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Abstract

Single-particle diffusion, also known as Brownian motion, is the random motion of a particle

in space due to collisions with its surrounding medium. The theory of diffusion in a homoge-

neous medium, one with a constant diffusion coefficient, is well established and recognized.

The theoretical basis of diffusion in heterogeneous environments, where the diffusion coeffi-

cient varies in space, is far less developed. In this thesis, we employ underdamped Langevin

dynamics simulations and analytical methods for studying these systems, which are common

in many fields, including biomedical engineering. We investigate two model systems: The

first is the dynamics of Brownian particles in a heterogeneous one-dimensional medium with

a spatially-dependent diffusion coefficient of a power-law form, at constant temperature. At

long times, provided that the friction coefficient drops slowly enough (or grows at any rate),

both approaches yield identical results, corresponding to subdiffusion or superdiffusion. In

the opposite case, where the friction coefficient decays more quickly, the diffusion equation

foresees that the particles accelerate, while the Langevin equation predicts ballistic motion at

long times. We argue that the phenomenon of particle acceleration in an isothermal medium

is unphysical, and demonstrate that in this case underdamped Langevin dynamics simula-

tions must be used. In the second case study, we use a one-dimensional two layer model with

a semi-permeable membrane to model the diffusion of a therapeutic drug delivered from a

drug-eluting stent (DES). The rate of drug transfer from the stent coating to the arterial

wall is calculated by using underdamped Langevin dynamics simulations. Our results reveal

that the membrane has virtually no delay effect on the rate of delivery from the DES.

3



Acknowledgments

I would like to express my sincerest gratitude to my supervisor, Prof. Oded Farago, for all

the guidance, advice, support, encouragement, assistance, and constructive criticism he has

offered me throughout the two years of my thesis.

I am particularly thankful for the assistance and advice of my lab associate, Nadiv Dha-

ran, as well as the fruitful discussions we have had over the past two years.

4



Contents

1 Introduction 7

1.1 Brownian dynamics in uniform systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Spatially-dependent friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Isothermal Langevin dynamics in systems with power-law spatially dependent friction 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Heterogeneous media with power law friction function . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Fick’s second law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Langevin Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Ballistic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 The case c ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Crossover to ballistic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 The fluctuation-dissipation relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Application of underdamped Langevin dynamics simulations for the study of diffusion

from a drug-eluting stent 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Two-layer systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Semi-permeable membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Two-layer stent model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Using a fictitious mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5



3.4.3 Membrane permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Summary 46

A Diffusion in higher dimensions 48

6



Chapter 1

Introduction

1.1 Brownian dynamics in uniform systems

Diffusion (from the Latin diffundere- to spread or pour out) describes the random motion

of particles in space, also known as Brownian motion. Brownian motion was first observed

by the botanist Brown while examining the motion of pollen grains under a microscope, and

noticing their random jitter in water [1]. Years later, an explanation for this observation

was given by Einstein, who traced it to the random collisions between the grains and the

water molecules [2]. These collisions cause the Brownian particle to exhibit random motion,

also known as single-particle diffusion. When many particles display this type of motion,

they generate a net flow of particles from an area with a high concentration, or a large

chemical potential, to an area with a low concentration or a small chemical potential. This

phenomenon is also referred to as moving down the concentration or chemical potential

gradient.

Particle transport via diffusion is relevant in a variety of different fields such as physics,

chemistry [3], electrical engineering [4], material science [5], and mechanical engineering [6].

It is appropriate not only for translational motion, but also for rotational motion [7] and

even for momentum variation [8]. The term ‘diffusion’ is used more broadly in a non-
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physical sense, e.g., in the context of sociology, economics, and ecosystems, to describe the

spreading of populations and ideas [9]. Diffusion is relevant in the biomedical field since it is

a predominant transport process in cell biology and physiology [10]. It is also central in many

biomedical applications, e.g., in drug eluting stents [11], transdermal biotechnologies [12],

and diffusion near a wall [13].

Returning to Brownian motion of particles, the process of diffusion may be described

in one of two ways, via Langevin’s equation [14] or a continuum approach, tied to Fick’s laws

of diffusion [15]. Fick’s first law of diffusion describes the relationship between the flux of

particles J and the spatial derivative of the probability distribution function (PDF) of the

particles P (x, t): J(x, t) = −D∇⃗P (x, t), where x and t respectively denote coordinate and

time, and D is the diffusion coefficient. Fick’s second law relates the spatial derivative of

the flux and the time derivative of the PDF and reads

∂P (x, t)

∂t
= −∇⃗J = D∇2P (x, t). (1.1)

In one dimension (1D), assuming a Dirac delta-function initial condition P (x, 0) = δ(x), the

solution of Eq. (1.1) is given by the normal distribution P (x, t) = (4πDt)−0.5 exp (−x2/4Dt).

The mean displacement of the Brownian particle ⟨∆x⟩ = 0, while the mean squared dis-

placement (MSD) grows linearly with time:

⟨
∆x2

⟩
= 2Dt, (1.2)

The linear growth of the MSD is a defining characteristic of normal diffusion. In 3D ⟨∆x2⟩ =

⟨∆y2⟩ = ⟨∆z2⟩ = 2Dt and, therefore, ⟨∆r2⟩ = 6Dt.

The particle approach for describing Brownian motion is based on the Langevin equa-

tion of motion [14]

m
dv

dt
= −αv + β(t), (1.3)
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where m and v denote, respectively, the mass and velocity of the particle. This description

is essentially Newton’s second law applied to each particle. It would, more generally, include

an independent force f(x, t), which throughout this thesis is zero, since we consider only

free diffusion. The impact of the random collisions on the Brownian particle is realized

through the action of two forces, represented by the terms on the r.h.s. (right hand side) of

the equation. The first is a friction force representing the statistical average of the collision

forces, while the second is a random Gaussian white noise accounting for the force distribution

around the mean value. The Gaussian white noise term in Langevin’s equation has the

following statistical properties [16]: ⟨β(t)⟩ = 0, and ⟨β(t)β(t′)⟩ = 2Bδ(t − t′), where ⟨· · · ⟩

denotes the average over all possible realizations of the noise force β(t).

Since the magnitude of the collision forces depends on the characteristic thermal veloc-

ity of the molecules of the embedding fluid, the friction coefficient α in Langevin’s equation

(1.3) must depend on the temperature, T . It should also be related to the diffusion coefficient,

D, appearing in Eq. (1.1). The relation, α = kBT/D (where kB is Boltzmann’s constant),

is known as Einstein’s relation, which is closely related to the more general fluctuation-

dissipation theorem [17]. Using the formal solution for Eq. (1.3)

v(t) = e−αt/mv(0) +

∫ t

0

dt′e−α(t−t′)/mβ(t′)

m
(1.4)

we can prove that B = αkBT as follows: Squaring and taking the average of Eq. (1.4) yields

⟨v2⟩ = kBT/m (according to the equipartition theorem) on the left hand side. On the right

hand side we have the following three terms:

⟨
e−2αt/mv2(0)

⟩
→ 0, (1.5)

for t → ∞,

2e−αt/mv(0)
∫ t

0
dt′e−α(t−t′)/m⟨β(t′)⟩/m = 0, (1.6)

9



since ⟨β(t)⟩ = 0, and

1
m2

⟨∫ t

0
dt′e−α(t−t′)/mβ(t′)

∫ t

0
dt′′e−α(t−t′′)/mβ(t′′)

⟩
. (1.7)

Recalling that ⟨β(t)β(t′)⟩ = 2Bδ(t− t′), Eq.(1.7) becomes

2B

m2

∫ t

0

dt′e−2α(t−t′)/m =
B

αm
(1− e−2αt/m), (1.8)

which for t → ∞ converges to B/(αm). Recall that this must equal kBT/m. Therefore,

B = αkBT and ⟨β(t)β(t′)⟩ = 2αkBTδ(t− t′). Notice that for this value of B, ⟨v2⟩ = kBT/m

for all t, since Eq.(1.5) and the second term in Eq.(1.8) cancel out exactly.

The particle’s MSD can be obtained in a similar fashion, by substituting Eq. (1.4) in

x(t) = x0 +
∫ t

0
v(t′)dt′ and simplifying:

x(t) = x0 +
v0m

α

[
1− e−αt/m

]
+

1

α

∫ t

0

dt′e−α(t−t′)/mβ(t′). (1.9)

We are interested in ⟨∆x2⟩, the MSD of the particle, where ∆x = x − x0. Subtracting x0,

squaring and taking the average of Eq. (1.9) yields:

⟨
∆x2

⟩
=

m2

α2

[
1− e−αt/m

] [⟨
v20
⟩
− kBT

m

]
+

2kBT

α

[
t− m

α

(
1− e−αt/m

)]
. (1.10)

At equilibrium (⟨v20⟩ = kBT/m), the first term vanishes, which leaves:

⟨
∆x2

⟩
=


kBT
m

t2 t → 0

2kBT
α

t t → ∞ .
(1.11)

Comparing Eq. (1.11) to Eq. (1.2), we can infer the Einstein relation α = kBT/D.

