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Pulling knotted polymers
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PACS. 36.20.Ey – Conformation (statistics and dynamics).
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PACS. 02.10.Kn – Knot theory.

Abstract. – We compare Monte Carlo simulations of knotted and unknotted polymers whose
ends are connected to two parallel walls. The force f exerted on the polymer is measured as a
function of the separation R between the walls. For unknotted polymers of several monomer
numbers N , the product fNν is a simple function of R/Nν , where ν � 0.59. By contrast,
knotted polymers exhibit strong finite-size effects which can be interpreted in terms of a new
length scale related to the size of the knot. Based on this interpretation, we conclude that the
number of monomers forming the knot scales as N t, with t = 0.4± 0.1.

Entanglements are unavoidable in long polymers and influence their properties [1]. Knots
are found in proteins [2], and present an obstacle that needs to be overcome in the transcription
of DNA [3]. An increasing number of experiments can now probe the detailed properties
of knotted molecules [4]. Micro-manipulation techniques [5] enable direct measurements of
mechanical properties of a single molecule, and it is even possible to probe the behavior
of artificially knotted DNA [6]. However, incorporation of topological constraints into the
statistical mechanics of polymers [7] remains a difficult theoretical challenge since the resulting
partition of phase space into accessible and inaccessible regions cannot be easily implemented.
Nevertheless, some progress has been made in understanding the role of knots in loop polymers;
e.g., the relative probabilities for appearance of different knots in self-avoiding (SA) loops [8]
has been characterized. However, much less is known about the typical shapes and physical
properties of knots.

As a topological feature, a knot can be rigorously identified only by specifying the entire
shape of a closed chain (ring). However, it is natural to identify a segment where the knot is
located, and consequently to talk about its size and statistics. It is natural to pull on the ends
of a string to see if a small knot remains in the middle. Our eyes tend to identify knotted
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Fig. 1 – Two configurations of a knotted chain of N = 335 bonds, with its ends attached to parallel
walls separated by 50a. The walls are not shown and the chains were rotated for clarity of view. The
(grey) knotted regions consist of 32 bonds in (a) and 112 bonds in (b).

segments in this manner, as exemplified by the grey-shaded monomers of the polymers in
fig. 1. While pulling on a string makes tight knots, the question of whether in a random
unforced chain the knot is spread over the whole curve, or localized (tight) on a small portion,
is still not fully resolved. Several recent works [9] show that knots in SA walks confined to a
two-dimensional (2D) plane are strongly localized, i.e. the mean number of monomers in the
knotted region Nk does not depend on the total number of monomers N . Studies of three-
dimensional (3D) knotted polymers are hampered by the difficulty of identifying the knotted
region. Katritch et al. [10] examined the size distribution of knots in 3D random rings, by
removing segments of the ring, attaching them to infinite straight lines, and checking if the
resulting structures were knotted. Although the method has a certain probability to fail (i.e.,
the procedure itself may create or remove a knot), it nevertheless suggests that knots in such
rings are localized. By contrast, some studies [11, 12] had earlier indicated that for moderate
N , the radius of gyration Rg of a knot is strongly influenced by its complexity, leading to
the conclusion that the knots might be spread out over the entire loop [13]. More recent
numerical results [14,15] provide evidence that Rg is asymptotically independent of the knot
type, hinting that knots are localized.

Since correlation functions of SA walks are power laws, it is reasonable to expect that the
distribution of the number of monomers n forming a knot is also a power law, i.e. p(n) =
Cnt−2. For t < 1 the normalization coefficient C is determined by the microscopic (short
distance) properties of the chain, while for 0 < t < 1, the expectation value of the mean knot
size Nk depends on the total length, growing as N t. In such a case, we say that the knot is
weakly localized. For t < 0, the knot is strongly localized in the sense that Nk is determined
by the microscopic cutoff. In this paper, we attempt to quantify the tightness of knots in 3D
polymers by comparing the force-extension relations of knotted and unknotted chains. As in
ref. [15], we find similarities between the statistical properties of knotted chains and those of
shorter unknotted chains, a consequence of the fact that knotted segments are statistically
denser than unknotted ones. Using the reduction in the effective number of monomers as an
operational definition of knot size, we find Nk ∼ N t, with t = 0.4± 0.1.

Much of the current understanding of the scaling properties of long polymers is based on
renormalization group ideas [16]. The N → ∞ limit in polymers corresponds to approaching
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a fixed point similar to that describing criticality in thermal phase transitions. In particular,
it can be shown that for a polymer with either free ends or forming a closed loop (without
any further restrictions on topology)

Rg = aNνΦ
(

N0

N
,
N1

N
, . . .

