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Abstract

Lipid bilayers membranes, positioned between two solutions, are the barrier of the cell

and its internal components (organelles). Membranes define the cell limit and, by allowing

the existence of two different solutions in close proximity, enable their functions. Membranes

participate in various biological processes such as cell-cell adhesion, controlled ions transfer,

and signal transduction. The membrane role in these processes is not necessarily carried by the

membrane as a bulk, but rather via proteins incorporated into it, or a fraction of the consisting

lipids that have a unique property (e.g., charged).

Biological membranes experience forces that may cause the membrane instabilities, e.g.,

pore formation, buckling, and membranes fusion. Such instabilities take place in processes

such as endocytosis or cytokinesis, which are part of the cell function, or through an external

damaging factor, such as pore-forming toxins. A physical understanding of membrane insta-

bilities is of interest as it might be applied in many field of research and medicine e.g., causing

membrane rupture in cancer cells. Membrane instabilities are also of interest in the context of

artificial membranes since they dictate working and experimental parameters. Furthermore,

they may have a practical use, e.g., drug release.

The mechanical properties of membranes are traditionally studied through the framework

of Helfrich’s effective Hamiltonian. While this model has proved to be very useful for stable

membranes, instabilities are not well understood. Many insights from the Helfrich Hamiltonian

are gained for membranes that are stable, namely, weakly undulating intact membranes. This

thesis discussed instabilities in membranes outside of this regime, that is, buckled or ruptured

membranes. Computer simulations allow for such studies, but due to their nature, simulations

of lipid membranes require large amount of water molecules which. Due to the high cost

(in computation terms) associated with water molecules, the time and length scales of such

simulations are limited. High coarse-grained computer simulations, such as those used in this

thesis, treat the aqueous region implicitly (via effective hydrophobic interactions). This allows

us to overcome the limitations of “traditional” atomistic simulations.

Chapter 2 discusses instabilities of membranes under positive and negative surface tension,

chapter 3 discusses instabilities in charged membranes, and chapter 4 discusses a lipid-DNA

complex degradation. The thread line of the results reported in this thesis is the instabilities of

lipid-based systems, reported in all three chapters. However, even though the reported instabil-

ities can be roughly divided into pore formation and strong undulations or buckling, the cause
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of the instabilities and their “fine details” have some important differences. Studying such

instabilities allows for a better understanding of the biological, physical, and chemical mech-

anisms that involve lipid membranes. This, in turn, may be exploited for practical purposes

(e.g., drug delivery), where such instabilities may be essential.

Chapter 2 presents a simulation study of bilayer membrane response to the application of a

negative (compressive) mechanical tension. We used the simulation results to develop a simple

free energy model for membranes under negative tension. Instabilities of membranes due to

compressive surface tension is size dependent. It is known that negative tension destabilizes

the long wavelength undulation modes of giant vesicles, but such tension can be sustained

when small membranes and vesicles are considered. The negative tension simulation results

reveal two regimes: (i) a weak negative tension regime characterized by stretching-dominated

elasticity and (ii) a strong negative tension regime featuring bending-dominated elastic be-

havior. This resembles the findings of the classic Evans and Rawicz micropipette aspiration

experiment in giant unilamellar vesicles (GUVs) [E. Evans and W. Rawicz, Phys. Rev. Lett.

64, 2094 (1990)]. However, in GUVs, the crossover between the two elasticity regimes occurs

at a small positive surface tension, while in smaller membranes it takes place at a moderate

negative tension. Another interesting observation concerning the response of a small membrane

to negative surface tension concerns the relationship between the mechanical and fluctuation

tensions, which are equal to each other for non-negative values. When the tension decreases

to negative values, the fluctuation tension γ drops somewhat faster than the mechanical ten-

sion τ in the small negative tension regime, before it saturates (and becomes larger than τ)

for large negative tensions. The bending modulus exhibits an “opposite” trend. It remains

almost unchanged in the stretching-dominated elastic regime and decreases in the bending-

dominated regime. Both the amplitudes of the thermal height undulations and the projected

area variations diverge at the onset of mechanical instability.

In chapter 3, the same coarse-grained molecular model is used for studying the elastic

properties of charged membranes in solutions of monovalent and pentavalent counterions. The

simulation results of the two cases reveal trends opposite to each other. The bending rigidity

and projected area increase with the membrane charge density for monovalent counterions,

while they decrease for the pentavalent ions. These observations can be related to the degree

that the counterions screen the lipid. While the monovalent counterions only weakly screen the

Coulomb interactions, which implies a repulsive Coulomb system, the multivalent counterions

condense on the membrane and, through spatial charge correlations, the overall effective inter-

actions due to the charged lipids become attractive. The differences in the elastic properties
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of the charged membranes in monovalent and multivalent counterion solutions are reflected in

the mechanisms leading to their mechanical instability at high charge densities. In the former

case, the membranes develop pores to relieve the electrostatic tensile stresses, while in the

latter case, the membrane exhibits large wavelength bending instability.

In chapter 4, we study the physics of complexes (supermolecular assemblies) of cationic

membranes and DNA molecules. Such lipid-DNA complexes (lipoplexes) have attracted much

interest as gene delivery vectors because they are non-pathogenic and they are self-assembled

under conditions of thermal equilibrium. In the chapter, we focus on the driving forces gov-

erning the release of DNA molecules from a lipoplex trapped inside an endosome. The release

of DNA molecules is thought to be the limiting stage in the transfection process, which is

viewed as a three-stage process: (i) endocytosis, (ii) lipoplex breakdown, and (iii) DNA release

followed by gene expression. As successful transfection requires lipoplex degradation, it tends

to be hindered by the lipoplex thermodynamic stability; nevertheless, it is known that the

transfection process may proceed spontaneously. The relevant results chapter in this thesis

uses a simplified model to study the thermodynamic driving forces governing transfection. It

is demonstrated that after endocytosis [stage (i)], the lipoplex becomes inherently unstable.

This instability, which is triggered by interactions between the cationic lipids of the lipoplex

and the anionic lipids of the enveloping plasma membrane, is entropically controlled involving

both remixing of the lipids and positional entropy gain of counterions initially confined to the

surfaces. The detailed calculation in this chapter shows that the free energy gain during stage

(ii) is approximately linear in Φ+, the mole fraction of cationic lipids in the lipoplex. This

free energy gain, ∆F , reduces the barrier for fusion between the enveloping and the lipoplex

bilayers, which produces a hole allowing for DNA release [stage (iii)]. The linear relationship

between ∆F and the fraction of cationic lipids explains the experimentally observed exponen-

tial increase of transfection efficiency with Φ+ in lamellar lipoplexes.

Chapter 5 summarizes this thesis. In this chapter, the similarities and differences between

the instabilities in the different systems are underlined. Insights from this comparison are

concluded with a possible future simulation study.
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Chapter 1

Introduction

1.1 Physical Understanding of Lipid Membranes

Lipid bilayer membranes allow biological systems to separate two chemical solutions which

are of distinctly different chemical composition. The most obvious example of that is the cell

plasma membrane which separates the (acidic) cytoplasm from the external (alkaline) envi-

ronment. Lipid membranes are formed spontaneously due the hydrophobic nature of the lipid

tails that are shielded from water molecules when the membrane is formed [1, 2]. Composed of

two monolayers that face each other and expel water molecule from the aliphatic tails, bilayer

membranes may assume several structures: planer, cylindrical, and spherical. Furthermore,

the bilayer phase occupies a small part of a rather complex phase diagram which includes

further morphologies [3]. The structure of the lipid bilayer is controlled by the characteristics

of its constituting lipids e.g., tail length, tail rigidity, and hydrophilic head size [1]. At room

temperature, biological membranes are fluid: the lipids tails are disordered and they can diffuse

within the monolayer. Also in fluid membranes, lipids can slowly transfer between the two

monolayers in a process known as “flip-flop.” In their fluid state, membrane might develop

instabilities that hinder their function; the two most commonly known are buckling and pore

formation. Understanding membrane instabilities is important as they commonly occur when

the membrane is participating in a far from equilibrium processes. In addition, there are cases,

such in drug and gene delivery applications, where—upon a certain condition (e.g., endocytosis

by the target cell)—it is desirable to trigger instabilities.

Theoretical studies of bilayer membranes commonly use Helfrich’s effective Hamiltonian

3



Introduction 1.1

which describes 2D manifolds, such as membranes, in 3D space [4]

H =

∫
A

dS

[
σ0 +

1

2
κ0 (c1 + c2 − 2c0)

2 + κ̄0c1c2

]
, (1.1)

where the integration is carried over the membrane’s total area, A. In this model, the constants

are the surface tension, σ0, the bending modulus, κ0, the saddle splay, κ̄0, and the spontaneous

curvature, c0. The variables c1 and c2, are the local principal curvatures. The discussion in

this thesis is limited for conditions where c0 = 0 (symmetric membrane) and to membrane

deformations that preserve the membrane topology, which means that the total energy of the

contribution due to the last term is constant. Under these conditions, one can simplify eq. (1.1)

H =

∫
A

dS

[
σ0 +

1

2
κ0 (c1 + c2)

2

]
= σ0A+

1

2
κ0J

2, (1.2)

where J , defined via J2 =
∫
dS (c1 + c2)

2, is the integrated square total curvature, and A

is the total area of the membrane. Helfrich Hamiltonian provides a successful framework

for describing many features of bilayer membranes and vesicles, including their large-scale

shapes and the transformations between them [3], membrane-membrane interactions [5], and

membrane-mediated forces between proteins (“inclusions”) [6]. Equations (1.1) and (1.2) are

applicable when studying the elastic properties of a nearly flat membrane with low curvature.

This thesis discusses some instabilities and phenomena that are not always described properly

by these equations. Chapters 2 and 3 of this thesis discuss phenomena that occur as a result

of compression [7], and inclusion of charged lipids in the membrane [8]. In chapter 4, a

possible mechanism for DNA release from lipid-DNA complexes is proposed [9]. The DNA

release requires both a high bending degree and pore formation in regimes are relevant to

those discussed in chapters 2 and 3.

The remainder of this introduction provides a general background relevant to this thesis

research. Surface tension in the context of bilayer membranes, a general view of charged mem-

branes in solution, the effect of electrostatic interactions on the bending modulus, and finally,

the role of charged membranes in drug delivery. This chapter is followed by three results chap-

ters; the response of small membranes to negative surface tension, the effect of electrostatics on

the stability of membranes, and a thermodynamic analysis of lipoplexes in various stages of the

gene delivery process. Following these, chapter 5 summarizes the entire thesis and underlines

the similarities and differences between the various instabilities phenomena.

4
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List of Symbols

A Membrane total area

A0 Membrane preffered area

Ap Membrane projected area

al Porjected area per lipid

L Simulation “box” size

l Simulation grid cell size

σ0 Surface tension

σ Renormalized surface tension

τ Frame tension

KA Area stretching modulus

κ0 Bending rigidity

κ Renormalized bending rigidity

δκe Electrostatic contribution to κ

γ Fluctuation tension

F Arrhenius free energy

Fe Electrostatic contribution to F

f F per unit of area

G Gibbs free energy

σe Surface charge density

ql DNA:cationic lipids charge ratio

N Number of lipids in monolayer

Φx Iinital mole fraction of x

ϕx Mole fraction of x

bl Simulation interaction distance

q⃗ Fourier’s mode wave vector

n⃗ Fourier’s mode wave number

ψ Electric potential

νi Number density of ion i

λD Debye length

λGC Gouy-Chapman length

λB Bjerrum length

⟨x⟩ Mean value of x

hx Amplitude of x

e Electron unit charge

ϵ0 Vacuum permitivity

ϵw Dielectric constant of water

ϵl Dielectric constant of oil

ϵ Dielectric constant of vacuum

kB Boltzmann’s constant

T Temperature

1.2 Membranes Under Surface Tension

The surface tension, σ appearing in eqs. (1.1) and (1.2), originates from similar concepts

to liquid phases context, though it has different, less intuitive, physical interpretation The

definition of surface tension for two liquid phases that are in contact with each other, like a

water-oil interface, is the energy per unit area required to maintain the area of contact [10].

It is calculated by the energetic cost of interaction between the two solutions per unit area

compared to their energy in the respective bulk phases. Lipid bilayers mark the barrier between

two solutions and as such, they appear to be applicable to this reasoning. However, applying

it to derive the surface tension term in eq. (1.1), σ0, is not straightforward [7]. Increasing

the area of a membrane can be achieved by adding more lipid molecules into the membrane,

5
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while maintaining the area density of the lipids fixed. However, lipids concentration in aqueous

solution is low (∼ 10−6). An alternative interpretation is the increase of the lipid area density,

which greatly differs from the meaning “surface tension” in a liquid phase context.

To understand surface tension in the context of lipid membranes, it is important to recognize

that σ0, κ0 are material properties and they are coupled with the membrane total area, A, and

square total curvature, J2, respectively. It is possible to renormalize σ0 and κ0 into σ and κ

respectively using Helfrich’s free energy

F = σĀ+
1

2
κJ̄2 (1.3)

where Ā and J̄ are the area and the squared total curvature of the mean profile of the mem-

brane. Membranes with a flat profile (i.e., not subjected to bending forces) feature J̄ = 0 and

Ā is equal to the projected area Ap. In this case, eq. (1.3) takes the form of F = σAp and

σ = ∂F/∂Ap. Generally, the property coupled with the membrane projected area is the frame

tension, τ = ∂F/∂Ap, and for symmetric membranes τ = σ. Unlike A, Ap is well defined, and

insensitive to small protrusion, thus its measurements, and that of the τ are simpler. Another

quantity that can be identified as the membrane surface tension is the, so called, q2 coefficient

γ, also known as the fluctuation tension. The fluctuation tension can be measured from the

Fourier spectrum of the membrane height function with respect to the plane projection (see

also chapter 2). For a membrane with a mean flat profile, the thermal average of the amplitude

of a Fourier mode with wave vector q⃗ satisfies: ⟨hq⃗⟩ = 0 and

⟨|hq⃗|⟩ =
kBTAp

l4 (γq2 + κq4 +Oq6)
(1.4)

where kB is Boltzmann constant, T is the temperature, and l is a microscopic cutoff length.

Membranes with flat profiles under non negative surface tension exhibit τ = γ = σ [11, 12].

The Giant Unilamellar Vesicles (GUV) experiment [13] provided some of the key insights

about surface tension in the context of membranes. The experiment, carried out by measuring

the projected area of vesicle stretch to various degrees, revealed two regimes of surface tension

which are made distinct by the response of the projected area to stretching. When relatively

low surface tension is applied to GUVs in the entropy dominated regime, the membrane is

stretched by reducing the fluctuation amplitudes. When τ is low, the membrane exhibits a

strong increase in Ap in response to small changes in surface tension. With regard to the high

surface tension regime, on the other hand, the membrane exhibits direct elastic compliance. In

this regime, the membrane exhibits a linear increase of the projected area with surface tension.

6



Introduction 1.3

This is due to the stretching of the membrane which “irons” out its undulation and an increase

in the membrane area occurs through increase in the total area per lipid of the membrane.

In chapter 2, we present the results of Monte-Carlo simulations of small membranes under

negative surface tension. The reported results feature properties that resemble those of GUVs

under positive tension. Equation (1.4) predicts that under negative surface tension, the Fourier

modes of long wave length (small wave number) will develop mechanical instabilities. However,

small membranes with linear size L <
(
2π
√
κ/τ

)
, should have a stability range in the negative

tension regime. The results section of chapter 2 explores the features of stable membranes under

moderate negative surface tension, as well as the buckling which occurs when strong negative

tension is applied to the membrane.

