
Eur. Phys. J. E 3, 253–258 (2000) THE EUROPEAN
PHYSICAL JOURNAL E
c©

EDP Sciences
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Abstract. A new formalism is used for a Monte Carlo determination of the elastic constants of a two-
dimensional net of fixed connectivity. The net is composed of point-like atoms each of which is tethered
to six neighbors by a bond limiting the distance between them to a certain maximal separation, but
having zero energy at all smaller lengths. We measure the elastic constants for many values of the ratio γ
between the maximal and actual extensions of the net. When the net is very stretched (γ ∼ 1), a simple
transformation maps the system into a triangular hard disks solid, and we show that the elastic properties
of both systems coincide. We also show that the crossover to a Gaussian elastic behavior, expected for the
non-stressed net, occurs when the net is looser (γ ∼ 3).

PACS. 62.20.Dc Elasticity, elastic constants – 05.10.-a Computational methods in statistical physics and
nonlinear dynamics – 65.50.+m Thermodynamic properties and entropies

Materials like rubber and gels are formed when poly-
mers or monomers are cross-linked into macroscopically
large networks. Due to the small energetic differences (of
the order of kT ) between the allowed microscopic con-
figurations of these materials, their physics is primarily
determined by entropy, rather than energy. This has been
recognized long ago, and the peculiar physical properties
of rubber and gels, in particular their great flexibility, are
attributed to this microscopic feature. The classical theo-
ries of rubber elasticity, for instance, deal with Gaussian
networks in which the internal elastic energy is completely
ignored and the strands between cross-links are viewed as
entropic springs [1]. These theories, however, do not ex-
plain well the elastic behavior of networks of certain types.
Perhaps the most known unresolved problem in this field
of research is the question of the critical elastic behavior
of random systems near connectivity threshold. Most of
the numerical works which aimed to investigate this is-
sue during the last twenty years concerned the energetic
elasticity [2]. Recent studies [3], however, suggested that
close to the gel-point elasticity is dominated by its entropic
component. A completely different aspect of entropic elas-
ticity, which has been studied much less, is the behavior of
highly connected networks, well above their connectivity
threshold. The classical theories are inappropriate in this
connectivity regime, since the strands between the junc-
tions are very short and do not resemble Gaussian springs.

When the boundary of a thermodynamic system is
homogeneously deformed, the distance between any two
boundary points which prior to the deformation were sep-
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arated by �R, becomes

r = [RiRj(δij + 2ηij)]1/2, (1)

where the subscripts denote Cartesian coordinates and
summation over repeated indices is implied. The quanti-
ties ηij are the components of the Lagrangian strain ten-
sor, while δij is the Krönecker delta. The elastic behavior
of the system is characterized by the stress tensor, σij , and
the tensor of elastic constants, Cijkl, which are the coef-
ficients of the free energy density expansion in the strain
variables

f({η}) = f({0}) + σijηij +
1
2
Cijklηijηkl + . . . . (2)

Measuring the elastic constants is much more difficult
in entropy-dominated systems than in energy-dominated
ones. In the latter one needs to calculate energy variations
around well-defined ground states. In the former, on the
other hand, different microscopic configurations possess
similar energies. Entropy in this case is essentially the (log-
arithm of the) number of allowed microscopic configura-
tions. Measuring the variations of this quantity in response
to external deformations applied on the system is usually
very complicated. In order to simplify this task, and due to
the fact that the exact energy details are quite irrelevant in
entropy-dominated systems, the inter-atomic interactions
in such systems are often modeled by “hard” potentials.
Excluded-volume effects, for instance, can be modeled by
the hard spheres repulsion, while chemical bonds can be
replaced by inextensible (“tether”) bonds which limit the
distance between the bonded monomers, but have zero
energy at all permitted distances [4]. The energy of all
the microscopic configurations in such models, which are
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called “athermal”, is the same, and their physics, there-
fore, is exclusively governed by entropy considerations. It
is interesting to note that although athermal models have
been investigated quite extensively in polymer and soft
matter physics, the elastic properties of many of them are
not well understood. Hard spheres systems, for instance,
are studied for already more than 40 years [5]. They were,
in fact, the first systems for which Metropolis et al. per-
formed the first Monte Carlo (MC) simulations in 1953 [6].
The phase diagram of hard spheres, which is a function of
a single parameter, their volume fraction, had been fully
explored both in simulations and experiments [7]. Yet, de-
spite the numerous works dedicated to elasticity of hard
spheres [8], the accuracy of the values of their elastic con-
stants still leaves much to be desired.