From Eq. (1.11) we read that the dynamics is diffusive only on large time scales. On

short time scales, Langevin dynamics is ballistic (inertial). These properties are evident in

the MSD, Eq.(1.11). The crossover between the ballistic and diffusive regimes occurs at
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τ ∼ m/α, the characteristic time of the exponent in Eq. (1.10), also known as the ballistic

time. The correspondence between the diffusion equation (1.1) and Langevin’s equation

(1.3) holds only in the diffusive regime. However, typically, there is a clear separation

of many orders of magnitude between the microscopic ballistic time and the macroscopic

time of interest. [18]. Additionally, the equation neglects the influence of the motion of

the Brownian particle on the embedding fluid. The fluid acts as an ideal heat bath whose

properties remain unaffected by the presence of the moving Brownian particle. This latter

assumption is justified when the number of fluid molecules is macroscopically large, and

when the momentum and energy are locally transferred to the bulk fluid much faster than

any other relevant time scale of the dynamics.

1.2 Spatially-dependent friction

Model systems with spatially dependent diffusivity have been receiving renewed interest

recently due to their relevance to single-particle experiments involving femto-Newton force

measurements [19,20]. So, we now consider Brownian dynamics in a medium with a position-

dependent friction coefficient α(x). These types of dynamics are often associated with the

Itô-Stratonovich dilemma [21]. The dilemma itself is not the main topic of this thesis, and

we refer the reader to textbooks on stochastic dynamics [3, 4], for more details. Here we

only give a brief account of the issues relevant to this work. The generalization of Eq. (1.3)

corresponding to dynamics of Brownian particles, at constant temperature, in (1D) systems

with spatially-dependent friction coefficients, is [22, 23]

m
dv

dt
= −α(x)v + β (x (t)) , (1.12)

with α(x) = kBT/D(x), which is a natural generalization of Einstein’s relation [24]. As one

is typically interested only in the large temporal diffusive regime, a common practice is to
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look at the overdamped (non-inertial) limit of Eq. (1.12) corresponding to m(dv/dt) = 0,

0 = −α(x)v + β (x (t)) . (1.13)

When the Eq. (1.12) is integrated over time in order to calculate the trajectory of the

particle [25], one has to supplement the equation with a convention (rule) for choosing the

value of α during each integration time step dt. This requirement arises since the value of

α(x) changes during this time step. The name “Itô-Stratonovich dilemma” assigned to the

ambiguity about the choice of interpretation is after the two most commonly used conventions

- the one of Itô [26] which uses the value of α at the beginning of the time step, and the one

of Stratonovich [27] which takes the average of the friction function at the initial and the end

points. In the overdamped limit, i.e. Eq. (1.13), different conventions lead to trajectories

with different statistical properties, even for dt → 0 [28]. Numerical integration of Eq. (1.13)

using the Itô convention yields the PDF which solves the equation:

∂P (x, t)

∂t
=

∂2 (D(x)P (x, t))

∂x2
, (1.14)

while numerical integration using the Stratonovich convention yields the PDF which solves

the equation:

∂P (x, t)

∂t
=

∂

∂x

√
D (x)

∂
(√

D (x)P (x, t)
)

∂x

 . (1.15)

The equation correctly describing Brownian dynamics at constant temperature is Fick’s

equation:

∂P (x, t)

∂t
=

∂

∂x

(
D (x)

∂P (x, t)

∂x

)
. (1.16)
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The convention that produces the same PDF is neither Itô’s nor that of Stratonovich, but

rather Hänggi’s interpretation (also known as the “isothermal” convention) [29, 30] which

uses α at the end of the time step [22, 23]. In the case of underdamped Langevin dynamics

[i.e., Eq. (1.12) with the l.h.s. not assumed to be vanishingly small], all (reasonable) con-

ventions [31] converge to the correct PDF in the limit dt → 0. This difference between

underdamped dynamics and its overdamped limiting case stems from fact that in the latter,

the velocity is physically ill-defined (since it is proportional to the white noise β), while in

the former, it remains finite and follows the equilibrium Maxwell-Boltzmann distribution.

Formally (mathematically) speaking, there is no dilemma in the second-order (in x) equa-

tion (1.12). However, the rate of convergence of numerical simulation-results toward the

theoretical PDF [i.e., the solution of Eq. (1.16)] greatly depends on the chosen convention

and the numerical integrator. This issue has considerable practical importance in numerical

simulations where the time step dt is not infinitesimal. The results in the work are based on

Langevin dynamics simulations employing the G-JF integrator [32,33] with a newly proposed

“inertial” convention [22,24] (to be discussed in the following section 1.3). This combination

produces excellent results even for relatively large integration time steps.

1.3 Numerical integration

The PDF in Langevin dynamics simulations can be obtained from an ensemble of trajec-

tories of particles starting at x0 drawn from the initial distribution P (x, 0), with initial

velocities, v0, taken from an equilibrium Maxwell-Boltzmann distribution. The trajectories

are computed by numerically integrating Langevin’s equation of motion (1.12). Denoting,

respectively, by xn and vn the position and velocity of a particle at time tn, the integra-

tion is conducted using the G-JF algorithm that advances the system by one time step to

13



tn+1 = tn + dt, using the following set of discrete-time equations [32,33]:

xn+1 = xn + bdtvn +
bdt2

2m
fn +

bdt

2m
βn+1 (1.17)

vn+1 = avn +
dt

2m

(
afn + fn+1

)
+

b

m
βn+1, (1.18)

where fn = f (xn) is the deterministic force acting on the particle, βn+1 is a Gaussian

random number with

⟨βn⟩ = 0 ;
⟨
βnβl

⟩
= 2αkBTdtδn,l, (1.19)

and the damping coefficients of the algorithm are

b = [1 + (αdt/2m)]−1 ; a = [1− (αdt/2m)] b. (1.20)

We set fn = 0 since we consider the case when the particle experiences no forces other than

random collisions with the fluid molecules.

Since the friction coefficient varies in space, the above equations (1.17) and (1.18) must

be complemented with a convention for choosing the value of α to be used in Eqs. (1.19) and

(1.20) at each time step. Here, we use the recently proposed inertial convention that assigns

to α the value of the spatial average of the friction function along the inertial trajectory from

xn to x̃n+1 = xn + vndt [22,24]

∫ x̃n+1

xn α(x)dx

x̃n+1 − xn
=

A(x̃n+1)− A(xn)

x̃n+1 − xn
, (1.21)

where A(x) is the primitive function of α(x). We have previously demonstrated that the

combination of the G-JF algorithm with the inertial convention produces excellent agreement

between the computed and theoretical PDFs, even for relatively large intergration time steps.

14



1.4 Thesis Outline

In this work, we present two case studies of diffusion in one-dimensional model systems. The

first example [34], discussed in chapter 2, is concerned with the dynamics of a particle in a

medium with a spatially-dependent diffusion coefficient, D(x) ∝ |x|c. In this example, the

particle does not exhibit the features of normal diffusion, but, depending on the exponent c,

is rather characterized by sub- or super-diffusive motion. In the second example, discussed in

chapter 3, we consider the biomedical problem of drug transport from a drug-eluting stent.

This is done by considering a simple two-layer model system, representing the drug coating

and arterial wall, with a semi-permeable membrane, representing the drug topcoat, between

them. Finally, in chapter 4, we summarize the main conclusions of this work and discuss

potential future research directions.

15



Chapter 2

Isothermal Langevin dynamics in

systems with power-law spatially

dependent friction

2.1 Introduction

Anomalous diffusion processes differ from normal diffusion processes in that their MSD grows

non-linearly with time, i.e.:

⟨
∆x2

⟩
∝ tk, (2.1)

with k < 1 corresponding to sub-diffusion and with k > 1 for super-diffusion. Anomalous

diffusion emerges in different fields, for instance daily fluctuations in climate variables such

as temperature [35] or the plume growth in the atmosphere [36], stock price variations [37],

diffusion in disordered media [38] and worm-like micellar solutions [39], and the movement of

ultra-cold atoms [40]. Another example of sub-diffusion is the scaling behavior of the center

of mass of a flexible polymer at short times. In the bead and spring or Rouse model k = 1/2

in Eq. (2.1), while the Zimm model, which takes hydrodynamic interactions into account,
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yields k = 2/3 [41, 42]. In biological systems, the phenomenon of sub-diffusion has lately

been observed in systems such as single particle diffusion in cytoplasm [43], and telomeres

in cell nuclei [44]. Super-diffusion in biology was also noticed in active cellular transport

processes [45], for instance, in the motion of micron-scaled beads in a bacterial bath at short

times [46], and in the food foraging locomotion of animals such as Drosphilia fruit flies [47].