1.3 Membranes in Charged Environments: The

Poisson-Boltzmann Theory

Biological membranes are charged due to presence of charged lipids and proteins. The mem-

branes are surrounded by ionic aqueous solutions, e.g., the cytoplasm, and electrostatic inter-

actions affect their stability and mechanical properties. Furthermore, electrostatic interactions

take place when two membranes interact, e.g., in cell-cell adhesion. While not accurate, the

mean field approximation is convenient to gain the essential properties of charged membranes.

Within this approximation, the charges included in the membrane are “smeared” to give sur-

face charge density σe, and the concentration of ions in solution is taken as continuous. The

relation between the potential ψ (r⃗) and the charge distribution ρ (r⃗) =
∑
ζiνi is given by the

Poisson equation

∇2ψ (r⃗) = − e

ϵwϵ0

∑
i

ζiνi, (1.5)

where ϵw ≃ 80 is the water dielectric constant, ϵ0 is the vacuum permittivity, e is the electron

unit charge, and for specie i, νi and ζi are number density and valency, respectively. For

fixed charges, ρ(r⃗) is known, and eq. (1.5) determines the electric potential. However, ions in

solutions are mobile and thus, even for fixed surface charge density σe, ions will adjust their

positions to minimize the system’s free energy. At equilibrium, the concentration of the mobile

ions is described by the Boltzmann distribution. Assuming that the only positional energy is

the electrostatic one, the number density νi (r⃗) of ion i reads

νi = ν
(i)
0 exp

(
−eζiψ
kBT

)
. (1.6)

7
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Thus, the Poisson-Boltzmann equation is derived by combining eqs. (1.5) and (1.6)

∇2ψ (r⃗) = − e

ϵwϵ0

∑
i

ζiν
(i)
0 exp

(
−eζiψ (r⃗)

kBT

)
. (1.7)

This equation provides a good approximation of many settings that are relevant to physiological

conditions, specifically when the ζi = ±1 [14]. For a system at contact to electrolyte reservoir

with a 1:1 salt and ζi = ±1 ratio, for example negatively charged membrane in NaCl solution,

eq. (1.7) is simplified to be

∇2ψ (r⃗) = −2ν0e

ϵwϵ0
sinh

(
eψ (r⃗)

kBT

)
. (1.8)

where ν0 is the number charge density of the salt at the reservoir (far away from the membrane).

For a small surface potential, or high concentration of salt eq. (1.8), can be linearized to the

Debye-Hückel equation

∇2ψ (r⃗) = λ−2
D ψ, (1.9)

where λD = (2ν0e
2/ϵwϵ0kBT )

−1/2
is the Debye screening length. At distances much greater than

λD, the electric field of the membrane is screened by the cloud of counterions that surrounds

the membrane.

It is also possible to solve eq. (1.7) when there is no added salt and λD diverges. This

scenario is relevant to the simulation results reported in chapter 3, which correspond to neg-

atively charged membrane in solution of cations with no added electrolytes. To consider this

in eq. (1.7), one can set ζ = 1, and ν0 is the reference ions number density where ψ = 0. The

total number of ions should be set so that the system will remain neutral. Without added salt,

eq. (1.7) is simplified

∇2ψ (r⃗) = − eν0
ϵwϵ0

exp

(
−eψ (r⃗)

kBT

)
. (1.10)

Since there is no inherit difference between positive and negative charges in the mean field

picture, setting σe to be positive would require negative ions but would result in the same

equation.

Equations (1.8) and (1.10) are solvable in several geometries applicable to membranes, the

most simple of which is that of a flat surface of charge density σe. The surface is placed in the

x− y plane at z = 0, and the field is allowed only at the positive part of z by setting ϵz>0 = ϵw

and in the oily part of the membrane ϵz<0 = 0. Under these conditions, and assuming overall

neutral system, the electric field vanishes as z → ∞. At the surface, the electric field has to

8
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satisfy as well
∂ψ (z)

∂z

∣∣∣∣
z=0

= − σe
ϵwϵ0

. (1.11)

The dielectric discontinuity in the lipid tails part is most easily taken by considering two com-

pletely decoupled monolayers, namely where the electric field is excluded from the hydrophobic

region. This is specifically justified for thick membranes [15, 16]. Assuming decoupled mono-

layers, the dielectric constant in the oil part is set to 0, thus excluding the electric field from

it. Under these conditions, the potential and the counterion concentration without added

electrolyte can be derived from eq. (1.10). The electric potential reads

ψ (z) =
2kBT

e
log

[√
ν0λB
2

(z + λGC)

]
=

2kBT

e
log (z + λGC) + ψ0 (1.12)

where ψ0 is the reference potential that is dictated by ν0 in eq. (1.10). The characteristic lengths

λGC = 2kBTϵwϵ0/e |σe| (Gouy-Chapman), and λB = e2/4πkBTϵwϵ0 =≃ 0.7nm (Bjerrum) are

defined as the distance where an elementary charge experiences an electric force of magnitude

1kBT due to surface of charge density σe (Gouy-Chapman) or another elementary charge

(Bjerrum). These two length scales arise naturally when electrostatic interactions are discussed

since the former is a measure of the surface charge density and the latter defines the strength

of electrostatic interactions in comparison to other forces. Note that the log function used

here, and throughout this thesis, is the natural logarithm. The ions distribution, calculated

by applying eq. (1.12) to eq. (1.6), reads

ν (z) =
1

2πλB (z + λGC)
2 . (1.13)

Applying the same conditions to a membrane in contact with a reservoir of monovalent

electrolytes, the electric potential can be derived from eq. (1.8)

ψ (z) = −2kBT

e
log

(
1 + ηe−z/λD

1− ηe−z/λD

)
(1.14)

where the parameter η is the positive root of the quadratic equation

η2 +
2λGC

λD
η − 1 = 0

η = −λGC

λD
+

√
λ2GC

λ2D
+ 1.

9



Introduction 1.3

Using eq. (1.14), deriving the ions number density is straightforward,

ν+ (z) = ν0

(
1 + η exp (−z/λD)
1− η exp (−z/λD)

)2

(1.15)

ν− (z) = ν0

(
1− η exp (−z/λD)
1 + η exp (−z/λD)

)2

. (1.16)

The concentration of the ions in the solutions is affected by the presence of charged membranes,

as one intuitively expects. The membrane counterions are attracted to it resulting with con-

densation of ions on the surface that neutralize its charge [eq. (1.15)]. The membrane coions are

repelled from the it although it is not 0 next to the surface [as described by eq. (1.16)]. Due to

the appearance of η in eqs. (1.15) and (1.16), the equations are hard to understand intuitively.

Generally speaking, η determines the level of deviation from the bulk concentration: At the

weak screening regime, where the λD ≫ λGC (low ν0 or high σe), η → 1 and the concentration

of the ions next to the surface deviate significantly from their bulk concentration. At the strong

screening regime, where λD ≪ λGC (high ν0 or low σe), η → 0 and the concentration of the

ions is fixed at ν0 in the entire solution.

Completely coupled flat surfaces, where ϵl = ϵw are not discussed in this thesis 1. Note

though that this system is solvable as well using the same methods. This is so because the

electric field of the bilayer is a linear sum of the electric field of the two monolayers. Thus, the

equations above are applicable after correcting the surface charge density of each monolayer

σe by adding the one of the other monolayer. As demonstrated in section 3.2, for symmetric

systems, where the surface charge density of each monolayer is the same, and the total ion

sum on each charge is the same, the electric field does not penetrate the oily part due to the

symmetry.

The electrostatic free energy per unit are, fe, of flat charge surface in ionic solution reads

fe =
ϵwϵ0
2

∫ (
∂ψ

∂z

)2

dz + kBT

∫ [∑
i

νi log

(
νi
ν0

)
− (νi − ν0)

]
dz, (1.17)

where the first term is the electrostatic energy and the second term is the entropy loss of ions

due to their deviation from uniform concentration, composed of nonuniform concentration

term and “counting” term. The latter term, is the local charge density in the solution, and

the integral
∫
(
∑

i νi − ν0) dz is equal to σe The integration over the latter term results in

the charge density of the membrane. Appendix A demonstrates how for any flat surface, the

1The simulations in chapter 3 are handled under such conditions; however, due to the symmetry of the
bilayers and the ion solution above and below it, the electric field inside the membrane is negligible as in the
decoupled case.

10



Introduction 1.4

electrostatic contribution is matched by the shift in concentration of the two ions

ϵwϵ0
2

∫ (
∂ψ

∂z

)2

dz = kBT

∫ ∑
i

νi (νi − ν0) dz. (1.18)

In a salt-free solution, these two terms are equal to 1kBT , which is the usually attributed cost

of bound counterions. This equality indicates that bound counterions maintain some of their

configurational entropy at the cost of electrostatic energy. Neutralizing this charge by macro

molecules would allow the counterions to leave without electrostatic penalty. This counterions

release mechanism is the driving force of many biological processes [17].

1.4 Membranes in Charged Environments: Beyond

Mean Field

Thus far, the discussion was limited to the mean field framework where both charge densi-

ties and ion densities are smeared, and fluctuations in charge and ion densities were ignored.

Assuming such fluctuations are not correlated, this approach is valid. However, when such

correlations do exist, e.g., when the charge carriers in the electrolyte are multivalent, the mean

field picture is not necessarily valid [18]. Such correlations result with the rather surprising phe-

nomena, termed like-charged attraction [19, 20, 21, 22, 23], where two macromolecules of the

same charge sign attract each other through mutual attraction to the counterions in the inter-

mediating solutions. The key to understanding this phenomena lies in the analysis of charged

surfaces and counterion condensation which reveals a coupling parameter Ξ = 2πζ3λB, σe [18].

This coupling parameter distinguishes between the weak coupling regime, where Ξ ≪ 1, and

the mean field approximation holds true, to the strong coupling regime, where Ξ ≫ 1 and

charge charge correlations might become significant.

The physical origin of the coupling parameter is the opposite influence the charged surface

and the ions have on an individual ion [24]. While all the ions are attracted to the surface,

they also repel each other. If all the ions adhere to the surface, the average area per ion is

ζ/σe, with the characteristic length α =
√
ζ/σe. When the ions are multivalent, and Ξ ≫ 1,

the ions condense on the surface in a structure of a hexagonal two dimensional crystal [18]

that maximizes the distances between the ions. In this configuration, the electric field of the

ions almost vanishes due to symmetry, and each ion experiences mostly the field of the charged

surface.

Consider now two such surfaces that are close proximity to one another. The surfaces are
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Introduction 1.5

flat and parallel to each other, separated along the z axis by distance d≪ α. Due to the short

distance between the surfaces, the counterions on each surface correlate their position to form

a Wigner crystal where the area per ion is halved (compared to the Wigner crystal on a single

surface) and the Wigner crystal characteristic length is updated to be α′ = α/
√
2. It turns out

that when d/α ≪ Ξ1/4, the interaction between ions in their crystal structure is still negligible

while the combined potential between the two surfaces is uniform. Unlike the x−y positioning

of the ions which is still fixed, the ion distribution in the z direction changes. The ions can

now unbind from the surface and explore the space between the two surfaces without electrical

energy cost. This allows the ions to unbind from the surfaces and adopt uniform distribution

between them [25]. It is important to note that the criterion d/α ≪ Ξ1/4 may be satisfied

when the distance between the two plates is greater than λGC .

The unbound ions in the water slab cast inter-plates pressure, P , on the surfaces

P

kBT
= 2

σe
ζd

− 2πσ2
ee

2

ϵwϵ0kBT
= 2πλBσ

2
e

(
2λGC

d
− 1

)
. (1.19)

In addition to the ideal gas-like pressure of the ions, which push the plates further apart,

away from each other (increasing d), the ions also attract the two plates (decreasing d). When

d > 2λGC , the pressure between the plate is negative and the plates are attracted to one

another. This attraction stems from correlated local charge arrangement on the two surfaces

in the x− y plane and cannot be accounted for within the mean field approach.

1.5 Elastic Properties of Charged Membranes

The elastic moduli appearing in eqs. (1.1) to (1.4) are primarily governed by the short range

intermolecular forces between the lipids [11]. Electrostatic interactions, however, are long

ranged and are expected to make a contribution both to the bending rigidity (κe = κ + δκe)

and to the saddle splay (κ̄e = κ̄ + δκ̄e). The contributions δκe and κ̄e are governed by the

electrolytes behaviour [20]. For example, the free energy barrier for membrane fusion includes

the high energy associated with strongly-bent membranes. This barrier is reduced when the

two lipid membranes are oppositely charged due to the strong attraction between the two

surfaces. A possible presence of counterions in the space between the two surface will change

the degree of reduction of the energy barrier. Listed here are some of the key insights about

the effect of electrostatic interactions on the bending energy 2.

2The results in chapter 3 discuss only the effect on bending rigidity, δκe and as such, the effect on the saddle
splay is not discussed here.
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The simplest method to obtain δκe is solving the Poisson-Boltzmann equation for specific

geometries, and calculating the free energy using eq. (1.17). Alternatively, one can find the

free energy associated with charging the surface

fe =

∫ σe

0

ψs (σe
′) dσe

′, (1.20)

where ψs is the surface potential. Note that the charging energy in eq. (1.20) includes implicit

contributions resulting from the increase of electrolyte concentration in the solution as the

system remains charge neutral. Once the free energy is obtained, one can rearrange the terms

to resemble the free energy of neutral membrane which has a bending-like, δκe term and a

curvature-like term. The electrostatic contribution to the bending modulus in the case of

spherical or cylindrical membranes was calculated using a perturbation technique to a second

order on the Poisson-Boltzmann equation [26]. In these geometries, the charge-free bending

energy of a charge-free membrane reads [26]

f sphere
bend =

1

2
κ

(
2

R
− 2c0

)2

(1.21)

f cylinder
bend =

1

2
κ

(
1

R
− c0

)2

, (1.22)

where R is the sphere or cylinder radius. The general contribution to δκe obtained for these

geometries is

δκe =
1kBTλD
2πλB

(√
1 + p2l − 1

)(√
1 + p2l + 2

)
(√

1 + p2l + 1
)√

1 + p2l

(1.23)

where pl is related, through some variable changes, to boundary condition (1.11)

pl =
2πλBλD |σe|

e
∼ σe

ν
1/2
0

. (1.24)

Equation (1.23) is applicable in any general condition of electrolyte concentration, ν0, and

surface charge density, σe. Specifically, for cases when pl ≪ 1 (low |σe| or large ν0), or pl ≫ 1

(large |σe| or low ν0), δκe is simplified to

δκe =
kBT3πλBλ

3
Dσe

2

2e2
, pl ≪ 1 (1.25)

δκe =
kBTλD
2πλB

, pl ≫ 1. (1.26)

Within the mean field approach, the electrostatic contribution in both cases, and in the general
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case, is always positive, implying that the membrane become stiffer upon charging. The same

conclusion for these geometries was found for the linearized Poisson-Boltzmann equation, for

both fully coupled and fully decoupled geometries [16, 15].

A geometry more relevant to the studies reported in this thesis, which is harder to solve,

is that of a flat but undulating bilayer. In this case, it is more convenient to consider the

Fourier spectrum of the membrane height function, as in eq. (1.4), where the bending energy

associated with each mod q⃗ of amplitude hq⃗ is

fbend =
1

4
κ0hq⃗q

4. (1.27)

The electrostatic effect on the bending modulus was derived by a method similar to the one used

to derive eqs. (1.25) and (1.26): One calculates the free energy using eq. (1.17) or eq. (1.20) and

looks at the coefficients of q4 in the Fourier space. For decoupled membranes, where ϵl → 0,

and for long wavelengths (κq ≫ 2π), after redefining pl to be λGC/λD, δκe is approximated to

be [27]

δκe =
λDkBT

2πλB

(
1− 2p2l +

2p3l√
1 + p2l

)
. (1.28)

Note that, similarly to the spherical and cylindrical geometries, the δκe is always positive and

the bending modulus increases with σe. The same holds for the coupled system where the

electric field is allowed to penetrate the membrane under the assumption that it is constant

inside the membrane [28]. Once again, we reach the conclusion that within the mean field

approximation—and regardless of their electric permeability, ions concentration, or charge

density—membranes become stiffer when charged.

