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Abstract The free energy of inserting a protein into a membrane is determined by
considering the variation in the spectrum of thermal fluctuations in response to the pres-
ence of a rigid inclusion. Both numerically and through a simple analytical approximation,
we find that the primary effect of fluctuations is to reduce the effective surface tension,
hampering the insertion at low surface tension. Our results, which should also be relevant
for membrane pores, suggest (in contrast to classical nucleation theory) that a finite surface
tension is necessary to facilitate the opening of a pore.

Keywords Membranes · Proteins · Thermal fluctuations · Surface tension

Bilayer membranes are self-assembled thin fluid sheets of amphiphilic molecules. They are
characterized by small bending and large compression moduli, whose effective values are
influenced by thermal fluctuations [1]. The softness of the bending modes permit large shape
deformations which are important for the biological activities of some living cells (e.g., the
red blood cell) [2]. Biological membranes are typically highly heterogeneous: they usually
consist of mixtures of different lipids and, in addition, contain a variety of different proteins
which carry out diverse tasks such as anchoring the cytoskeleton, opening ion channels, and
cell signaling [3].

Membrane inclusions can modify the thermal fluctuations of the membrane by perturb-
ing the local structure of the lipid matrix. It is well-known that the restrictions imposed
on the thermal fluctuations of the membrane are the origin of attractive van der Waals-
like forces between inclusions [4]. While these interactions are typically very small, they
dominate at long-range and may play an important role in determining the phase behavior
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(e.g. aggregation) of such systems. Perturbing the spectrum of thermal fluctuations is also
expected to contribute to the free energy associated with the insertion of proteins into lipid
bilayers. This has an influence on the solubility of proteins and other membrane inclusions.
Remarkably, this important entropic contribution to the insertion free energy of a single pro-
tein has been ignored in previous calculations [5]. In this letter we study the free energy
cost of inserting a rigid inclusion into a membrane, explicitly taking into account effects due
to membrane fluctuations. These effects depend only on the inclusion’s characteristic size.
Therefore, this fluctuation contribution may play a role in regulating the shape transforma-
tions of membrane proteins, for example in mechanosensitive channels. For transmembrane
proteins, the magnitude of the fluctuation free energy can be as large as 25kB T . Our results
should also be relevant for the fluctuation spectrum and nucleation energy of a membrane
pore. At low tension, the fluctuation free energy acts as a barrier to the opening of a pore.

We consider a bilayer membrane consisting of N lipids, that spans a planar circular frame
of a total area Ap = π L2

p , in which a rigid inclusion of radius r0 � L p has been inserted.
The Helfrich energy (to quadratic order) for a nearly-flat membrane in the Monge gauge is
given by [6]

H1 = σ Ap + 1

2

∫
d2�r

[
σ (∇h)2 + κ

(∇2h
)2

]
, (1)

where σ is the surface tension, κ the bending rigidity, and h the height of the membrane
above the frame reference plane. The boundaries of integration in Eq. (1) include the outer
(frame, r = L p) boundary and the inner (inclusion, r = r0) edge. The Laplacian in the
Helfrich energy requires that we have two boundary conditions (BCs) for each boundary.
On the inner boundary we fix the height of the membrane h(r0) = H(φ) and the contact
slope ∂h(r0)/∂r = H ′(φ), where φ is the polar angle measured from the inclusion’s axis of
symmetry. On the outer boundary will have the natural BCs: h(L p) = 0 and ∇2h(L p) = 0.
The particular choice of outer BCs does not modify the free energy of the system in the
thermodynamic limit.

To gain insight into the contribution of thermal fluctuations to the insertion free energy we
write the height function as h = h0 + f where h0 is the extremum of Hamiltonian (1), i.e.,

− σ∇2h0 + κ∇4h0 = 0, (2)

subject to the BCs that h0(r0) = H(φ), ∂h(r0)/∂r = H ′(φ), h0(L p) = 0, and
∇2h0(L p) = 0. This implies f (r0) = 0 and ∂ f (r0)/∂r = 0 on the inner boundary, and
f (L p) = 0 and ∇2 f (L p) = 0 on the outer boundary. The Helfrich energy can be written as

H1 (h0 + f ) = σ Ap +
∫

d2�r
{

1

2

[
σ (∇h0)

2 + κ
(∇2h0

)2
]

+ [
σ∇h0 · ∇ f + κ∇2h0∇2 f

] + 1

2

[
σ (∇ f )2 + κ

(∇2 f
)2

]}
. (3)