Although any dynamics with MSD ⟨∆x2⟩ ∝ tk, for k ̸= 1, is considered anomalous

diffusion, there are several distinct approaches to stochastic dynamics. One framework for

anomalous diffusion is the continuous time random walk (CTRW) formalism, which is a

generalization of a random walk where a particle is delayed by a certain random time between

successive steps. This formalism has been used for describing several phenomena such as

transport in amorphous materials [48] and variations in currency exchange rates [49]. The

diffusion equation describing CTRW is given in ref. [50]:

∂

∂t
P (x, t) = Dρ1−2H

t

∂2

∂x2
P (x, t), (2.2)

where ρ1−2H
t is the Riemann-Liouville fractional operator defined as [51,52]

ρ1−2H
t P (x, t) =

1

Γ(2H)

∂

∂t

∫ t

0

P (x, t′)

(t− t′)1−2H
dt′, (2.3)

and 0 < H < 1 is called the Hurst parameter. The MSD in this case is highly dependent on

the distribution of wait times. A distribution with a finite second moment (H ≥ 0.5) will

lead to normal diffusion; however, choosing wait times distributed by Ψ(t) ∝ t−1−2H with

0 < H < 0.5 will lead to ⟨∆x2⟩ ∝ t2H , or sub-diffusion [53].

A Lévy walk, where a particle can make l correlated steps in the same direction with

probability p ∝ l−2−β and otherwise makes a random step in any direction, is an additional

framework which gives rise to anomalous diffusion. In order to simulate such a walk, one

should follow the following steps: (1) Take a step in either direction with the same probability

and set l = 1. (2) Take a step in the same direction as the last step with probability p ∝ l−2−β

17



and take a step in either direction (with the same probability) with probability 1− p. (3) If

the current step was in the same direction as last step set l = l+1; otherwise, set l = 1. Go

to step 2. In Lévy walks, the MSD scales as a power-law of the time [54]:

⟨
∆x2

⟩
=



t2 −1 < β ≤ 0

t2−β 0 < β < 1

t ln t β = 1

t β > 1

(2.4)

Eq. (2.4) shows that, in contrast to CTRWs, during a Lévy walk, a particle can experience

ballistic motion for −1 < β ≤ 0, super-diffusion for 0 < β ≤ 1, and normal diffusion for

β > 1.

Another popular framework is fractional Brownian motion (fBm), which has been used

to describe, e.g., anomalous diffusion in synthetic hydrology [55]. It differs from normal

Brownian motion by a correlation function between two positions, x(t1), x(t2):

⟨x(t1)x(t2)⟩ = D(|t1|2H + |t2|2H − |t1 − t2|2H). (2.5)

For H = 0.5 the steps are uncorrelated (corresponding to regular Brownian motion), while

for H > 0.5 (H < 0.5) they are positively (negatively) correlated. In this case ⟨∆x2⟩ ∝ t2H ,

meaning the particle experiences sub-diffusion for H < 0.5 and super-diffusion for H > 0.5

[56–59]. FBm be described by the fractional Langevin equation [50]

m
d2x(t)

dt
= −α

∫ t

0

(t− t′)2H−2

(
dx(t′)

dt′

)
dt′ + ηξ(t), (2.6)

where ξ(t) is a power-law correlated noise kernel of the form ⟨ξ(t1)ξ(t2)⟩ = 2HD|t1−t2|2H−2+

4HD|t1 − t2|2H−1δ(t1 − t2), and the noise amplitude η =
√

α2

2H(2H−1)
. The PDF which arises
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from fBm is of a Gaussian form

P (x, t) =
1

4πDt2H
exp

(
− x2

4Dt2H

)
, (2.7)

with a standard deviation that grows ∝ t2H .

Recently, it has been noticed that anomalous diffusion may also arise in heterogeneous

systems with coordinate-dependent diffusivity of the power-law form: D(x) ∝ |x|c [60–63].

An example where power-law diffusivity emerges (as can be realized via scaling arguments)

is Brownian dynamics on fractal objects. [64]. In this chapter, we take a closer look at these

types of systems, from the perspective of underdamped Langevin dynamics. In particular,

we examine the prediction that for c > 1, the dynamics is hyper-diffusive, namely, that it is

characterized by a MSD that grows faster than quadratically in time. As we will see, this

result violates basic physical principles, which can be traced to the non-physical nature of

the overdamped Langevin equation (1.13), that neglects the ballistic regime of the dynamics.

2.2 Heterogeneous media with power law friction func-

tion

2.2.1 Fick’s second law

For D(x) = D0 |x/l|c, the solution of Eq. (1.16) is [64]

P (x, t) =
[(2− c)c D0t]

1/(c−2)

2Γ
(

1
2−c

) exp

[
−|x|2−c

(2− c)2(D0t)

]
, (2.8)

where Γ is the Gamma function, and for brevity we set l = 1. This solution satisfies

the condition that the particle’s motion starts at the origin: P (x, 0) = δ(x). From the

requirement that P (x, t) vanishes for x → ±∞, which is necessary (but not sufficient) to

ensure that
∫∞
−∞ P (x, t)dx = 1, we infer that the solution can be physical only for c < 2.
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From symmetry considerations, the ensemble average ⟨x⟩ = 0, while the MSD,

⟨
∆x2

⟩
=

∫ ∞

−∞
x2P (x, t)dx =

Γ
(

3
2−c

)
Γ
(

1
2−c

) [(2− c)2 D0t
]2/(2−c)

. (2.9)

Thus, for c < 0 we observe subdiffusion, and for 0 < c < 1 we find superdiffusion. For c = 0

we have ⟨∆x2⟩ = 2D0t, i.e., normal diffusion, and for c = 1 the particle’s motion is ballistic.

For c > 1, Eq. (2.9) predicts dynamics which are faster than ballistic (for instance, c = 1.5

corresponds to dynamics at costant acceleration). This is an unphysical result, and in what

follows we demonstrate that for any c ≥ 1 the motion remains ballistic.

2.2.2 Langevin Dynamics Simulations

The PDF can be obtained from an ensemble of trajectories of particles starting at the

origin, x0 = 0, with initial velocities, v0, drawn from an equilibrium Maxwell-Boltzmann

distribution. The trajectories are computed by numerically integrating Langevin’s equation

of motion (1.12) by using the G-JF algorithm detailed in 1.3.

Fig. 2.1 depicts our results for the PDF for systems with a power law friction function

α(x) = kBT/D(x) = (kBT/D0)|x/l|−c, for c = −0.5 (A) and c = +0.5 (B). For convenience,

we set m = 1, D0 = 1, kBT = 1, and l = 1. The results have been obtained from simulations

of 2.5× 105 trajectories with integration time step dt = 10−3. The open circles in Figs. 1(A)

and (B) represent our numerical results for the PDF at t = 1000 for c = −0.5 and c = 0.5,

respectively. The numerical results exhibit excellent agreements with the corresponding

analytical predictions of Eq. (2.8), which are plotted with the solid curves.

The symbols in Fig. 2.2 represent the numerical results for the MSD for c = −0.5, 0.25, 0.5, 0.75.

