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Abstract When a particle diffuses in a medium with spatially dependent friction coefficient
α(r) at constant temperature T , it drifts toward the low friction end of the system even in the
absence of any real physical force f . This phenomenon, which has been previously studied in
the context of non-inertial Brownian dynamics, is termed “spurious drift”, although the drift
is real and stems from an inertial effect taking place at the short temporal scales. Here, we
study the diffusion of particles in inhomogeneous media within the framework of the inertial
Langevin equation. We demonstrate that the quantity which characterizes the dynamics with
non-uniform α(r) is not the displacement of the particle �r = r − r0 (where r0 is the initial
position), but rather �A(r) = A(r) − A(r0), where A(r) is the primitive function of α(r).
We derive expressions relating the mean and variance of �A to f , T , and the duration of
the dynamics �t . For a constant friction coefficient α(r) = α, these expressions reduce to
the well known forms of the force-drift and fluctuation–dissipation relations. We introduce a
very accurate method for Langevin dynamics simulations in systems with spatially varying
α(r), and use the method to validate the newly derived expressions.
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1 Introduction

In his ground-breaking 1905 paper on Brownian motion [1], Einstein noticed that the same
random thermal forces from the suspending medium that cause the diffusive motion of the
particle, also produce the friction experienced by the particle when pulled through the same
fluid medium. From this observation, Einstein was able to use statistical mechanics to derive
the fluctuation–dissipation relation

D = kB T

α
, (1)

between the diffusion constant D, friction coefficient α, temperature T , and the Boltzmann
constant kB . Three years later, Langevin introduced a very different approach to describe
Brownian motion [2]. In contrast to Einstein, who considered the Focker–Plank equation
governing the particle’s probability distribution, Langevin focused on the particle’s equation
of motion

mv̇ = f (r(t)) − αv + β(t), (2)

where m is the mass of the particle and v(t) = ṙ is its velocity. The Langevin equation
describes Newtonian dynamics under the influence of three forces: (i) a deterministic force
f , (ii) a friction force −αv proportional to the velocity with friction coefficient α ≥ 0, and (iii)
a stochastic force β(t) representing fluctuations arising from interactions with the embedding
medium that produces the friction. The stochastic force can be conveniently modeled by a
delta-correlated (“white”) Gaussian noise with statistical properties [3]:

〈β(t)〉 = 0 (3)

〈β(t)β(t ′)〉 = 2αkB T δ(t − t ′), (4)

where 〈· · · 〉 means a statistical average. This statistical definition of β(t) ensures that the
motion satisfies Einstein’s fluctuation–dissipation relation, as can be easily realized by con-
sidering the overdamped limit of Eq. (2) for a flat potential ( f = 0). In this limit, the Langevin
equation simplifies to

αv = β(t), (5)

and by integrating the equation over time and using Eqs. (3) and (4), one finds that the
displacement of the particle satisfies 〈�r〉 = 0, and

〈(�r)2〉 = 2Dt, (6)

with D = kB T/α, as in Eq. (1).
Langevin’s work began a new field in mathematics that deals with stochastic differential

equations, namely equations in which one (or more) of the terms is a stochastic process.
Stochastic differential equations require their own new calculus. The two most common
versions of stochastic calculi were proposed and developed by Itô [4] and Stratonovich [5].
The difference between them arises in equations with multiplicative noise, e.g., in Eq. (5) with
a coordinate-dependent friction coefficient α(r). In order to calculate the particle’s trajectory,
one needs to integrate Eq. (5) over a time interval �t [6]. For a uniform α, the integral over
the stochastic noise is a well-defined Wiener process [7,8]

�t∫

0

β(t) dt = √
2αkB T �t σ, (7)
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where σ is a standard Gaussian random number satisfying

〈σ 〉 = 0 ; 〈σ 2〉 = 1. (8)

For a non-uniform α(r), the integral is ill-defined, since one needs to specify both the trajec-
tory and at which points along the trajectory the friction coefficient in Eq. (7) is evaluated.
In the Itô convention [4], the friction coefficient is taken at the beginning of the time inter-
val, while the Stratonovich convention considers the algebraic mean of the initial and final
frictions [5] (which, for a small time interval, can be considered close to the friction at the
mid-point). Another commonly used convention is due to Hänggi [9]. The latter uses the value
of the friction coefficient at the end of the time interval. In ordinary differential equations, all
the above conventions result in similar trajectories when the time step becomes infinitesimal.
However, the Wiener process is non-differentiable and, therefore, for the stochastic equation
(5), the different calculi lead to different results of r(t) for arbitrarily small integration time
steps (see Ref. [10, Sect. 3.3.3]). The resulting ambiguity about the appropriate way to inter-
pret Eq. (7) is known as the Itô–Stratonovich dilemma [7,11]. Remarkably, it is in fact the
Hänggi convention that yields the correct equilibrium distribution of the particle at constant T
[12], which is the reason why this interpretation is also known as the “isothermal” convention.