The discussion in this section is limited for solutions of delocalized charge that are applicable

only to monovalent charge. Chapter 3 presents computer simulations of charged membranes in

salt-free solution (in the presence of counterions). The simulated system allowed for undulation

and considered the cases of monovalent (ζ = 1) and multivalent(ζ = 5) counterions. The

quality of measurement in the simulation isn’t good enough for a quantitative comparison

to the equations above, but they show the same qualitative trend; an increase in the bending

rigidity upon membrane charging when monovalent counterions are present. When multivalent

counterions are presents, the opposite trend is observed and the bending rigidity decreases upon

membrane charging. The difference in the trends stems from the different behaviour of the

counterions. When the counterions are monovalent, they don’t fully condense on the membrane

and they don’t fully mask its charge. Bending the membrane brings charges closer and thus,
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the membrane is stiffened. On the other hand, pentavalent counterions are adsorbed to the

membrane which allow for charge-charge and charge-height correlations leading to membrane

softening.

1.6 Lipid-DNA Complexes

Complexes constituting DNA and lipids (both neutral and charged) are an example where

electrostatic interactions affect the mechanical properties of lipids. Such complexes might be

applicable for gene therapy, a medical approach that aims to replace a damaged gene with a

properly functioning one. This holds great promise for future medical applications including,

for example, new treatments for various inherited diseases and cancers [29]. The core of the

process, called transfection, includes the key steps of transferring foreign DNA into a target

cell, followed by the expression of the genetic information. Lipid-DNA complexes, designated

lipoplexes, or CL-DNA complexes constitute one of the most promising non-viral gene delivery

systems [30, 31, 32]. Although their transfection efficiency (TE) is, in general, inferior to that

of viral vectors, lipoplexes have the advantage of triggering minimal immune response and

being non-pathogenic [32, 33, 34, 35]. Furthermore, lipoplexes allow for the transfer of larger

DNA segments. Their production does not require sophisticated engineering since they form

spontaneously in aqueous solutions when DNA molecules are mixed with cationic and neutral

lipids (NLs) [36, 37]. X-ray diffraction experiments have revealed several liquid crystalline

phases of CL-DNA complexes.

Figure 1.1 depicts the most prominent structures: (i) a lamellar phase (LC
α ), with 2D smectic

array of DNA within lipid bilayers [36], and (ii) an inverted hexagonal phase (HC
II), where the

DNA rods are packed in a hexagonal lattice and the lipids form monolayers around them [37].

The lipoplex structure is largely determined by the bending rigidity and spontaneous curvature

of the lipids [38]. The main thermodynamic driving force for lipoplex formation is the entropic

gain stemming from the release of the tightly bound counterions from the DNA and the lipid

bilayers, as mentioned in section 1.3.

Isoelectric complexes, where the total charge on the DNA molecules exactly matches the

total charge of the CLs, are the most stable ones because they enable nearly complete counteri-

ons release [40]. Thermodynamically stable lipoplexes are easier to produce and maintain their

integrity while outside the cell, but once inside the cell, lipoplex degradation is required but

slowed due to its stability. The thermodynamic stability of a lipoplex is not the only property

of lipoplexes that affect their TEs. The lipoplex liquid crystalline structure and its charge
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Figure 1.1: The two most prominent structures of lipid DNA complexes. Left, the lamellar
phase, LC

α , where the DNA molecules are ordered in smectic array between the lipid bilayers.
Right, the inverted hexagonal phase, HC

II, where the DNA rods are packed in a hexagonal phase
lattice and the lipids “fill the gaps“ between them. Images are taken from [39].

density (per unit area) are also of importance [39, 41]. Generally speaking, HC
II complexes

exhibit higher TEs than LC
α complexes and increasing the lipoplex charge density also results

in higher TEs.

In spite of the insights about the transfection efficiency, the mechanism is not yet known.

A key question is why the stable lipoplex becomes unstable after endocytosis, as evident by

the spontaneous DNA release from the trapped lipoplex? Chapter 4 analyzes the essential

thermodynamic driving forces of the three stages of lipoplex-based cell delivery [39, 42, 43]:

(i) endocytosis, (ii) lipoplex breakdown that involves membrane fusion, and (iii) DNA release.

Endocytosis, stage (i), is triggered by the adhesion of the lipoplex to the plasma membrane

which occurs via electrostatic interactions and counterion release. Stage (i) results in a sys-

tem that is thermodynamically different from a lipoplex in solution. The two membranes, the

negatively charged plasma membrane and the positively charged lipoplex external membrane,

are in close proximity. This allows for free energy gain due to mixing of lipids between the

lipoplex and the plasma membrane. This free energy gain reduces the free energy barrier to

membrane fusion which allows for stage (iii) DNA release. The release occurs through elec-

trostatic interactions between the DNA molecules and the oppositely charged macromolecules

that reside in the cytoplasm.

16



Chapter 2

Small Membranes Under Negative

Surface Tension.

2.1 Background

In chapter 1, the Helfrich’s effective Hamiltonian was introduced

H =

∫
A

dS

[
σ0 +

1

2
κ0 (c1 + c2 − 2c0)

2 + κ̄0c1c2

]
. (1.1)

For symmetric membranes that maintain their topology, the Hamiltonian is simplified

H =

∫
A

dS

[
σ0 +

1

2
κ0 (c1 + c2)

2

]
= σ0A+

1

2
κ0J

2, (1.2)

Where σ0 and κ0 are the surface tension and bending rigidity of the membrane respectively,

c1 and c2 are the main curvature, A is the membrane total area, and J2 =
∫
dS (c1 + c2)

2 is

the integrated square total curvature. Measurement of σ0, which is a material property, has

proved to be problematic as it is coupled to the membrane total area, a property that is not

well defined due undulations and molecular-size protrusions. The property coupled with the

membrane projected area Ap is defined via the Helfrich free energy

F = σĀ+
1

2
κJ̄2 (1.3)

where σ and κ are, the renormalized surface tension and bending rigidity of the membrane,

respectively, Ā is the mean area, and J̄2 is the mean square curvature. For symmetric mem-

branes Ā = Ap and J̄2 = 0, the free energy takes the form F = σAp and the surface tension is

equal to frame mechanical tension σ = τ = ∂F/∂Ap which is the force per unit length exerted
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on an edge of a bilayer.

Another quantity of interest is the fluctuation tension, γ, which is derived from the Fourier

expansion of a weakly undulating membrane. The 2D Fourier transform of such membrane

reads

hq⃗ = l/L
∑
r⃗

h (r⃗) exp (−iq⃗ · r⃗) , (2.1)

where the wave vector q⃗ = 2πn⃗/L, n⃗ = (nx, ny), with nx, ny = −4,−3, . . . , 2, 3, and r⃗ being

the two dimensional position vector. After the transform, Hamiltonian 1.2 is given by

H =
l2

2

∑
q⃗

(
γ |q⃗|2 + κ |q⃗|4

)
|hq⃗|2 , (2.2)

and applying the equipartition theorem results with

⟨|hq⃗|⟩ =
kBTAp

l4 (γq2 + κq4 +Oq6)
. (1.4)

This fluctuation tension in eqs. (1.4) and (2.2), γ, can also be identified as the membrane

surface tension, and for a symmetric membrane under positive surface tension it is found

that γ = τ = σ [11, 12]. This equality holds true for non-negative values of σ. When the

surface tension vanishes, σ = 0, the membrane is “free to choose” the equilibrium projected

area Ap that minimizes the free energy eq. (1.3). This chapter concerns the instabilities and

elastic response of the membrane to a further decrease in the frame area, which involves the

application of a negative surface tension. Based on eq. (1.4), one may argue that for γ < 0,

the membrane always becomes mechanically unstable because the amplitude of any mode with

q <
√
−γ/κ diverges. But such modes exist only in sufficiently large membranes; hence, small

membranes can always sustain some negative surface tension. For instance, consider a square

membrane of linear size L with κ = 25kBT ≃ 1019J . From eq. (1.4), one finds that such a

membrane can withstand negative surface tension of size γ = 5×103N/m [which is comparable

in magnitude to the typical positive rupture tension [13]], provided that L < (2π)
√
κ/γ ≃30

nm. This is the characteristic size of actual small liposomes and of bilayers in highly coarse-

grained simulations. Thus, the above estimation highlights the fact that the question of elastic

response to negative surface tension is not only interesting for its theoretical aspects, but is

relevant to current experimental and computational studies.

The derivation of eq. (1.4), and the proof that the fluctuation and mechanical tensions

coincide with each other, involves several assumptions that do not necessarily remain valid

when σ becomes negative. Specifically, it is based on the investigation of the linear response of
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a mechanically-stable flat membrane to small normal forces and is restricted to configurations

with smooth (twice differentiable) height functions h (r⃗). But when σ < 0, the membrane can

relieve the free energy cost of compression by buckling. Note that in the absence of normal

forces (which is the case under consideration here), the system is not expected to undergo

spontaneous symmetry breaking similar to that occurring, in e.g., Ising spin systems below the

critical point. The reason is that the membrane height profile h (r⃗) is a continuous field and,

therefore the transition between different buckled configurations (e.g., from buckled “upward”

to “downward”) does not require the crossing of a free energy barrier. Thus, the system

remains ergodic for negative tension, and due to the symmetry of the bilayer, ⟨hq⃗⟩ = 0 for all

the Fourier modes. The questions that remain are as follows.

1. Does eq. (1.4) still hold for σ < 0? It is not expected to remain valid for strongly

compressed membranes since the quadratic approximation of Helfrich’s Hamiltonian [eq. (1.1)]

is not valid. However, considering the fact that it holds for σ = 0, there is no apparent reason

why it should not hold for small negative σ.

2. Are the mechanical and fluctuation tensions still equal to each other? (Obviously, this

question is relevant only if the answer to question no. 1 is “yes.”) As noted above, the proof

of this equality depends on the surface tension being positive. Now that it is negative, the

membrane prefers more buckled configurations with larger mean squared amplitudes. Does

this imply that the fluctuation tension γ drops faster (i.e., becomes more negative) than the

mechanical tension τ?

3. What happens to the bending modulus κ under compression? The coefficient appearing

in eq. (1.4) is the renormalized bending modulus which, just like the tension γ, may vary with

the frame area Ap. For positive tensions, the variations in κ are usually negligible, but this may

not be the case for negative tensions when the membrane becomes increasingly more buckled.

Does the increase in the degree of buckling under larger compressive stresses involve a decrease

in κ?

4. Does the membrane exhibit linear (Hookean) elastic response to negative mechanical

tension? In response to a positive tension, the membrane becomes stretched and the rela-

tionship between the change in the area (strain) and the stress is indeed linear. However,

the lipids constitute a dense two-dimensional fluid and therefore, the membrane can be barely

compressed below its most favorable physical area A0. When, under the application of a neg-

ative tension, the physical area A reaches A0, the negative tension causes the membrane to

buckle and more and more area is “stored” in the out-of plane fluctuations. This could lead

to a highly non-linear elastic response.
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The following section provides the essential details about the Monte-Carlo simulation

method employed for the results and discussion sections of this chapter.

2.2 Monte Carlo Simulation Details

The Monte Carlo (MC) simulations reported here, a sample snapshot of which appears in

fig. 2.1, constitute N = 1, 000 lipids in each monolayer. To allow for simulation of these

relatively large membranes, the Cooke-Deserno model [44, 7] was used. This highly coarse-

grained model assumes each lipid to be a trimer consisting of one hydrophilic (head) and two

hydrophobic (tail) beads of size bl. The solvent is modeled implicitly and the hydrophobic

pair potential [eq. (4) in [44]] parameters are ε = 1.05kBT (potential depth) and ωc = 1.35bl

(potential length). As can be seen in the sample snapshot (taken under surface tension) in

fig. 2.1, these parameters yield a soft membrane with κ ≃ 8kBT . This value of κ, though it is

lower than the typical value of biological membranes, allows greater sensitivity to changes in

a membrane’s physical properties while maintaining its stability. The simulation parameters

also determine the unit of energy, kBT , and the unit of length, bl, which is the parameter of

the repulsion potential [eq. (1) in [44]].

The membranes are simulated in a square box of size L = Lx = Ly, with periodic boundary

conditions in the x− y plane. The lipids are placed randomly within two flat monolayers and

Figure 2.1: A sample snapshot of the simulated membrane with zero surface tension. The
white beads are hydrophilic head particles and the gray ones the hydrophobic tail particles.
The solvent is simulated implicitly.
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allowed to equilibrate for 1×105 MC units of time. On average, each MC time unit consists of

N translation (with additional small intermolecular displacement) and rotation move attempts

carried out on randomly chosen lipids. The membrane is simulated at constant frame tension

τ , which is accomplished by incorporating several collective move attempts, per time unit, to

change the frame area, Ap, of the membrane [45]. Another collective move attempt in the

simulations is the “mode excitation” attempt that accelerates the slow dynamics of the long-

wavelength Fourier modes [46]. The quantities of interest, as detailed below, were sampled at

intervals of 200MC over 1.5× 106 MC for each value of τ .

The membrane simulations carried over the range −0.3 ≤ τ ≤ 0.5 (in kBT/b
2
l units) where

they were mechanically stable. Relation to physical units can be made by setting bl = 0.65 nm,

which corresponds to membrane thickness of 2 × 3bl ∼ 4nm and gives the unit of the surface

tension kBT/b
2
l ≃ 10 mN/m. For τ > 0.5, the membranes rupture, while for τ < −0.3, they

exhibit large normal undulations leading to the collapse of the membrane and the dissociation of

lipids. The simulations included also measurements of the mean and variance of the projected

area distribution (⟨Ap⟩, and
⟨
δA2

p

⟩
=
⟨
A2

p

⟩
− ⟨Ap⟩2, respectively).

The Fourier transform of the height undulations is also measured by dividing the mem-

brane into 8 × 8 grid cells and calculating the local mean height of the bilayer within

each grid cell. The Fourier transform of h (r⃗) in wavenumber space, n⃗ = q⃗ (L/2π), where

[n⃗ = (nx, ny);nx, ny = −4,−3, . . . , 2, 3] is defined by

hn⃗ =
1

L

∑
r⃗

h (r⃗) exp (−2πin⃗ · r⃗/L) (2.3)

Notice that to maintain constant frame tension in the simulations, the linear size of the frame

L, appearing in the definition of h̃n⃗, isn’t constant, but rather fluctuates. Thus, at each

measurement, the instantaneous value of L is used. Also notice that hn⃗ defined in eq. (2.3) is

dimensionless, due to the L−1 prefactor that does not exist in the more commonly used hq⃗ of

eq. (1.4). In terms of the variable hn⃗, eq. (1.4) takes the form

⟨
|hn⃗|2

⟩
=

(
L

l

)4
kBT

γ ⟨Ap⟩ (2πn)2 + κ (2πn)4
. (2.4)

There are four different modes of corresponding to each value of |n⃗|. This number is reduced

to two if |nx| = |ny| or if one of the components of n⃗ is zero. The results in section 2.3, for

|hn⃗| (and other related quantities) represent averages over these distinct modes. In eq. (2.4), l

is the grid size, which implies that L/l = 8, independently of the instantaneous value of L.
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Due to molecular-scale protrusion, the physical area of the membrane cannot be unambigu-

ously determined. Therefore, the following approximation for ⟨A⟩ is used:

⟨A⟩ = ⟨Ap⟩

[
1 +

1

2

(
l

L

)4∑
n⃗

(2πn) ⟨|hn⃗|⟩

]
(2.5)

which is the physical area “visible” up to the resolution of the grid. One can also define the

effective area-stretch modulus of the membrane, KA, by assuming that the free energy cost

due to small variations in the projected area from ⟨Ap⟩ can be approximated by the quadratic

form

Fstretch =
1

2
KA

(A− Ap)
2

Ap

. (2.6)

Under this approximation, the coefficient KA can be extracted from the fluctuation statistics

of KA by using the equipartition theorem

KA =
kBT ⟨Ap⟩⟨
δA2

p

⟩ . (2.7)

2.3 Results and Discussion

Section 2.1 brought up several questions concerning the elastic and fluctuation behavior of

membranes under negative mechanical tension. In this section, the results of a coarse-grained

computer simulation address those questions.

