechanical instability, which is directly related to the previously discussed reduction in k.
At high charge densities, the membranes in pentavalent counterion solutions begin to develop
large wavelength bending instabilities, as illustrated in the series of snapshots in fig. 3.5,
corresponding to membranes with 0.2 < &_ < 0.5. The growth in the amplitude of the
undulations, observed in fig. 3.5, can also be inferred from the results of fig. 3.6 that plots the
spectral intensity of the membranes whose snapshots are displayed in fig. 3.5. Clearly, there is
poor agreement between the results in fig. 3.6 eq. (1.4). The deviation of the computational
results from eq. (1.4) is expected because the power law <\hq~\2> ~ n~* derived from the
quadratic approximation of eq. (1.1), strictly speaking, is only applicable to weakly fluctuating
membranes. The dashed lines represent attempts to fit eq. (1.4) to the data from the second
(n? = 2) and third (n? = 4) largest modes. These lines highlight the rapid increase in the
undulation amplitude of largest Fourier modes (n* = 1), which are also the softest modes

and the first to become unstable as ®_ increases. The onset of this bending instability can
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Figure 3.6: The spectral intensity of membranes in solutions of multivalent counterions, with
surface charge density ®_ = 0.2 (circles), 0.3 (squares), 0.4 (triangles), and 0.5 (diamonds).
The dashed line indicates attempts to fit the data from the second (n? = 2) and third (n?) =
4) largest modes to the power law form |hZ|n~*. The graphs have been shifted vertically for
clarity.

thus be associated with the decline of the “apparent bending modulus” of the first mode, 1,
which is the value of s that solves eq. (1.4) for n*> = 1. The results in fig. 3.6 correspond to
k1/kpT =5.1+0.5,5.24+0.7,4.2+0.4, and 3.8 £ 0.4 for ¢ = 0.2,0.3,0.4, and 0.5, respectively.
These values of ki are smaller than the values of k reported in fig. 3.2(B) for low charge
densities. At even larger charge densities (¢ > 0.5), these undulations continue to grow and
ultimately lead to the dissociation of the bilayer membranes.

The instabilities appearing in charged membranes are of similar nature to those reported
for stretched and compressed membranes in chapter 2, namely pore formation and buckling.
However, the “fine details” of the instabilities are different, which indicate that they are of
different origin. The most obvious difference between the two cases is the fluctuation tension.
In this chapter, the frame tension, 7, was explicitly set to zero and this set v = 7 = 0, as
covered in section 1.2. The quality of the linear fits in fig. 3.2 confirm that this assumption
holds true. This indicates that the pore formation reported in fig. 3.4 cannot be directly
attributed to a frame tension or overall stretching of the membrane. Similarly, the buckling
of the highly charged membrane with pentavalent counterions cannot be attributed to the
overall compression forces applied to membrane. While it is not necessarily true that v = 7,
there is no apparent reason to assume this is not the case. Moreover, the projected area

that remains roughly constant in fig. 3.3 does not agree with the recognized drop in A, when
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buckling occurs in projected membranes; as reported in fig. 2.5. The differences point to local
interactions of relatively short range (compared to the membrane length scale) that induce

“these instabilities” in the membrane.

3.4 Conclusions

In this chapter, we investigated the elastic properties of charged membranes in contact with
counterion solutions. Through computer simulations, we discovered that the cases of mono-
valent and multivalent (with ¢ = 5) counterions exhibit distinctly different behaviors. In the
former, both the bending rigidity and the equilibrium projected area increased with the mem-
brane charge density. These observations suggest, in agreement with the Poisson-Boltzmann
mean-field theory, that the repulsive forces between the lipid charges are only partially screened
by the monovalent counterions. In the latter case, the trends are opposite namely, both x and
a; show a slight decrease with increasing ®_. These observations can be attributed to the
formation of a thin layer of counterions around the membrane and the fact that the forces
between spatially correlated charges within the “double layer” become attractive. More specif-
ically, the presence of multivalent counterions creates regions within the double layer where
local charge densities of opposite signs attract each other. The increase in the curvature undu-
lations and decrease in the area per lipid represent mechanisms through which the distances
between these correlated regions, especially those residing on the same side of the bilayer, are
generally decreased [see illustration in fig. 1 of ref. [20]]. The different elastic properties of
membranes in monovalent and multivalent solutions lead to different mechanical instabilities.
In the former case, pores open to relieve the electrostatic tensile stresses, while the latter case
is characterized by a growth in the amplitude of large wavelength bending modes. As a final
note, we remind the reader that the elastic properties of real membranes may be affected by
other intermolecular forces that can dominate the electrostatic effect on the bending rigidity.
Several such “counter mechanisms” have been mentioned in the chapter, including hydrogen-
bonding interactions, screening by salt, ions-lipids excluded-volume interactions, and image
charges that weaken the binding of the multivalent counterions to the membrane [55]. The
coarse-grained simulations provide a framework for systematically exploring the effects of these

additional interactions.
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Chapter 4

The Thermodynamics of Endosomal
Escape and DNA Release from
Lipoplexes.