Diffusion in a medium with spatially dependent friction coefficient raises yet another
serious problem concerning the validity of the fluctuation–dissipation theorem. Can one
simply generalize Eq. (1) and write that D(r) = kB T/α(r), and what is the physical meaning
of a coordinate dependent diffusion coefficient? [13] The problem lies in the fundamental
difference between friction and diffusion. The former is a quantity that can be defined locally
by considering the motion of a particle in a flat potential at zero temperature. Setting f = 0
and β = 0 in Eq. (2), and integrating the equation over the time interval �t , leads to

m�v = −
�t∫

0

α(r(t))v dt (9)

= −
r0+�r∫

r0

α(r) dr = −α(r0)�r + O(�r)2,

where �r = r(�t) − r0 and �v = v(�t) − v0 denote the displacement and the change in
velocity, respectively. Thus, α(r0) can be defined as the limiting value of −m�v/�r , the ratio
between the change in momentum and displacement. In contrast to the friction coefficient,
the diffusion constant is not a local quantity, but is rather defined by the long time asymptote
of Eq. (6). As the particle diffuses away from the point of origin, it explores new parts of the
system and experiences a varying friction coefficient. For a general friction function α(r), it
is not a-priory clear why the mean squared displacement should even grow linearly with t , as
implied by Eq. (6). Recently, for instance, it has been argued that certain functional forms of
α(r) yield anomalous diffusion where 〈(�r)2〉 ∼ t z with z �= 1 [14]. Moreover, the problem
cannot be dealt with by considering short time dynamics where the particle remains close to
the initial coordinate. Eq. (6) is relevant only on time scales much longer than the relaxation
time τ ∼ m/α, whereas on shorter time scales the motion of the particle is ballistic and
does not obey Eq. (6) at all (not even for a uniform α) [7]. These considerations suggest that
the concept of spatially dependent diffusion constant is somewhat ambiguous, and that an
alternative formulation for the fluctuation–dissipation relation must be sought for.

In this paper we generalize the fluctuation–dissipation relation to systems with non-
uniform friction coefficients. The discussion extends our previous study on the Itô–
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Stratonovich dilemma, in which we focused on the “spurious drift” (see Sect. 2.1 below
for an explanation of this term) of a particle in the presence of a friction gradient [15].
Our treatment is based on the full intertial Langevin equation (2), and we highlight the fact
that the friction (dissipation) and noise (fluctuations) terms in this equation are governed by
slightly different friction coefficients. We reintroduce our new “inertial” convention, which
has been developed based on the analysis of Eq. (2), and which employs different friction
coefficients for the fluctuation and dissipation contributions. In Ref. [15] we found both the
inertial and isothermal conventions to produce the most accurate distribution functions when
implemented in Langevin dynamics simulations. Here, we demonstrate that the former out-
perform the latter in cases when the friction coefficient changes very rapidly. We use the
simulations to verify the validity of the newly derived fluctuation–dissipation relationship,
as well as of other theorertical predictions.

The paper is organized as follows: In Sect. 2 we derive expressions for the drift (and
the associated “spurious force”) experienced by a particle when traveling in a medium with
spatially dependent friction coefficient. We also present a generalized form for the fluctuation–
dissipation relation. The derived expressions are tested and validated computationally in
Sect. 3, where we present our method for Langevin dynamics simulations. The results are
summarized and discussed in Sect. 4.

2 Theory

2.1 The Spurious Force

When a particle diffuses in a flat potential in a medium with constant α, the mean displacement
of the particle (averaged over an ensemble of stochastic trajectories or, equivalently, an
ensemble of particles) vanishes: 〈�r〉 = 0. In the presence of a friction gradient, the mean
displacement does not vanish: 〈�r〉 �= 0—a phenomenon that has been termed “spurious
drift”. The drift, which is in the opposite direction to the friction gradient, is, of course, not
spurious, but rather represents the effect of inertia. It originates from the fact that when the
particle travels toward a less viscous regime (i.e., against the friction gradient), it suffers
less dissipation and therefore travels longer distances. This inertial effect is countered by
a “trapping effect” that takes place on time scales larger than the ballistic relaxation time
τ ∼ m/α, and which has precisely the same origin, namely the fact that the ballistic distance
decreases with α. At the large time scales, the larger friction slows down the diffusion of
the particle and, thus, traps it in the more viscous regime. In the case of a flat potential,
the equilibrium distribution of the particle [which is independent of α(r)] is uniform, which
means that, on average, the particle spends the same amount of time in each part of the
system. This implies that the drift, which favors the low viscosity regime, precisely balances
the slower diffusion on the high viscosity end.

Since the drift is an inertial effect, it must be dealt with within the framework of the full
inertial Langevin equation (2), and not by using its strictly overdamped, non-inertial form
Eq. (5). Assuming a flat potential ( f = 0), and integrating Eq. (2) over the time interval from
t = 0 to t = �t , we arrive at the “integrated Langevin equation”

m�v = −
r0+�r∫

r0

α(r) dr +
�t∫

0

β(t) dt. (10)
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Fluctuation–Dissipation Relation 1097

The terms on the r.h.s. of Eq. (10), which give the friction and noise contributions to the
change in the momentum, are governed by two distinct friction coefficients representing
different averages of the friction function during the time interval. The friction term features
the spacially averaged friction coefficient, ᾱr

ᾱr =
∫ r0+�r

r0 α(r) dr

�r
= A(r0 + �r) − A(r0)

�r
≡ �A

�r
,

(11)

where A(r) is the primitive function of α(r). The spatially averaged friction coefficient, ᾱr ,
has the following properties: (i) It depends on the initial and final coordinates, but not on
the trajectory r(t) between them. (ii) It is a well defined quantity that exists even if α(r)

is discontinuous. (iii) For smooth friction functions and sufficiently small �r , ᾱr is well
approximated by the Stratonovich friction coefficient

ᾱr 	 α(r0) + α(r0 + �r)