The first question to be answered is the validity of eq. (1.4) [and eq. (2.4)] for negative

frame tensions. Figure 2.2 displays the results for the fluctuation spectral intensity, ⟨|hn⃗|⟩2,

as a function of n2 for membranes under three different mechanical tensions τ = −0.24, 0,

and 0.24. The fits of the computational results to eq. (2.4) are displayed with dotted-dashed

lines. The quality of each fit in the range −0.3 ≤ τ ≤ 0.5 was quite good, and this dictates

the range of stability. This demonstrates that, for stable membranes, eqs. (1.4) and (2.4)

adequately describe the fluctuation behavior of bilayer membranes under both positive and

negative tensions.

From the fitting curves, one can extract the values of the parameter κ and the product γ ⟨Ap⟩

as a function of τ . One can obtain the fluctuation tension γ by measuring ⟨Ap⟩ independently.

Attempts to use κ as a single fitting parameters by forcing γ = τ (and using the measured value

of ⟨Ap⟩) resulted in poor fitting for negative tensions. This is due to the nonlinear response of

⟨Ap⟩ to τ as plotted in the inset of fig. 2.2. The observed increase in ⟨Ap⟩ with τ is anticipated
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Figure 2.2: The spectral intensity as a function of the wavenumber for membranes under
frame tension of τ = −0.24 (squares), 0 (circles), and 0.24 (triangles). The dotted-dashed
curves represent the best fits of the results to eq. (2.4) over the first four modes. The inset
shows the mean projected area per lipid as a function of τ .

and will be discussed in detail later. Figure 2.3 depicts the fluctuation tension γ as a function of

τ . The values reported in fig. 2.3 are based on fitting analysis over the four longest fluctuation

modes (smallest wave numbers), and the error bars represent the intervals over which the fitting

parameters, γ and κ, can be (mutually) varied while still producing reasonable fits up to the

accuracy of the computational results. For nonnegative tensions, the results in fig. 2.3 agree

very well with the simple relationship τ = γ. As noted in section 2.1, there is no reason for

this equality to remain valid for negative tensions. The analysis summarized in fig. 2.3 reveals

that, indeed, γ ̸= τ when the tensions are negative. Figure 2.3 demonstrates that γ < τ and,

as also argued above, it is likely that the more rapid decrease in γ compared to τ is related to

the tendency of the membrane to form buckled configurations under negative tensions. The

equality between γ and τ is regained for τ ≃ −0.15 and γ becomes larger than τ .

A closer inspection of the behavior of γ vs. τ curve depicted in fig. 2.3 reveals that it may

be divided into three regimes: (i) a linear γ = τ regime for τ ≥ 0, (ii) a non-linear regime

where γ < τ < 0 for mildly negative frame tensions, and (iii) a plateau regime (γ ≃ const)

for larger negative values of τ . Saturation of the negative tension for strongly compressed

membranes was previously observed [47], and will be detailed along with the discussion about

the physical area in fig. 2.5. The fluctuation tension in fig. 2.3 is extracted from eq. (2.4), where

it appears in the coefficient 4π2γ ⟨Ap⟩ of the n2 term in the denominator. Naively, one may
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Figure 2.3: The fluctuation tension γ as a function of the frame mechanical tension τ . The
solid line represents the equality γ = τ , which is expected to hold for positive tensions. The
inset shows the spectral intensity of the longest Fourier mode (n = 1),

⟨
|h1|2

⟩
as a function of

τ .

expect the saturation of the fluctuation tension γ to result in the leveling-off of the fluctuation

spectral intensity |hn⃗|2. However, the computational results indicate that the amplitudes of

the normal undulations continue to grow for decreasing values of τ , as shown in the inset of

fig. 2.3. This apparent discrepancy can be only partially resolved by the trend in ⟨Ap⟩, whose

value is reduced by about 10% in the plateau regime of γ. The main factor explaining the

increase in the undulation amplitude in the constant γ regime is the decrease in the effective

bending modulus κ, the value of which is plotted in fig. 2.4. Note though, κ is not a material

but rather a thermodynamic quantity. For a tensionless membrane, the thermal undulations

reduce (renormalize) the bending rigidity by δκ = − (3/4π) kBT log (L/l), which is a small

correction [48]. For τ < 0, the amplitude of the fluctuations increase and therefore, this

correction term should become larger (in absolute value), which explains the drop in the value

of κ seen in fig. 2.4. To state it in other words, just like the rapid decrease in κ, reported

above in fig. 2.3 for membranes under negative tension, the reduction in κ is also related to

the increasing thermal roughness of the membrane and the tendency of the membrane to form

more buckled configurations.

The results of figs. 2.3 and 2.4 point to an interesting difference between the elastic coeffi-

cients γ and κ. The former decreases faster than τ for small negative tensions and levels off at

large negative tensions. The latter exhibits “opposite” behavior and remains fairly constant
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Figure 2.4: The bending rigidity κ as a function of the frame tension τ . The dotted-dashed
line is a guide to the eye.

in the small negative tension regime, and then decreases for strongly compressed membranes.

The crossover between the regimes occurs at τ ≃ −0.15. Some light may be shed on these

observations by the results of fig. 2.5 depicting the mean projected and total areas as a func-

tion of τ . The results for the mean projected area, ⟨Ap⟩, were measured directly from the

simulations, while the data for the mean total area, ⟨A⟩, were calculated using eq. (2.5). For

τ > 0, a nearly linear dependence of both ⟨Ap⟩ (see also the dotted-dashed line) and ⟨A⟩ on τ

is observed.

This behavior agrees very well with the experimental results of Evans and Rawicz, who also

measured linear elastic response of giant unilamellar vesicles (GUVs) under positive mechanical

tension[13]. Notice, however, an important difference between the origins of linear elasticity in

GUVs and small bilayer membranes. In both cases, the linear elastic response is energetic in

nature and dominated by the area elasticity of the membrane, while the entropy and bending

energy of the height fluctuations play a secondary role in the response to stretching. In GUVs,

this happens after the height fluctuations have been ironed by a very weak positive tension

scaling inversely with Ap. In small membranes, the height fluctuations are not dumped and

in fact, the simulation results in fig. 2.5 reveal that the excess area “stored” in the height

fluctuations, ⟨A⟩ − ⟨Ap⟩, decreases only weakly with τ . This implies that the entropy and

bending energy of small membranes do not vanish (as in GUVs under tension), but simply

exhibit relatively weak dependence on the frame tension (and, therefore, contribute weakly to
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Figure 2.5: Measured area as a function of the frame tension τ . Solids circles and squares
denote, the results for the frame and total areas, respectively. The former was measured
directly from the simulation, while the latter was derived from the computed data for the
spectral intensity, by using eq. (2.5). The open circle marks the optimal area of a flat tensionless
membrane, A0. The dotted-dashed line is a linear fit for the results for ⟨Ap⟩ , while the
horizontal dotted line marks A0. All areas plotted in the figure are normalized per lipid.

the elastic response).

In addition to the simulations of fluctuating membranes, a flat, tensionless (τ = 0) mem-

brane was simulated by running an MC code with moves allowing only local protrusions of

lipids, but completely suppressing the longer scale bending modes (i.e., ensuring hn⃗ = 0 for all

n). For a flat membrane, A = Ap. The measured area of the flat tensionless membrane, A0, is

denoted by the open circle and the horizontal dotted line in fig. 2.5. This is the area that mini-

mizes the elastic energy of the membrane. Figure 2.5 provides an interesting interpretation for

the weak and strong negative tension regimes. The weak negative tension regime is essentially

a continuation of the positive tension regime. The mean area of a tensionless fluctuating mem-

brane is slightly larger than A0 which implies that, in fact, the membrane is stretched despite

the negative mechanical tension. Therefore, the area-dependent elastic energy continues to

decrease with τ into the weak negative tension regime. The strong negative tension regime

begins when the total physical area reaches A0. Since the membrane constitutes a dense fluid

of lipids, it cannot be much further compressed, and in order to maintain the total area at A0,

more area must be expelled into the height fluctuations. Notice that eq. (2.5) is actually the

Taylor expansion of ⟨A⟩ about weakly fluctuating membranes. In this regime, the relatively

strong undulation cause greater deviation from the real value of ⟨A⟩. This partially explains
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the continued decrease of ⟨A⟩ in this regime. At this point, the elastic response becomes dom-

inated by the height fluctuations bending elasticity and entropy. This causes the apparent

reduction in the effective bending modulus, κ, instead of the reduction in the now constant

fluctuation tension γ. The saturation of the membrane’s physical area, and its correlation with

that of the surface tension, was previously reported [47]. Figure 2.5 demonstrates that this

occurs when ⟨A⟩ reaches the value of A0, which provided an intuitive explanation for these

observations. Notice that the rapid decrease in the projected area Ap with τ in this regime

occurs simultaneously with the increase in the projected area fluctuations. The resulting rapid

decrease in the effective stretch modulus KA, defined by eq. (2.7), is plotted in fig. 2.6. The

increase in the membrane buckling in the plateau regime results also in the apparent decrease

in KA. Hence, the vanishing of KA in fig. 2.6 should not be interpreted as changes in the

material stiffness of the membrane, but rather as another signal for the onset of mechanical

instability.

2.4 Conclusions

In this chapter, we used coarse-grained computer simulations to study the behaviour of small

membranes under negative surface tension. Based on the results in section 2.3, one can identify

two regimes of negative tension with distinct features:

Figure 2.6: The stretch modulus KA, measured from eq. (2.7), as a function of the frame
tension τ . The dotted-dashed line is a guide to the eye.
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Figure 2.7: The bending, stretching, and total free energies (see definitions in the text) per grid
cell, as a function of mean projected area Ap per lipid. The data for the total free energy have
been shifted vertically by 0.3 for clarity. The vertical dotted-dashed line marks the measured
projected area for τ = 0.

(i) For weak negative tensions, the fluctuation tension γ drops somewhat faster than the

mechanical tension τ . This behavior, which stand in contrast to the positive tension

behavior: γ = τ , is attributed to the fact that in this regime, the membrane is still

effectively stressed (⟨A⟩ > A0). Under negative surface tension, the membrane tends to

buckle, which is achieved by reducing the free energy associated with strong undulations.

(ii) In the strong negative tension regime, while the fluctuation tension saturates, the effective

bending rigidity begins to fall. Additionally, the total membrane area in the simulations

reported here reaches the optimal value of A0 and does not continue to drop much.

The different response that membranes exhibit to negative values of σ, compared to positive

ones, indicates that the elastic free energy (eq. (1.3) in section 1.2), isn’t applicable in the

negative regime. However, a free energy model for the negative regime can be rationalized in

the same spirit by considering the sum of two terms associated with stretching and bending.

The former is given by the quadratic form

Fstretch = (1/2)KA[⟨A⟩ − A0]
2/A0, (2.8)
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while the latter may be evaluated by

Fbend = (1/2)κ
∑
n⃗

n4
⟨∣∣h2n⃗∣∣⟩ . (2.9)

These two contributions and their sum are plotted in fig. 2.7 as a function of ⟨Ap⟩. Notice

that both Fstretch and Fbend depend on ⟨Ap⟩ the former explicitly, and the latter implicitly

through the Fourier modes calculations. The free energies in fig. 2.7 provide insight into

the computational results in this chapter. First, the total free energy attains a minimum at

⟨F ⟩ /N ≃ 1.32 (marked by the vertical dotted dashed line), which is the mean projected area

measured for τ = 0. This must be the case since τ = ∂F/∂Ap. Second, the bending free energy

decreases with τ , which considering fig. 2.2, is expected since, upon stretching, the thermal

bending undulations tend to be suppressed. The stretching free energy increases with Ap in

the weak negative and positive tensions regimes, i.e., when ⟨A⟩ > A0. Under strong negative

tensions, Fstretch vanishes, which is associated with the observation that the total physical area

remains at the optimal value and does not change in this regime.

A crossover from bending- to stretching-dominated membrane elasticity has also been ob-

served in micropipette aspiration experiments on GUVs [13]. There are, however, several

key differences between the elastic behaviors of small membranes, such as reported here, and

large ones. The former can withstand a (size-dependent) negative tension while the latter are

destabilized due to the strong undulations of the large bending modes. The negative surface

tension that causes undulations in the small membranes may be comparable in magnitude to

the positive rupture tension. In giant membranes, bending-dominated elasticity is limited to

extremely small positive tensions that are typically two orders of magnitude smaller than the

rupture tension. In small membranes, the crossover from bending-dominated to stretching-

dominated elasticity is smoother and occurs at small negative tensions. In other words, the

stretching-dominated elasticity regime extends into negative tensions, which stems from the

fact that at zero tension, the membrane is still slightly stretched. Bending-dominated elasticity

is observed at larger negative tensions. It is characterized by a decrease in the effective bending

rigidity and stretch modulus of the membrane that ultimately leads to mechanical instability

and membrane collapse.
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Chapter 3

Rigidity of Charged Membranes.

3.1 Background.

Section 1.5 in chapter 1 discusses the the electrostatic effects on the bending rigidity (κe =

κ + δκe) of a membranes upon charging while its other properties remain the same. That

discussion was limited to the relatively well understood mean field picture and its underling

conclusion was that δκe > 0 regardless of the membrane morphology, the surface charge density,

or the ions concentration in solution. This is so because without its counterions, charged

membrane would become significantly more rigid (δκe ≫ κ) [20] and the counterions, due to

their distribution, does not mask the membrane charges, and thus, not fully negate this effect.

In section 1.4, the charge-like attractions phenomena, which is not accounted for using the

mean field approach, was discussed. The mean field solution ignores charge density fluctuations

and their spatial correlations. While such correlations are negligible when monovalent counteri-

ons are discussed, this is no longer true with multivalent ions and lipids (zi ≥ 2). Studying the

effect of multivalent counterions proves to be rather challenging, partially due to the multiple

predictions that, while they don’t fully contradict each other, are not at full agreement either.

Including charge fluctuations in the Poisson-Boltzmann equation may lead to a reduction in

the bending modulus δκe < 0 [21]. The same trend is predicted by the opposite assumption

of “freezing” counterions in a Wigner crystal structure on a uniformly charged membrane and

allowing for some correction terms [20]. Allowing for compressibility of the charge fluctuations

resulted in a prediction of membrane buckling due to long-range electrostatic interactions [22].

Taking a different approach and applying a second order perturbation to a general two-body

potential resulted in the possibility of membrane softening due to electrostatic interactions

[49].

