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Entropic elasticity at the sol-gel transition
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PACS. 82.70.Gg – Gels and sols.
PACS. 62.20.Dc – Elasticity, elastic constants.
PACS. 61.43.-j – Disordered solids.

Abstract. – The sol-gel transition is studied in two purely entropic models consisting of hard
spheres in continuous three-dimensional space, with a fraction p of nearest-neighbor spheres
tethered by inextensible bonds. When all the tethers are present (p = 1) the two systems have
connectivities of simple cubic and face-centered cubic lattices. For all p above the percolation
threshold pc, the elasticity has a cubic symmetry characterized by two distinct shear moduli.
When p approaches pc, both shear moduli decay as (p − pc)

f , where f � 2 for each type
of connectivity. This result is similar to the behavior of the conductivity in random resistor
networks, and is consistent with many experimental studies of gel elasticity. The difference
between the shear moduli that measures the deviation from isotropy decays as (p − pc)

h,
with h � 4.

Gels are macroscopically large networks, formed when short polymeric units in a solution
(sol) are randomly cross-linked. The transition from sol to gel is a second-order phase transi-
tion from fluid to solid during which the viscosity of the system diverges and shear elasticity
(rigidity) develops. Frequently, the geometry of the gels is modeled by percolation [1], when
the monomers are represented by the vertices of some lattice, while the random chemical
bonds are modeled by bonds joining the vertices with probability p. The gel point is identified
with the percolation threshold pc, the critical bond concentration above which a spanning
cluster is formed. Close to pc quantities like the average cluster size or the gel fraction have
a power law dependence on (p − pc) with exponents independent of the details of the lattice.
Experimental measurements [2] of the geometric features of gels confirm the correspondence
with the percolation model. Therefore, we expect that model systems whose geometry is
described by percolation will produce a correct description of the physical properties of gels,
such as elasticity. In this work, we study the elastic properties of a purely entropic percolation
model of gels, and compare the results with experimental measurements of elasticity near the
sol-gel transition, as well as with the predictions of approximate theories.

Close to pc the static shear modulus, which characterizes the transition from liquid to solid,
follows a power law: µ ∼ (p−pc)f . Since the polymeric network forming the gel is tenuous and
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floppy, the dominant contribution to its shear modulus is of entropic origin: Upon distortion
of the system, the available phase space, namely entropy, of the gel decreases, leading to an
increase of the free energy, and to a restoring force. de Gennes suggested that the exponent f
should be equal to the exponent t describing the conductivity Σ of random resistor networks
near pc: Σ ∼ (p − pc)t [3]. The equality f = t can be proved rigorously for a phantom
network (without excluded volume (EV) interactions) of Gaussian springs each having the
energy E = 1

2Kr2, where r is the spring length [4]. It describes the entropic elasticity of most
phantom networks since the latter exhibit an effective Gaussian behavior on sufficiently large
scales (provided that they are not strongly stretched) [5, 6]. It is an open question whether
the equality f = t is also valid in the presence of EV interactions. It does, according to some
theories which claim that EV interactions primarily influence the bulk (compression) modulus
rather than the shear (rigidity) modulus of the system, as if the gel is a phantom network
embedded into a “pressure producing” fluid medium [7]. However, a different approach based
on scaling arguments concludes that the elastic moduli of a gel are of the order of kT/ξd, where
ξ is the percolation correlation length that diverges as (p − pc)ν , and d is the dimensionality.
Consequently, the relation f = dν is obtained [8].

The experimental values of f , measured for different gel systems, are divided between
the above two approaches. In one group of experiments [9], done on materials like gelatin
and silica gels, the measured exponent is close to the conductivity exponent t � 2 in three
dimensions [10]. Another group consists of experiments in materials like polyester and PVC,
where the exponent varies from 2.5 to 3.0, and seems to agree with f = dν � 2.7 [11]. The
gels formed by the materials in both groups of experiments are floppy, and the dominance of
the entropic contribution to their elastic properties is fairly expected. Thus, the division of
experimental works into these two groups is based on the values of the measured exponents
rather than on the nature of the investigated materials. The origin of the discrepancy between
the experimental results is not clear, and we can only list several possible reasons: In some
cases the topology of the system does not correspond to three-dimensional (3D) percolation
model of gels, but is somewhere between gel (cross-linking of monomers or short polymeric
units) and rubber (cross-linking of a melt of long polymers) [12]. Additional reasons are
related to experimental difficulties, such as the imprecise determination of concentration of
cross-links, or the difficulty to extract the static shear modulus from measurements of the low-
frequency behavior of the dynamic complex modulus. A more fundamental reason for the wide
range of experimental results is the energetic contribution to gel elasticity which mixes with
the entropic contribution and influences the “effective” exponent. Energetic bending elasticity
is characterized by a much larger exponent, f � 3.8 [13]. Such an exponent is measured only
when the entropic contribution to elasticity is negligible, e.g., in the experiments in sintered
metallic powders [14]. When both energetic and entropic contributions coexist, we expect the
elastic behavior near the gel point to be dominated by the latter, since the critical exponent of
entropic elasticity (according to both approaches to entropic elasticity) is smaller than that of
bending elasticity. However, the dominance of entropic elasticity near the transition may be
limited to a very narrow regime, in which the shear modulus is small and difficult to measure.