We observe that the power-law behavior ⟨∆x2⟩ ∼ t
2

2−c [see Eq. (2.9)], which is depicted by

the lines in the figure, is indeed recovered at large times. The same power-law (2.9) was pre-

viously derived in ref. [62], where instead of Fick’s law (1.16), a different diffusion equation

∂tP = ∂x

[√
D (x) ∂x

(√
D (x)P

)]
[Eq. (1.15)] was considered. The latter form of the dif-
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(B)

(A)

Figure 2.1: (A) The PDF at t = 1000 obtained from the numerical integration (open circles)
vs. the PDF given by Eq. (2.8) (solid line), which solves Fick’s diffusion equation for c = −0.5.
(B) Same as (A), for c = 0.5.

fusion equation corresponds to the Stratonovich interpretation of the overdamped Langevin

equation. The reader is reminded (see section 1.2) that for overdamped Langevin dynamics,

different conventions lead to different PDFs. Indeed, although both equations yield the same

power-law for the MSD, the PDFs solving these equations look markedly different. Specif-

ically, the PDFs of the Statonovich diffusion equation diverge at the origin for c > 0, and

assume a a bimodal form for c < 0, with a vanishing value at the origin [62]. In contrast,

the PDFs of Fick’s law of diffusion (which corresponds to Hänggi’s interpretation) attain a

maximum at the origin. Our Langevin dynamics simulations, which at large times reproduce

PDFs that agree with Eq. (2.8), serve as yet another demonstration for the appropriateness

of Hänggi interpretation and Fick’s second law for diffusion at constant temperature. This
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Figure 2.2: The MSD ⟨∆x2⟩ of the particle as a function of time for c = −0.5, 0.25, 0.5, 0.75
(markers), vs. the expected ⟨∆x2⟩ for c = −0.5, 0.25, 0.5, 0.75 according to Eq. (2.9) (lines).

is because the simulations follow the underdamped (inertial) Langevin dynamics of the par-

ticle. As noted above, for the inertial Langevin equation, all interpretations converge to the

correct solution in the limit of small integration time steps.

2.3 Ballistic Motion

2.3.1 The case c ≥ 1

Integrating Eq. (1.12) from the initial time to t, and taking the ensemble average over all

noise realizations, yields the following relationship

⟨m∆v⟩ = −⟨∆A (x)⟩ (2.10)

between the momentum change (force impulse) and displacement of the particle. Eq. (2.10),

which was previously derived in ref. [24], involves A(x) - the primitive function of α(x) [see
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Eq. (1.21)]. This implies that α(x) must be an integrable function. For α(x) ∼ x−c with

c ≥ 1, the friction function is non-integrable at x = 0. This feature makes it impossible

to start the simulations when the particle is at the origin due to the inability to define the

friction coefficient for the initial step. If the particle is placed on one side of the system, it

will never cross to the other side. This is because no matter how close the particle approaches

to the origin, its ballistic distance (the characteristic distance that it travels before changing

its direction) will always be shorter than the distance to the origin. In other words, for

c ≥ 1, the dissipation near the origin diverges so rapidly, that the singularity acts like a wall

that stops the particle and bounces it back. This scenario, however, is unphysical, and it

stems from the unphysical nature of Langevin’s equation which only considers the influence

of the medium on the particle but ignores the impact of the particle on the medium. From

momentum conservation we know that any change in the momentum of the Brownian particle

must be countered by an opposite change in the momentum of the molecules of the medium.

This implies that when the particle is reflected from the origin, it exerts a force on the

friction singularity, and this force will cause changes in the medium that would not allow

the singularity to be long-lived.

Apart from the divergence of A(x) at the origin, it is also interesting to consider the

ramifications of the rapid drop in α(x) in the limits x → ±∞. For c > 1, the integral

over α(x) from x0 > 0 (x0 < 0) to +∞ (−∞) is finite, implying that the particle’s bal-

listic distance may diverge. This can be inferred from Eq. (2.10), which suggests that it

is unlikely for a particle to change its direction of motion, if it reaches x0 with velocity

v0 > [A (∞)− A (x0)] /m. In other words - as the particle travels further away from the

origin, it experiences a vanishingly small friction force and, therefore, its motion would ulti-

mately become ballistic. The crossover from diffusive to ballistic dynamics is further explored

in the following subsection.
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2.3.2 Crossover to ballistic motion

We now consider dynamics in a one-dimensional system with the spatially-dependent diffu-

sion coefficient

D(x) = D0

[
1 +

(x
l

)2
]
. (2.11)

For this choice, D(x) ∼ xc with c = 2 for x/l ≫ 1; but unlike the power-law form discussed in

section 2.3.1 above, the friction coefficient, α(x) = kBT/D(x), does not diverge at the origin.

A special reason for choosing the specific form Eq. (2.11) is that it has been given in ref. [23]

as an example of a spatially-dependent diffusion coefficient causing increasing acceleration.

This result is obtained by multiplying by x2 both sides of the diffusion equation (for D0 = 1

and l = 1)

∂P (x, t)

∂t
=

∂

∂x

[(
1 + x2

) ∂P (x, t)

∂x

]
, (2.12)

and integrating with respect to x, which yields the equation

∂ ⟨∆x2⟩
∂t

= 2 + 6
⟨
∆x2

⟩
, (2.13)

which has the solution

⟨
∆x2

⟩
= [exp (6t)− 1] /3. (2.14)

However, the prediction of Eq. (2.14) that the MSD grows exponentially with t is unphysical

since it implies the emergence of two opposite currents of particles with ever-increasing

velocities. One should wonder about the energy source of the exponential growth in the

kinetic energy of the Brownian particles. The particles are immersed in a medium of uniform

temperature serving as a heat bath, and experience no force other than random collisions with

the molecules of the medium. It is impossible that through random collisions, the Brownian
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Figure 2.3: The PDF at t = 10 (A) and t = 1000 (B) of a Brownian particle starting at the
origin and moving in a medium where α(x) = 1/(1 + x2).

particles would consistently gain energy allowing them to reach exponentially large speeds,

especially at large distances where the friction coefficient vanishes, which means that the

rate of collisions with the heat bath becomes increasingly small.

The erroneous Eq. (2.14) is derived from the diffusion equation (2.12). The latter,

however, does not correctly depict the dynamics of the particles in the system because it

applies only to time-scales much larger than the ballistic time of the motion. As noted at

the end of section 2.3.1, the ballistic distance diverges when the friction function drops faster

than x−1 at large distances. When this occurs, the velocity of the particle saturates to some

finite value, and the dynamics becomes ballistic. In other words, the ballistic time diverges,

and the dynamics never reaches the diffusive regime of Eq. (2.12).

In contrast to the diffusion equation (1.16), the Langevin equation (1.12) applies to

both the ballistic and diffusive regimes. Fig 2.3 presents our results for the PDF of the parti-

cles at t = 10 (A) and t = 1000 (B). The results, which are based on numerical integration of

3.25× 105 trajectories starting at the origin (with velocities drawn from the standard Gaus-

sian equilibrium distribution), demonstrate that as the time increases, the PDF becomes

increasingly bimodal. This indicates the emergence of two opposite particle currents propa-

gating away from the origin. Fig. 2.4(A) shows the velocity probability distribution function
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(A)

(B)

Figure 2.4: (A) Circles - The bimodal VPDF at t = 1000. The dashed line depicts the
initial Gaussian equilibrium VPDF. (B) The computed MSD of the particle (circles) vs. the
asymptotic power-law form ⟨x2⟩ = 2.41t2 (solid line).

(VPDF) at t = 1000 (solid circles), which is also bimodal and, thus, does not coincide with

the initial equilibrium distribution (depicted by the dashed line in the figure). The VPDF

at t = 2000 (not shown) is essentially identical to the VPDF in Fig. 2.4(A), which proves

this VPDF represents the steady state of the velocity distribution. From the steady state

VPDF, we find that the steady state squared velocity ⟨v2⟩ ≃ 2.41 (in units of kBT/m) and,

therefore, at large times the position MSD ⟨x2⟩ = ⟨v2⟩ t2 = 2.41t2. This result, which is fully

corroborated by the numerical data in Fig. 2.4(B), demonstrates that the particles end up

moving inertially with velocities drawn from the steady state VPDF.
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2.3.3 The fluctuation-dissipation relationship

Integrating Eq. (1.12) with respect to time, squaring the equation, and taking the ensemble

average over noise realizations, yields the generalized form of the fluctuation-dissipation

relationship for systems with spatially varying friction [24], which reads

⟨
(m∆v)2 + 2m∆v∆A+ (∆A)2

⟩
=

∫ t

0

2 ⟨α (t′)⟩ kBTdt′. (2.15)

If at large times the dynamics enters the diffusive regime, the first two terms on the l.h.s. be-

come negligible compared to the third one. Moreover, for a constant α, the third term on

the l.h.s. is equal to α2
⟨
(∆x)2

⟩
, while the integral on the r.h.s. gives 2αkBTt. Thus, for

constant friction, expression (2.15) reduces (at large times) to the well-known form of the

fluctuation-dissipation relationship
⟨
(∆x)2

⟩
= 2(kBT/α)t = 2Dt.