Similarly to the charge-like attraction phenomenon discussed in section 1.4, the appearance
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of negative δκe in bilayer membranes is attributed to multivalent counterions condensation and

their spatial correlation. Membrane softening involves both charge-charge and height-charge

correlations. The details of this effect are not fully understood, but it is generally believed to

be small and thus, hard to measure experimentally. Furthermore, the effect is overshadowed by

intermolecular interactions which are not screened and λD is long [21, 22]. The results reported

in this chapter were gained through coarse-grained computer simulations that allowed exploring

the effect in the absence of excess salt and other influences. The reported results support the

picture that spatial correlation in the charge density due to the presence of highly multivalent

counterions tend to soften membranes and reduce their bending rigidity.

3.2 Monte Carlo Simulation Details

The method of simulations and variable measurements in this chapter are the same as those

detailed in section 2.2, with the addition of electrostatic calculations. To simulate a charged

membrane, a fraction of the lipid Φ− is charged by introducing a charge of −e at the center of

the lipid heads. To maintain overall charge neutrality of the system, monovalent or pentavalent

counterions are placed in the simulation box with no added salt 1 In terms of simulation length

unit (bl = 6.3Å), the Bjerrum length reads λB ≃ 7.1Å = 1.1bl. The short range potential used

for lipids was applied for the ions as well, with the radius of interaction set to bion−head = 0.5bl

when interacting with the hydrophilic heads and bion−tail = 1.5bl when interacting with the

hydrophobic tail beads. This choice of parameters allows the ions to approach the surface of the

head beads, while excluding them from the hydrophobic core of the bilayer. The membranes are

simulated at zero surface tension using the same method as in section 2.2 [45]. The membranes

are generated as two flat bilayers with N = 1, 000 lipids in each monolayer. The monolayers

are placed in the middle of the simulation box, with the counterions distributed evenly above

and below the membrane. The simulation length and move attempts were as described in

section 2.2 with the addition of ion displacement attempts. The thermalization period was 105

MC time units; and the simulation lasted for 1.8×106 MC time unit; the quantities of interest

were sampled at 50 MC time unit intervals.

Electrostatic interactions were computed using Lekner summations [50]. The dielectric

constant of water, ϵw = 80, is taken as the only dielectric constant in the simulation since it

1We choose pentavalent counterions because the effects under investigation are quite weak, and can be com-
putationally observed when the counterions are of high valency. We also include in fig. 3.3 some results obtained
from simulations of trivalent counterions, which exhibit “intermediate” behaviour between the monovalent and
pentavalent counterions.
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is practically impossible to calculate image charges for a fluctuating surface. This neglect of

discontinuities between the aqueous solution and the membrane interior, however, is justified

for a nearly flat surface (as is the case here) due to symmetry. To understand this, consider

two flat, uniformly charged surfaces (of charge density σe) positioned at the x − y plains z1

and z2. Ionic solutions surround the two surfaces and exactly neutralize the surfaces. For the

conditions of the simulated system (σe < 0 and positive solvated counterions), the electric field

at position z is equal to E = dψ/dz = σ̃e/2ϵwϵ0 where σ̃e is equal to

σ̃e =∫ z

∞

[
e ν (z′) +

2∑
i=1

σe,iδ (z
′ − zi)

]
dz′ −

∫ −∞

z

[
e ν (z′) +

2∑
i=1

σe,iδ (z
′ − zi)

]
dz′ =

= 2

∫ z

∞

[
e ν (z′)−+

6∑
i=1

σe,iδ (z
′ − zi)

]
dz′.

(3.1)

The systems as reported here are symmetric, σe1 = σe2, and on average the total number

of ions on each side of the membrane are equal. Thus, the electric field vanishes inside the

membrane (z1 < z < z2). The simulated membranes undulate and the electric field does not

vanish inside the membrane. However, since the undulations are relatively small, the effect of

neglecting the electric discontinuities should be small as well.

(a) (b)

Figure 3.1: Equilibrium configurations of membranes with charge density Φ− = 0.08 in solu-
tions of monovalent (A) and pentavalent (B) counterions. The head and tail beads of the lipids
appear in white and gray colors, respectively, while the ions are presented as black spheres
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3.3 Results and Discussion

Equilibrium configurations of membranes with charge density Φ− = 0.08 in solutions of mono-

valent (ζ = 1,A) and pentavalent (ζ = 5,B) counterions are displayed in fig. 3.1. In the latter

case, the ions tend to condense on the membrane, forming a thin Gouy-Chapmann “double

layer” [51, 18].

Figure 3.2(A) depicts the spectral intensity [eq. (1.4)] of the membrane’s thermal undula-

tions computed for the bilayers with Φ− = 0.08, whose snapshots are shown in fig. 3.1 (the

graphs have been vertically shifted for clarity). Both graphs exhibit the power law |hq⃗|2 ∼ n−4

(n⃗ = q⃗ (L/2π), where [n⃗ = (nx, ny);nx, ny = −4,−3, . . . , 2, 3]) in agreement with the form of

eq. (1.4) for γ = 0. By fitting the simulation results to eq. (1.4), one can extract the value of

κ. The charge fraction range 0 ≤ Φ− ≤ 0.16 are summarized in fig. 3.2(B), showing κ as a

function of Φ− for membranes in solutions of monovalent (circles) and pentavalent (squares)

counterions. The dashed line denotes the value of κ for a neutral membrane (Φ− = 0). Note

that the error bars on κ measurements are quite large, reflecting not only the difficulty in

obtaining good statistics for the spectral intensity of the thermal undulations, but also uncer-

tainties in fitting the data to the functional form of eq. (1.4). Therefore, it is impossible to draw

quantitative conclusions from the data regarding the variations of κ with Φ−. Nevertheless, the
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Figure 3.2: (A) Spectral intensity as a function the squared wave number n2. Data has
been obtained from simulations of charged membranes with surface charge density Φ− = 0.08
in solutions of monovalent (circles) and pentavalent (squares) counterions. The solid lines
indicates a fit to the power law

⟨
|hn⃗|2

⟩
∼ n4 based on the four largest Fourier modes. For

clarity, the graph corresponding to the monovalent counterions simulations is vertically shifted
by multiplying the spectral intensities by a factor of 5. (B) The bending rigidity κ as a function
of the charge density Φ− for membranes with monovalent (circles) and pentavalent (squares)
counterions. The horizontal dashed line indicates the value of κ for neutral membranes (Φ− =
0).
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data in fig. 3.2 clearly supports the picture that the bending modulus of charged membranes

increases from its value for Φ− = 0 when the counterions are monovalent. This observation is

consistent with the Poisson-Boltzmann results as summarized in section 1.5, although it should

be acknowledged that previous theoretical calculations of δκe were done for systems with extra

salt and for stationary (non-undulating) membranes [14].

As mentioned in section 1.4, the Poisson-Boltzmann theory is expected to break down

when the so-called dimensionless coupling parameter Ξ = 2πζ3λ2BΦ−/al (where al is the area

per lipid, and ζ is the counterion valance) becomes much larger than unity. Given the strong

dependence of Ξ on ζ, it is not surprising that simulations with pentavalent counterions reveal a

very different trend of reduction in κ due to electrostatic effects. As in the case of monovalent

counterions, the large error bars preclude quantitative analysis of the variation of κ with

Φ−. The observation that the bending modulus is reduced when the membrane is charged

and suspended in a multivalent counterions solution agrees with previous theoretical studies

[20, 21, 22, 49]. The fact that the magnitude of the negative electrostatic contribution to

κ is fairly small (kBT ) is also in general agreement with existing theoretical calculations. As

discussed in section 3.1, the negative electrostatic contribution to δκe in pentavalent counterions

solutions has been attributed to the attraction due to spatial charge correlations in the double

layer, which allows the membrane to bend more easily [22].

The picture emerging from fig. 3.2(B) is also consistent with the measurements of the equi-

librium projected area per lipid, al = Ap/N , depicted in fig. 3.3. In the presence of monovalent

0.00 0.05 0.10 0.15

1.32

1.33

1.34

1.35

1.36

1.37 Monovalent  counterions

Trivalent counterions

Pentavalent  counterions

Figure 3.3: Projected area per lipid al as a function of Φ− for membranes with monovalent
(circles), trivalent (triangles), and pentavalent (squares) counterions.
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counterions, the area per lipid increases linearly with Φ−. The increase in al arises from the

repulsive electrostatic interactions between the charged lipids, the strength of which is en-

hanced with the increase in the density Φ− of the charged lipids. The pentavalent counterion

simulations feature markedly different behavior, exhibiting a slight decrease in al with Φ−.

The decrease in al in this case indicates that the effective electrostatic interactions between

the lipids and counterions in the double layer become attractive due to spatial charge corre-

lations. Also shown in the figure are results of similar simulations with trivalent counterions

which exhibit intermediate behavior between the monovalent and pentavalent counterions. The

observed increase in al may be attributed to the fact that the coupling parameter correspond-

ing to the trivalent counterions simulations satisfies Ξ ≲ 10, which is still within the range

where, usually, mean-field theory still holds. The same trend of “intermediate” behavior of

trivalent counterions is also observed in the results for the bending rigidity (data not shown in

fig. 3.2(B)), in which the electrostatic contribution was found to be vanishingly small.

The increase in area per lipid reported in fig. 3.3 can be intuitively explained by recognizing

that the electric contribution to the free energy, Fel = kBTΦ−N , is independent of the surface

area A. The repulsion arises from the entropy of the counterions which, to an approximation,

can be viewed as confined within a volume of size V = AλGC around the surface. The associated

free energy contribution is Fen ∼ kBTN log (V ) = −kBTΦ−N log (A2/ϕN), where the last

equality is due to the fact that λGC ∼ (NΦ−/A)
−1. Introducing the area per lipid al, and

expanding the logarithm around a∗ = al (Φ− = ±0), results in the area-dependent part of this

free energy is Fel = −ckBTΦ−N (al − a∗) /a∗, where c is a numerical prefactor and the minus

sign accounts for the fact that this free energy is repulsive. Adding this Fel to the elastic energy

of the uncharged membrane [eq. (2.6)], yields the following expression for the elastic energy

per lipid f = F/N :

f =
1

2
KA

(al − a∗)2

a∗
− ckBTΦ−

(al − a∗)

a∗
. (3.2)

This stretching free energy attains a minimum at the area per lipid

amin
l = a∗ + cΦ− (kBT/KA) , (3.3)

which grows linearly with Φ−, as depicted in fig. 3.3.

Interestingly, both experiments [52] and atomistic simulations [53] found the area of mono-

valently charged phosphatidylserine (PS) lipids to be smaller than the area of their neutral

phosphattidylcholine (PC) analogs. This counterintuitive result was primarily attributed to

the formation of transient intra-molecular hydrogen bonds between the amine and carboxylate

35



Rigidity of Charged Membranes. 3.3

Figure 3.4: Top view of a simulated membrane with a pore. The membrane, with charge
density Φ− = 0.2, is in contact with a solution of monovalent counterions (not displayed).
Color coding is similar to fig. 3.1.

groups of the PS head-group. The course-grained model used here allows the hydrogen bonding

effect to be “turned off” and for the “isolation” of the Coulombic contribution, which turns out

to be repulsive in monovalent systems. In the course-grained simulations reported here, the

repulsive electrostatic interactions are balanced by relatively soft hydrophobic interactions.

Because of the weakness of these attractive interactions, for Φ− > 0.16, the areal strain in

the monovalent counterions simulations exceeds the rupture strain of the bilayer membrane,

leading to the formation of pores, as demonstrated in fig. 3.4. The rupture value of Φ− could

be increased by including hydrogen bonding in the coarse-grained model or, alternatively, by

strengthening the hydrophobic interactions, but this will also lead to an undesirable increase

in κ. Real PS bilayers have κ ≃ 20 − 50kBT which is several times larger than that of the

membrane simulated here. Assuming a linear relationship between the area stretch modulus

KA and bending rigidity κ: κ ∼ KAd
2, where d is the bilayer thickness [54] , one can expect

the stretch modulus of real bilayers to also be a few times larger than in simulations. This

feature of real PS bilayers, together with the extra attractive interaction provided by the hy-

drogen bonds, explains their mechanical stability at all charge densities, including for ϕ = 1.

The magnitude of the hydrogen bonding interactions (per lipid) can be roughly estimated by

adopting eqs. (3.2) and (3.3) derived for the case of repulsive electrostatic interactions, with a
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Figure 3.5: Sample snapshots of strongly undulating charged bilayers with pentavalent coun-
terions (not displayed). Color coding is similar to fig. 3.1.

modified (negative rather than positive) constant c. For fully-charged membrane (Φ− = 1) PS

bilayers, the area stretch modulus is typically KA ≃ 0.15J/m2, and the H-bond interactions

reduce the area per lipid from a∗ ∼ 0.72nm2 to al ≃ 0.65nm2 [52]. Substituting these values

into eq. (3.3) yields c ≃ −2.5. Using this value of c in the second term on the r.h.s. of eq. (3.2)

gives an estimate for the H-bonding free energy contribution which is fH−b ≃ −0.25kBT .

Pore formation, as exhibited in fig. 3.4, is not observed when the charged membranes are

simulated with pentavalent counterions. Therefore, such membranes can be simulated at much

higher values of Φ−. However, the multivalent counterion simulations feature a different type

of mechanical instability, which is directly related to the previously discussed reduction in κ.

At high charge densities, the membranes in pentavalent counterion solutions begin to develop

large wavelength bending instabilities, as illustrated in the series of snapshots in fig. 3.5,

corresponding to membranes with 0.2 ≤ Φ− ≤ 0.5. The growth in the amplitude of the

undulations, observed in fig. 3.5, can also be inferred from the results of fig. 3.6 that plots the

spectral intensity of the membranes whose snapshots are displayed in fig. 3.5. Clearly, there is

poor agreement between the results in fig. 3.6 eq. (1.4). The deviation of the computational

results from eq. (1.4) is expected because the power law
⟨
|hq⃗|2

⟩
∼ n−4 derived from the

quadratic approximation of eq. (1.1), strictly speaking, is only applicable to weakly fluctuating

membranes. The dashed lines represent attempts to fit eq. (1.4) to the data from the second

(n2 = 2) and third (n2 = 4) largest modes. These lines highlight the rapid increase in the

undulation amplitude of largest Fourier modes (n2 = 1), which are also the softest modes

and the first to become unstable as Φ− increases. The onset of this bending instability can
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Figure 3.6: The spectral intensity of membranes in solutions of multivalent counterions, with
surface charge density Φ− = 0.2 (circles), 0.3 (squares), 0.4 (triangles), and 0.5 (diamonds).
The dashed line indicates attempts to fit the data from the second (n2 = 2) and third (n2) =
4) largest modes to the power law form |h2n⃗|n−4. The graphs have been shifted vertically for
clarity.

thus be associated with the decline of the “apparent bending modulus” of the first mode, κ1,

which is the value of κ that solves eq. (1.4) for n2 = 1. The results in fig. 3.6 correspond to

κ1/kBT = 5.1± 0.5, 5.2± 0.7, 4.2± 0.4, and 3.8± 0.4 for ϕ = 0.2, 0.3, 0.4, and 0.5, respectively.

These values of κ1 are smaller than the values of κ reported in fig. 3.2(B) for low charge

densities. At even larger charge densities (ϕ > 0.5), these undulations continue to grow and

ultimately lead to the dissociation of the bilayer membranes.

The instabilities appearing in charged membranes are of similar nature to those reported

for stretched and compressed membranes in chapter 2, namely pore formation and buckling.

However, the “fine details” of the instabilities are different, which indicate that they are of

different origin. The most obvious difference between the two cases is the fluctuation tension.