In the present work we bypass the problem of mixing of the entropic and elastic contribu-
tions and investigate the elastic behavior of purely entropic systems: We consider a system
consisting of hard spheres, connected by “tethers” that have no energy but simply limit the
distance of a connected pair to be smaller than some value b. We apply a new method in
which the stress tensor σij and the elastic constants Cijkl of such “hard-spheres-and-tethers”
systems are measured from the probability densities of contact between spheres and the prob-
ability densities of having stretched tethers [15]. Deformation of the solid can be described
by a Lagrangian strain tensor ηij that relates the original undistorted separation R between
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two points to their final squared separation r2 = RiRj(δij + 2ηij) [16]. The stress and elas-
tic constants are the coefficients of the expansion of the free-energy density in terms of ηij :
f({η}) = f({0}) + σijηij + 1

2Cijklηijηkl + . . . . The free-energy expansion defines the static
constants which do not depend on the details of dynamics, and characterize volume-averaged
elastic behavior. The frequency-dependent elastic constants and the viscosity, which depend
on the dynamics [17], are beyond the scope of the current study. In this paper we study systems
whose elastic properties possess a cubic symmetry under uniform external pressure P . Such
systems have a diagonal stress tensor: σij = −Pδij , and only three different non-vanishing
elastic constants: C11 ≡ Cxxxx = Cyyyy = Czzzz ; C12 ≡ Cxxyy = Cyyxx = Cyyzz = . . . ; and
C44 ≡ 1

2 (Cxyxy + Cxyyx) = . . . [16]. Cubic systems have two shear moduli µ1 = C44 − P and
µ2 = 1

2 (C11 − C12) − P .
The topologies of the networks were defined by considering bond percolation problems on

simple cubic (SC) and faced-centered cubic (FCC) lattices, with a fraction p of bonds present.
Each site of the lattice was occupied by a sphere of diameter a, while each present bond
was replaced by a tether of maximal extension b, which was larger than the nearest-neighbor
distance b0. Once the topology (connectivity) was defined, the systems were allowed to move
in a continuous 3D space. We measured the elastic behavior as a function of p. For both types
of topologies we set the ratio b/a ∼ 1.6 and the volume fraction of the spheres to be ρ = 0.2.
This density is about 40% of the maximal density ρ = 0.494 at which a regular hard sphere
system starts phase separating into liquid and solid [18]. Our choice of this density was made
to have strong EV interactions, but at the same time to ensure that the system solidifies due
to the presence of the tethers, rather than the EV interactions alone. The topologies of the SC
and the FCC systems are quite different: In the latter the number of nearest-neighbor lattice
sites is larger and, consequently, the percolation threshold is smaller: pc � 0.12 and pc � 0.249
for the FCC and SC topologies, respectively. Thus, highly connected rigid regions are formed
more rapidly (at lower p) in FCC networks. It has been suggested (see, e.g., Devreux et al. in
ref. [9]) that in real gels the creation of such rigid blobs tends to enhance the contribution of
energetic bending elasticity and, thus, makes the entropy-dominated regime near pc narrower.
Therefore, it seems interesting to compare the SC and the FCC topologies in a purely entropic
model. In our Monte Carlo (MC) simulations we used box sizes L = 18b0 and L = 12

√
2b0

for the SC and FCC topologies, respectively, with periodic boundary conditions. Figure 1
depicts a typical equilibrium configuration of the FCC system. We measured σij and Cijkl

over a broad range of concentrations above pc. Strictly speaking, the rigidity threshold pr is
lower than the percolation threshold pc due to effects of entanglements [19] (and, perhaps,
also due to additional EV effects). However, the two thresholds are so extremely close that
they are practically indistinguishable in experiments and numerical studies. Therefore, we
treat pr and pc as identical. The number of quenched topologies and the length of the MC run
of each individual topology increased as we approached pc. For systems close to pc we needed
to average the relevant quantities over 10 different topologies, while far from pc, 2–3 sufficed.
Close to pc the duration of the MC runs is about 500 times larger than the relaxation time τ
of the simulations (see an approximate expression for τ in ref. [6]). During each MC run the
systems were sampled several million times.