For the dynamics discussed in section 2.3.2, the motion is not diffusive, but rather

becomes ballistic at large times. However, relationship (2.15) holds for any time t, regardless

of the character of the dynamics. This is nicely demonstrated in Fig. 2.5(A), where we plot

the ensemble averages of the three terms on the l.h.s. of Eq. (2.15). As can be seen, all three

terms grow rapidly at short times, which include the very initial ballistic segment, and the

following interval of diffusive motion. At t ≳ 100, all three terms saturate, which indicates

the crossover from diffusive to ballistic motion. In (B) we plot the sum of the averages of

these three terms (dashed line) vs. the value of the r.h.s. of Eq. (2.15), which is the ensemble

average of α (x (t′)) integrated from the beginning of the dynamics until time t (solid line).

The lines overlap each other (the relative difference between them is smaller than 1%), which

demonstrates that the equality between the two sides of Eq. (2.15) holds at all times.
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(A)

(B)

Figure 2.5: (A) The ensemble averages of (m∆v)2 [first term on the l.h.s. of Eq. (2.15) -
thin solid line], 2m∆v∆A (second term - thick solid line), and (∆A)2 (third term - dashed
line), as a function of time t. (B) The sum of the three averages shown in (A) (dashed line)
vs. the average of 2αkBT integrated over time [r.h.s. of Eq. (2.15) - solid line], as a function
of t.

2.4 Summary and Discussion

In this work we used computer simulations to study the Langevin dynamics of Brownian

particles in a 1D system with a friction coefficient that varies as a power-law of the distance

from the origin α(x) ∼ |x|−c. It has been demonstrated that for c < 1, the particle diffuses

anomalously with MSD ⟨∆x2⟩ ∼ t2/(2−c). This result can be also derived by solving the

corresponding diffusion equation (1.16) with diffusion coefficient D(x) = kBT/α(x).

The diffusion equation can be formally solved for c < 2. For 1 < c < 2, the solution

incorrectly predicts that the MSD grows faster than the MSD of ballistic motion. This result

stems from the diffusion equation, which cannot be physically justified for time scales smaller
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than the ballistic time of the motion. For constant friction coefficient α, a crossover from

ballistic to diffusive motion occurs on time scales τ ≥ m/α. In the case when α(x) ∼ |x|−c

with c > 1, the friction vanishes rapidly at large distance and an opposite crossover, from

diffusive back to ballistic motion, takes place. When this happens, the diffusion equation can

no longer be used if the ballistic time diverges, in which case the motion remains ballistic

(as the particle escapes to infinity).

In the example discussed in section 2.3.2, the divergence of the friction at the origin is

removed, while at large distances α(x) ∼ |x|−2. Even if the friction never vanishes completely,

it drops at such a fast rate that it quickly becomes irrelevant. Thus, this example resembles

dynamics of a Brownian particle in a finite fluid drop held at constant temperature T .

When the particle reaches the surface of the drop, it escapes, and its velocity no longer

changes. At the moment of escape the particle has to have a velocity component directed

outwards from the drop and, therefore, the velocity distribution function outside of the drop

differs from the equilibrium Gaussian equilibrium velocity distribution at temperature T

[see Fig. 2.4(A)]. Noticeably, the mean kinetic energy of the escaping particle is larger than

the corresponding equilibrium value, dkBT/2 (where d is the dimentionality of the system).

The fact that, on average, the escaping particle takes away an amount of kinetic energy

larger than the equilibrium value implies that the molecules of the fluid drop are left with

an average kinetic energy smaller than the equilibrium value. The drop cools down slightly,

and in order to maintain the temperature at T , it must be connected to a true heat reservoir

that would supply the missing energy. This consideration is missing in the framework of

Langevin’s equation that completely neglects the influences of the Brownian particle on the

surrounding medium.

Finally, we note that, within the framework of Langevin dynamics, a generalized form

of the fluctuation-dissipation relation has been previously derived [Eq. (2.15)]. This form

holds for dynamics in media with spatially varying friction, at all times (i.e., both within

the ballistic and diffusive regimes of the dynamics). If α(x) is bound between two positive
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values, the motion at large times becomes diffusive. In such a case, the l.h.s. of Eq. (2.15)

becomes dominated by the third term, and both sides of the equation grow linearly with t.

Anomalous diffusion is observed when at large distances α(x) ∼ |x|−c with c < 1. In this

case, the third term still dominates the other two terms on the l.h.s.; however, the large time

behavior scales like x2(1−c) ∼ t2(1−c)/(2−c). For c ≥ 1, the motion becomes ballistic at large

times. In this case, all terms on the l.h.s. are equally important and, like the r.h.s. of the

equation, relax to constant asymptotic values.
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Chapter 3

Application of underdamped Langevin

dynamics simulations for the study of

diffusion from a drug-eluting stent

3.1 Introduction

Arterial stents are indispensable in the treatment of coronary artery disease (CAD) and

more specifically stenosis, the abnormal narrowing of blood vessels [65]. These stents are

frequently implanted in arteries where blood flow has become precariously impeded. In recent

decades, they have revolutionized the treatment of stenosis by providing a safer alternative to

coronary surgery. In addition to diminishing the risk of major surgery complications, stents

also facilitate recovery and help avoid administering general anesthesia to patients [66].

However, arterial stents have only been able to reduce the instances of recurring stenosis, or

restenosis, to 20-30%, compared to 30-40% in coronary surgery [67].

In an effort to further curtail these rates, drug-eluting stents (DES) were introduced.

A DES is a stent that uses programmed pharmacokinetics to release anti-proliferative phar-

maceuticals into the arterial wall. It is comprised of a metallic strut coated with a polymeric
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matrix or gel that encapsulates the therapeutic drug [68]. The drug reduces smooth muscle

cell growth and prevents an inflammatory response - two predominant causes of in-stent-

restenosis and neo-intima proliferation [68]. Stents coated in anti-proliferative agents have

mitigated instances of restenosis to roughly 5% in clinical trials and are FDA approved [69].

Understanding the rate at which drugs are transported through the arterial tissue is

crucial for stent design, and as such has been studied extensively [11,70–96]. The dominant

mechanism of drug transfer from the coating is diffusion through the arterial wall. Thus,

the simplest model describing the system is based on the solution of a diffusion equation in

a two-layer one-dimensional system. More complex models give weight to other phenomena

and factors such as chemical reactions between the drug and the arterial wall [70–78], di-

rected advection of the drug [11,70–72,75–84], cell metabolism [79,82], and the drug topcoat

membrane permeability [11, 75, 78, 85, 86]. These phenomena and factors amend the partial

differential equations (PDEs) that describe the transport of the drug. They also modify

the boundary conditions between the layers and often require the introduction of additional

layers [70,71,80,83,85,87–90]. Some studies consider more complex two- [77,89,91] and even

three-dimensional [76,82,85,92,93] geometries. The PDEs are often solved by separation of

variables, or numerically through some kind of a discretization scheme, e.g., finite elements,

finite differences, and the marker cell method. Noteworthy exceptions include analytical

Laplace transform solutions [90], Boltzmann reductions [74], and numerically solved Voltera

integral equations [86]. Experimental data is also available [94–96], and has been used to

test and validate theoretical models.

3.2 Two-layer systems

Assuming in Eq. (1.16) that 0 < D(x) < ∞ (−∞ < x < ∞), the resulting P (x, t) (for t > 0)

must be a continuous function for any intial condition. The flux j(x, t) = −D(x)∂xP (x, t)

must also be continuous if no source or sink of probability are present in the system. These
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properties of the PDF also apply to layered systems where D is piece-wise constant. In this

section, we consider a simple one-dimensional two-layer model for a DES. Before arriving at

that model, we first consider the simplest two-layer system, where D(x) = D1 for x < 0 and

D(x) = D2 for x > 0. As just stated above, both the PDF and the flux must be continuous,

including at x = 0, which sets the boundary conditions at the interface between the layers.

Assuming that a particle is initially located at x = x0 > 0, i.e., P (x, 0) = δ(x − x0), then

the normalized (i.e., satisfying
∫∞
−∞ P (x, t)dx = 1) solution of (1.16) for t > 0 is given by

P (x, t) =


A√

4πD1t
e
− (x−x1)

2

4D1t x < 0

1√
4πD2t

e
− (x−x0)

2

4D2t + B√
4πD2t

e
− (x+x0)

2

4D2t x > 0 ,
(3.1)

with x1 = x0

√
D1/D2, A = 2/(1+

√
D2/D1), and B = (1−

√
D1/D2)/(1+

√
D1/D2). This

solution can be interpreted as follows: For x > 0, the PDF is the outcome of two diffusion

processes associated with (i) the original particle which has a unity weight and is located

at x = x0, and an image particle of weight B located at x = −x0. For x < 0, the PDF

represents diffusion of an image particle of weight A = 1 − B, which is located at x = x1.