2
	 α(r0) + α′(r0)

2
�r. (12)

The noise term in Eq. (10) is governed by a different friction coefficient. This term represents
a sum of random Gaussian variables with vanishing correlation time. Therefore, it can be
formally written as an integral of a Wiener process [compare with Eq. (7)]

�t∫

0

β(t) dt = √
2ᾱt kB T �t σ, (13)

where σ is a standard Gaussian random variable [see Eq. (8)], and

ᾱt =
∫ �t

0 α(r(t)) dt

�t
(14)

is the time-averaged friction coefficient. In contrast to ᾱr , which depends only on the end
points of the interval, the calculation of ᾱt requires full knowledge of the trajectory, r(t),
during the time step. Without this information, ᾱt cannot be uniquely determined since there
exists not just one path, but a distribution of possible trajectories, leading from r0 to r0 +�r .
This is the origin of the Itô–Stratonovich dilemma. While Eq. (14) is formally correct, it bears
no physical meaning for non-zero time steps as it is based on the assumption that the noise is
temporally uncorrelated (white), which is only true for vanishing �t . For time steps �t > 0,
the friction gradient colors the noise, since the noise value at one time instance changes the
trajectory of the particle and, thereby, influences the noise statistics at a following instance
in time.

To address the above problem and make Eq. (10) physically unambiguous, we need to
consider the ensemble average over all possible trajectories starting at r0, rather than a
single path of the particle. On the l.h.s. of Eq. (10) we have the change in the momentum
of the particle which, in the absence of deterministic forces ( f = 0), must have a vanishing
ensemble average. On the r.h.s. we have the friction and noise forces. In accordance with
Einstein’s idea, these terms arise from the random forces caused by the collisions with the
molecules of the thermal bath. The collisions occur at such a fast rate that it can be assumed
that the particle barely moves before experiencing enough collisions to make the central limit
theorem applicable (see discussion in Sect. 4.5 of Ref. [16]). Thus, the total change in the
momentum of the particle during an arbitrarily small time step is normally distributed. The
friction force represents the mean rate of change in the momentum, while the noise accounts
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for the statistical fluctuations around the mean and, therefore, has a vanishing ensemble
average at each instance during the time interval �t . This implies that the ensemble average
of the change in the momentum due to the noise must vanish

〈 �t∫

0

β(t) dt

〉
= 0, (15)

and this feature must be incorporated in the integral form of the Langevin equation (10) to
make it consistent with the fluctuation–dissipation relationship. That leaves us with only the
friction term in Eq. (10) whose ensemble average must therefore also vanish, and by using
Eq. (11) we conclude that the drift satisfies

〈ᾱr�r〉 = 〈�A〉 = 0. (16)

Notice that Eq. (16) holds for any time interval �t (i.e., both in the ballistic and diffusive
regimes), for as long as f = 0. For a constant α it reduces to the no-drift condition: 〈�r〉 = 0.

As noted above, the drift does not arise from the action of any real force but rather from
the friction gradient. Using Eq. (12) in (16) we arrive at

〈�r〉 	 − α′

2α
〈(�r)2〉. (17)

The associated spurious force is defined as the force generating a similar drift in a uniform
medium. At short time scales, �t 
 τ ∼ m/α, the motion of the particle is ballistic
(�r 	 v�t) and, thus, 〈(�r)2〉 	 〈(v�t)2〉 = (kB T/m)�t2, where the second equality
is obtained by virtue of the equilibrium Maxwell–Boltzmann velocity distribution. We thus
conclude that in the ballistic regime, the drift is given by

〈�r〉 	 −1

2

α′

α

kB T

m
�t2, (18)

which resembles the inertial Newtonian dynamics of a particle under the action of a (spurious)
force

fs = −kB T

(
α′

α

)
. (19)

On time scales much larger than the ballistic correlation time, �t � τ , the motion must
be compared to the diffusive dynamics of a particle in a uniform medium. For such a particle
〈(�r)2〉 = 2D�t = 2(kB T/α)�t , and by inserting this relationship into Eq. (17), we arrive
at the following expression for the “spurious velocity”, vs ≡ 〈�r〉/�t

αvs = −kB T

(
α′

α

)
. (20)

This result can be compared to the velocity of a particle dragged by a (spurious) force of
magnitude

fs = −kB T

(
α′

α

)
, (21)

in a liquid with friction coefficient α. Remarkably, Eqs. (19) and (21) provide identical
expressions for the spurious force at both the short- and long-time limits, representing both
ballistic and diffusive behavior. Notice that the spurious force calculation derived here is
based on a first order expansion of α(r) in �r [Eq. (12)], which is only valid for smoothly
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varying friction and requires that the variation in α(r) during the time interval is relatively
small (α′�r 
 α, i.e., a weak spurious force). This is a reasonable approximation in the short-
time ballistic regime, but may be questionable in the diffusive time-scale. In what follows
(see especially Sect. 2.3 and the results in Fig. 2), we will go beyond this approximation and
allow larger variations in α(r).