In the canonical ensemble, the elastic constants can
be related to the mean-squared thermal fluctuations of
the stress tensor components (just as the heat capacity
is proportional to the mean-squared energy fluctuation).
This relation, first expressed by Squire et al. [9], can be
used for a Monte Carlo determination of the elastic con-
stants. The method is known as the “fluctuation method”.
The instantaneous stress, measured at a given microscopic
configuration, is associated with the mean force (averaged
over the entire volume) acting on the atoms [10,11]. The
local forces originate from external potentials and inter-
particle interactions. In entropy-dominated systems, these
forces are usually very small. They become extremely large
only over very short time intervals when atoms come to
the close vicinity of each other or when bonds are suffi-
ciently stretched. Model with hard potentials can be re-
garded as the limiting case in which these time intervals
vanish, while at the same time the instantaneous forces
become infinitely large, keeping the rate of momentum ex-
change between atoms fixed. It is obvious that the stress
in such systems must be related to the two-point proba-
bility densities of contact between spheres and occurrence
of bond stretching, while the elastic constants (stress fluc-
tuations) must be related to the corresponding four-point
probability densities. Indeed, we have recently succeeded
in formulating the exact relations. We obtained expres-
sions enabling a direct measurement of the entropic con-
tribution to the elastic constants, and demonstrated the
accuracy and efficiency of the method using this formalism
on three-dimensional hard spheres systems [12]. In this pa-
per we apply this new formalism to measure, by means of
MC simulations, the stress and elastic constants of topo-
logically simple networks. We consider a “toy model” con-
sisting of a two-dimensional (2D) network of atoms form-
ing a triangular “fisherman’s net” (FN): atoms are point-
like, i.e., have no excluded volume, and each one of them
is connected to six neighbors by a “tether” limiting the
maximal distance between the atoms, but otherwise not
exerting any force.

The FN is a highly connected network, whose phys-
ical behavior is entropy-dominated. Some of the elastic
properties of the system have been studied by Boal et
al. [13]. (Some extensions of that work can be found in
Ref. [14].) In reference [13] fixed pressure ensemble has

been used, and the elastic moduli have been extracted
from the fluctuations of the linear size of a rectangular
cell. Our simulation applies to the fixed volume case, uses
significantly larger systems and a wider range of stresses.
We are also able to measure every elastic constant directly,
without assuming any symmetry of the system. Whenever
comparison is possible, our results are in agreement with
reference [13].

The FN is six-fold symmetric when it is equally
stretched along all the spatial directions. Its elastic prop-
erties in this reference state should be as of an isotropic
system (see p. 35 (discussion on hexagonal systems) in
Ref. [10]): Its stress tensor is diagonal with the elements
σ = σxx = σyy = −P , where P is the negative ex-
ternal pressure (stretching) one needs to apply to the
boundaries in order to balance the forces exerted by the
net. Only four elastic constants of the net do not van-
ish: C11 = Cxxxx, C22 = Cyyyy, C12 = Cxxyy = Cyyxx

and C44 = 1
4 (Cxyxy +Cxyyx +Cyxyx +Cyxxy). Due to the

isotropic nature of the system, only two of them are in-
dependent, and they satisfy the relations C11 = C22, and,
2C44 = C11 − C12 [15]. It is quite common to describe
the elastic properties of isotropic systems in terms of the
shear modulus, µ, and the bulk modulus, κ, defined by
µ = C44 − P , and, κ = 1

2 (C11 + C12). When these quan-
tities are positive, the isotropic system is mechanically
stable [16].