4.1 Background

Section 1.6 brought forward complexes of cationic lipids (CLs), neutral lipids (NLs), and DNA
(lipoplex or CL-DNA complexes), as examples of charged lipid systems of medicinal interest.
Such complexes have therapeutic potential as gene delivery vectors that might be applied in
somatic gene therapy. Compared to viral vectors, lipid-based vectors are safer to use and sim-
pler to produce. However, their therapeutic efficiency is limited and their further improvement
requires better understanding of their mechanism of transfection and the biophysical parame-
ters of the CL-DNA complexes that influence it. Transfection, the core process of lipoplex gene
delivery, is viewed as a three-stage process starting with adsorption and entry (via endocytosis)
of the CL-DNA complex into the cell, followed by lipoplex degradation, and finally ending with
the release of the DNA, making the latter available for expression [39, 42, 43].

The first stage is driven by electrostatic attraction between the oppositely charged plasma
membrane and the lipoplex one. After endocytosis, the complex is within the cell, trapped
inside an endosome. The second stage of the transfection process, which often emerges as the
rate-limiting one, involves the breakdown of the CL-DNA complex. During this stage, the en-
dosomal and the lipoplex external membranes fuse [39]. The improved Transfection Efficiency
(TE) of hexagonal complexes over lamellar ones is likely to be related to the lower energy

barrier of fusion in hexagonal complexes [39]. In the case of lamellar complexes, the fusion
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energy barrier decreases (and TE increases) when the mole fraction of the CLs increases. These
observations suggest that the electrostatic attraction between the lipoplex and the endosomal
membrane triggers thermodynamic instability, leading to morphologic changes. The third step,
DNA release, is enabled by the second stage as the fusion of bilayers may cause pores that
connect the lipoplex internal water region (next to the DNA) to the cytoplasm. This chapter
explores the thermodynamic driving forces governing the transfection process from the stage
of adhesion and endocytosis, up to the stage of DNA release.

CL-DNA complexes adhere to cell membranes due to considerations similar to those trigger-
ing their formation, namely counterion release. As illustrated in fig. 4.1(A), both the plasma
membrane and the external bilayer of the lipoplex are covered with layers of tightly bound
counterions. These counterions neutralize the lipid charges and exclude the electric field from
the oily parts (see also discussion in section 1.3). The loss of the positional entropy of the
bound counterions is significantly lower than the energetic cost of allowing an electric field to
penetrate the low dielectric hydrophobic core. When the oppositely-charged surfaces are in
close proximity, the anionic and cationic lipids can neutralize each other, which enables the
release of counterion pairs. The positional entropy gained by the released counterions is the
main driving force for cell-lipoplex adhesion, which initiates cellular entry via endocytosis.

Figure 4.1(B) shows, schematically, a small segment of a lipoplex trapped within an en-
dosome. The entrapped lipoplex represents a thermodynamic system that is substantially
different from the lipoplex originally residing outside the cell. The difference stems from the
presence of anionic lipids (ALs) in the plasma membrane which can now mix with the CLs
and NLs of the lipoplex [39]. The process of lipid mixing is slow since it requires the lipids to
“fip-flop” between monolayers; nevertheless, it encompasses a large entropic reward. More-
over, a redistribution of the lipids, while protecting the hydrophobic cores of the bilayers from
electric fields, dictates that the counterions “escort” the flip-flopping charged lipids. When the
counterions move between the different aqueous layers of the system, they meet counterions of
opposite charge, which allows them to mutually leave the system without affecting its charge
neutrality.

In section 1.6, the thermodynamic stability of a lipoplex was discussed briefly with the un-
derstanding that it is easier to produce and handle stable lipoplexes. Entrapment of a lipoplex
by the endosome introduces anionic lipids and positive counterions that may be sufficient to
render it thermodynamically unstable. This is obviously a desirable feature since the ultimate
goal of the transfection process is lipoplex disassembly and DNA release. To better understand

the thermodynamics of transfection, a simplified model was developed. The model, which con-
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Figure 4.1: (A) Schematics of a complex of CLs (head groups depicted as red circles), NLs
(head groups - grey circles), and DNA rods (larger yellow circles), separated from the plasma
membrane which is composed of ALs (head groups - blue circles) and NLs. The lipoplex attracts
a layer of bound anions (shown as blue circles), while the plasma membrane is surrounded by
bound cations (red circles). (B) The state of the system after adhesion and endocytosis, the
formation of which is driven by cation-anion pairs release. (C) A simplified model of the system
depicted in B (see detailed explanation in text). The model system consists of six uniformly
charged plates with charge density o.; and three water layers (shown in blue) where the ions
reside. The yellow stripes represent hydrophobic regions that do not include ions, and at which
the electric filed must vanish. Notice that the fifth charged plate, which represents the DNA
array, allows the crossover of ions.