In this chapter, the frame tension, τ , was explicitly set to zero and this set γ = τ = 0, as

covered in section 1.2. The quality of the linear fits in fig. 3.2 confirm that this assumption

holds true. This indicates that the pore formation reported in fig. 3.4 cannot be directly

attributed to a frame tension or overall stretching of the membrane. Similarly, the buckling

of the highly charged membrane with pentavalent counterions cannot be attributed to the

overall compression forces applied to membrane. While it is not necessarily true that γ = τ ,

there is no apparent reason to assume this is not the case. Moreover, the projected area

that remains roughly constant in fig. 3.3 does not agree with the recognized drop in Ap when
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buckling occurs in projected membranes; as reported in fig. 2.5. The differences point to local

interactions of relatively short range (compared to the membrane length scale) that induce

“these instabilities” in the membrane.

3.4 Conclusions

In this chapter, we investigated the elastic properties of charged membranes in contact with

counterion solutions. Through computer simulations, we discovered that the cases of mono-

valent and multivalent (with ζ = 5) counterions exhibit distinctly different behaviors. In the

former, both the bending rigidity and the equilibrium projected area increased with the mem-

brane charge density. These observations suggest, in agreement with the Poisson-Boltzmann

mean-field theory, that the repulsive forces between the lipid charges are only partially screened

by the monovalent counterions. In the latter case, the trends are opposite namely, both κ and

al show a slight decrease with increasing Φ−. These observations can be attributed to the

formation of a thin layer of counterions around the membrane and the fact that the forces

between spatially correlated charges within the “double layer” become attractive. More specif-

ically, the presence of multivalent counterions creates regions within the double layer where

local charge densities of opposite signs attract each other. The increase in the curvature undu-

lations and decrease in the area per lipid represent mechanisms through which the distances

between these correlated regions, especially those residing on the same side of the bilayer, are

generally decreased [see illustration in fig. 1 of ref. [20]]. The different elastic properties of

membranes in monovalent and multivalent solutions lead to different mechanical instabilities.

In the former case, pores open to relieve the electrostatic tensile stresses, while the latter case

is characterized by a growth in the amplitude of large wavelength bending modes. As a final

note, we remind the reader that the elastic properties of real membranes may be affected by

other intermolecular forces that can dominate the electrostatic effect on the bending rigidity.

Several such “counter mechanisms” have been mentioned in the chapter, including hydrogen-

bonding interactions, screening by salt, ions-lipids excluded-volume interactions, and image

charges that weaken the binding of the multivalent counterions to the membrane [55]. The

coarse-grained simulations provide a framework for systematically exploring the effects of these

additional interactions.
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Chapter 4

The Thermodynamics of Endosomal

Escape and DNA Release from

Lipoplexes.

4.1 Background

Section 1.6 brought forward complexes of cationic lipids (CLs), neutral lipids (NLs), and DNA

(lipoplex or CL-DNA complexes), as examples of charged lipid systems of medicinal interest.

Such complexes have therapeutic potential as gene delivery vectors that might be applied in

somatic gene therapy. Compared to viral vectors, lipid-based vectors are safer to use and sim-

pler to produce. However, their therapeutic efficiency is limited and their further improvement

requires better understanding of their mechanism of transfection and the biophysical parame-

ters of the CL-DNA complexes that influence it. Transfection, the core process of lipoplex gene

delivery, is viewed as a three-stage process starting with adsorption and entry (via endocytosis)

of the CL-DNA complex into the cell, followed by lipoplex degradation, and finally ending with

the release of the DNA, making the latter available for expression [39, 42, 43].

The first stage is driven by electrostatic attraction between the oppositely charged plasma

membrane and the lipoplex one. After endocytosis, the complex is within the cell, trapped

inside an endosome. The second stage of the transfection process, which often emerges as the

rate-limiting one, involves the breakdown of the CL-DNA complex. During this stage, the en-

dosomal and the lipoplex external membranes fuse [39]. The improved Transfection Efficiency

(TE) of hexagonal complexes over lamellar ones is likely to be related to the lower energy

barrier of fusion in hexagonal complexes [39]. In the case of lamellar complexes, the fusion
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energy barrier decreases (and TE increases) when the mole fraction of the CLs increases. These

observations suggest that the electrostatic attraction between the lipoplex and the endosomal

membrane triggers thermodynamic instability, leading to morphologic changes. The third step,

DNA release, is enabled by the second stage as the fusion of bilayers may cause pores that

connect the lipoplex internal water region (next to the DNA) to the cytoplasm. This chapter

explores the thermodynamic driving forces governing the transfection process from the stage

of adhesion and endocytosis, up to the stage of DNA release.

CL-DNA complexes adhere to cell membranes due to considerations similar to those trigger-

ing their formation, namely counterion release. As illustrated in fig. 4.1(A), both the plasma

membrane and the external bilayer of the lipoplex are covered with layers of tightly bound

counterions. These counterions neutralize the lipid charges and exclude the electric field from

the oily parts (see also discussion in section 1.3). The loss of the positional entropy of the

bound counterions is significantly lower than the energetic cost of allowing an electric field to

penetrate the low dielectric hydrophobic core. When the oppositely-charged surfaces are in

close proximity, the anionic and cationic lipids can neutralize each other, which enables the

release of counterion pairs. The positional entropy gained by the released counterions is the

main driving force for cell-lipoplex adhesion, which initiates cellular entry via endocytosis.

Figure 4.1(B) shows, schematically, a small segment of a lipoplex trapped within an en-

dosome. The entrapped lipoplex represents a thermodynamic system that is substantially

different from the lipoplex originally residing outside the cell. The difference stems from the

presence of anionic lipids (ALs) in the plasma membrane which can now mix with the CLs

and NLs of the lipoplex [39]. The process of lipid mixing is slow since it requires the lipids to

“flip-flop” between monolayers; nevertheless, it encompasses a large entropic reward. More-

over, a redistribution of the lipids, while protecting the hydrophobic cores of the bilayers from

electric fields, dictates that the counterions “escort” the flip-flopping charged lipids. When the

counterions move between the different aqueous layers of the system, they meet counterions of

opposite charge, which allows them to mutually leave the system without affecting its charge

neutrality.

In section 1.6, the thermodynamic stability of a lipoplex was discussed briefly with the un-

derstanding that it is easier to produce and handle stable lipoplexes. Entrapment of a lipoplex

by the endosome introduces anionic lipids and positive counterions that may be sufficient to

render it thermodynamically unstable. This is obviously a desirable feature since the ultimate

goal of the transfection process is lipoplex disassembly and DNA release. To better understand

the thermodynamics of transfection, a simplified model was developed. The model, which con-
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Figure 4.1: (A) Schematics of a complex of CLs (head groups depicted as red circles), NLs
(head groups - grey circles), and DNA rods (larger yellow circles), separated from the plasma
membrane which is composed of ALs (head groups - blue circles) and NLs. The lipoplex attracts
a layer of bound anions (shown as blue circles), while the plasma membrane is surrounded by
bound cations (red circles). (B) The state of the system after adhesion and endocytosis, the
formation of which is driven by cation-anion pairs release. (C) A simplified model of the system
depicted in B (see detailed explanation in text). The model system consists of six uniformly
charged plates with charge density σe,i and three water layers (shown in blue) where the ions
reside. The yellow stripes represent hydrophobic regions that do not include ions, and at which
the electric filed must vanish. Notice that the fifth charged plate, which represents the DNA
array, allows the crossover of ions.

siders electrostatic interactions within the framework of a mean field approximation, depicts

the membranes as uniformly charged planner sheets. The DNA arrays are also represented

in the same manner [fig. 4.1(C)]. This grossly simplified model is presented in the following

section. Using this model, it is demonstrated that a lipoplex entrapped inside an endosome is

inherently unstable. This instability, triggered by interactions between the cationic lipids of the

lipoplex and the anionic lipids of the enveloping plasma membrane, is entropically controlled

involving both remixing of the lipids and counterions release. The relevance of this model

is confirmed by relating the free energy behaviour reported to the experimentally observed

increase in transfection efficiency (TE) and the associated free energy barrier [39].

4.2 Lipoplex “Mean Field” Model

The model described here assumes the conditions in fig. 4.1(B) illustrating the entrapped

lipoplex immediately after endocytosis. The system constitutes six charged layers. In reverse

order [from number 6 to 1, see fig. 4.1(B)], these charged layers correspond to: 6 - the lipid

monolayer “below” the DNA array, 5 (also denoted by D) - the DNA array, 4 - the lipid

monolayer “above” the DNA array, 3 and 2 - the “intermediate” lipid monolayers, and 1 - the

lipid monolayer facing the cytoplasm. The three aqueous environments in the system will be

denoted by: 1 - the cytoplasm, 2 - the intermediate thin water layer between the endosomal

membrane and the lipoplex, and 3 - the internal water surrounding the first DNA layer. At the
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initial state, the lipid composition in monolayers 1 and 2 is that of the cell plasma membrane.

It consists of ALs and NLs only and, for simplicity, will be assumed to be symmetric. Similarly,

surfaces 3 – 6 are in the equilibrium state of the self-assembled lipoplex and have the same

CLs to NLs ratio. It is also assumed that the NLs of the plasma and lipoplex membranes are

of the same type.

The three major contributions to the free energy of the system arise from electrostatic

interactions, lipid mixing entropy, and the entropy loss of bound counterions. In the model

system depicted by fig. 4.1(C), the lipid monolayers are replaced with uniformly charged flat

surfaces of charge density σe,i (i=1,2,3,4,6). The aqueous solutions have a dielectric constant

ϵw ≃ 80, while that of the hydrophobic regions, ϵl, is assumed to be vanishingly small. This

precludes the penetration of electric fields into the hydrophobic regions due to the associated

very large electrostatic energy [15, 56]. (We note that the cytoplasam is occupied with con-

centrated macromolecules. Their presence changes the inside relative permittivity to values

ranging from about 50 to over 200 [57, 58], for which the assumption concerning the exclusion

of the electric field is from the hydrophobic regions still holds.) A somewhat greater approxi-

mation is replacing the electric field of the DNA array with the electric field of a flat surface of

charge density per unit area σe,5 = λDNA/dDNA where λDNA ≃ 1.7e/Å linear (per unit length)

charge density of the DNA rod, e being the electron charge, and dDNA is the inter-DNA spacing.

A more detailed mean field calculation, taking into account the geometry of the DNA rods,

can be performed computationally [40]. Such a calculation, however, is not necessary here. In

order to understand the “big picture,” one only needs to recognize that the counterions must

arrange themselves to minimize the electrostatic energy. Any appreciable deviation in the ions

distribution will involve an energy cost much larger than the entropic components of the free

energy. Specifically for the model system in fig. 4.1(C), the number of ions per unit area present

in each aqueous environment will have to match the areal charge densities of the surfaces in

a manner that eliminates the electric field from the low dielectric regions. Interestingly, these

constraints dictated some equilibrium states with anions in the internal solution of the DNA

rods. An electric field can be present in the aqueous regions and the associated energy can

be derived by integrating over the electrostatic energy density. Under no-salt conditions, this

precisely gives the free energy cost attributed to the bound counterions. An exact calculation

(which requires the solution of the Poisson-Boltzmann equation) is not performed here, but

instead a simple approximation is employed by assigning each bound counterion with a free

energy of 1kBT [40, 59].

For each monolayer, i, which is located at zi, the mole fractions of the cationic and anionic
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lipids is denoted by ϕ+
i and ϕ−

i respectively. The area per lipid, al, is taken as identical for

all three lipid types (CLs, ALs, and NLs). Additionally ν+j and ν−j are the number densities,

per unit volume, in region j of the cations and anions, respectively. To make the mean field

approximation applicable, only cases where all of the charged lipids, as well as the counterions,

are monovalent are considered. Assuming ideal lipid mixing in the monolayers, the uniform

charge density of each surface is σe,i = e
(
ϕ−
i − ϕ+

i

)
/al. Since the system has a planar symmetry

in the x − y plane, the electric field at any point must be orthogonal to the plane, i.e., along

the z axis. Moreover, ν+ = ν+j (z) , ν− = ν−j (z), and both vanish inside the hydrophobic parts

of the membranes [colored in yellow in fig. 4.1(C)] where ϵl ≪ ϵw. The electric field at a given

coordinate z is given by Ez = σ̃e/2ϵzϵ0, where

σ̃e =

e

∫ z

∞

[
ν+ (z′)− ν− (z′) +

6∑
i=1

σe,iδ (z
′ − zi)

]
dz′ − e

∫ −∞

z

[
ν+ (z′)− ν− (z′) +

6∑
i=1

σe,iδ (z
′zi)

]
dz′

= 2e

∫ z

∞

[
ν+ (z′)− ν− (z′) +

6∑
i=1

σe,iδ (z
′ − zi)

]
dz′ (4.1)

and ϵz is the dielectric constant at z. The second equality in eq. (4.1) is due to the overall

charge neutrality of the system.

The requirement that the electric field vanishes inside the low dielectric regions of the

bilayers can be used to determine the number of bound counterions, NB
j , in the three aqueous

solutions of the system (j = 1, 2, 3). For this, note that in each such region we expect to

find only one type of counterions since pairs of oppositely charged counterions can be released

without affecting the charge balance. Thus, the number of counterions in solution j can be

defined by σe,j,B = ζjeN
B
j /al, where ζj is the valency of the counterion. The number of

counterions bound to the endosome on its cytoplasmic side is obtained from

σe,1,B = −σe,1. (4.2)

This relation ensures that the electric field between layers i = 1 and i = 2 vanishes. By the

same logic, in the intermediate water layer

σe,2,B = − (σe,1 + σe,2 + σe,3 + σe,1,B) = − (σe,2 + σe,3) , (4.3)
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and in the internal water layer

σe,3,B = − (σe,4 + σe,5 + σe,6) . (4.4)

At short times after cellular intake, the surface charge densities of the endosome layers, σe,i,

match those of the cell plasma membrane (i = 1, 2), and the lipoplex (i =3 – 6). This initial

state is, however, no longer the equilibrium state, since the anionic and cationic lipids can now

mix with each other. This occurs via slow, but steady, “flip-flopping” events switching lipids

between monolayers i =1 – 4. Note that this explicitly assumes that monolayer i = 6 does not

participate in the lipid mixing process. This is because the monolayer is separated from the two

external bilayers (i = 1 – 4) by both the DNA array and the water layer. The redistribution of

lipids between the participating monolayers not only increases the mixing entropy of the lipids

within the layers, but may also allow further release of counterions whose densities within the

aqueous solutions are simultaneously updated in order to satisfy the conditions of eqs. (4.2)

to (4.4). Taking these considerations into account, the total free energy of the system, per unit

area of the lipids al, is written as

F

alkBT
=

4∑
i=1

[
ϕ+
i log

(
ϕ+
i

)
+ ϕ−

i log
(
ϕ−
i

)
+
(
1− ϕ+

i − ϕ−
i

)
log
(
1− ϕ+

i − ϕ−
i

)]
+

3∑
j=1

NB
j (4.5)

where ϕ±
i are the mole fractions of cationic (+) and anionic (−) lipids at the i-th layer, and

NB
j is the number of bound counterions per unit area a at the j-th water layer (see definitions

also above). The first term in eq. (4.5) accounts for the mixing entropy of the lipids in each

monolayer, while the second term represents the entropy cost of bound counterions. The former

is based on the mean field assumption of ideal mixing. The latter employs the commonly used

assumption of 1kBT per bound counterion.