2.2 Force Measurements

Part of the renewed interest in the Itô–Stratonovich dilemma stems from the relevance of
the topic to experiments involving femto-Newton force measurements [17,18]. When the
particle under investigation is found close to the surface of the sample cell, its diffusion
coefficients parallel and perpendicular to the boundary decrease due to the hydrodynamic
interactions between the surface and particle. In light of the debate that has erupted about
the interpretation of the results of such experiments [18,19], we here use our formalism to
derive a new expression relating the displacement and the deterministic force acting on the
particle. Since it is impossible to address the force variations on time scales smaller than
the measurement interval �t , we will assume that the force f is constant during this time
frame. Without any further assumptions, we start with Eq. (10), but now in the presence of
a constant deterministic force f , and we take the ensemble average of the different terms.
Using Eqs. (11) and (15) we arrive at

m〈�v〉 = f �t − 〈ᾱr�r〉 = f �t − 〈�A〉. (22)

In Sect. 2.1 we argued that for f = 0, there can be no change in the (ensemble) average
momentum of the particle, which means that the l.h.s. of Eq. (22) must vanish for any �t .
This is obviously not true when f �= 0 since the force results in a change in the momentum.
However, when �t � τ , the velocity of the particle becomes uncorrelated with the initial
velocity at t = 0. Starting at r0 with an ensemble of particles with an equilibrium velocity
(Maxwell–Boltzmann) distribution, the velocity distribution at �t � τ is expected to attain
the same equilibrium form. Therefore, for �t � τ , the result 〈�v〉 = 0 still holds, and when
used in Eq. (22) it leads to

f = 〈ᾱr�r〉
�t

= 〈�A〉
�t

. (23)

When the friction coefficient is constant, this expression becomes f = α〈v〉, where 〈v〉 ≡
〈�r〉/�t is the drift velocity.

When the variation in α(r) during the time interval is small (yet non-negligible!), the
truncated expansion on the r.h.s. of Eq. (12) can be used in Eq. (23), yielding

f 	 α〈�r〉
�t

+ α′〈(�r)2〉
2�t

. (24)

If we define a spatially dependent diffusion coefficient as D(r) = kB T/α(r), and also assume
that 〈(�r)2〉 = 2D�t , then Eq. (24) can be rewritten as

f 	 α〈�r〉
�t

− αD′, (25)

where D′ ≡ d D/dr = −kB T (α′/α2). The last equation has been used in Ref. [18] for
the force measurements. Unlike Eq. (23) which is asymptotically correct (for �t � τ ),
Eq. (25) is an approximation involving a first order expansion of α(r) in �r [Eq. (12)].
This approximation is valid only when α(r) is a well-behaved smooth function and the
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variations in α(r) during the time interval �t are small. Additionally, Eq. (25) also features
a spatially dependent diffusion coefficient D(r) = kB T/α(r), and involves the assumption
that 〈(�r)2〉 = 2D�t . The latter result is an approximate form of the fluctuation–dissipation
relation, which is correct only if the variations in α(r) are neglected to zeroth order [i.e.,
assuming α = α(r0)]. In the following Sect. 2.3 we present a generalized form for the
fluctuation–dissipation relationship that takes the variations in α(r) into account. In Sect. 2.4
we discuss the physical meaning of a spatially dependent diffusion coefficient in general,
and the definition D(r) = kB T/α(r) in particular.

2.3 The Fluctuation–Dissipation Relationship

To derive the correct form of the fluctuation–dissipation relationship, we set f = 0, and start
with Eq. (10), which we now write in a slightly different form

m�v + ᾱr�r =
�t∫

0

β(t ′) dt ′. (26)

By squaring the equation and taking the ensemble average, we arrive at

〈
(m�v)2 + 2m�vᾱr �r + (ᾱr�r)2〉 =

�t∫

0

dt ′′
�t∫

0

dt ′
〈
β(t ′′)β(t ′)

〉
. (27)

At large times, �t � τ , the expression on the l.h.s. of this equation is dominated by the
third term, which roughly grows linearly with �t while the other two terms remain finite.
The term on the r.h.s. can be evaluated by using Eq. (4) with α = α(t). This leads us to the
asymptotic equation

〈
(ᾱr�r)2〉 = 〈

(�A)2〉 =
�t∫

0

2〈α(t)〉kB T dt, (28)

which is the generalized form of the fluctuation–dissipation relationship for system with
spatially dependent friction. For a constant friction coefficient α, the relationship reduces to
the well known form 〈(�r)2〉 = 2(kB T/α)�t . Notice that 〈α(t)〉 = 〈α(r(t))〉 can also be
expressed as

〈α(r(t))〉 =
�t∫

0

ρ(r, t)α(r) dr, (29)

where ρ(r, t) is the normalized distribution function of the particle at time t . This implies
that 〈α(r(t))〉 depends on the initial distribution ρ(r, 0). If the particle is initially localized
at r = r0, then ρ(r, 0) = δ(r − r0).

Another interesting case is that of an infinite system with average nonzero density ρ0 =
1/L , modeled by periodic boundary conditions to a system with finite length L . If the initial
distribution ρ(r, 0) coincides with the equilibrium distribution, which (for f = 0) is uniform
ρ(r, t) = ρeq(r) = 1/L , then Eq. (28) simplifies to

〈
(�A)2〉 = 2〈α〉kB T �t, (30)

with 〈α〉 = L−1
∫

α(r)dr .
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However, the far l.h.s. of Eq. (28) cannot be replaced with 〈α〉2〈(�r)2〉 [or 〈α2〉〈(�r)2〉]
in this case, since the latter form does not account correctly for the drift of the particle. This
highlights the fact that �A, and not �r , is the quantity that characterizes the displacement of
the particle when traveling in an inhomogeneous medium. This conclusion is also reflected
in Eqs. (16) and (23).