siders electrostatic interactions within the framework of a mean field approximation, depicts
the membranes as uniformly charged planner sheets. The DNA arrays are also represented
in the same manner [fig. 4.1(C)]. This grossly simplified model is presented in the following
section. Using this model, it is demonstrated that a lipoplex entrapped inside an endosome is
inherently unstable. This instability, triggered by interactions between the cationic lipids of the
lipoplex and the anionic lipids of the enveloping plasma membrane, is entropically controlled
involving both remixing of the lipids and counterions release. The relevance of this model
is confirmed by relating the free energy behaviour reported to the experimentally observed

increase in transfection efficiency (TE) and the associated free energy barrier [39)].

4.2 Lipoplex “Mean Field” Model

The model described here assumes the conditions in fig. 4.1(B) illustrating the entrapped
lipoplex immediately after endocytosis. The system constitutes six charged layers. In reverse
order [from number 6 to 1, see fig. 4.1(B)], these charged layers correspond to: 6 - the lipid
monolayer “below” the DNA array, 5 (also denoted by D) - the DNA array, 4 - the lipid
monolayer “above” the DNA array, 3 and 2 - the “intermediate” lipid monolayers, and 1 - the
lipid monolayer facing the cytoplasm. The three aqueous environments in the system will be
denoted by: 1 - the cytoplasm, 2 - the intermediate thin water layer between the endosomal

membrane and the lipoplex, and 3 - the internal water surrounding the first DNA layer. At the
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initial state, the lipid composition in monolayers 1 and 2 is that of the cell plasma membrane.
It consists of ALs and NLs only and, for simplicity, will be assumed to be symmetric. Similarly,
surfaces 3 — 6 are in the equilibrium state of the self-assembled lipoplex and have the same
CLs to NLs ratio. It is also assumed that the NLs of the plasma and lipoplex membranes are
of the same type.

The three major contributions to the free energy of the system arise from electrostatic
interactions, lipid mixing entropy, and the entropy loss of bound counterions. In the model
system depicted by fig. 4.1(C), the lipid monolayers are replaced with uniformly charged flat
surfaces of charge density o.; (i=1,2,3,4,6). The aqueous solutions have a dielectric constant
€, =~ 80, while that of the hydrophobic regions, ¢, is assumed to be vanishingly small. This
precludes the penetration of electric fields into the hydrophobic regions due to the associated
very large electrostatic energy [15, 56]. (We note that the cytoplasam is occupied with con-
centrated macromolecules. Their presence changes the inside relative permittivity to values
ranging from about 50 to over 200 [57, 58], for which the assumption concerning the exclusion
of the electric field is from the hydrophobic regions still holds.) A somewhat greater approxi-
mation is replacing the electric field of the DNA array with the electric field of a flat surface of
charge density per unit area o.5 = Apnya/dpna where Apya =~ 1.7¢/A linear (per unit length)
charge density of the DNA rod, e being the electron charge, and dpy 4 is the inter-DNA spacing.
A more detailed mean field calculation, taking into account the geometry of the DNA rods,
can be performed computationally [40]. Such a calculation, however, is not necessary here. In
order to understand the “big picture,” one only needs to recognize that the counterions must
arrange themselves to minimize the electrostatic energy. Any appreciable deviation in the ions
distribution will involve an energy cost much larger than the entropic components of the free
energy. Specifically for the model system in fig. 4.1(C), the number of ions per unit area present
in each aqueous environment will have to match the areal charge densities of the surfaces in
a manner that eliminates the electric field from the low dielectric regions. Interestingly, these
constraints dictated some equilibrium states with anions in the internal solution of the DNA
rods. An electric field can be present in the aqueous regions and the associated energy can
be derived by integrating over the electrostatic energy density. Under no-salt conditions, this
precisely gives the free energy cost attributed to the bound counterions. An exact calculation
(which requires the solution of the Poisson-Boltzmann equation) is not performed here, but
instead a simple approximation is employed by assigning each bound counterion with a free
energy of 1kgT [40, 59].

