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Abstract. We study, by means of mean-field calculations and Monte Carlo simulations of a lattice gas
model, the distribution of adhesion sites of a bilayer membrane and a supporting flat surface. Our model
accounts for the many-body character of the attractive interactions between adhesion points induced by
the membrane thermal fluctuations. We show that while the fluctuation-mediated interactions alone are
not sufficient to allow the formation of aggregation domains, they greatly reduce the strength of the direct
interactions required to facilitate cluster formation. Specifically, for adhesion molecules interacting via a
short-range attractive potential, the strength of the direct interactions required for aggregation is reduced
by about a factor of two to below the thermal energy kBT .

1 Introduction

Adhesion between two membranes or between a mem-
brane and another surface is an important topic for its
ubiquitous occurrence in biological and biophysical pro-
cesses. This process, during which two interfaces attract
each other, can in principle be facilitated by non-specific
attractive interactions (e.g., Coulomb and van der Waals
interactions). Cell adhesion, however, is usually caused by
highly specific receptor molecules located at the outside
of the plasma membrane of the cell, that can bind to
specific ligands on the opposite surface [1,2]. Typically,
the area density of receptors is rather low which does not
lead to efficient bio-adhesion. However, when facing a sur-
face with enough ligands, the receptors may cluster into
highly concentrated adhesion domains to establish much
stronger binding [3,4]. Formation of adhesion clusters oc-
curs in many biological processes [5], including the binding
of white blood cells to pathogens [6], cadherin-mediated
adhesion of neighboring cells [7], and focal adhesion of cells
to the extracellular matrix [8]. Much insight into these
bio-adhesion processes has been gained from experimental
studies of biomimetic membranes with receptors molecules
that interact with surfaces covered by ligands [9–14].

Generally speaking, adhesion-induced domain forma-
tion requires some attractive intermolecular interactions
between the receptor-ligand pairs. These interactions in-
clude both direct and membrane-mediated contributions.
The former are typically described by pairwise interac-
tions which are infinitely repulsive at very small molecular
separations and attractive at somewhat longer (but still
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finite) distances [15]. The effect of the direct interactions
between adhesion bonds can be studied in the framework
of the thoroughly researched lattice gas model [16]. Specif-
ically, there exists a critical value ǫc of the strength of the
attractive part of the intermolecular pair potential above
which the system may phase-separate into domains with
high and low concentrations of adhesion bonds.

Much less is known about the indirect interactions be-
tween adhesion sites which are mediated by the mem-
brane thermal fluctuations. The entropic origin of these
interactions can be easily understood as follows: Consider
two adhesion bonds between two membranes or between
a membrane and a surface. The adhesion points restrict
the thermal height fluctuations of the membrane in their
vicinity. This entropy loss can be minimized if the two ad-
hesion bonds are brought to the same place, in which case
the membrane becomes pinned at only one point and not
two. The membrane fluctuations, thus, induce an attrac-
tive potential of mean force between the adhesion points.

In a previous publication, we analyzed the membrane-
mediated interactions between two adhesion bonds of a
bilayer membrane and a supporting surface [17]. We found
that for “point-like” adhesion molecules whose size is com-
parable to or smaller than the thickness of the membrane
(l ∼ 4–5 nm), the potential of mean force is an infinitely
long-range attractive potential that grows logarithmically
with the pair distance r:

U(r) = 2kBT ln
(r

l

)

. (1)

Equation (1) holds for tensionless membranes, which will
be the case discussed in the following. When surface
tension is applied, this form holds for pair separations
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r ≪ ξσ =
√

κ/σ, where κ and σ denote the mem-
brane bending rigidity and surface tension, respectively.
For r ≫ ξσ, U(r) is decreased by a factor of 2 [17]. We
leave the discussion of stressed membranes to a future
publication.

In this paper we consider the same system as in
ref. [17], but instead of two adhesion points we look at
a membrane which is pinned to a flat impenetrable sur-
face at multiple sites. To analyze the aggregation behavior
of the adhesion sites we first need to generalize eq. (1)
and write down the fluctuation-induced interaction en-
ergy as a function of the coordinates of the adhesion sites
U(r1, r2, r3, . . . , rN ). This is a non-trivial problem since
the fluctuation-mediated interaction is a many-body po-
tential which cannot be expressed as the sum of two body
terms of the form in eq. (1). The many-body nature of
U(r1, r2, r3, . . . , rN ) is best illustrated by an example:
Consider a cluster of two adhesion points located close
to each other at r1 ≃ r2, and a third distant adhesion
point located at r3. Having a single adhesion point at r1

or r2 instead of the two-point cluster will not result in any
change in the spectrum of membrane thermal fluctuations.
Therefore, the third point is attracted to the two-point
cluster by the same potential of mean force (1) to which
it is attracted to one adhesion point, and not by a poten-
tial which is twice larger than potential (1), which would
be the case if U(r1, r2, r3, . . . , rN ) is the sum of pair in-
teractions. What is the exact form of U(r1, r2, r3, . . . , rN )
is still an open question that needs to be resolved for the
fluctuation-induced domain formation to be understood.
Several approximations to this problem which avoid di-
rect many-body calculations have been proposed. Weikl
and Lipowsky introduced a mean-field theory in which
the effect of the pinning points is represented by a ho-

mogeneous attractive interaction between the fluctuating
membrane and the underlying surface (or between the
membrane and another membrane) [18]. They concluded
that the homogeneous fluctuation-induced potential alone
cannot facilitate the formation of adhesion zones, but it
greatly reduces ǫc, the critical strength of the direct in-
teractions between the adhesion bonds above which the
formation of adhesion clusters is possible. A very similar
conclusion has been recently reached by Speck et al. using
rigorous statistical mechanical methods [19]. However, in
their model the hard-wall interaction between the mem-
brane and the surface has been replaced with a harmonic
confining potential.