The networks studied in this work possess a cubic symmetry since their topologies are
defined on cubic lattices. Therefore, their elastic behavior is described by two distinct shear
moduli rather than one, as in isotropic systems. This property does not exist in experiments
where the networks are isotropic because of randomness. Figure 2 depicts the two shear
moduli, µ1 and µ2, as a function of (p − pc) for the SC and FCC systems. For each type of
connectivity, its own pc is used. The error bars appearing in figs. 2 and 3 correspond to one
standard deviation of the averaged quantities. For both systems close to pc, µ1 and µ2 are
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Fig. 1 – A part of an equilibrium configuration of the FCC bond percolating system with p = 0.1975.
For clarity the spheres are shown as 1

3
of their actual diameter.

practically indistinguishable, suggesting that the systems become isotropic. The shear moduli
can be approximated by the power laws µ1 � µ2 ∼ (p − pc)f , with f = 2.0 ± 0.1 for the SC
system, and f = 2.1± 0.1 for the FCC system. Within numerical uncertainty both values are
similar and consistent with recent estimates of the conductivity exponent in 3D, t � 2.0 [10].
We already found that f � t � 1.3 in two dimensions [20] and, therefore, we expect that f � t
at any dimension. As we have mentioned earlier in the text, the equality f = t is expected
for a phantom network (a = 0) and can be explained by the Gaussian nature of its elastic
response close to pc. Our results indicate that a similar picture may apply to systems with
EV interactions.

In fig. 2 we observe that the values of µ1 and µ2 gradually deviate from each other far
from pc because at large p the systems “remember” the lower (cubic) symmetry of their
connectivities. For the FCC connectivity µ1 > µ2, while for the SC case µ2 > µ1. (The
definitions of the shear moduli µ1 and µ2 depend on the orientation of the axes of the reference
system, which in our study were taken along the edges of the conventional cubic unit cell.)
Figure 3 shows that the difference ∆µ ≡ |µ1 − µ2| follows, in both cases, quite similar power
laws ∆µ ∼ (p − pc)h, with h = 3.95 ± 0.15 for the SC case, and h = 4.15 ± 0.15 for the FCC
case. Because of the similarities of the values of h in SC and FCC systems, it is reasonable
to assume that h is a new universal critical exponent which characterizes deviation from
isotropic elastic behavior. While the power law dependence of ∆µ is not surprising due to the
self-similar nature of the large percolation clusters, we could only support this assumption by
numerical data of limited accuracy. We verified the validity of the power law dependence on
(p − pc) by attempting (unsuccessfully) to fit the data to other functional forms.

We already saw that the exponent f (describing the leading critical elastic behavior) is very
similar for self-avoiding (SA) and phantom percolating systems. Therefore, it is interesting to
check whether this similarity applies to the exponent h as well. For this purpose we measured
∆µ for a phantom FCC bond percolating network with the same values of b and b0, but with
a = 0 [21]. The results of these simulations are also plotted in fig. 3, revealing a power law with
h = 4.15 ± 0.15, as in the SA FCC case. The phantom Gaussian model, which predicts that
f = t, cannot be used to predict the value of h since it gives ∆µ ≡ 0 at any bond concentration
p [4, 22]. Hence, ∆µ represents deviation from a purely Gaussian behavior which originates
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Fig. 2 – Logarithmic plot of the shear moduli µ1 (solid symbols) and µ2 (open symbols) as a function
of (p − pc), for FCC (circles) and SC (squares) bond percolating systems. For each topology, its
percolation threshold is used (pc � 0.12 for FCC, and, pc � 0.249 for SC). For both systems the
volume fraction is 0.2 and b/a ∼ 1.6.

Fig. 3 – Logarithmic plot of the difference between the shear moduli ∆µ as a function of (p− pc), for
SA FCC (solid circles), SA SC (squares) and phantom FCC (open circles) bond percolating systems.

in the non-Gaussian form of the tether potential and (in the SA case) EV interactions. Our
results for the exponent h imply that the similarity between the critical elasticity of phantom
and SA percolating systems may not be restricted to the leading Gaussian behavior.

In conclusion, we have studied the entropic elasticity of 3D purely entropic percolating
systems. Our study shows that the critical behaviors of the shear moduli of phantom and SA
percolation systems are characterized by similar critical exponents which are very close to the
conductivity exponent. (For phantom systems the elasticity exponent actually coincides with
the conductivity exponent.) This result agrees with many experimental studies of gel elasticity.
It corresponds to heuristic theories which assume that the finite clusters 1) do not contribute
directly to the shear modulus (i.e., behave like a fluid medium) and 2) effectively screen
out EV interactions in the elastic network. Further support to this theoretical description is
given by our result for ∆µ which is also described by similar exponents in phantom and SA
systems. The exponent h that characterizes the decay of ∆µ seems to be universal, namely
independent of the lattice on which the geometry of the system is defined, but this point should
be established more carefully by studying other lattice connectivities, and by measuring h for
two-dimensional (phantom and SA) percolation systems.
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