For the cross term (third term in H1) we obtain, upon integration by parts,∫
d2�r [

σ∇h0 · ∇ f + κ∇2h0∇2 f
] =

∫
d2�r [−σ∇2h0 + κ∇4h0

]
f

+
∫

∂ M
κ∇2h0

(
n̂ · ∇)

f +
∫

∂ M

(
n̂ · ∇) [

σh0 − κ∇2h0
]

f, (4)

where the last two integrals in the above equation are performed on the boundaries of the sys-
tem, and n̂ is a unit vector normal to the boundaries. The boundary terms in Eq. (4) vanish since
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f = 0 and n̂ · ∇ f = −∂ f/∂r = 0 on the inner boundary, and f = 0 and ∇2h0 on the outer
boundaries. The bulk term also vanishes by virtue of Eq. (2). Without the cross term in Eq. (3),
we are left with three terms: the projected area term σ Ap, the equilibrium term depending
on h0, and the fluctuation term depending on f . Thus, the energies associated with h0 and f
completely decouple and their contributions to the free energy are additive. Note that in our ap-
proach, the equilibrium part of the free energy includes a contribution from the height and tilt
fluctuations of the inclusion. It is obtained by calculating the dependence of h0 on the bound-
ary values H(φ) and H ′(φ), and performing an appropriate thermal average over these quanti-
ties. Other energetic components, such as hydrophobicity, translational entropy, electrostatics,
should be added to the equilibrium term, and can be included in its definition [7]. The equilib-
rium term has been analyzed in many previous studies [5]. Its magnitude is protein specific and
is usually in the range of −5 to −20kB T [8], but can be significantly larger for large membrane
proteins with strong hydrophobic interactions. In contrast, the effect of membrane fluctuations
on the insertion free energy has not yet been considered in the literature. We proceed to calcu-
late the fluctuation part of the insertion free energy assuming H(φ) = 0 and H ′(φ) = 0 [9].

Neglecting the equilibrium term, we are left with the projected area and the fluctuation
terms. By integrating the latter by parts twice, the remaining Hamiltonian takes the form

H2( f ) = σ Ap + 1

2

∫
d2�r f

(−σ∇2 + κ∇4) f. (5)

The boundary terms vanish in the above expression due to our choice of BCs: f (r0) = 0,

∂ f (r0)/∂r = 0, f (L p) = 0, and ∇2 f (L p) = 0. We proceed by expanding the function
f in a series of eigenfunctions fm,n(r) of the operator L ≡ −σ∇2 + κ∇4: f (r, φ) =∑

m,n hm,n fm,n(r)eimφ . The functions fm,n(r) can be written as the linear combination of
the Bessel functions, Jm(r) and Ym(r), of the first and second kinds of order m, and the
modified Bessel functions of the first and second kinds of order m, Km(r) and Im(r):

fm,n(r) = AJm(λ
m,n
1 r) + BYm(λ

m,n
1 r) + C Km(λ

m,n
2 r) + DIm(λ

m,n
2 r),

where the λ
m,n
i (i = 1, 2) are the positive solutions of (−1)i+1σ(λ

m,n
i )2 +κ(λ

m,n
i )4 = µm,n ,

and µm,n is the eigenvalue corresponding to the function fm,n(r): L fm,n(r) = µm,n fm,n(r).
Applying the BCs at r0 and L p , we derive the eigenvalue equation

λ1
[
Im(λ2r0)Km(λ2 L p)− Im(λ2 L p)Km(λ2r0)

] [
Y ′

m(λ1r0)Jm(λ1L p) − J ′
m(λ1r0)Ym(λ1r0)

]
= λ2

[
K ′

m(λ2r0)Im(λ2 L p) − I ′
m(λ2r0)Km(λ2 L p)

]
× [

Jm(λ1r0)Ym(λ1L p) − Jm(λ1L p)Ym(λ1r0)
]

(6)

(for brevity, we have omitted the superscript (m, n) from the notation of the λi in the
above equation). In contrast, for membranes without inclusions, we solve the simple equa-
tion Jm(λ1L p) = 0. It is interesting to note that, in the limit that λ

m,n
1 r0 � |m|, Eq. (6)

reduces to the eigenvalue equation in the absence of inclusions. This has the physically
appealing interpretation that modes with characteristic lengths much larger than the inclu-
sion radius are hardly perturbed by its presence. In the opposite limit, λ

m,n
1 r0 � |m| (which

also implies λ
m,n
1 L p � |m|), we can neglect terms proportional to Im(λ

m,n
i L p) (which,

otherwise, become exponentially large) and replace the remaining Bessel functions by their
leading order asymptotic expressions. This gives, for λ

m,n
1 � √

σ/κ , the simple equation
tan

[
λ

m,n
1

(
L p − r0

)] = 1, and the solutions λ
m,n
1 ≈ [|m|/2 + n + (−1)m π/4

]
π/(L p −r0).