Let
{
ϕ±
i,0

}
denote the initial mole fractions of the CLs and ALs. To find the equilibrium

state, the free energy in eq. (4.5) needs to be minimized with respect to the variables
{
ϕ±
i

}
,

under the constraints that
∑4

i=1 ϕ
+
i =

∑4
i=1 ϕ

±
i,0 representing the preservation of the total

number of lipids of each type. The dependence of
{
NB

j

}
on the variables

{
ϕ±
i

}
is given by

eqs. (4.2) to (4.4), where NB
j = (al/e) |σe,j,B|, and σe,i = e

(
ϕ+
i − ϕ−

i

)
/al. Notice that in

contrast to the lipids, the total number of bound counterions is not fixed but may vary by

intake or release of ions from the cytoplasm.
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Figure 4.2: Solid line - the free energy ∆F (see text for definition), as a function of q = 2Φ+/ΦD

with ΦD = 1 and Φ− = 0.5. Dot-dashed and dotted lines show the partial contributions to
∆F originating, respectively, from counterion release and lipid mixing.

4.3 Free Energy Minimization of Trapped Lipoplex

The free energy ∆F , per unit area al, that the system may gain during stage (ii) of the

transfection process is given by the difference in F [eq. (4.5)] between the equilibrium and

initial states. In the initial state, the distribution of lipids in the plasma membrane is given

by ϕ−
i,0 = Φ− and ϕ+

i,0 = 0, for i = 1, 2. In the lipoplex membranes (i = 3, 4, 6), ϕ−
i,0 = 0 and

ϕ+
i,0 = Φ+. For convenience, the “mole fraction,” ΦD = − (al/e) σe,5, associated with the DNA

array is defined here. Figure 4.2 plots the results for ∆F as a function of ql = 2Φ+/ΦD, which

is the lipoplex charge ratio. The ratio ql is varied by changing Φ+, while keeping ΦD = 1 fixed.

The initial anionic lipid mole fraction in the plasma membrane, Φ−, is set to 0.5. The data

for ∆F is plotted in the solid line, while the dotted and dashed curves show, respectively, the

partial contributions due to lipid mixing [first term in eq. (4.5)] and the bound counterions

(second term). The results reveal the existence of three different regimes. In regime (i),

corresponding to ql < 1, the decrease in ∆F with ql is very slow and arises exclusively from

the lipid mixing term. In regime (ii), where 1 < ql < 4/3, the decrease in ∆F is faster due

to the additional contribution of counterion release. Finally, in regime (iii), where ql > 4/3,

lipid mixing again becomes a dominant factor, though there is a fixed gain of entropy due to

counterion release.

The key to understanding the trends in fig. 4.2 is to correctly identify the transition points

between the three different regimes. The transition from (i) to (ii) occurs at ql = 1, which

is the isoelectric point of the lipoplex, namely the point where the total cationic charge of
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the lipids exactly matches the negative one of the DNA array: 2Φ+ = ΦD. Therefore, to

satisfy eq. (4.4), the internal solution surrounding the DNA array [regime (i)] includes cations.

Similarly, the external solution facing the cytoplasm and the intermediate solutions between

the plasma membrane and the lipoplex also include cations only [eqs. (4.2) and (4.3)]. Since the

system contains no anions, it is impossible to release cation-anion pairs, which explains why,

in this regime, the only contribution to the free energy comes from the mixing of the lipids.

Equilibrium is achieved when the lipids are evenly distributed between the four monolayers.

This is depicted in regime (i) in fig. 4.3, which presents the equilibrium distribution of the lipids

between the four monolayers. In contrast to regime (i), in regime (ii) (1 < ql < 4/3) both the

intermediate and the internal solutions include anions at the initial conditions. Therefore, the

decrease in free energy now involves contributions of both lipid mixing and counterion release.

Detailed calculation shows that in regime (ii), equilibrium is reached when all the anions are

released, while the excess cations accumulate at the internal water layer around the DNA

molecules. Moreover, to satisfy the conditions of eqs. (4.2) and (4.3), the net charge density

σe,i in monolayers i = 1, 2, 3 must vanish, which means that the mole fractions of CLs and ALs

in each of these layers are the same. The composition of layer i = 4 is different, which implies

that lipid mixing is not optimized in regime (ii). Regime (ii) ends at ql = 4/3, which is the

point where the total charge of the system (including the ALs of the plasma membrane, the
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Figure 4.3: The equilibrium distribution of CLs (solid lines) and ALs (dot-dashed lines) in
monolayers i = 1 (black), i = 2, 3 (red) and i = 4 (yellow). The vertical dashed lines mark the
transition points between the different regimes discussed in the text.
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CLs of the lipoplex, and the DNA array) vanishes; i.e., when

3Φ+ = ΦD + 2Φ−. (4.6)

Therefore, at this point, the total number of bound cations and anions is also the same. Further

increasing ql, by increasing the fraction of the CLs and the number of associated bound anions,

enters the system into regime (iii). In this regime, the total gain of free energy due to counterion

release saturates, since it is capped by the number of cations originally bound to the plasma

membrane. The free energy ∆F continues to decrease with ql since the lipids can now mix

better and attain a more even distribution between monolayers i =1 – 4. Notice that in fig. 4.3,

the composition of lipids in monolayers i = 2, 3 is always the same, which is anticipated since

any exchange of lipids between these two monolayers will not influence the charge balance

condition of eq. (4.3).

Figure 4.4(A) depicts the results of ∆F for a lipoplex with more densely packed DNA

rods (ΦD = 1.4). The charge density of the plasma membrane is the same as in fig. 4.2,

Φ− = 0.5. The characteristics of fig. 4.4(A) are very similar to the those observed in fig. 4.2.

One noticeable difference is that regime (ii) starts below the isoelectric point ql = 1, at ql =

Φ−1
D ≃ 0.71. As in the previously discussed case, in regime (i), the initial state of the system

includes only cations. In regime (ii), the intermediate water layer contains anions, which are

released upon reaching equilibrium. The kink appears at the isoelectric point, above which,

when ql > 1, the internal solution also contains anions. The transition between regions (ii) and

(iii) is at ql ≃ 1.14, as dictated by eq. (4.6). In regime (iii), the contribution of counterions

release to ∆F is fixed by the amount of cations present in the system.

Figure 4.4(B) depicts the results of ∆F for a lipoplex with more loosely packed DNA rods

(ΦD = 0.6), with a plasma membrane of charge density Φ− = 0.5. Here, the transition from

(i) to (ii) is at the isoelectric point ql = 1 which, as noted above, is where anions first appear

at the internal layer next to the DNA. The kink happens at ql = Φ−1
D ≃ 1.67 above which, the

intermediate water layer contains anions at the initial state. The transition from (ii) to (iii)

occurs at ql ≃ 1.78, which, similarly to the previous cases, is predicted by eq. (4.6). Note that

in both cases in fig. 4.4, after the kink, the slope of the free energy doubles.
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Figure 4.4: (A) The free energy ∆F (solid line) and the partial contributions to ∆F originating
from counterions release (dot dashed line) and lipid mixing (dotted line). Results are for a
lipoplex with densely packed DNA molecules (ΦD = 1.4). The vertical dashed lines marks the
transition points between the regimes discussed in the text. (B) Same as in (A) for a lipoplex
with loosely packed DNA molecules (ΦD = 0.6).
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4.4 Membranes Fusion, Pore Formation, and DNA Re-

lease

The free energy calculations reported in figs. 4.2 and 4.4 demonstrate the inherent instability

of the entrapped lipoplex, triggered by its interactions with the enveloping plasma membrane.

The latter constitutes a reservoir of ALs that can mix with the CLs of the lipoplex. Lipid

mixing occurs through “flip-flop” events which, in general, are slow, especially when lipids

transfer between distinct bilayers (as opposed to lipids moving between monolayers of the

same membrane, which is probably somewhat faster). The exchange of lipids between the

plasma and lipoplex membranes may cause these two membranes to fuse; a scenario that thus

far was not taken into account [39]. Fusion is thermodynamically favorable since it reduces

the number of participating monolayers from i = 4 to i = 2 and thus, it further increased the

lipid-mixing entropy. However, it comes with the (initial) cost of bending energy. Crossing the

associated energy barrier is what primarily determines the rate of successful endosomal escape

and sets the TE (transfection efficiency). Experimentally, it is known that the TE of lamellar

complexes grows exponentially with the cationic charge density of the complex, Φ+ = (qlΦD) /2

[39]. This observation supports the picture of activated fusion where TE∼ exp (−∆Ffuse/kBT ),

and

∆Ffuse = aκ− bΦ+ + c, (4.7)

where κ is the bending rigidity of the bilayers [as in eq. (1.1)], while a, b, and c are parameters,

the parameters of which may depend on the molecular conditions inside the endosome. The

first term in eq. (4.7) represents the curvature energy cost of the fusion which, to a good

approximation, is independent of the charge densities. The second term has been previously

attributed to the electrostatic attraction between the plasma membrane and the complex.

The last term accounts for other effects, e.g. the capacity of the low-pH environment of the

endosome to disrupt the lipid bilayer. The results in this chapter reveal that the origin of

the second term is actually not energetic but entropic. The free energy gain ∆F due to lipid

mixing and the associated counterion release at the second stage of the transfection process

(see solid curves in figs. 4.2 and 4.4) grows piecewise linearly with Φ+. This linear dependence

is simply a reflection of the fact that when the lipoplex contains a higher fraction of CLs, the

potential entropic gain involved in ideal mixing of lipids and counterions release is larger.

Once fusion occurs, a hole opens that connects the cytoplasm and the internal water layer

containing the first DNA array of the lipoplex [fig. 4.5(A)]. Such a hole allows for the influx of
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A B

Figure 4.5: A schematic illustration of DNA release from trapped lipoplex after pore formation.
This is viewed as a two step process which involves (A) the influx of macroions into the complex
and (B) condensation out of the endosome. For ease of viewing, monovalent counterions which
may be released during the condensation, are not displayed.

positively charged (macro)molecules, e.g., unstructured peptides, which are able to condense

the DNA molecules and release them into the cytoplasm [fig. 4.5(B)]. Since such macroions

also condense counterions about them, further counterion release may take part in this process

as well. Removing the first DNA layer results in a smaller lipoplex whose composition is

similar to the original one. Interactions of this positively charged complex with negatively

charged components of the cell may cause renewed thermodynamic instability and lead to

further degradation of the CL-DNA complex.

4.5 Conclusions

In this chapter, a simplified model was used to study the transfection thermodynamics of CL-

DNA complexes. The formation of these complexes is known to be driven by the increase in

the translational entropy of the counterions that are released to the bulk solution when the

oppositely charged membranes and DNA molecules associate together. The same counterion

release mechanism is also responsible (at least partially) for the association of the lipoplex

with the cell plasma membrane, which initiates the transfection process. In this chapter, it

was argued that the contact between the lipoplex external bilayer and the plasma membrane

triggers thermodynamic instability that leads to lipoplex degradation, which is essential for

the transfection process to proceed.

The thermodynamic instability of the entrapped lipoplex is of entropic origin: It stems

from the fact that the lipid composition of the lipoplex and the plasma membrane are different

and, therefore, mixing of these lipids increases the configurational entropy of the system. Since

the two membranes are oppositely charged, the mixing of lipids has another effect: It reduces
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the charge density of the membranes. This enables further counterion release and a further

decrease in the free energy. Thus, the counterion release mechanism which has been identified

as the thermodynamic driving force for formation of various supramolecular structures [17], is

here used to explain the disassembly of such structures.

Despite the gross simplicity of the model presented here, and the fact that it ignores specific

molecular details, it successfully predicts a roughly linear increase in the free energy gain with

the mole fraction of CLs in the complex, which explains the observed exponential increase

in transfection efficiency of lamellar complexes with the charge density [39]. The model is

based on a mean-field picture and replaces the lipid monolayers with uniformly-charged flat

surfaces. This modeling approach is routinely used in theoretical studies of electrostatic effects

in soft matter systems. We avoid solving the Poisson-Boltzmann equation explicitly by simply

assigning instead a fixed free energy gain of 1kBT for each released counterion. By solving the

Poisson-Boltzmann equation, a more accurate value may be obtained (which may depend on

the water region next to the DNA array where the counterion resides in a denser condition),

but the result is only expected to be different by a factor of order unity. What might be

the boldest approximation in the model is the replacement of the DNA array with a uniformly

charged surface as well. By employing this picture, two entropic contributions of opposite signs

are ignored: (i) The CLs in the monolayers facing the DNA arrays are expected to accumulate

near the DNA rods, which lowers their mixing entropy; (ii) the space available to the ions

surrounding the DNA molecules is quite small, which implies that the entropic gain involving

in their release may be higher than assumed by the model. The order of magnitude of these

effects is comparable to the other contributions discussed here. Therefore, even though it is not

expected that these two entropic will cancel each other out, they are not expected to dominate

the thermodynamic behavior and significantly modify it.
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Chapter 5

Conclusions

This thesis reported on instabilities in three different lipid-based systems: Small membranes

under positive or negative surface tension (chapter 2), charged membranes with monovalent or

pentavalent counterions (chapter 3), and lipoplexes trapped inside an endosome (chapter 4).

The first two systems were studied using coarse-grained simulations and presented instabilities

under “extreme cases”: When the membrane is ecumenically stretched, or when it is highly

charged with monovalent counterions, pores are formed to relieve the excess elastic energy

at the cost of line tension. When the membrane is compressed, or when it is highly charged

with pentavalent counterions, buckling occurs, which also reduces the areal elastic energy

at the cost of bending energy. Even though both system responded by the same apparent

instabilities of pore formation and buckling, the mechanism of these instabilities is different

when the membrane is charged or under surface tension:

• Pore formation is expected intuitively; pores relive the membrane tension energy by

reducing its total projected area [at the cost of line tension [60]]. The origin of the area

increase, when the membrane is stretched by positive frame tension is not exactly the

same when it is done by charging the membrane. The fact that the surface tension was

explicitly set to zero in the charge membrane case, and the quality of the fit in fig. 3.2(A),

indicate that the pore is not formed by an indirect frame tension applied to the membrane

(e.g., the ions’ osmotic pressure), but rather due to the electrostatic repulsions which act

against the hydrophobic attractive (cohesive) interactions between the lipids.

• Membrane buckling, while it looks similar in the two systems, is not the same. There

are several indications for that:

– Prior to the buckling of charged membrane in the presence of pentavalent coun-

terions, the equality γ = τ = 0 still holds true (as in the monovalent counterions
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case). When the membranes where compressed, however, the equality γ approached

a constant value as τ decreased.

– The buckling of charged membranes with pentavalent counterions occurs through

a sharp decrease in the bending rigidity, κ, while for compressed membrane the

decrease in κ is fairly moderate.

– The projected area, Ap, dropped with the increase in compression while that of the

charged membrane with pentavalent counterions remained roughly constant.

• It is also important to highlight the difference between the monovalent and pentavalent

counterions cases. While in the former case, the counterions formed a cloud around

the membrane, in the latter, the counterions adhered to the membrane, effectively in-

corporating charges into the membrane. These charges caused attraction and repulsion

between different parts of the membrane that might cause non-even amplification of the

undulation modes.

The entrapped lipoplex discussed in chapter 4 also brings forward instability that is asso-

ciated with electrostatic interactions and counterions behaviours. The lipoplex and the cell

plasma membrane are attracted to each other through electrostatic interactions; that allows

for counterion release. Once the lipoplex is entrapped, the mixing of anionic and cationic lipids

from the cell and lipiplex membranes offers free energy gain as it allows for further counterion

release and reduces the surface charge density of the membranes. This free energy gain reduces

the free energy barrier of fusion, which allows the formation of a pore that connects the internal

solution to the DNA array to the cytoplasm.