Our simulations were performed on systems consisting
of 1600 atoms which were bonded to form a triangular
2D net. The topology of the net is such that the mean
positions of the atoms form a regular triangular lattice
with lattice spacing b0, while each pair of nearest-neighbor
atoms is connected by a tether whose maximal extension is
b ≥ b0. Periodic boundary conditions, which fixed the vol-
ume and prevented the net from collapsing, were applied.
We denote by γ ≡ b/b0 the ratio between the maximal
and actual extensions of the net. Typical equilibrium con-
figurations corresponding to two values of γ are depicted
in Figure 1. We generated the MC configurations using a
new updating scheme, recently proposed by Jaster [17], in
which the conventional Metropolis step of a single parti-
cle is replaced by a collective step of chain of particles. At
each MC time unit we made 1600 move attempts (with
acceptance probability ∼ 0.7), where at each attempt a
new atom was selected randomly. (On the average, each
atom was chosen once in a MC time unit.) Correlations be-
tween subsequent configurations were estimated from the
autocorrelation function of the amplitude of the longest-
wavelength phonon in the systems (both longitudinal and
transverse phonons were checked). For all γ values, we
found that after less than 1000 MC time units, the mem-
ory of the initial configuration was completely lost. We
measured the stress and elastic constants for many values
of γ. For each γ, we averaged the relevant quantities over
a set of 1.5×107 configurations separated from each other
by 3 MC time units. We also evaluated the standard de-
viations of the averages. The error bars appearing in the
graphs which present our results correspond to one stan-
dard deviation. More technical details of the simulations,
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a)

b)

Fig. 1. Configurations corresponding to different values of the
ratio γ between the maximal and actual extensions of the net:
(a) γ = 1.1, (b) γ = 1.5. Only part of the net is shown in the
figures.

as well as a detailed explanation on the formalism used in
this work, were given in another publication [12].

When the net is fully extended (γ = 1), atoms cannot
leave their mean lattice positions. Entropy, therefore, van-
ishes, while the stress and elastic constants diverge. For
slightly larger values of γ, atoms are restricted to small
thermal fluctuations around their lattice positions, as in
Figure 1(a). A similar atomic-level picture appears in hard
disks (2D “hard spheres”) solids for densities proximal to
the close-packing density. In fact, the FN and the hard
disks (HD) problems are closely related: In the latter (HD)
the centers of the disks are not allowed to approach their
neighbors a distance smaller than a, the diameter of the
disks, while in the former (FN) atoms are not allowed to
depart from their neighbors a distance larger the maxi-
mal extension of the bond, b. For HD solids, one can de-

fine the ratio δ = a/b0 ≤ 1 between the diameter of the
disks, a, and the mean lattice separation, b0. In the limits
γ → 1 and δ → 1 (corresponding to the FN and HD prob-
lems, respectively), the elastic constants of both systems
coincide, as can be seen from the following argument: Let
ΠFN and ΠHD be phase spaces of allowed configurations
of a FN with a certain value of γ and of a HD solid with
δ = 1/γ, respectively. Each configuration in one of these
phase spaces can be described by the set {ui} of deviations
of either the atoms of the net or the centers of the disks
from their mean lattice positions. In the γ, δ ∼ 1 asymp-
totic regimes, we can assume that the size of all the de-
viations is much smaller than the lattice spacing, b0. One
can easily check that if the set {ui} represents an allowed
microscopic configuration of the FN, then the set {−ui}
almost always corresponds to an allowed configuration of
the HD system. Moreover, by this transformation we can
generate almost all the configurations of ΠHD. The mea-
sure of the subgroup of configurations for which the map-
ping {ui} ←→ {−ui} between the two problems does not
apply, diminishes proportionally to 〈ui

2〉/b0
2. Thus, the

mapping {ui} ←→ {−ui} is asymptotically a one-to-one
transformation from ΠFN onto ΠHD. Since for both sys-
tems the Helmholtz free energy F is equal to −kT ln |Π|,
where |Π| is the volume of the 2N -dimensional configura-
tion phase space (N is the number of atoms), and since the
Jacobian of the above transformation is unity, we readily
find that the free energies FHD and FFN of the HD and
FN systems, respectively, are related by

FFN(N, γ) � FHD(N, δ = 1/γ), for γ ∼ 1.