Notice that for D1 = D2, we have x1 = x0, A = 1, B = 0, which reduces Eq. (3.1) to

the well-known Gaussian solution for a particle diffusing in an infinite space with constant

diffusivity. Fig. 3.1 compares the PDF (3.1) for D1 = 1, D2 = 0.1, and x0 = 4 (lines) to the

results of Langevin dynamics simulations based on the above described G-JF integrator with

the inertial convention (symbols). In the simulations, we set m = 1 and kBT = 1. Thus, the

friction coefficients in the layers are given by α1 = kBT/D1 = 1 and α2 = kBT/D2 = 10.

We set the time step to dt = 0.1. For both layers, this value of dt satisfies the condition

dt ≤ 2m/α, which has been assumed in the application of the inertial convention for choosing

ᾱ (see discussion at the end of section 1.3). Fig. 3.1 depicts the PDF at t = 100 and t = 1000,

based on 2.5× 105 trajectories. The total CPU time of the simulations was 3 minutes on a

PC. The agreement with Eq. (3.1) is excellent. Interestingly, we obtained almost identical

results with dt = 4, which does not satisfy the condition for inertial dynamics. In the latter
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Figure 3.1: The PDF of the two-layer problem (the vertical line at x = 0 represents the
interface). Open circles and the solid line denote, respectively, the results of the Langevin
dynamics simulations and the analytical solution Eq. (3.1) at t = 100. Similarly, the open
diamonds and the dashed line denote results for t = 1000.

case, the total duration of the simulations was 5 seconds.

Two interesting limiting cases may be considered: ForD2/D1 → ∞ (D2 = D, D1 → 0),

we have B → 1, and

P (x, t) = 1√
4πD2t

e
− (x−x0)

2

4D2t + 1√
4πD2t

e
− (x+x0)

2

4D2t (x > 0), (3.2)

which is the solution of the same problem with a reflecting wall at the origin. To simulate

Langevin dynamics in the presence of a reflecting wall (located, without loss of generality,

at x = 0), we follow the trajectory of the particle as computed by the Langevin integrator.

If it crosses the wall, i.e., when xn+1 < 0, we simply relocate the particle at −xn+1 > 0, and

reverse the velocity from vn+1 to −vn+1. The other limiting case is D2/D1 → 0 (D2 = D,
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D1 → ∞). Here, we have B → −1, and

P (x, t) = 1√
4πD2t

e
− (x−x0)

2

4D2t − 1√
4πD2t

e
− (x+x0)

2

4D2t (x > 0), (3.3)

which is the solution of the same problem with an absorbing wall at the origin. When

one simulates Langevin dynamics with absorbing boundaries, the trajectory is terminated

when it crosses the boundary. Obviously, the total probability is not conserved but rather

diminishes with time.

3.3 Semi-permeable membrane

Drug-eluting stents include a topcoat that influences the rate of drug release to the artery.

Since the topcoat layer is thin compared to the dimensions of the stent and the arterial

wall, it can be included in a DES two-layer model as a semi-permeable membrane boundary

that controls the transition rate from the coating (first layer) to the artery (second layer).

Let us first discuss the problem of diffusion across a semi-permeable membrane within the

general context of two-layer systems. We denote by Pcross the probability that, within a

small time interval dt, a drug molecule arriving to the boundary from the first layer crosses

it to the second layer. In the opposite direction (from the second layer back to the first), the

crossing probability is unity. A semi-permeable membrane can be incorporated in Langevin

dynamics simulations of layered systems in the following manner: Let us first consider the

simpler case where the friction coefficient α is the same on both sides of the membrane,

which is located at x = xm. We follow the particle until it crosses the membrane (xn < xm

and xn+1 > xm). In order to decide whether the particle should cross the boundary or be

reflected from it, we draw a random number, R, from a uniform distribution between zero

and one. We accept the new coordinate and velocity (xn+1, vn+1) if R < Pcross (crossing),

and reverse them to (2xm − xn+1,−vn+1) if R > Pcross (reflection). If α varies across the

membrane, the algorithm is only slightly more complicated: The new coordinate and velocity
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Figure 3.2: The PDF at t = 100 of a particle starting next to a reflecting wall at the origin,
and diffusing through a semi-permeable membrane at x = 10 (represented by the vertical
line), with crossing probability Pcross. Squares, circles, diamonds and stars denote the results
of the Langevin dynamics simulations for Pcross = 1, 0.5, 0.25, 0.1, respectively. The solid line
shows the solution for the case with no membrane [see Eq. (3.2)].

(xn+1, vn+1) are computed assuming that the friction varies in space, i.e., with the inertial

convention for the average friction during the time step [Eq. (1.21)]. The step is accepted

for R < Pcross and is changed to a reflection step for R > Pcross. In the latter case, one must

take into account the fact that the particle has not passed the membrane and, therefore,

the friction coefficient along its trajectory remains constant. Therefore, the new coordinate

and velocity are recalculated using the G-JF algorithm, with the already chosen value of

βn+1, but with the friction coefficient at the initial coordinate xn < xm. The recalculated

(xn+1, vn+1) are accepted if the particle has not crossed the membrane (xn+1 < xm), and

changed to (2xm − xn+1,−vn+1) if it has.

Fig. 3.2 shows simulation results for the PDF of a particle, initially located right next

at a reflecting wall at x = 0, and diffusing in a medium with constant D = 1 that has a semi-

permeable membrane at xm = 10. The PDF at t = 100 is plotted for various values of Pcross.
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The PDF is discontinuous at xm because the membrane interferes with the diffusion rates.

However, the membrane is not a probability sink or source and, therefore, the probability

flux, j(x) = −D∂xP (x, t), arriving at the membrane from left (x → xm−) is the same as the

flux leaving the membrane to the right (x → xm+). This last feature of the PDF is visually

apparent in Fig. 3.2. Since the membrane (partially) blocks the drug flow only from left to

right, the probability density drops across the membrane, i.e., P (xm−, t) > P (xm+, t). The

data in Fig. 3.2 suggests that the following relation holds: Pcross = P (xm+, t)/P (xm−, t).

This relation is anticipated from the continuity of the flux and the fact that for each Pcross

molecules crossing the membrane from left to right, one molecule passes from right to left.

For Pcross = 1, the membrane is effectively non-existent because it does not impede the

diffusion. In this limit, P (x, t) becomes continuous at xm and is given by Eq. (3.2) with

x0 = 0 (solid line in Fig 3.2).

3.4 Two-layer stent model

3.4.1 The model

Fig. 3.3 illustrates the simplest model for drug release from a DES. The model consists of two

layers representing, respectively, the coating and the arterial wall. The first layer (coating),

which has length L1, is bounded between the stent strut (x = −L1) and the stent topcoat

(x = 0). The former is a reflecting boundary, while the latter is a thin semi-permeable

membrane. The second layer (the arterial wall) is of length L2. It is bounded between

the topcoat and the adventitial side of the arterial wall (x = L2), which is modeled as an

absorbing boundary since the drug arriving at the end of the artery is lost in the tissues

adjacent to the adventitia. The first and second layers have diffusion coefficients D1 and D2,

respectively. We denote by m the mass of a drug molecule, and use the thermal energy kBT

as the energy scale of the problem.

Typical values for the system parameters are given in the second column of Table 3.1 in
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Figure 3.3: Schematics of the two-layer model for drug release from a DES.

parameter physical normalized simulation
value value value

L1 5× 10−6m 1 1
L2 10−4 m 20 20
D1 10−17m2/s 1/700 1/700
D2 7× 10−15 m2/s 1 1
kBT 4.3× 10−21 J 1 1
m 1.5× 10−24 kg 6.8× 10−19 1
τ1 2.5× 106 s 700 700
τ2 1.4× 106 s 400 400
τm 3.5× 10−18 s 9.7× 10−22 1/700

Table 3.1: Model parameters and their physical (second column), normalized (third column),
and simulation (fourth column) values.

MKS units. In the third column, the same parameters are given in normalized units, where

L1 = 1, D2 = 1, and kBT = 1. Table 3.1 also gives the physical and normalized values of the

time scales τi = L2
i /Di (i = 1, 2), which are the characteristic diffusion times in each layer.

Notice the interesting feature that these two time scales are of the same order of magnitude.