The discussion in chapter 4 is limited to a grossly simplified model. This model, while

it provides initial insight about the importance of counterion release and lipid mixing in the

transfection process, cannot contribute to the study about the fusion process itself. Highly

coarse-grained simulations, such as those used in chapters 2 and 3 have been applied to demon-

strate the self assembly of lipoplex [61]. Similar methods may be applied to study the dynamics

of the lipoplex degradation problem and the fusion process specifically.
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Appendix A

The Free Energy of Bound Counterions

This appendix presents an interesting relationship between the electrostatic energy and the

number of counterions bound to a flat surface. The starting point for this proof is the Poisson-

Boltzmann equation for a flat membrane in contact with a monovalent salt solution of bulk

concentration n0, which reads

∇2ψ =
2ν0e

ϵwϵ0
sinh

(
eψ

kBT

)
. (A.1)

Since the surface is flat, the potential is invariant under translation in x and y directions and

the Poisson-Boltzmann equation is reduced to

ψ′′ =
2eν0
ϵwϵ0

sinh

(
eψ

kBT

)
, (A.2)

where ψ′ and ψ′′ denote the first and second derivative by z, respectively. Multiplying both

sides by ψ′ results in

ψ′′ψ′ =
2eν0
ϵwϵ0

sinh

(
eψ

kBT

)
ψ′. (A.3)

Notice that the left-hand side is half the derivative of (ψ′)2

[
(ψ′)

2
]′
= 2ψ′′ψ′, (A.4)

and the right-hand side is

cosh′
(

eψ

kBT

)
= sinh

(
eψ

kBT

)
eψ′

kBT
. (A.5)
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Therefore eq. (A.3) is rewritten as

1

2

[
(ψ′)

2
]′
=

2kBTν0
ϵwϵ0

cosh′
(

eψ

kBT

)
, (A.6)

which can be integrated over z to yield

1

2
(ψ′)

2
=

2kBTν0
ϵwϵ0

cosh

(
eψ

kBT

)
+ C, (A.7)

where C is an integration constant. The boundary conditions for a flat surface require that the

electric field and potential would vanish far away from the surface (ψz→∞ → 0, ψ′
z→∞ → 0).

Using this, one can find the integration constant

1

2
(ψ′)

2
z→∞ =

2kBTν0
ϵwϵ0

+ C = 0

C = −2kBTν0
ϵwϵ0

. (A.8)

Thus eq. (A.7) reads

1

2
(ψ′)

2
=

2kBTν0
ϵwϵ0

[
cosh

(
eψ

kBT

)
− 1

]
=
kBT

ϵwϵ0

(
ν0 exp

(
− eψ

kBT

)
+ ν0 exp

(
eψ

kBT

)
− 2ν0

)
. (A.9)

Notice though, that the first two terms are the equilibrium densities of the cations and anions

repectively. Thus we get that

1

2
(ψ′)

2
=
kBT

ϵwϵ0
(ν+ + ν− − 2ν0) . (A.10)

Generally speaking, the electrostatic free energy per unit are, fe, of flat charge surface in ionic

solution reads

fe =
ϵwϵ0
2

∫ (
∂ψ

∂z

)2

dz + kBT

∫ [∑
i

νi log

(
νi
ν0

)
− (νi − ν0)

]
dz (A.11)

where the first term is the electrostatic contribution and the second term is the entropy loss

of the ions due to the deviation from uniform concentration. A simplified picture of monova-

lent 1:1 salt, the bulk free energy of charged surface (compared to a homogenous electrolyte
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reservoir) reads

Fel =
ϵwϵ0
2

∫ ∞

0

(ψ′)
2
dz + kBT

∫ ∞

0

[
ν+ log

(
ν+
ν0

)
+ ν− log

(
ν−
ν0

)
+

]
dz

− kBT

∫ ∞

0

(ν+ + ν− − 2ν0) dz. (A.12)

The entropy term in eq. (A.12) is composed from a mixing term, which accounts for the non-

uniform ion distribution, and a “counting” term, which measures the deviation of the local

ion concentration from the uniform distribution. The integration over the last term results in

the number of bound counterions and, dividing by the membrane area, results in the surface

charge density.

Applying eq. (A.10) to eq. (A.11), the first and last terms cancel each other, and the bulk

free energy reads

F = kBT

∫ ∞

0

[
ν+ log

(
ν+
ν0

)
+ ν− log

(
ν−
ν0

)
+

]
dz. (A.13)

This suggests that the electrostatic energy per bound counterion is fixed at 1kBT regardless of

the surface charge density. This is related to the Gouy-Chapman distance the ions are allowed

to be separated from the surface. When another charged object approaches to a distance

smaller than the Gouy-Chapman distance, the electrostatic interactions between the surface

and the object are favourable and the counterion is released.
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פרגו עודד פרופ' בהדרכת נעשתה העבודה
הננומטרי, בתחום וטכנולוגיה למדע כץ אילזה במכון
להנדסה. הפקולטה רפואית, ביו להנדסה ובמחלקה



תקציר

האיברונים ושל החי התא של הגבול את מגדירות תמיסות, שתי בין הנמצאות ליפידיות, ממברנות
תמיסות שתי של קיומן את ומאפשרות התא קצה את מגדירות ממברנות (אורגנלות). שלו הפנימיים
כגון שונים ביולוגיים בתהליכים משתתפות ממברנות התא. לתפקוד הנחוץ מצב זו, ליד זו שונות
אינו אלו בתהליכים הממברנה תפקיד אותות. ומעבר מבוקר, יונים מעבר תאים, שני בין הצמדות
(למשל, בה הכלולים רכיבים ידי על להתבצע יכול אלא בכללותה, הממברנה ידי על בהכרח מתבצע

יחודית. תכונה בעלי מהיליפידים חלק ידי על או חלבונים)
לדוגמא, ולגרום, יציבה ללא הממברנה את להפוך יכולים ביולוגיות ממברנות על הפועלים כוחות
כאלו אי-יציבויות ממברנות. שתי בין מיזוג או ,(buckling) חזקים כיפוף עיוותי חורים, של להופעה
כמו התא. של הרגיל מתפקודו כחלק התא, חלוקת או תאית בליעה כגון בתהליכים מתרחשות
בממברנה. חורים להופעת הגורמים רעלנים כגון חיצוני, גורם ידי על להיגרם יכולות אי-יציבויות כן,
לקרע גרימה למשל ורפואה. מחקר בתחומי לשמש עשויה בממברנות אי-יציבויות של פיזיקלית הבנה
של מבוקר שחרור כמו מעשיים לצרכים אי-יציבויות לנצל ניתן בנוסף, סרטניים. תאים של בממברנה

תרופות.
הלפריש של ההמילטוניאן באמצעות מסורתי באופן נחקרות ממברנות של המכניות התכונות
יציבות. ממברנות של ותיאור להבנה כלל בדרך משמש זה מודל .(Helfrich's Hamiltonian)
חזקה בצורה מכופפות בממברנות עוסקת זו תיזה טוב. פחות מובנות מכנית אי-יציבות של תופעות
יציבות, חוסר של במצב ממברנות לחקור מאפשרות מחשב סימולציות חור. בהן שנפער כאלו או
ליפידיות ממברנות של (atomistic simulations) אטומיסטיות סימולציות הכימי, אופיין בגלל אבל
של והזמן הגודל סדרי את מגביל שכאלו בסימולציות הכרוך חישוב) (במונחי גבוה מחיר דורשות
הליפידים זו, בתיזה שימוש בהן שנעשה אלו כמו גבוהות, coarse-grained בסימולציות הסימולציה.
הידרופוביות אינטרקציות (באמצעות עקיף באופן מיוצג המימי והתווך פשוטות כמולקולות מיוצגים
''מסורתיות'' סימולציה שיטות של המחסומים על להתגבר ניתן כאלו מודלים באמצעות אפקטיביות).

האטומית. ברמה
של באי-יציבויות דן 3 פרק שלילי, פנים מתח תחת ממברנה של באי-יציבות עוסק זו בתיזה 2 פרק
המקשר השני חוט ליפידים-ודנ''א. של קומפלקסים של בהתפרקות דן 4 ופרק טעונות, ממברנות
למרות זאת, עם יחד מכנית. אי-יציבות הוא זו תיזה של הפרקים בשלושת המדווחות התוצאות בין
אי-יציבויות לאותן הגורמים וקריסה, לחורים היציבות אי של המופעים את גס באופן לחלק שניתן
תאפשר שכאלו אי-יציבויות של הבנה חשובים. הבדלים מספר כוללים שלהן, הקטנים'' וה''פרטים
תובנות לנצל ניתן בממברנות. הקשורים ופיסיקלים כימיים, ביולוגים, תהליכים של טובה יותר הבנה

למשל). תרופות (מתן חיוניות הן שכאלו אי-יציבויות בהם במקרים מעשיות למטרות אלו



שלילי פנים מתח של להפעלה ממברנות של תגובה של סימולציות באמצעות מחקר מציג 2 פרק
תחת ממברנות עבור חופשית אנרגיה של פשוט מודל פיתחנו הסימולציה תוצאות באמצעות (דוחס).
גורם שלילי פנים מתח כי ידוע גודל. תלוי הוא דחיסה תחת בממברנות אי-יציבות שלילי. פנים מתח
מדובר כאשר נסבל אבל גדולות, (vesicles) בווזיקולות גבוה גל אורך בעלות בתנודות לאי-יציבות
חלש שלילי מתח (i) - תחומים שני מגלות שלילי פנים במתח הסימולציות תוצאות קטנות. בווזיקולות
אלסטית התנהגות המציג חזק שלילי פנים מתח (ii)-ו מתיחה ידי על הנשלטת באלסטיות המאופיין
- Rawicz ו Evans של הקלאסי מהניסוי לממצאים דומות אלו תוצאות כיפוף. ידי על הנשלטת
E. Evans and W. Rawicz,] - מיקרופיפטה דרך (GUV) שכבתיות חד ענק ווזיקולות של שאיבה
מתרחש האלסטיות תחומי שני בין המעבר GUVב אולם, .[phys. Rev. Lett. 64, 2094 (1990)
ממצא מתון. שלילי פנים במתח מתרחש המעבר קטנות שבממברנות בעוד חלש, חיובי פנים במתח
המכאני המתח בין בקשר עוסק שלילי למתח-פנים קטנות ממברנות של לתגובה הקשור נוסף מעניין
שלילים, למתחים יורד המתח כאשר לאי-שליליים. ערכים עבור לזה זה השווים התנודתי והמתח
שהוא לפני החלש, המתח בתחום ,τ המכאני, מהמתח יותר מהר מעט יורד ,γ התנודתי, המתח
הוא ''הפוכה'', התנהגות מציג הכיפוף מקדם חזק. שלילי מתח עבור ,τ מ לגדול והופך לרוויה, מגיע
כיפוף. ידי על הנשלט בתחום ויורד מתיחות, ידי על הנשלט האלסטי בתחום שינוי ללא כמעט נשאר
מתבדרות (projected area) ההטלה שטח ושל התרמיות התנודות של באמפליטודה הווריאציות

להתפתח. מתחילות אי-יציבויות כאשר
האלסטיות התכונות את לחקור על-מנת 3 בפרק משמש מולקולרי coarse-grained מודל אותו
המקרים בשני הסימולציה תוצאות וחמש-ערכיים. חד-ערכיים יונים של בתמיסה טעונות ממברנות של
הממברנה על המטען צפיפות עם גדלים ההטלה ושטח הכיפוף מקדם לזו. זו הפוכות מגמות מגלות
לקשר ניתן חמש-ערכיים. הם היונים כאשר קטנים שהם שעה חד-ערכיים, הם הנגדיים היונים כאשר
ממסכים חד-ערכיים יונים הנגדיים. היונים ידי על הליפידים של המטען מיסוך למידת אלו תצפיות
.(Coulomb) קולומבית דוחה מערכת על שמרמז מה חלקית, במידה רק האינטראקציות את
משיכה מייצרים מרחביות, מטען קורלציות ודרך הממברנה על מתעבים הרב-ערכיים היונים מנגד,
בתכונות ההבדלים השליליים. ליונים החיוביים הליפידים בין המשיכה לכוחות הודות אפקטיבית
במנגנונים משתקפות ורב-ערכיים חד-ערכיים יונים של בתמיסות טעונות ממברנות של האלסטיות
מתחילים חורים הראשון, במקרה גבוהות. מטען בצפיפויות שלהם המכנים היציבות לאי המובלים
מפתחות הממברנות השני, במקרה האלקטרוסטטית, המתיחה על להקל בשביל בממברנה להופיע

הארוכים. הגל באורכי כיפוף של אי-יציבות
קטיוניות ממברנות של סופר-מולקולרי) (אגד קומפלקסים של הפיזיקה את חוקרים אנו 4 בפרק
ווקטורים בתור עניין מעוררים (ליפופלקסים) ליפידים-דנ''א של כאלו קומפלקסים דנ''א. ומולקולות



עצמאי באופן מתאספים והם פתוגנים אינם שהם מאחר גנטי, ריפוי לצורך לתאים, גנים להחדרת
של בשחרור השולטים המנייעים בכוחות מתרכזים אנו הזה בפרק תרמי. משקל שווי של בתנאים
הוא דנ''א מולקולות של השחרור כי נראה אנדוזום. בתוך הלכוד מליפופלקס דנ''א מולקולות
,(transfection - transfer followed by expression) הטרסנפקציה בתהליך המגביל השלב
של שיחרור (iii) הליפופלקס, של התפרקות (ii) תאית, בליעה (i) שלבי: תלת כתהליך נתפס אשר
הליפופלקס, של התפרקותו נדרשת מוצלחת שלטרנספקציה כיוון הגנים. של ביטוי ולאחריו הדנ''א
הטרנספקציה שתהליך ידוע זאת, עם יחד אותה. מעכבת הליפופלקס של התרמודינמאית היציבות
כדי מופשט במודל משתמשים אנו זו, תיזה של המתאים התוצאות בפרק ספונטנית. להתרחש יכול
כי מודגם זה בפרק הטרנספקציה. בתהליך השולטים המניעים התרמודינאמיים הכוחות את לחקור
על נגרמת אשר זו, אי-יציבות יציב. לא להיות הופך הליפולקס ,[(i) [שלב התאית הבליעה לאחר
את העוטף האנדוזום בממברנת אניונים וליפידים בליפופלקס קטיונים ליפידים בין אינטראקציות ידי
של המיקום ואנטרופית הליפידים של מחדש ערבוב הכוללת אנטרופיה ידי על נשלטת הליפופלקס,
באנרגיה שהרווח מראים זה בפרק החישובים למשטחים. ספוחים התהליך בתחילת אשר נגדיים יונים
בליפופלקס. הקטיונים הליפידים של המולרי השבר ,Φ+-ב בקירוב לינארים הם (ii) בשלב החופשית
וממברנת הליפופלקס ממברנת בין למיזוג המחסום את מוריד ,∆F החופשית, באנרגיה זה רווח
∆F בין הלינארי הקשר .[(iii) [שלב דנ''א של שיחרור שמאפשר חור של להווצרות ומביא האנדוזום,
הטרנספקציה יעילות של האקספוננציאלי הגידול את מסביר הקטיונים הליפידים של המולי והשבר

למלאריים. בקומפלקסים ניסיוני באופן נצפתה אשר Φ+-ב
השונים בפרקים המתוארות היציבוייות אי בין והשוני הדמיון זה בפרק זו. תיזה מסכם 5 פרק

מחשב. סימולציות באמצעות עתידי למחקר בהצעה מסוכמות אלו מהשוואות תובנות מודגשים.
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