For each monolayer, ¢, which is located at z;, the mole fractions of the cationic and anionic
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lipids is denoted by ¢; and ¢; respectively. The area per lipid, a;, is taken as identical for
all three lipid types (CLs, ALs, and NLs). Additionally V;“ and v} are the number densities,
per unit volume, in region j of the cations and anions, respectively. To make the mean field
approximation applicable, only cases where all of the charged lipids, as well as the counterions,
are monovalent are considered. Assuming ideal lipid mixing in the monolayers, the uniform
charge density of each surfaceis o.; = ¢ (gb; — gbf) /a;. Since the system has a planar symmetry
in the x — y plane, the electric field at any point must be orthogonal to the plane, i.e., along
the z axis. Moreover, v+ = V;-r (2),v~ =v; (z), and both vanish inside the hydrophobic parts

of the membranes [colored in yellow in fig. 4.1(C)] where ¢ < €,. The electric field at a given

coordinate z is given by FE, = 7./2¢.¢y, where

o0

7 [ () =0 (&) + Yo (7 - >] a2 e[ [ () = () + Y 0uid ()| d

oo

= 2¢ /Z [V+ (") —v () + Z 0ei0 (2 — zl)] dz' (4.1)

and €, is the dielectric constant at z. The second equality in eq. (4.1) is due to the overall
charge neutrality of the system.

The requirement that the electric field vanishes inside the low dielectric regions of the
bilayers can be used to determine the number of bound counterions, N JB, in the three aqueous
solutions of the system (j = 1,2,3). For this, note that in each such region we expect to
find only one type of counterions since pairs of oppositely charged counterions can be released
without affecting the charge balance. Thus, the number of counterions in solution j can be
defined by o.;p = (jeNJB Ja;, where (; is the valency of the counterion. The number of

counterions bound to the endosome on its cytoplasmic side is obtained from
Oe1,B — —0¢1- (42)

This relation ensures that the electric field between layers ¢ = 1 and ¢ = 2 vanishes. By the

same logic, in the intermediate water layer

Oe2 B = — (Ue,l + Oe,2 + Oe,3 + Ue,l,B) = - (Ue,2 + 06,3) ) (43)
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and in the internal water layer
OesB =~ (0ea + Ocs+ Ocg) - (4.4)

At short times after cellular intake, the surface charge densities of the endosome layers, o ;,
match those of the cell plasma membrane (i = 1,2), and the lipoplex (i =3 — 6). This initial
state is, however, no longer the equilibrium state, since the anionic and cationic lipids can now
mix with each other. This occurs via slow, but steady, “flip-flopping” events switching lipids
between monolayers ¢« =1 — 4. Note that this explicitly assumes that monolayer i = 6 does not
participate in the lipid mixing process. This is because the monolayer is separated from the two
external bilayers (i = 1 —4) by both the DNA array and the water layer. The redistribution of
lipids between the participating monolayers not only increases the mixing entropy of the lipids
within the layers, but may also allow further release of counterions whose densities within the
aqueous solutions are simultaneously updated in order to satisfy the conditions of egs. (4.2)
to (4.4). Taking these considerations into account, the total free energy of the system, per unit

area of the lipids a;, is written as

4

3
> (65 log (¢7) + ¢ log (67) + (1= ¢F — 7 ) log (1= ¢F — ;)] + > NP (4.5)

F —_—
alk:BT N

where ¢ are the mole fractions of cationic (+) and anionic (—) lipids at the i-th layer, and
N JB is the number of bound counterions per unit area a at the j-th water layer (see definitions
also above). The first term in eq. (4.5) accounts for the mixing entropy of the lipids in each
monolayer, while the second term represents the entropy cost of bound counterions. The former
is based on the mean field assumption of ideal mixing. The latter employs the commonly used
assumption of 1kgT per bound counterion.

Let {gbi:o} denote the initial mole fractions of the CLs and ALs. To find the equilibrium
state, the free energy in eq. (4.5) needs to be minimized with respect to the variables {Qﬁf},
under the constraints that Zj‘zl o = Zf‘zl gbfo representing the preservation of the total
number of lipids of each type. The dependence of {N jB} on the variables {qb;t} is given by
eqs. (4.2) to (4.4), where NP = (ai/e)oc;p|, and oc; = e (¢ — ¢; ) /a;. Notice that in
contrast to the lipids, the total number of bound counterions is not fixed but may vary by

intake or release of ions from the cytoplasm.
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Figure 4.2: Solid line - the free energy AF (see text for definition), as a function of ¢ = 2&* /®
with &p = 1 and ®_ = 0.5. Dot-dashed and dotted lines show the partial contributions to
AF originating, respectively, from counterion release and lipid mixing.