3.4.2 Using a fictitious mass

Another characteristic time scale appearing in table 3.1 is τm = mD/kBT , which is the

crossover time from inertial to diffusive Langevin dynamics. This time scale, to be henceforth
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referred to as the ballistic time, is very important from a computational perspective since

Langevin dynamics simulations with the inertial interpretation must be run with time step

dt < τm in order to appropriately simulate the transition statistics between the layers. In

multi-layers systems, the limit on dt is set by the most viscous layer with the smallest

diffusion coefficient and the smallest ballistic time. Therefore, in table 3.1, we only give τm

of the first layer. For the stent model, we have τm ∼ 10−18 sec, which is more than 24 orders

of magnitude smaller than the diffusion times τ1 and τ2. This poses a huge computational

challenge, as the aim of the study is to measure quantities like the rate of drug transfer

to the bloodstream, which require simulations on time scales comparable to τ = τ1 + τ2.

This implies that each simulated trajectory requires, at least, 1024 time-steps, which would

make the simulations prohibitively time consuming. More specifically, simulations of just

104 trajectories would require 1013 years (!) of CPU time on a state of the art PC.

The key to circumvent this outstanding computational problem is to notice that the

diffusion equation (1.16) and Langevin’s equation (1.12) yield the same long-time probability

distributions if Einstein’s relation D(x)α(x) = kBT is satisfied. The mass of the particle,

which only appears in Eq. (1.12), is unimportant for this relationship between the two

equations to hold. Therefore, if we are only interested in obtaining the PDF at time scales

comparable to τ , we can use a fictitious mass which is much larger than the actual mass and,

thus, artificially increase the ballistic time τm. Of course, the artificial ballistic time must still

be much smaller than the diffusion time, but τm does not need to be negligibly smaller than

τ . In the fourth column of table 3.1 we give the normalized values of the model parameters

used in our Langevin dynamics simulations of the DES model. The simulations values are

identical to the normalized values for Li, Di, and kBT , but the mass in the simulations is set

to unity, i.e., about 18 orders of magnitude larger than the actual normalized mass of a drug

molecule. This narrows the gap between the ballistic time and diffusion times to 5-6 orders

of magnitude, and makes computationally feasible simulations of hundreds of thousands of

trajectories with integration time-step dt ≪ τm.
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3.4.3 Membrane permeability

In section 3.3 we defined Pcross to be the left-to-right crossing probability of the membrane in

one time step. Since the time step of the simulations is typically several orders of magnitude

smaller than the physical time scales of interest (dt ≪ τ), the crossing probability Pcross will

generally be very small, which would considerably slow down the simulations. To circumvent

this problem, as well as the problem arising from the difficulty to accurately estimate the

crossing probability, we replace Pcross with a different measure for the membrane permeability

- the permeation time T . The latter can be related to Pcross by noticing that each time the

particle attempts to cross the membrane, it has probability Pcross to cross it and probability

1−Pcross to be reflected. Thus, the probability of passing the membrane at the k-th attempt

is Pcross(1 − Pcross)
k−1, and the corresponding crossing time (measured from the time of

the first crossing attempt) is Tk = (k − 1)∆, where ∆ is the return time between successive

crossing attempts. This argument demonstrates that the permeation times are geometrically

distributed, with an average crossing time ⟨Tk⟩ = ∆(1 − Pcross)/Pcross. In reality, ∆ is

obviously not fixed but, itself, follows a certain continuous distribution. Therefore, the

actual permeation time does not follow a discrete geometric distribution, but its continuous

exponential analogue

p(t) =
1

T
exp (−t/T ) , (3.4)

where T is the characteristic permeation time. Similarly to its discrete counterpart ⟨Tk⟩,

T = ∆(1− Pcross)/Pcross, but here ∆ denotes the average time between successive attempts.

To account for the delay effect of a semi-membrane in simulations, we follow the trajectory of

the particle assuming that the membrane is fully-permeable (i.e., as if there is no membrane

present). At each crossing of the membrane we draw a random waiting time from the

exponential distribution (3.4), and this delay time is simply added to cumulative time of the

dynamics.
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3.5 Results

The quantity of most interest for therapeutic applications is the rate of drug transfer from

the stent coating to the arterial tissue. This can be characterized by the fractions Π1(t) and

Π2(t) of drug present in the coating (layer 1) and the arterial wall (layer 2), respectively.

These quantities are related to the PDF via

Π1(t) =

∫ 0

−L1

P (x, t)dx, (3.5)

Π2(t) =

∫ L2

0

P (x, t)dx. (3.6)

In simulations, each trajectory is terminated upon arrival to the arterial wall boundary,

which implies that Π1(t) + Π2(t) is a monotonic function decreasing from unity at t = 0 to

zero at t → ∞. Π1(t) and Π2(t) are simply identified with the fraction of trajectories that

at time t arrive at some point within the coating and arterial wall layers, respectively.

Fig. 3.4 shows our computational results for Π1 (dashed curves) and Π2(t) (solid curves)

as a function of the time t. The results are based on 2.1 × 105 trajectories simulated with

time step dt = 10−4 which meets the requirement dt ≪ τm where τm = 1/700 is the ballistic

time (see table 3.1). The initial coordinates of these trajectories are chosen from a uniform

distribution between x = 0 and x = L1, which reflects the initial uniform distribution of the

drug within the coating layer. The thin curves in Fig. 3.4 depict results for the DES model

without a semi-permeable membrane, i.e., with vanishing permeation time T = 0 between

the layers. Not surprisingly, Π1 decreases monotonically from 1 to 0 on a time scale t ∼ 103

(∼ 103 hours in physical units), which is comparable to the sum of diffusion times in the

coating and the arterial wall τ = τ1 + τ2. Π2 increases from an initial value of 0, arrives to

a maximum value for t ≲ 200, and then monotonically decreases to 0 at larger times. The

behavior of Π2 reflects net drug transfer from the stent coating to the arterial wall at the

beginning of the process, followed by gradual loss of drug at longer times, due to absorption

in the tissues adjacent to the adventitia. The thick curves in Fig. 3.4 depict results for the

41



0 200 400 600 800 1000 1200
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Π
1
(t

),
Π

2
(t

)

Figure 3.4: The fraction of drug in the coating (dashed curves), Π1, and in the arterial wall
(solid curves), Π2, as a function of time. The thin and thick curves show simulation results
for a DES with semi-permeable membranes having, respectively, characteristic permeation
times T = 0 (no membrane) and T = 10. The circles represent the results of ref. [11] for the
same DES model with identical model parameters (see footnote [97]).

same model but with a semi-permeable membrane characterized by permeation time T = 10.

The results for Π1 and Π2 in this case exhibit trends similar to those observed in the T = 0

simulations.

The open circles in Fig. 3.4 depict the results derived in ref. [11] for the same DES model

with identical model parameters (see footnote [97]). These results have been obtained by

numerically solving the diffusion equation at each layer, subject to a similar initial condition

at t = 0, and boundary conditions at x = −L1 and x = L2. At x = 0, the author of

ref. [11] imposed (i) continuity of the flux and (ii) discontinuity in the concentration, with

the concentration jump related, via the Kedem-Katchalsky equation [92], to the local flux and

the membrane permeability. In this very different approach, the permeability also depends

on the instantaneous drug concentrations on both sides of the membrane. Nevertheless, the

results of ref. [11] exhibit a perfect agreement with our Langevin dynamics simulation results
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for T = 0. The agreement can be attributed to the fact that the DES membrane has a nearly

negligible effect on the rate of drug flow from the stent coating to the arterial wall.

3.6 Discussion

In this work we use underdamped Langevin dynamics simulations for solving the diffusion

equation for a simple two-layer model of a drug-eluting stent (DES). To the best of our knowl-

edge, this is the first attempt to derive the solution of a DES model using this approach.

In fact, the application of underdamped Langevin dynamics simulations is also highly un-

common in other engineering and natural science areas dealing with the solution of complex

diffusion equations. Much more common is the use of finite element and finite difference

methods. These exist in a variety of forms, and the selection, design, and implementation

of a method that best fits a given problem may be a complicated task. Langevin dynam-

ics simulations constitute an alternative approach; however, the vast majority of studies of

diffusion problems are based on simulations of the overdamped Langevin equation which

neglect the inertial term on the r.h.s. of Eq. (1.12). This introduces complications stemming

from the Itô-Stratonovich dilemma and the associated spurious drift. These complications

can be addressed when D(x) is a smooth function which varies only slightly during an inte-

gration time step, but not in simulations of layered systems where D(x) is discontinuous. In

the latter case, one must introduce decision rules for crossing the boundary between layers,

even if those layers are not separated by a membrane. A Monte-Carlo algorithm imple-

menting such types of decision rules has been recently presented [98], but we are not aware

of a similar algorithm for overdamped Brownian dynamics. This extraordinary problem is

completely avoided in underdamped Langevin dynamics simulations which, if run properly,

produce correct thermal diffusion between sharp interfaces. Accurate solutions for a wide

range of diffusion equations can be obtained by this approach with relative computational

simplicity and accuracy, provided that one uses a robust integration scheme (such as the
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G-JF integrator) together with a suitable convention rule for choosing the average α within

a time-step of the simulations (e.g., the “inertial” convention). The merits of the approach

are nicely exemplified in Fig. 3.4, which exhibits perfect agreement between the simulation

results of this chapter and the predictions of ref. [11] for the same model.