)
� AaNν

[
1− BN−∆

]
, (1)

where a is a microscopic length scale (of the order of monomer diameter or bond length),
while ν ≈ 0.59 (in 3D) is a system-independent (universal) exponent. The function Φ includes
corrections to the leading power law due to irrelevant variables, which can be interpreted as
additional length scales {Ni}. Keeping only the largest such correction for large N leads to
the second part of the above equation. The dimensionless constants A and B are again system
specific, while ∆ ≈ 0.5 in 3D is universal [16]. If the leading correction comes from, say, the
argument N0/N of Φ, the corresponding length scale grows as N0 ∼ N t0 , with ∆ = 1− t0.

For very long polymers, the correction term in eq. (1) is irrelevant, and the dependence of
many physical properties on the number of monomers N can be cast in terms of a dependence
on Rg [17]. For example, consider the force f needed to stretch a polymer between two parallel
walls at a distance R. We can construct two dimensionless quantities, fRg/kBT and R/Rg (T
is the temperature and kB is the Boltzmann constant), which must be functionally related. It
is thus convenient to introduce variables f ′ ≡ faNν/kBT and R′ ≡ R/aNν , and express the
force-extension relation in the form

f ′ = G(R′). (2)

Simple arguments [17] can now be used to determine the asymptotic behaviors of G(R′): For
a large stretching force, the distance R between the ends of the polymer must be proportional
to N . Conversely, in a strongly compressed state (R � Rg), the force must be proportional
to N . These limiting behaviors can be reconciled with eq. (2) only if [17]

G(R′) ∼
{

R′ν/(1−ν) for R′ � 1,
−R′−1−1/ν for R′ � 1.

(3)

In the large force regime this gives R ∼ aN(fa/kBT )(1−ν)/ν = aNν
b (N/Nb) (omitting dimen-

sionless prefactors), with Nb ≡ (kBT/fa)1/ν . Thus, the polymer can be viewed as a linear
sequence of N/Nb blobs, each of size aNν

b and consisting of Nb monomers [18]. On length
scales smaller than the blob size, the external forces are not significant, while on the length
scales larger than it the polymer is essentially linear. (An analogous blob picture is also
available for the compressed regime [17].)

We employed Monte Carlo (MC) simulations to measure such force-extension relations.
Our model chains were composed of hard spheres of diameter 0.75a connected by “tethers”
restricting the distance between adjacent spheres to be smaller than a, with no additional
energy costs. The end monomers were fixed to two infinite parallel walls a distance R apart.
An elementary MC step consisted of an attempt to move a randomly chosen sphere a distance
0.16a in a random direction. (N such attempts constitute one MC time unit.) For such a step
size the acceptance rate of an elementary move varied (depending on tension) between 0.4 and
0.5. With such parameters the chain cannot cross itself, and its topology is preserved by the im-
penetrable walls. The force f was calculated from the probability densities of contacts between
spheres, and the probability densities of having stretched tethers, as described in ref. [19].

We studied chains of lengths N = 225, 335, 500, and 750, in both unknotted (simply con-
nected), and knotted (connected via a single trefoil) states [20]. Figure 1 depicts two different
configurations of the knotted chains, where the region in which the knot is “concentrated”
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Fig. 2 – The scaled force f ′ as a function of the scaled separation between walls R′, for chains of sizes
N = 750 (circles), N = 500 (squares), N = 335 (triangles), and N = 225 (diamonds) monomers.
Open and solid symbols correspond, respectively, to unknotted and knotted chains. The solid line
depicts an analytical fit to G in this range.

has been lighter shaded. For each R and N our simulations lasted about 108 MC time units,
which is considerably longer than the estimated Rouse relaxation time [21]. We verified that
during the relaxation period the knot is able to diffuse from one side to the other. Open and
closed symbols in fig. 2 depict the results for unknotted and knotted chains, respectively.

It is important to note that the usual derivation of eqs. (1)-(3) is not for a specified polymer
topology, but rather for an ensemble of polymers that includes all possible topologies. How-
ever, relations of this type are also likely to be valid for polymers of fixed topology, albeit with
a different scaling function in eq. (1). The collapse of the data for unknotted polymers (open
symbols) of different lengths in fig. 2 confirms this expectation. Indeed, the quality of the col-
lapse indicates that subleading corrections are negligible for R′ < 2. We have taken advantage
of this observation to construct an analytic fit to the scaling function G, as depicted by the
solid line in this figure. For R′ > 2 the polymer with N = 335 forms more than six blobs, each
containing less than 55 monomers. For such small blobs, finite-size effects begin to appear, as
we observe a roughly 10% deviation in the rightmost data points in fig. 2. Note that a deviation
of this magnitude is expected from eq. (1), with a model-dependent prefactor of B ∼ 1.