Suppose now that both systems are slightly deformed from
their reference states. The displacements of the atoms
from their original (undeformed) mean lattice positions
can be divided into the set {ui} of thermal fluctuations
and the set {vi} of small changes in mean lattice positions
caused by the deformation. The transformation between
ΠFN and ΠHD, in this case, maps both {ui} to {−ui}
and {vi} to {−vi}. The {vi} mapping is equivalent to the
reversal of the strain applied on the system. We there-
fore find that FHD and FFN will be equally modified, pro-
vided that opposite strains are applied on the FN and HD
systems. The following asymptotic relations between the
stress and elastic constants of these systems follow im-
mediately: σFN(γ) � PHD(1/γ), κFN(γ) � κHD(1/γ) and
CFN44(γ) � CHD44(1/γ). These relations are very useful
since the asymptotic expressions for PHD, κHD and CHD44

are available [18], and can be used to find the stress and
bulk modulus of the FN. This gives us the exact expres-
sions

σFN(γ) � 4/
√

3
(γ2 − 1)

kT

b2
0

, (3)

κFN(γ) � 4/
√

3
(γ2 − 1)2

kT

b2
0

. (4)

For the elastic constant C44, reference [18] finds only the
asymptotic functional form, and therefore for our problem
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Fig. 2. Numerical results for the stress σ (circles), the bulk
modulus κ (squares), and the elastic constant C44 (triangles),
as a function of the ratio γ between the maximal and actual
extensions of the net. Results are in kT/b2 units. The solid,
dashed and dotted curves depict the expressions on the right-
hand sides of equations (3)–(5), respectively (with A = 1.80 in
Eq. (5)).

we have

CFN44(γ) �
A

(γ2 − 1)2
kT

b2
0

, (5)

with an unknown constant A. Our numerical results, pre-
sented in Figure 2, confirm these relations, which seem
to be accurate over quite a large range of γ values. In
equation (5) we use the value A = 1.80 ± 0.02 obtained
by fitting the asymptotic expression for C44 to the three
data points corresponding to the smallest γ values. Note
that while in equations (3)–(5) PHD, κHD and CHD44 are
expressed in units of kT/b2

0, in Figure 2 they are given
in units of kT/b2. In this representation, the stress and
elastic constants of the FN are scaled to depend on the
parameter γ alone.

Figure 3 shows the dependence of the stress and elas-
tic constants on γ for weakly stretched nets. We observe
a spectacular decay of elastic constants to almost zero
for γ ∼ 3, and at the same time we note that the stress
becomes independent of γ. The same result (for the crit-
ical value of γ and the γ-independent pressure) has been
obtained in reference [13]. The very fact of decrease of
elastic constants with increasing γ should not be surpris-
ing, because it is intuitively clear that larger γ represent
a “looseer” and “weaker” solid. However, almost vanish-
ing values already at γ ∼ 3 are not direct consequences of
the “weakness” of the solid, but of the fact that a “loose”
network can be approximated by a network of Gaussian
springs. Gaussian spring is a linear spring of vanishing un-
stressed length. The energy of such a spring, E = 1

2Kr2,
is simply proportional to its squared end-to-end distance,
r2. We will show that elastic solid formed by such springs
has exactly vanishing elastic constants, independently of
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Fig. 3. Numerical results for the stress σ (circles), and the
elastic constants C11 (squares), C12 (triangles pointing up) and
C44 (triangles pointing down), as a function of the ratio γ
between the maximal and actual extensions of the net. Results
are in kT/b2 units. The lines are guides to the eye.

the value of the spring constant K. Thus, the effect ob-
served in Figure 3 is an indication of the Gaussian nature
of the system.