2.4 Fick’s Second Law

We conclude the analytical part of the paper by returning to our earlier comment [see text
after Eq. (9)] that the concept of a spatially dependent friction coefficient D(r) is non-trivial
since diffusion is inherently a non-local process. This has motivated us, throughout Sect. 2,
to derive expressions involving only the local friction coefficient α(r). The only context in
which D(r) can be rationalized is the Focker–Planck equation for the probability density of
the particle ρ(r, t), which can be derived as follows: For the simplicity of the presentation
(but without limiting the generality of the derived equation), let us assume that the particle
initially is located at r0 [i.e., ρ(r, 0) = δ(r − r0)]. We start by rewriting Eq. (28) [together
with Eq. (29)] in the following explicit form

∞∫

−∞
dr ′ B2(r ′)ρ(r ′, t) = 2kB T

t∫

0

dt ′
∞∫

−∞
dr ′α(r ′)ρ(r ′, t ′), (31)

where B(r) ≡ �A(r) = A(r) − A(r0). Taking the partial derivative with respect to t gives

∞∫

−∞
dr ′ B2(r ′) ∂ρ(r ′, t)

∂t
= 2kB T

∞∫

−∞
dr ′α(r ′)ρ(r ′, t) = −2kB T

∞∫

−∞
dr ′ B(r ′) ∂ρ(r ′, t)

∂r ′ , (32)

where the second equality is obtained via integration by parts, keeping in mind that B ′(r) =
α(r) and using the fact that ρ(r, t) vanishes for r → ±∞. By multiplying and dividing the
integrand on the r.h.s. of Eq. (32) by α(r ′), and using the identify 2B(r)α(r) = 2B(r)B ′(r) =
[B2(r)]′, we arrive at

∞∫

−∞
dr ′ B2(r ′) ∂ρ(r ′, t)

∂t
= −kB T

∞∫

−∞
dr ′ [B2(r ′)

]′ 1

α(r ′)
∂ρ(r ′, t)

∂r ′ . (33)

Integrating by parts the r.h.s. of Eq. (33) yields

∞∫

−∞
dr ′ B2(r ′) ∂ρ(r ′, t)

∂t
=

∞∫

−∞
dr ′ B2(r ′) ∂

∂r ′

[
kB T

α(r ′)
∂ρ(r ′, t)

∂r ′

]
. (34)

Since Eq. (34) holds for any function B(r) it must be that

∂ρ(r, t)

∂t
= ∂

∂r

[
kB T

α(r)

∂ρ(r, t)

∂r

]
. (35)

The last equation is Fick’s second law, which is commonly written as ∂tρ = ∂r [D(r)∂rρ],
with D(r) being the spatially dependent diffusion coefficient. Comparing this form to
Eq. (35), we find that D(r) = kB T/α(r), which is the natural generalization of Eq. (1).
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3 Langevin Dynamics Simulations

In the previous section we demonstrated that much of the Itô–Stratonovich dilemma can be
resolved by: (i) considering the inertial Langevin equation (2) rather than its overdamped,
non-inertial limit (5), (ii) taking the ensemble average over many stochastic trajectories, and
(iii) enforcing Eq. (15) for the contribution of the noise to the momentum of the particle.
This has led to the derivation of Eqs. (16), (23), and (28), which we now test using computer
simulations. When performing Langevin dynamics simulations, a set of algebraic equations
(an “integrator”) is used to generate stochastic trajectories of the particle. Choosing the
appropriate convention to be implemented in the integrator invokes the Itô–Stratonovich
dilemma in a slightly different form, as will be discussed in the following section.

For the Langevin dynamics simulations, we use the GJF integrator [20] which, starting
with r = rn and v = vn at t = tn , uses the following equations for calculating the position,
rn+1, and velocity, vn+1, at time tn+1 = tn + dt

rn+1 = rn + bdtvn + bdt2

2m
f n + bdt

2m

√
2αkB T dt σ n+1

(36)

vn+1 = avn + dt

2m

(
a f n + f n+1)+ b

m

√
2αkB T dt σ n+1,

(37)

where f n = f (rn), σ n is a random Gaussian number satisfying Eq. (8), and the coefficients
a and b are given by

b =
(

1 + αdt

2m

)−1

(38)

a = b

(
1 − αdt

2m

)
. (39)

For a constant friction coefficient α, it was analytically demonstrated that the GJF inte-
grator provides exact configurational thermodynamic response for both flat and harmonic
potentials for any time step dt within the stability criterion of the method [20]. For spatially
dependent friction α(r), one needs to choose the value of α to be used in Eqs. (36)–(39).
The conventions of Itô, Stratonovich, and Hänggi (the isothermal) correspond to setting
α = α(rn), α = [α(rn) + α(rn+1)]/2, and α = α(rn+1), respectively. None of these inter-
pretations is physically accurate since, as our discussion in Sect. 2.1 reveals, the important
friction coefficients are ᾱr (11) and ᾱt (14). The former governs the friction term in Eq. (10)
and, therefore, is the one to be used in expressions (38) and (39) for the coefficients b and a
characterizing the dissipation decay rate of the velocity. The latter should be used for the noise
amplitude, (2kB ᾱt dt)1/2. For smooth friction functions, ᾱr differs by O(dt) from the value
used in the Itô and isothermal interpretations, and by O(dt2) from the Stratonovich value.
This may indicate that the most accurate interpretation is that of Stratonovich. Unfortunately,
the Stratonovich friction coefficient uses information about the position of the particle at the
end of the time step. Therefore, using this value in Eq. (13), would result in violation of
Eq. (15), which must be satisfied by the stochastic noise term. The isothermal interpretation
suffers from exactly the same deficiency of the noise term, while Itô’s convention, despite
satisfying Eq. (15), assumes a value which clearly deviates by O(dt) from ᾱt .
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Fig. 1 The probability distribution computed using Itô (dashed-dotted), Stratonovich (dashed), isothermal
(solid), and the new inertial (same solid curve which is indistinguishable from the isothermal curve at the
resolution of the graph) interpretations. The results correspond to a particle diffusing in a flat potential with a
friction function that has a sinusoidal form. The results for the different conventions were computed with the
same normalized time step dt = 0.1.