4.3 Free Energy Minimization of Trapped Lipoplex

The free energy AF, per unit area q;, that the system may gain during stage (ii) of the
transfection process is given by the difference in F' [eq. (4.5)] between the equilibrium and
initial states. In the initial state, the distribution of lipids in the plasma membrane is given
by ¢, = ¢ and gb;fo = 0, for i = 1,2. In the lipoplex membranes (i = 3,4,6), ¢;, = 0 and
:0 = &,. For convenience, the “mole fraction,” ®p = — (a;/€) 0.5, associated with the DNA
array is defined here. Figure 4.2 plots the results for AF as a function of ¢ = 2% /®p, which
is the lipoplex charge ratio. The ratio ¢ is varied by changing &, while keeping &, = 1 fixed.
The initial anionic lipid mole fraction in the plasma membrane, ®_, is set to 0.5. The data
for AF is plotted in the solid line, while the dotted and dashed curves show, respectively, the
partial contributions due to lipid mixing [first term in eq. (4.5)] and the bound counterions
(second term). The results reveal the existence of three different regimes. In regime (i),
corresponding to ¢; < 1, the decrease in AF' with ¢; is very slow and arises exclusively from
the lipid mixing term. In regime (ii), where 1 < ¢ < 4/3, the decrease in AF is faster due
to the additional contribution of counterion release. Finally, in regime (iii), where ¢ > 4/3,
lipid mixing again becomes a dominant factor, though there is a fixed gain of entropy due to
counterion release.
The key to understanding the trends in fig. 4.2 is to correctly identify the transition points

between the three different regimes. The transition from (i) to (ii) occurs at ¢, = 1, which

is the isoelectric point of the lipoplex, namely the point where the total cationic charge of
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the lipids ezactly matches the negative one of the DNA array: 2®, = ®p. Therefore, to
satisfy eq. (4.4), the internal solution surrounding the DNA array [regime (i)] includes cations.
Similarly, the external solution facing the cytoplasm and the intermediate solutions between
the plasma membrane and the lipoplex also include cations only [egs. (4.2) and (4.3)]. Since the
system contains no anions, it is impossible to release cation-anion pairs, which explains why;,
in this regime, the only contribution to the free energy comes from the mixing of the lipids.
Equilibrium is achieved when the lipids are evenly distributed between the four monolayers.
This is depicted in regime (i) in fig. 4.3, which presents the equilibrium distribution of the lipids
between the four monolayers. In contrast to regime (i), in regime (ii) (1 < ¢; < 4/3) both the
intermediate and the internal solutions include anions at the initial conditions. Therefore, the
decrease in free energy now involves contributions of both lipid mixing and counterion release.
Detailed calculation shows that in regime (ii), equilibrium is reached when all the anions are
released, while the excess cations accumulate at the internal water layer around the DNA
molecules. Moreover, to satisfy the conditions of eqgs. (4.2) and (4.3), the net charge density
0, in monolayers ¢ = 1,2, 3 must vanish, which means that the mole fractions of CLs and ALs
in each of these layers are the same. The composition of layer ¢ = 4 is different, which implies
that lipid mixing is not optimized in regime (ii). Regime (ii) ends at ¢ = 4/3, which is the
point where the total charge of the system (including the ALs of the plasma membrane, the
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Figure 4.3: The equilibrium distribution of CLs (solid lines) and ALs (dot-dashed lines) in
monolayers i = 1 (black), i = 2,3 (red) and i = 4 (yellow). The vertical dashed lines mark the
transition points between the different regimes discussed in the text.
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CLs of the lipoplex, and the DNA array) vanishes; i.e., when
30, = p +20_. (4.6)

Therefore, at this point, the total number of bound cations and anions is also the same. Further
increasing ¢;, by increasing the fraction of the CLs and the number of associated bound anions,
enters the system into regime (iii). In this regime, the total gain of free energy due to counterion
release saturates, since it is capped by the number of cations originally bound to the plasma
membrane. The free energy AF continues to decrease with ¢; since the lipids can now mix
better and attain a more even distribution between monolayers ¢« =1 — 4. Notice that in fig. 4.3,
the composition of lipids in monolayers ¢ = 2, 3 is always the same, which is anticipated since
any exchange of lipids between these two monolayers will not influence the charge balance
condition of eq. (4.3).

Figure 4.4(A) depicts the results of AF for a lipoplex with more densely packed DNA
rods (Pp = 1.4). The charge density of the plasma membrane is the same as in fig. 4.2,
®_ = 0.5. The characteristics of fig. 4.4(A) are very similar to the those observed in fig. 4.2.
One noticeable difference is that regime (ii) starts below the isoelectric point ¢, = 1, at ¢, =
<I>]31 ~ (.71. As in the previously discussed case, in regime (i), the initial state of the system
includes only cations. In regime (ii), the intermediate water layer contains anions, which are
released upon reaching equilibrium. The kink appears at the isoelectric point, above which,
when ¢ > 1, the internal solution also contains anions. The transition between regions (ii) and
(iii) is at ¢; ~ 1.14, as dictated by eq. (4.6). In regime (iii), the contribution of counterions
release to AF' is fixed by the amount of cations present in the system.