The physical interpretation of this result is that the inclusion acts like a hard wall for modes
with characteristic lengths much smaller than its radius. The effective linear size of the mem-
brane for these modes is reduced from L p to L p − r0 and the eigenvalues in this regime
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increase by roughly a factor of L p/(L p − r0). Thus, the dominant effect of the inclusion on
the short wavelength modes is to lower the density of contributing modes in “λ-space” [Note
that λ

m,n+1
1 − λ

m,n
1 = π/(L p − r0)].

When the function f (r, φ) = ∑
m,n hm,n fm,n(r)eimφ is substituted in Hamiltonian (5),

we find, due to the orthogonality the eigenfunctions
∫ 2π

0
dφ

∫ L p

r0

rdr fm1,n1(r) fm2,n2(r)ei(m1+m2)φ = a0 δm1,−m2 δn1,n2, (7)

that the modes decouple and that the Hamiltonian takes a quadratic form in the amplitudes
|hm,n |. The normalization coefficient a0 in Eq. (7) is the projected area per amphiphilic mol-
ecule in the bilayer. Tracing over |hm,n | leads to the following expression for the Gibbs free
energy associated with Hamiltonian H2 [10]

G
(
σ, Ap

) = σ Ap + kB T

2

∑
m,n

ln

{[
σ(λ

m,n
1 )2 + κ(λ

m,n
1 )4

]
Apλ

2
dB

2πkB T N

}
, (8)

where λdB is the thermal de-Broglie wavelength of the lipids. The Helmholtz free energy is
given by F(A, Ap) = G − σ A, where the total membrane area A is related to the surface
tension by

A = Ap + kB T

2

∑
m,n

1

σ + κ(λ
m,n
1 )2

. (9)

Assuming that the membrane is incompressible and, therefore, that its total area is fixed,
we can use Eq. (9) to derive the following equation, relating the surface tension and the
inclusion’s radius

− πr2
0 + kB T

2

∑
m,n

1

σ + κ(λ
m,n
1 )2

− 1

σ0 + κ(λ
m,n
1,(0))

2
= 0. (10)

In the above equation λ
m,n
1,(0) are the corresponding solutions of the eigenvalue equation in the

absence of the inclusion (r0 = 0): Jm(λ
m,n
1,(0)L p) = 0, and σ0 ≡ σ(r0 = 0). The solution to

Eq. (10) has the form

σ = σ0(1 + δ), where δ ∼ O(r0/L p)
2. (11)

The projected area and fluctuation parts of the insertion free energy �F(r0) ≡ F(r0)− F(0)

can now be calculated using Eqs. (8) and (10). We find that �F(r0) is given by

�F(r0) ≈ −πσ0r2
0 + kB T

2

∑
m,n

ln

[
σ0(λ

m,n
1 )2 + κ(λ

m,n
1 )4

σ0(λ
m,n
1,(0))

2 + κ(λ
m,n
1,(0))

4

L2
p − r2

0

L2
p

]
. (12)

Note that only σ0 appears in the above expression, which is due to Eq. (11) and the fact that
we attempt to calculate �F(r0) only up to quadratic order in r0/L p . For the same reason we
can use σ0 rather than σ in the eigenvalue equation (6). The surface tension appears implic-
itly in this equation, through the relation λ2

2 = λ2
1 + σ/κ . In expression (12) we assume that

the number of molecules forming the bilayer membrane does not change with the insertion
of the protein. Consequently, the total number of modes which is directly proportional to
the number of molecules in the bilayer is kept constant. In contrast, the projected area per
molecule [which appears in Eq. (7)] does depend on the radius of the inclusion, and this is
the origin of the term (L2

p − r2
0 )/L2

p appearing in the argument of the logarithm in Eq. (12).
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In order to obtain an analytical result for the free energy (12), we make the approximation
[based on our discussion of the asymptotic behavior of the eigenvalues λ

m,n
1 , see the text

after Eq. (6)] that eigenvalues such that λ
m,n
1 r0 < α|m| (long wavelength) are not affected

by the inclusion, whereas modes with λ
m,n
1 r0 > α|m| (short wavelength) grow by a factor