In our previous work we proposed a new “inertial” convention [15], where ᾱr (11) is used
for the coefficients a and b, while

ᾱt 	 ᾱr (r
n → rn + vndt) =

∫ rn+vndt
rn α(r) dr

vndt
= α(rn) + α′(rn)

vndt

2
+ O(dt2), (40)

is used for the noise amplitude. The fact that the friction coefficient given by Eq. (40) is based
on information existing at t = tn only, makes (2ᾱt kB T dt)1/2σ a true Gaussian variable and
ensures that Eq. (15) is obeyed. Expression (40) is essentially the best guess that one can
make for ᾱt at t = tn . It involves the assumption that the particle travels with velocity vn

during the time step. This is a reasonable estimation of ᾱt for small time steps dt 
 τ , during
which the trajectory of the particle is nearly ballistic.

Obviously, neither the newly proposed inertial convention nor the above mentioned more
familiar ones (Itô, Stratonovich, isothermal) are exact for discrete time steps. The fact that
the integrator numerically solves the inertial Langevin equation (2) and not its non-inertial
form (5), guarantees that the correct equilibrium distribution is obtained when dt → 0 for
any sensible interpretation. The difference between the conventions, as implemented for
inertial Langevin dynamics, is simply the rate of convergence to the correct distribution for
dt → 0. This may seem as a lighter version of the Itô–Stratonovich dilemma, which is only a
fundamental issue if the inertial term is entirely omitted in the Langevin equation. However,
the rate of convergence has a considerable practical importance in simulations where the
time step dt is not infinitesimal. The difference between the conventions is demonstrated
in Fig. 1, showing the simulated spatial equilibrium distribution of a particle of normalized
mass m = 1, in contact with a bath at constant temperature T , moving in a one-dimensional
medium with a flat potential and a sinusoidal normalized friction coefficient given by α(r) =
2.75 + 2.25 sin(2πr/L), where L = 40 is the spatial extension of the system in normalized
units. All the results depicted in Fig. 1 were derived from simulations with normalized
time step dt = 0.1. Since the potential energy is constant, the equilibrium distribution
must be uniform. Our results show that both Itô and Stratonovich interpretations exhibit
noticeable deviations from the correct uniform equilibrium distribution. The deviations reflect

123



1104 O. Farago, N. Grønbech-Jensen

the sinusoidal form of the friction function. In contrast, the isothermal and inertial conventions
produce indistinguishable distributions that are fairly uniform and deviate by less than 0.5 %
from the correct value of 1.

The ability of the isothermal and inertial conventions to accurately sample the equilib-
rium distribution function while using relatively large time steps was discussed in detail in
Ref. [15]. In short, the reason lies in the fact that these conventions account correctly for the
drift of the particle, although this happens in very different ways. In the inertial convention the
drift originates from the dissipation term in the integrated Langevin equation, while the noise
term in that equation has zero mean, in accordance with Eq. (15). In contrast, in the isothermal
convention, Eq. (15) for the noise is not satisfied, and the drift is generated by the friction term
being larger than necessary. Fortunately for the isothermal convention, these two errors cancel
each other. The deviations from a uniform probability distribution of the Itô and Stratonovich
conventions originate from O(dt2) errors in the computed drift, which can be corrected at the
end of each time-step by adding a “spurious drift term” to rn+1. Based on this strategy, we pre-
sented yet another convention, the “corrected-Stratonovich convention”, in Ref. [15]. While
for smooth friction functions, the latter convention is computationally almost as good as the
isothermal and inertial conventions, it is not useful for systems whereα(r) exhibit rapid spatial
variations. We therefore focus on a comparison between the isothermal and inertial conven-
tions. In the simulations reported in Fig. 1, we observed that, when starting with the same
initial position and velocity and using the same seed for the Gaussian random number gen-
erator, the isothermal and inertial conventions produced nearly identical trajectories, which
explains why the resulting probability distributions depicted in Fig. 1 are indistinguishable.

The discussion in the previous paragraph is valid only for smooth friction functions for
which the change in the friction coefficient during the time step is small. When α(r) exhibits
rapid spatial variations, the more physically-based inertial convention performs much better
than the isothermal one. This is nicely demonstrated in Fig. 2, showing the results of simu-
lations similar to those depicted in Fig. 1, with the only difference being that the sinusoidal
friction function has been replaced with the step-function α(r) = 0.5+4.5�(r), where �(r)

is the Heaviside step function. As in Fig. 1, the deviation from a uniform probability distribu-
tion depicted in Fig. 2 follows the form of the simulated friction function. In contrast to Fig. 1,
the isothermal and inertial conventions do not generate similar trajectories and distribution
functions. The latter, albeit not exact, is clearly superior to the former. For comparison, the
results of the Stratonovich convention are also displayed. Notice (by comparing Fig. 2a for
dt = 0.1 and b for dt = 0.05) the fundamental difference between the Stratonovich and
isothermal results which appear as step functions with an amplitude scaling linearly with dt ,
and the inertial convention which, away from the discontinuity in α (at r = 0), recovers the
correct value ρ = 1.