Figure 4.4(B) depicts the results of AF' for a lipoplex with more loosely packed DNA rods
(dp = 0.6), with a plasma membrane of charge density ®_ = 0.5. Here, the transition from
(i) to (ii) is at the isoelectric point ¢, = 1 which, as noted above, is where anions first appear
at the internal layer next to the DNA. The kink happens at ¢, = CIDBI ~ 1.67 above which, the
intermediate water layer contains anions at the initial state. The transition from (ii) to (iii)
occurs at ¢; ~ 1.78, which, similarly to the previous cases, is predicted by eq. (4.6). Note that
in both cases in fig. 4.4, after the kink, the slope of the free energy doubles.
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Figure 4.4: (A) The free energy AF' (solid line) and the partial contributions to AF originating
from counterions release (dot dashed line) and lipid mixing (dotted line). Results are for a
lipoplex with densely packed DNA molecules (& = 1.4). The vertical dashed lines marks the
transition points between the regimes discussed in the text. (B) Same as in (A) for a lipoplex
with loosely packed DNA molecules (®p = 0.6).
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4.4 Membranes Fusion, Pore Formation, and DNA Re-
lease

The free energy calculations reported in figs. 4.2 and 4.4 demonstrate the inherent instability
of the entrapped lipoplex, triggered by its interactions with the enveloping plasma membrane.
The latter constitutes a reservoir of ALs that can mix with the CLs of the lipoplex. Lipid
mixing occurs through “flip-flop” events which, in general, are slow, especially when lipids
transfer between distinct bilayers (as opposed to lipids moving between monolayers of the
same membrane, which is probably somewhat faster). The exchange of lipids between the
plasma and lipoplex membranes may cause these two membranes to fuse; a scenario that thus
far was not taken into account [39]. Fusion is thermodynamically favorable since it reduces
the number of participating monolayers from ¢ = 4 to ¢ = 2 and thus, it further increased the
lipid-mixing entropy. However, it comes with the (initial) cost of bending energy. Crossing the
associated energy barrier is what primarily determines the rate of successful endosomal escape
and sets the TE (transfection efficiency). Experimentally, it is known that the TE of lamellar
complexes grows exponentially with the cationic charge density of the complex, &, = (¢;®p) /2
[39]. This observation supports the picture of activated fusion where TE~ exp (—AF}ys./ksT),
and

AFtyse = ak — 0Py + c, (4.7)

where & is the bending rigidity of the bilayers [as in eq. (1.1)], while a, b, and ¢ are parameters,
the parameters of which may depend on the molecular conditions inside the endosome. The
first term in eq. (4.7) represents the curvature energy cost of the fusion which, to a good
approximation, is independent of the charge densities. The second term has been previously
attributed to the electrostatic attraction between the plasma membrane and the complex.
The last term accounts for other effects, e.g. the capacity of the low-pH environment of the
endosome to disrupt the lipid bilayer. The results in this chapter reveal that the origin of
the second term is actually not energetic but entropic. The free energy gain AF' due to lipid
mixing and the associated counterion release at the second stage of the transfection process
(see solid curves in figs. 4.2 and 4.4) grows piecewise linearly with ®,. This linear dependence
is simply a reflection of the fact that when the lipoplex contains a higher fraction of CLs, the
potential entropic gain involved in ideal mixing of lipids and counterions release is larger.
Once fusion occurs, a hole opens that connects the cytoplasm and the internal water layer

containing the first DNA array of the lipoplex [fig. 4.5(A)]. Such a hole allows for the influx of
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Figure 4.5: A schematic illustration of DNA release from trapped lipoplex after pore formation.
This is viewed as a two step process which involves (A) the influx of macroions into the complex
and (B) condensation out of the endosome. For ease of viewing, monovalent counterions which
may be released during the condensation, are not displayed.

positively charged (macro)molecules, e.g., unstructured peptides, which are able to condense
the DNA molecules and release them into the cytoplasm [fig. 4.5(B)]. Since such macroions
also condense counterions about them, further counterion release may take part in this process
as well. Removing the first DNA layer results in a smaller lipoplex whose composition is
similar to the original one. Interactions of this positively charged complex with negatively
charged components of the cell may cause renewed thermodynamic instability and lead to

further degradation of the CL-DNA complex.