As expected, for a given f ′ the knotted polymer (solid symbols in fig. 2) has a significantly
smaller R′ than its unknotted counterpart. However, the scaled difference becomes less pro-
nounced for larger N , and the results for longer chains approach those of the unknotted chain.
The absence of data collapse indicates the appearance of strong finite-size corrections in a pa-
rameter range where the unknotted chains show no such effect. We would like to associate
this feature with the emergence of a new size scale due to the knot. If a string with a knot is
fully stretched, its maximal length is reduced by the size of the resulting tight knot. While the
knots in our simulations are far from tight, we shall still describe the influence of the knot as
a reduction in the number of monomers N by the “size of the knot” Nk. If the knotted chain
of length N is equivalent to an unknotted chain of length N − Nk, its force-extension curves
must satisfy fa(N −Nk)ν/kBT = G[R/a(N −Nk)ν ], where G is the scaling function obtained
before for unknotted polymers (solid line in fig. 2). Naturally, this definition will not work
with a single Nk, since our knots are not tight. However, each solid data point in fig. 2 can be
moved to the previously obtained solid line by choosing an appropriate Nk(f ′, N). This can
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Fig. 3 – The scaled knot size Nk/N
0.4, as a function of the scaled force f ′, for chain lengths N = 750

(circles), 500 (squares), 335 (triangles), 225 (diamonds).

be regarded as our operational definition of the size of the knot for a given f and N .
If the force-extension curves for knotted polymers are to be consistent with the standard

finite-size corrections discussed in connection with eq. (1), we must have

f ′ = Gk

(
R′,

N0

N
, . . .

)
� G(R′)

[
1 + g(R′)N−∆k

]
. (4)

Based on the numerical results, we have assumed that the leading scaling function G is the
same for knotted and unknotted polymers, but allowed for different corrections, such as a
new exponent ∆k. For eq. (4) to be consistent with our definition of knot size, we must have
Nk(f ′, N) = H(f ′)N t. The exponent t = 1−∆k gives the scaling of the number of monomers
in a knot (in the absence of force) via Nk ∼ N t. General scaling considerations do not restrict
the shape of H(f ′). However, from the “blob picture” of a strongly stretched chain, we know
that the polymer is essentially linear beyond the blob size Nb (and consequently not knotted
on such scale), while within a blob it is undisturbed by the external forces. We thus expect
the knot size to be determined by Nb (as if this is the entire length of the polymer), i.e.
Nk ∼ N t

b = N t/f ′t/ν , and H(f ′) ∼ 1/f ′t/ν for f ′ � 1. Similar behavior occurs [22] in force-
extension characteristics of polymers in which a sliding constriction (or slip-link [23]) creates
a loop, somewhat reminiscent of a topological constraint. In the latter, the size of the loop
under strong tension is equal to the size of a loop in unstressed polymers of size Nb.

While our range of extensions is too limited to test the asymptotic behavior of H(f ′), we
can estimate the exponent t from the value at which the functions Nk/N

t exhibit the best
collapse, i.e. are least sensitive to N . Figure 3 depicts the optimal collapse with t = 0.4, which
is characterized by a χ2 value of 0.35. For t = 0.3 and t = 0.5 we have χ2 � 1, serving as a
criterion for the error in t, and our estimate of t = 0.4±0.1. This is somewhat smaller than the
value that can be deduced from ref. [15]. The corresponding finite-size correction exponent
is ∆k = 0.6. We note that this is close to the best numerical estimate ∆ � 0.56, for the
dominant correction to scaling when considering all topologies [24], and within errors, also is
consistent with the estimate ∆ � 0.48 obtained by field theoretic techniques [25]. Is this more
than simple coincidence? The standard field theory for polymers is based on an expansion
around four dimensions that does not incorporate topological constraints. Assuming that the
analytic continuation of this theory to three dimensions also tells us about knots, how can
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such effects be anticipated in the perturbative expansion? If knots do indeed appear with
subleading sizes in 3D, their effects could be anticipated in corrections to scaling, in which
case ∆k = ∆. This conjecture is bolstered by ∆ � ∆k � 1 for knots confined to 2D [9,24].

In summary, by comparing force-extension relations of unknotted and knotted polymers
of several lengths, we observe strong finite-size corrections in the latter, which we attribute
to the knot size Nk. Scaling analysis and data collapse suggest a power law Nk ∼ N t, with
t = 0.4± 0.1. Thus unlike 2D “flat knots” [9], the 3D knot sizes grow with the length of the
polymer. Since t < 1, the knot forms a diminishing fraction of the whole length as N increases.
This asymptotic behavior can be easily missed in short [13] or highly knotted polymers [11]
as explained in ref. [12], and is in agreement with the results of refs. [10, 14, 15]. As a single
knot is only weakly localized and “knows” about the size of the chain, it is interesting to
investigate chains with several knots which may interact with each other. This, however,
requires simulations with much larger chains.
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