It is easy to calculate the elastic properties of Gaussian
networks at T = 0: The stresses of such networks depend
on their topologies, namely on the details of the connec-
tivity between the atoms and on the values of the springs
constants between them. For 2D networks the stresses are
not modified due to homogeneous changes in the size of the
net, since the force exerted on the surface grows (dimin-
ishes) linearly with the length of the boundaries. More-
over, at T = 0, the free energy, F , coincides with the
internal energy E =

∑
bonds 〈αβ〉

1
2Kαβ(rαβ)2, where rαβ

is the length of the bond connecting atoms “α” and “β”,
and Kαβ is the spring constant assigned to this bond.
From equation (1) it is obvious that the energy expansion
in the strain variables includes only linear terms in η, and
hence, by comparing with equation (2), Cijkl(T = 0) ≡ 0
[19]. This identity, as well as the size independence of the
stresses, holds at any other temperature since Gaussian
networks have the interesting feature that their stress and
elastic constants are temperature independent! For the
stresses this feature is readily understood: The stresses
can be expressed as the averages of quantities which are
linear in the coordinates of the atoms. When the statistical
weights of the distribution are Gaussian, i.e., an exponent
of a quadratic form of the coordinates, these averages co-
incide with the most probable values, namely their values
at equilibrium. The temperature independence of the elas-
tic constants then follows immediately, since the latter are
just the derivatives of the stress components.

The similarity between non-stressed tethered and
Gaussian one-dimensional (1D) nets, i.e., linear poly-
mers, is a consequence of central limit theorem [20]. For
topologically two-dimensional regular (non-random) nets,
such similarity was demonstrated by Kantor et al. [4]:
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Fig. 4. The effective spring constant Keff , extracted from MC
measurements of r2

xx′ = 〈|r(x)− r(x′)|2〉 (see Eq. (6)). The er-
ror bars correspond to one standard deviation in the estimated
value of r2

xx′ .

In both tethered and Gaussian two-dimensional nets, the
mean-squared distance in the embedding space, r2

xx′ =
〈|r(x)− r(x′)|2〉, between two distant points whose inter-
nal positions in the net (measured in lattice constants) are
x and x′, grows proportionally to ln |x− x′|. One can de-
fine the effective spring constant, Keff , as the value of K of
a Gaussian network with the same connectivity and statis-
tical properties as the tethered network. The value of Keff

is extracted from the ratio of the mean-squared distance,
r2
xx′ , between two points x and x′ on the FN, and the

mean-squared distance r̃2
xx′ between the same two points

on a Gaussian network of unit spring constants:

Keff = r̃2
xx′/r2

xx′ . (6)

r̃2
xx′ can be calculated exactly, while the value of the cor-

responding r2
xx′ = 〈|r(x)− r(x′)|2〉 can be extracted from

MC simulations of the FN with free boundaries conditions
(i.e., in the absence of external pressure). We simulated a
FN of 562 = 3136 atoms and measured (using 107 differ-
ent configurations) r2

xx′ for several pairs of points x and
x′ at different lattice separations. With these measure-
ments we evaluated the effective spring constants (using
Eq. (6)), and found, as shown in Figure 4, that for the FN
model Keff � 1.96 kT/b2. In order to support our con-
clusion about the crossover into the Gaussian regime, we
need to show that the constant value to which the stress
drops in Figure 3 is just the stress applied by a Gaussian
net with spring constants Keff calculated for non-stressed
FN. For a Gaussian net with K � 1.96, one finds that
σ =