The only parameter that needs to be tuned in the simulations is the mass of the

diffusing particle whose value does not affect the PDF at the large time scales of interest

associated with the diffusion problem. It must be selected such that the ballistic time

τm = m/α is much smaller, but not necessarily negligible, compared to the characteristic

diffusion time. In one-dimensional multi-layer systems, the ballistic time is set by the friction

coefficient of the most viscous layer, and the inertial convention for the average friction needs

to be applied only when the particle moves between layers. However, the method can be

readily implemented to diffusion problems in higher dimensions and can, without any special

difficulty, be employed to study systems where the diffusion coefficient changes continuously

in space. Such problems are generally more complicated for analytical treatment, as well as

for other computational approaches.

The model studied in this chapter encompasses only two aspects of pharmacokinetics

in the DES system, namely diffusion and crossing of a semi-permeable membrane. More

recent studies suggest that advection, caused by a pressure gradient, and drug binding to

receptor sites within the arterial wall may have a substantial effect on the rate of drug

transport [78]. Both mechanisms can be dealt with within the underdamped Langevin

dynamics simulation method presented in this work. Specifically, advection results from the

action of a deterministic (“regular”) force acting on the particle in addition to friction and

thermal noise. In the presence of such a force, the full form of G-JF discrete-time equations

(1.17 and 1.18) must be used. Drug binding can be dealt with by distributing binding sites

and introducing a short-range attractive potential between the diffusing particle and the

binding sites. The forces associated with the gradient of the binding potentials can then

be accounted for via Eqs. (1.17) and (1.18). In a future publication we plan to investigate
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model systems including these additional effects, in order to demonstrate the great potential

of underdamped Langevin dynamics simulations for solving non-trivial diffusion problems.

We thank MD Carlos Cafri for helpful discussions about physiological aspects of the

problem.
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Chapter 4

Summary

In this thesis we utilize underdamped Langevin dynamics simulations for studying diffusion

problems in systems with a spatially-varying friction coefficient. The results are obtained

using the statistically accurate and robust G-JF algorithm [32,33]. In heterogeneous systems,

one needs to choose an interpretation for the effective friction at each time step, since the

value of α(x) changes when the particle moves. The ambiguity about the appropriate choice

of the friction is known as the “Itô-Stratonovich dilemma”. Despite the name (which follows

from the most commonly used interpretations of Itô [26] and Stratonovich [27]), when using

the overdamped equation (1.13), it is the Hänggi (or “isothermal”) convention [29] that

produces the correct isothermal Fickian dynamics [23]. The advantage of keeping the inertial

term in Eq (1.12) is that it ensures that all reasonable interpretations of the stochastic

calculus lead to the same, correct, PDF when dt → 0. This is due to the fact that, unlike the

overdamped equation, the underdamped equation depicts continuous motion that correctly

captures the inertial part of the dynamics at short time scales as well. This is essential for

producing the drift that the particle experiences toward the low friction end of the system.

In the overdamped limit, a spurious drift term (that depends on the chosen convention) must

be added to the equation. Our simulation results are based on the G-JF algorithm [32, 33]

with the newly proposed “inertial” convention [22, 24] that generates accurate results even
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for relatively large time steps.

The benefits of using the underdamped Langevin equation (1.12) become apparent

when dealing with cases where α(x) → 0. This case, discussed in chapter 2, is an example of

precisely the scenario in which the overdamped equation (1.13) is most inaccurate, i.e., when

the ballistic term is not negligible compared to the friction term even at long times. In such

cases, the overdamped description can lead to erroneous results that violate basic physical

principles, e.g., motion with an ever-increasing velocity (hyper-diffusion). The underdamped

equation (1.12) produces correct dynamics.

Another scenario where the underdamped framework is advantageous is where the

friction varies rapidly. The extreme example of this is diffusion in layered systems, where the

friction function is discontinuous. In the overdamped framework, the particle does not move

continuously, but rather “hops” from one location to another. Therefore, boundary decisions

must be taken when, in overdamped simulations, the particle crosses a friction interface.

In underdamped Langevin dynamics simulations, such boundary decisions are unnecessary,

since in these simulations (with a not too large dt) the particle moves continuously between

different layers.

We conclude by noting that most of our knowledge about heterogeneous diffusion is

limited to one-dimensional systems. In the future, it will be interesting to investigate model

systems in higher dimensions, in particular anisotropic systems where the principle directions

of the friction tensor vary in space. We hope to show that the G-JF algorithm can be

naturally expanded for Langevin dynamics in such systems. Another interesting extension is

the dynamics of rod-like molecules, in which the intra-molecular distances are constrained.
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Appendix A

Diffusion in higher dimensions

In dimensions higher than one, Eq. (1.16) is generalized to:

∂P (r⃗, t)

∂t
=

d∑
i=1

d∑
j=1

∂

∂ri
Dij(r⃗)

∂P (r⃗, t)

∂rj
, (A.1)

where r⃗ denotes the position vector and ri denote orthogonal coordinates. Here Dij(r⃗) is

the (symmetric) diffusion tensor, whose components may be coordinate-dependent. If one

considers a d-dimensional system with radial symmetry and assumes that the particle begins

at the origin of symmetry, P (r⃗, 0) = δ(r⃗), then P (r⃗, t) = P (r, t), where r = |r⃗|, and Eq. (A.1)

simplifies to

∂P (r, t)

∂t
=

1

rd−1

∂

∂r

(
D(r)rd−1∂P (r, t)

∂r

)
. (A.2)

Notice that P (r, t) is the probability density per d-dimensional unit volume. For D(r) =

D0 |r/l|c, the solution of Eq. (A.2) with the delta function initial condition is [64]

P (r, t) =
Γ
(
d
2

) [
(2− c)2(d−1)+c (D0t)

d
]1/(c−2)

2π
d
2Γ

(
d

2−c

) exp

[
−r2−c

(2− c)2(D0t)

]
, (A.3)
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and for brevity we set l = 1. In this case, The MSD is given by

⟨
∆r2

⟩
=

∫ ∞

0

r2P (r, t)
2π

d
2

Γ
(
d
2

)rd−1dr = d
Γ
(

3
2−c

)
Γ
(

1
2−c

) [(2− c)2D0t
]2/(2−c)

. (A.4)

Not surprisingly, this result shows that ⟨∆r2⟩ = d ⟨∆x2⟩, where ⟨∆x2⟩ is the MSD along one

of the Cartesian coordinates (see Eq. (2.9)).

49



Bibliography

[1] R. Brown, Philos. Mag. 4, 161 (1828)

[2] A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).

[3] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Hollans,

Amsterdam, 1981).

[4] W. T. Coffey, Y. P. Kalmyfov, and J. T. Waldron, The Langevin Equation: with ap-

plication in Physics, Chemistry, and Electrical Engineering (World Scientific, London,

1996).

[5] R. W. Ballufi, S. Allen, W. C. Carter, Kinetics of Materials (Wiley, Hoboken NJ, 2005).

[6] B. Gebhart, Heat Conduction and Mass Diffusion (McGraw-Hill, New York NY, 1993).

[7] F. Perrin, Journal de Physique. 7, 1 (1936).

[8] K. Berg-Sorenson, Y. Castin, E. Bonderup and K. Molmer, J. Phys. B-At Mol. Opt.

25, 4195 (1992).

[9] P. C. Fiss and E. J. Zajac, Admin. Sci. (Leipzig) 49, 501 (2004).

[10] Ricciardi and M. Luigi, Diffusion Processes and Related Topics in Biology (Springer-

Verlag, Berlin, 1977).

[11] G. Pontrelli and F. de Monte, Heat Mass Transfer. 50, 3658 (2007).

50



[12] J. Corish and O.I. Corrigan, J. Chem. Soc. 86, 1317 (1990).

[13] P. Sharma, S. Ghosh, S. Bhattacharya, Appl. Phys. Lett., 97, 104101 (2010).

[14] P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

[15] J. Philbert, Diffusion Fundmantals. 2, 1 (2005)

[16] G. Parisi, Statistical Field Theory (Addison Wesley, Menlo Park, 1988).

[17] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

[18] W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton FL,

2012).
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