Figure 3 shows the distribution function computed from simulations of a particle traveling
in a medium with the same step friction function as in Fig. 2, but in this case within a
harmonic potential well U = kr2/2 with a normalized spring constant k = 2. When the
deterministic force does not vanish (as in this case), Eq. (40) can be modified to ᾱt 	
ᾱr (rn → rn + vndt + f ndt2/2m), although the impact of the new term involving f n

is nearly negligible for small dt . Our results demonstrate, once again, the advantage of
the inertial interpretation over the isothermal one in producing accurate distribution with
relatively large time steps (dt = 0.1 in Fig. 3). Notice that both interpretations converge
to the correct Gaussian form, ρeq(r) = (k/2πkB T )1/2 exp(−kr2/2kB T ), away from the
interface between the two friction regimes. This observation can be traced to the fact that
for a constant α and a harmonic potential, the GJF integrator generates the exact Gaussian
distribution [20].
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Fig. 2 Probability distribution computed using Stratonovich (dashed-dotted), isothermal (dashed), and iner-
tial (solid curve) interpretations. The results correspond to a particle diffusing in a flat potential with a step
friction function. The results for the different conventions were computed with (a) dt = 0.1 and (b) dt = 0.05.

Having established the GJF integrator with the inertial convention as the best available
method for simulating dynamics in systems with space-dependent friction, we now wish to
use this method to examine the validity of the theoretical predictions from Sect. 2. We start
with the relation 〈ᾱr�r〉 = 0 (16) governing the drift of the particle in the absense of a
deterministic force ( f = 0). We consider a particle moving in a medium with the following
“ramp” friction function

α(r) =
⎧⎨
⎩

0.5 for r < −10
0.5 + 0.225(r + 10) for − 10 ≤ r ≤ 10.

5.0 for r > 10
(41)

Starting at r0 = 0 with a velocity randomly drawn from the equilibrium Maxwell–Boltzmann
distribution, we follow the particle and record its position as a function of the time �t . We
set the integration time step to dt = 0.01, which is 10 times smaller than the time step used
in Figs. 1–3. The ensemble average is calculated by repeating this procedure for 107 different
stochastic trajectories. The results, depicted by solid circles in Fig. 4, are in full agreement
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Fig. 3 Probability distribution computed using the isothermal (dashed), and inertial (solid curve) interpre-
tations. Results correspond to a particle diffusing in a harmonic potential with normalized natural frequency√

k/m = √
2 and with a step friction function. Results for the different conventions were computed with

dt = 0.1. Thick solid curve depicts the exact equilibrium Gaussian distribution. Inset shows a magnification
of the central region of the distribution.
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Fig. 4 Ensemble averages of ᾱr �r (solid circles) and α0�r (open squares) as a function of time �t . Data
computed from simulations of 107 trajectories of a particle traveling in a flat potential and a ramp friction
function Eq. (41). The time step of the simulations: dt = 0.01.

with Eq. (16). For comparison, we also show (open squares) the temporal dependence of
α0〈�r〉 (where α0 = α(r0) = 2.75). As expected, the data reveals that there is an average
drift toward negative values of r ; i.e., in the direction of the smaller friction coefficient.

When f �= 0, we expect the force-drift relationship f �t = 〈ᾱr�r〉 Eq. (23) to hold for
large time scales �t � τ . To test the validity of this prediction, we performed two sets of
simulations similar to those described in the previous paragraph, but now with non-vanishing
forces f = 0.1 and f = −0.1. These values of f have been chosen to make the deterministic
force comparable to the spurious force fs Eq. (21), and in order to examine both the situation
where f and fs are parallel to each other as well as the case where they point in opposite
directions. The results of these simulations are summarized in Fig. 5, where we plot the ratio
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Fig. 5 Ratio between 〈ᾱr �r〉 and f �t as a function of time �t for f = 0.1 (solid circles, solid curve) and
f = −0.1 (open circles, dashed curve). Data computed from simulations of 107 trajectories of a particle
traveling in a linear potential − f r and a ramp friction function Eq. (41). The time step of the simulations:
dt = 0.01.

〈ᾱr�r〉/( f �t) as a function of �t . The figure demonstrates that the ratio indeed converges
to unity at times much larger than the ballistic relaxation time τ , which can be evaluated by
m/ max(α) = 0.2 < τ < 2 = m/ min(α). The crossover into the large �t regime occurs
at somewhat smaller times when the deterministic and spurious forces are opposite to each
other.