4.5 Conclusions

In this chapter, a simplified model was used to study the transfection thermodynamics of CL-
DNA complexes. The formation of these complexes is known to be driven by the increase in
the translational entropy of the counterions that are released to the bulk solution when the
oppositely charged membranes and DNA molecules associate together. The same counterion
release mechanism is also responsible (at least partially) for the association of the lipoplex
with the cell plasma membrane, which initiates the transfection process. In this chapter, it
was argued that the contact between the lipoplex external bilayer and the plasma membrane
triggers thermodynamic instability that leads to lipoplex degradation, which is essential for
the transfection process to proceed.

The thermodynamic instability of the entrapped lipoplex is of entropic origin: It stems
from the fact that the lipid composition of the lipoplex and the plasma membrane are different
and, therefore, mixing of these lipids increases the configurational entropy of the system. Since

the two membranes are oppositely charged, the mixing of lipids has another effect: It reduces
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the charge density of the membranes. This enables further counterion release and a further
decrease in the free energy. Thus, the counterion release mechanism which has been identified
as the thermodynamic driving force for formation of various supramolecular structures [17], is
here used to explain the disassembly of such structures.

Despite the gross simplicity of the model presented here, and the fact that it ignores specific
molecular details, it successfully predicts a roughly linear increase in the free energy gain with
the mole fraction of CLs in the complex, which explains the observed exponential increase
in transfection efficiency of lamellar complexes with the charge density [39]. The model is
based on a mean-field picture and replaces the lipid monolayers with uniformly-charged flat
surfaces. This modeling approach is routinely used in theoretical studies of electrostatic effects
in soft matter systems. We avoid solving the Poisson-Boltzmann equation explicitly by simply
assigning instead a fixed free energy gain of 1kgT for each released counterion. By solving the
Poisson-Boltzmann equation, a more accurate value may be obtained (which may depend on
the water region next to the DNA array where the counterion resides in a denser condition),
but the result is only expected to be different by a factor of order unity. What might be
the boldest approximation in the model is the replacement of the DNA array with a uniformly
charged surface as well. By employing this picture, two entropic contributions of opposite signs
are ignored: (i) The CLs in the monolayers facing the DNA arrays are expected to accumulate
near the DNA rods, which lowers their mixing entropy; (ii) the space available to the ions
surrounding the DNA molecules is quite small, which implies that the entropic gain involving
in their release may be higher than assumed by the model. The order of magnitude of these
effects is comparable to the other contributions discussed here. Therefore, even though it is not
expected that these two entropic will cancel each other out, they are not expected to dominate

the thermodynamic behavior and significantly modify it.
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Chapter 5

Conclusions

This thesis reported on instabilities in three different lipid-based systems: Small membranes
under positive or negative surface tension (chapter 2), charged membranes with monovalent or
pentavalent counterions (chapter 3), and lipoplexes trapped inside an endosome (chapter 4).
The first two systems were studied using coarse-grained simulations and presented instabilities
under “extreme cases”: When the membrane is ecumenically stretched, or when it is highly
charged with monovalent counterions, pores are formed to relieve the excess elastic energy
at the cost of line tension. When the membrane is compressed, or when it is highly charged
with pentavalent counterions, buckling occurs, which also reduces the areal elastic energy
at the cost of bending energy. Even though both system responded by the same apparent
instabilities of pore formation and buckling, the mechanism of these instabilities is different

when the membrane is charged or under surface tension:

e Pore formation is expected intuitively; pores relive the membrane tension energy by
reducing its total projected area [at the cost of line tension [60]]. The origin of the area
increase, when the membrane is stretched by positive frame tension is not exactly the
same when it is done by charging the membrane. The fact that the surface tension was
explicitly set to zero in the charge membrane case, and the quality of the fit in fig. 3.2(A),
indicate that the pore is not formed by an indirect frame tension applied to the membrane
(e.g., the ions’ osmotic pressure), but rather due to the electrostatic repulsions which act

against the hydrophobic attractive (cohesive) interactions between the lipids.

e Membrane buckling, while it looks similar in the two systems, is not the same. There

are several indications for that:

— Prior to the buckling of charged membrane in the presence of pentavalent coun-

terions, the equality v = 7 = 0 still holds true (as in the monovalent counterions
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case). When the membranes where compressed, however, the equality v approached

a constant value as 7 decreased.

— The buckling of charged membranes with pentavalent counterions occurs through
a sharp decrease in the bending rigidity, «, while for compressed membrane the

decrease in k is fairly moderate.

— The projected area, A,, dropped with the increase in compression while that of the

charged membrane with pentavalent counterions remained roughly constant.

e [t is also important to highlight the difference between the monovalent and pentavalent
counterions cases. While in the former case, the counterions formed a cloud around
the membrane, in the latter, the counterions adhered to the membrane, effectively in-
corporating charges into the membrane. These charges caused attraction and repulsion
between different parts of the membrane that might cause non-even amplification of the

undulation modes.