√
3K ∼ 3.39 kT/b2 which indeed coincides with the

value of 3.4 kT/b2, extracted from Figure 3.
The persistence of the Gaussian regime to intermedi-

ate values of γ (γ ∼ 3) is not unique for 2D nets. Such
behavior is also found, for instance, in 1D polymers. Let
us consider, for a moment, a chain of N � 1 tethers of
maximal length b, which is stretched by a force f , to an

end-to-end length l = Nb0. It is a well known fact that this
chain will be Gaussian, i.e., f and l will be proportional
to each other, provided that l does not exceed the order
of magnitude of the root-mean-square size of the chain:

l = Nb0 �
√

Nb. (7)

Yet, one must understand that in order to observe Gaus-
sian elastic behavior, it is not essential to apply this cri-
terion (7) to the whole chain, but only to small segments
of it. If there exists a certain length scale at which the po-
tential between the atoms becomes effectively quadratic,
i.e., can be replaced by a Gaussian spring, then the whole
chain is like a chain of Gaussian springs, and therefore
it is itself Gaussian. For a linear polymer chain, the ef-
fective potential between non-neighboring atoms is calcu-
lated by integrating out the spatial degrees of freedom
of the atoms located between them. Such calculations are
usually done iteratively, where on each “rescaling” step ev-
ery second atom is integrated out. It appears that even ele-
mentary potentials which are very different from parabola,
are brought into a parabolic form within a few “rescal-
ing” steps. For the specific potential used in this work,
three steps are sufficient, which means that a segment
of N ∼ 10 tethers may be justly considered as an effec-
tive Gaussian spring. Similarly to a macroscopically large
chain, we expect that the Gaussian nature of this segment
will persist as long as it is stretched to a length which does
not exceed its root-mean-square size, namely, as long as
10b0 �

√
10b (see criterion (7)). This relation gives the

lower limit, γ = b/b0 �
√

10 ∼ 3, of the Gaussian regime
of a 1D chain of tethers. For a 2D regular phantom net, the
effective potential becomes approximately parabolic also
for a distance of number of bonds, N ∼ 10 [4]. The root-
mean-square distance between two such points is b

√
lnN .

Thus, in order to observe Gaussian elastic behavior, we re-
quire that 10b0 � b

√
ln 10, or, γ = b/b0 � 10/

√
ln 10 ∼ 4,

which is consistent with the value γ ∼ 3, observed in Fig-
ure 3.

In summary, we have applied a new “fluctuation” for-
malism to MC determination of the stress and elastic
constants of stretched tethered networks. These systems
provide a convenient framework for studying the entropic
contribution to elasticity in real polymeric systems. The
Gaussian nature of entropic elasticity, observed for non-
stressed phantom nets, was also found when stress was
applied. It breaks only for highly extended networks, close
to their full extension. This point has interesting implica-
tions to the problem of the critical elastic behavior of gels
right above the gel-point. As already mentioned in the first
paragraph of this paper, recently it was suggested by Plis-
chke, Joós and co-workers that this behavior is dominated
by entropy [3]. These authors studied numerically (using a
different technique) the elastic behavior, at T �= 0, of bond
diluted (percolating) systems at which only a fraction p of
the bonds was present. Their results in 2D for the critical
exponent f characterizing the growth of the shear mod-
ulus above the percolation threshold pc, µ ∼ (p − pc)f ,
match (within the range of error) the known result for
the exponent t describing the conductivity of random
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resistors networks Σ ∼ (p− pc)t. The question is whether
this result is universal. For Gaussian networks the iden-
tity, f = t, can be proven rigorously [21]. One can further
argue that this result also applies to other types of interac-
tions, provided that above a certain finite length scale, the
network is effectively Gaussian. We have shown here that
this property is not always insured. In a percolation prob-
lem, the elastic backbone is inhomogeneous and includes
very tenuous parts where the tension applied to the net-
work is distributed between very few strands. Such strands
may deviate from Gaussian behavior when high stress is
applied. Further complications can arise from excluded-
volume effects which have not been discussed here at all.

This work was supported by the Israel Science Foundation
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