L p/(L p − r0). The numerical constant α is of the order of unity and its value, which may
depend on the surface tension σ0, will be determined later by an exact numerical evaluation
of �F . We have verified numerically that these asymptotic forms are indeed correct. We set
n = 0, 1, . . . ,

√
N0, and, m = −√

N0, . . . ,
√

N0 so that the total number of modes (degrees
of freedom), 2N0, is proportional to the number of molecules forming the membrane, N .
Along with these approximations, we evaluate the sum in equation (12) as an integral, giving
us the simple result (correct up to quadratic order in r0) that �F = −π(σ0 − σ ∗)r2

0 , where

σ ∗ = kB T

πα
2
0

{
2 − α −

(

0

πξ

)2

ln

[(
πξ


0

)2

+ 1

]}
, (13)

ξ = √
κ/σ0, and 
0 = L p/

√
N0 is a microscopic length cutoff on the order of the character-

istic size of a membrane molecule. We thus obtain the result that the fluctuations renormalize
the surface tension. It is interesting to note that this renormalization tends to occur with the
opposite sign as the bare surface tension (for 
0 � ξ ), thus making it harder to insert an
inclusion. Only for very stressed membrane (ξ � 
0) does σ ∗ become negative. This is due
to the reduction of the projected area, caused by the insertion, that allows more thermal fluc-
tuations. A more careful analysis of the long wavelength modes shows that these contribute
only finite-size effects to the free energy which vanish in the limit of L p � r0.

We have numerically solved the eigenvalue equation (6) and used the solutions to evaluate
the sum in Eq. (12). Numerical values of �F(r0) (for κ = 10kB T and various values of σ0)
are shown in Fig.1 (a)–(b). They have been extracted by extrapolating the numerical results
obtained for several values of 750 ≤ N0 ≤ 2000 to the thermodynamic limit N0 → ∞. In
the inset to Fig.1 (a), the results for σ0 = 0 are replotted on a logarithmic scale, showing that
our prediction of a quadratic relation between �F and r0 is attained only for large inclusions
with r0 � 100
0 (the slope of the straight dotted line is 2). This is a typical size for colloidal
particles [11]. The value of the constant α appearing in Eq. (13) shows a slight dependence
on the surface tension varying from 1.59 for σ0(ξ = ∞) to 1.72 for ξ = √

κ/σ0 = 5l0/π .
The solid curves in Fig. 1 (a)–(b) depict our analytical expression for �F , with α determined
by fitting the results for large r0 to Eq. (13). From Fig. 1 (a) we conclude that, because of
thermal fluctuations, there is a free energy penalty to embedding an inclusion in a weakly
stretched membrane (small σ0). For transmembrane proteins with typical radii of r0 � 5
0,
the energy cost is �F � 25kB T , which is comparable to the equilibrium contribution but of
opposite sign. This demonstrates the importance of the membrane fluctuations in determining
the distribution of transmembrane and free proteins. For larger inclusions, the fluctuation free
energy will dominate the equilibrium part. On the other hand, Fig.1 (b) shows that inclusions
greatly reduce the free energy of strongly stretched membranes (large σ0). The primary reason
that the free energy is lowered in this regime is the reduction of the projected area. These
results should also be relevant for the question of nucleation of a membrane pore which, albeit
more complicated, can be studied by similar approach [12]. They suggest that there exists a
(finite!) critical value of the surface tension below which pores cannot open and above which
they grow without bounds. Classical nucleation theory, which ignores fluctuations effects,
predicts that the critical surface tension is zero [13]. Our approach is complimentary to the
discussion in Ref. [10], which primarily addresses the behavior of macroscopic pores where
higher order corrections in r0 become important and falls outside the scope of this work.
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Fig. 1 The insertion free energy �F as a function of the inclusion’s radius for κ = 10kB T and various values
of σ0. The inset to graph (a): a log-log plot of the numerical results for σ0 = 0. The slope of the straight dotted
line is 2

In summary, we have computed the free energy of inserting an inclusion into a membrane.
We explicitly calculated the contribution of membrane fluctuations. The primary effect of
these fluctuations is to reduce the effective value of the surface tension. At low surface tension
it provides a positive component to the free energy of an embedded inclusion, thereby imped-
ing the insertion of transmembrane proteins. The sensitivity of the free energy to variations of
the surface tension suggests that, by controlling the membrane surface tension appropriately,
one may control the thermodynamic stability of embedded proteins and, thus, the equilibrium
distribution between proteins inserted in the membrane and in solution.
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