The entrapped lipoplex discussed in chapter 4 also brings forward instability that is asso-
ciated with electrostatic interactions and counterions behaviours. The lipoplex and the cell
plasma membrane are attracted to each other through electrostatic interactions; that allows
for counterion release. Once the lipoplex is entrapped, the mixing of anionic and cationic lipids
from the cell and lipiplex membranes offers free energy gain as it allows for further counterion
release and reduces the surface charge density of the membranes. This free energy gain reduces
the free energy barrier of fusion, which allows the formation of a pore that connects the internal
solution to the DNA array to the cytoplasm.

The discussion in chapter 4 is limited to a grossly simplified model. This model, while
it provides initial insight about the importance of counterion release and lipid mixing in the
transfection process, cannot contribute to the study about the fusion process itself. Highly
coarse-grained simulations, such as those used in chapters 2 and 3 have been applied to demon-
strate the self assembly of lipoplex [61]. Similar methods may be applied to study the dynamics

of the lipoplex degradation problem and the fusion process specifically.
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Appendix A

The Free Energy of Bound Counterions

This appendix presents an interesting relationship between the electrostatic energy and the
number of counterions bound to a flat surface. The starting point for this proof is the Poisson-
Boltzmann equation for a flat membrane in contact with a monovalent salt solution of bulk

concentration ng, which reads

V) = 2voe sinh (ﬂ> . (A.1)

Ew€o k’BT

Since the surface is flat, the potential is invariant under translation in z and y directions and

the Poisson-Boltzmann equation is reduced to

P = 2evs sinh (ﬂ> : (A.2)

Ew€o kBT

where ¢/ and 1" denote the first and second derivative by z, respectively. Multiplying both

sides by ' results in
2
Y'Y = 0 sinh (kjfT) . (A.3)

€w€o

Notice that the left-hand side is half the derivative of (1)
n2]’ "ot
(W] =20, (A4)

and the right-hand side is

(e e \ ey’
cosh (k:B_T) = sinh (/{:B_T> T (A.5)
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Therefore eq. (A.3) is rewritten as

3 [0] =20 o (20, (4.6)

€w€o kT

which can be integrated over z to yield

1 N2 QkBTVO e¢
- — h( —/— A.
5 (¢") - cos <kB ) +C, (A.7)

where C'is an integration constant. The boundary conditions for a flat surface require that the

electric field and potential would vanish far away from the surface (¢, — 0,7/ — 0).

Z—00

Using this, one can find the integration constant

1 N2 ZkBTVO
— = C=0
2 () e €w€o +
2kgT
=BT (A.8)
Ew€o

Thus eq. (A.7) reads

1 N2 2]{?BTVO 877/1 .
0 =22t e (57) -1

_ kgT ey e \
= e (VO exp (_k;B_T) + Vg exp (k’B_T> 2V0) ) (A.9)

Notice though, that the first two terms are the equilibrium densities of the cations and anions

repectively. Thus we get that

(v = 222

1
2 Ew€o

(vy +v_ —21p). (A.10)

Generally speaking, the electrostatic free energy per unit are, f., of flat charge surface in ionic

solution reads

f_€w€0
e = ——

o\ ?

where the first term is the electrostatic contribution and the second term is the entropy loss

i

S vilog C—O) — (v — yo)] dz (A.11)

of the ions due to the deviation from uniform concentration. A simplified picture of monova-

lent 1:1 salt, the bulk free energy of charged surface (compared to a homogenous electrolyte
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reservoir) reads

F., = Cwo (zp’)2 dz + k;BT/ {VJF log (V—+> + v_log (V—_) —i—] dz
2 Jo 0 0 Y

— kBT/ (vy +v_ — 21y dz. (A.12)
0

The entropy term in eq. (A.12) is composed from a mixing term, which accounts for the non-
uniform ion distribution, and a “counting” term, which measures the deviation of the local
ion concentration from the uniform distribution. The integration over the last term results in
the number of bound counterions and, dividing by the membrane area, results in the surface
charge density.

Applying eq. (A.10) to eq. (A.11), the first and last terms cancel each other, and the bulk

F = kBT/ [14 log (V—+) + v_log (V—_> +} dz. (A.13)
0 Yo Lo

This suggests that the electrostatic energy per bound counterion is fixed at 1kgT regardless of

free energy reads

the surface charge density. This is related to the Gouy-Chapman distance the ions are allowed
to be separated from the surface. When another charged object approaches to a distance
smaller than the Gouy-Chapman distance, the electrostatic interactions between the surface

and the object are favourable and the counterion is released.
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