Finally, we arrive at the generalized fluctuation–dissipation relationship Eq. (28). To
demonstrate the validity of this equation, we consider the same particle with normalized
mass m = 1 at constant temperature T , moving under the action of no force ( f = 0) in a
medium with a parabolic friction function: α(r) = 10 + 0.1r2. At the initial time, an ensem-
ble of 107 such (non-interacting) particles are placed at r0 = 0, and with dt = 0.01 we
analyze their trajectories over time. The fact that the trajectories start from the minimum of a
parabolic friction function ensures that, over time, the particles will arrive to further regions
of the system with an ever-increasing α(r), which would prevent the friction coefficient from
“saturating”. We define the temperature T1,

kB T1 =
〈
(ᾱr�r)2〉

2
∫ �t

0 〈α(t)〉 dt
, (42)

which, according to Eq. (28), is expected to converge to the thermodynamic temperature T
at large times �t � τ . We also compare Eq. (28) with the standard form of the fluctuation–
dissipation relationship [see Eqs. (1) and (6)], featuring the temperature T2

kB T2 = α0
〈
(�r)2〉
2�t

, (43)

that would have converged to unity had the friction coefficient been constant α(r) = α(r0) =
α0 = 10. Our results, which are summarized in Fig. 6, demonstrate that T1 indeed converges
to T - in full agreement with Eq. (28). In contrast, the value of T2 steadily decreases at large
times, which exemplifies that 〈(�r)2〉 does not scale linearly with �t as suggested by the
conventional fluctuation–dissipation relationship. Notice that the large time behavior of T2

depends on the form of the function α(r). In the case studied here, α(r) has a parabolic form
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Fig. 6 Time dependence of the temperatures T1 [Eq. (42)—solid curve] and T2 [Eq. (43)—dashed curve]
defined, respectively, from the generalized (for non-uniform α) and standard (for constant α) forms of the
fluctuation–dissipation relationship. Data computed from simulations of 107 trajectories of a particle traveling
in a flat potential and a parabolic friction function, where the initial position is at the minimum of the parabola.
The time step of the simulations: dt = 0.01.

and the friction coefficient increases from the initial value of α0. This would naturally lead
to a decrease in T2, which serves as a measure for the effective diffusion coefficient.

4 Concluding Remarks

We conclude with the highlights of the study:

1. When a particle diffuses in a medium with spatially dependent friction coefficient, it
exhibits a drift toward the low-friction end. The drift represents an inertial effect origi-
nating from the fact that when the particle travels toward a less viscous side, it suffers
less dissipation and therefore travels longer distances. The drift counters the tendency
of the particle to get trapped, due to slower diffusivity, in the more viscous parts of the
system. The total amount of time spent by the particle in each part of the system is, obvi-
ously, independent of α(r) and depends only on the potential energy (via the equilibrium
distribution).

2. Since the drift results from an inertial effect, it needs to be studied within the framework
of the full Langevin equation (2) and not by using its overdamped (massless) limit Eq. (5).
While the former equation of motion is simply Newton’s second law with friction and
noise, the latter equation is non-physical since it allows the velocity to diverge for an
impulse of Gaussian white noise. This leads to the ambiguity known as Itô–Stratonovich
dilemma of the interpretation of the stochastic integral. The dilemma is merely an artifact
of the excessively simplified form Eq. (5). With the full Langevin equation, all the con-
ventions of assigning a value for the friction coefficient would yield statistically similar
trajectories in the limit when the time step dt → 0. This leaves us with the “lighter ver-
sion” of the dilemma concerning the convention with the best rate of convergence, which
is an important computational issue.

3. We found the GJF integrator with the new inertial convention to be the best method for
Langevin dynamics simulations. The method produces accurate thermodynamic behavior
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at large times for relatively large integration time steps, even in systems with very rough
friction landscapes. The success of the method can be attributed in part to the merits of the
GJF integrator (which produces correct thermodynamic response for constant α [20]), and
in part to the fact that the inertial convention recognizes two different friction coefficients:
ᾱr and ᾱt . The former of the two friction coefficients governs the dissipative component
of the integrated Langevin equation (10), and the latter sets the amplitude of the stochastic
noise. While expression (11) for ᾱr is exact, expression (14) for ᾱt is not, but it ensures
that the requirement of Eq. (15) for the noise is satisfied. This requirement is rooted in
the way that the random collision forces are represented in the Langevin equation, where
the friction describes the mean force impulse, and the noise accounts for the fluctuations
around the mean force.

4. We derived three new equations to characterize the dynamics in media with non-uniform
friction. Equations (16) and (28) describe the average and mean squared displacement in
the absence of a deterministic force ( f = 0), while Eq. (23) gives the force-displacement
relationship for f �= 0. Notice that only the first equation (16) holds for any time �t ,
while the other two describe the asymptotic behavior for �t � τ . The equations involve
the variable ᾱr�r = �A [where A(r) is the primitive function of αr (r)], which emerges
as the quantity that characterizes the statistical properties of the dynamics. The validity
of the newly derived equations has been verified by computer simulations.

5. We demonstrated that our generalized form of the fluctuation–dissipation relationship
(28) is consistent with Fick’s second law (35), where the local diffusion coefficient
D(r) = kB T/α(r). We reemphasize that diffusion is a non-local process and, thus, D(r)

bears physical meaning only within the context of a Focker–Planck differential equation,
and only in cases where α(r) is a smooth function. Notice that the Focker–Planck dif-
ferential equation can be (and, in fact, is usually) derived from the overdamped limit of
the Langevin equation of motion. The agreement between our form of the fluctuation–
dissipation relationship and the Focker–Planck equation implies that ignoring inertial
effects does not necessarily produce incorrect equilibrium distributions. It simply means
that the Focker–Planck equation must be derived with care, i.e., with the appropriate spu-
rious drift term. The problem is the overdamped dynamics itself, namely the attempt to
calculate the physical trajectory of a particle from a non-physical equation where its mass
is set to zero.
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