In this work we present a more accurate approach to
the problem which employs a non-additive many-body po-
tential U(r1, r2, r3, . . . , rN ). The derivation of the poten-
tial U(r1, r2, r3, . . . , rN ), which is based on our previous
statistical mechanical studies of the membrane thermal
fluctuations with one [20] and two [17] adhesion points,
is presented in sect. 2. The idea is somewhat different
than the one previously used by others. As in refs. [18,
19], we integrate out the membrane degrees of freedom
and map the problem onto the lattice gas model where the
occupied sites represent the adhesion bonds. But unlike in
refs. [18,19], the interaction energy U(r1, r2, r3, . . . , rN ) is
not expressed as the sum of two body interactions between

Fig. 1. Schematic of the system under investigation, consisting
of a membrane which is pinned to a flat impenetrable surface
at multiple adhesion points. The adhesion points can diffuse
freely on the surface, and they may cluster to increase the
conformational entropy of the fluctuating membrane.

nearest-neighbor lattice sites. Instead, it is calculated from
the empty sites that represent the unpinned sections of
the membrane. The energy assigned with each empty site
represents the loss of entropy due to the reduction of the
membrane fluctuations in the area around that site. We
argue that the extent by which the membrane fluctua-
tions are locally restricted depends mainly on the distance
to the closest pinning point. Therefore, the calculation of
U(r1, r2, r3, . . . , rN ) for a given distribution of pinning
sites involves the division of the lattice into Voronoi cells
and summing their contributions to the free energy. In
sect. 3 we present a mean-field analysis of our model, and
in sect. 4 we present the results of Monte Carlo lattice
simulations. We find, in agreement with other theoretical
studies, that, while the fluctuation-mediated interactions
alone are not sufficient to allow the formation of aggrega-
tion clusters, they greatly reduce the strength of the resid-
ual (direct) interactions between adhesion points which is
required to facilitate cluster formation. More specifically,
we find that the strength of the short-range cohesive en-
ergy that allows condensation is reduced by about a factor
of two and falls below the thermal energy kBT . In sect. 5
we summarize and discuss our results.

2 The many-body fluctuation-mediated

potential

We consider the system shown schematically in fig. 1 con-
sisting of a fluctuating membrane of linear size L which
is pinned to a flat impenetrable surface at several sites.
The free-energy cost of a single adhesion point is given
by [21,20]

F1 = kBT ln

(

L2

l2

)

= 2kBT ln

(

L

l

)

. (2)

This result has been derived in ref. [20] by noting that
pinning the membrane to the surface at one point does not
modify the membrane spectrum of thermal fluctuations.
It does, however, eliminate the membrane translational
degree of freedom by enforcing the global minimum of
the membrane height function to be located at the point
of contact with the surface. A different interpretation to
eq. (2) is that between the membrane and the surface there
is an effective interaction free energy per unit area of the
form

V (r) =
kBT

πr2
, (3)

that represents the entropy cost due to the reduction of
the membrane fluctuations at distance r from the adhesion
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site [17]. The attachment free energy is then derived by
integrating the free-energy density U(r) over the projected
area of the membrane

F1 =

∫ L

l

2πrV (r)dr. (4)

The free-energy density (3) can likewise be employed
to derive the fluctuation-mediated pair potential (1). How-
ever, when we have two adhesion points, the distance r in
eq. (3) should be the distance of the unit membrane area
to the closest adhesion point. With this choice of r, let us
now consider a square membrane (−L/2 ≤ x, y ≤ L/2)
with two adhesion points located at (x, y) = (±r0/2, 0).
The attachment free energy is calculated by integrating
V (r) over the projected area of the membrane (excluding
a region of size l around the adhesion points):

F2 = 4

∫ L/2

0

dy

⎡

⎣

∫ (r0−l)/2

0

dx
kBT

π
[

y2 + (x − r0/2)
2
]

+

∫ L/2

(r0+l)/2

dx
kBT

π
[

y2 + (x − r0/2)
2
]

⎤

⎦ . (5)

Integrating over y yields

F2 =
4kBT

π

[

∫ (r0−l)/2

0

dx

|x − r0/2| tan−1

(

L

2|x − r0/2|

)

+

∫ L/2

(r0+l)/2

dx

|x − r0/2| tan−1

(

L

2|x − r0/2|

)]

. (6)

Assuming that l < r0 ≪ L, the inverse tangent function
in eq. (6) can be approximated by the constant value of
π/2 over most of the integration range (except near the
boundaries of the membrane |x| ∼ L/2 which, neverthe-
less, does not influence the dependence of the result on r0).
With this approximation, one gets

F2(r0, L) ≃ 2kBT ln

(

L

l

)

+ 2kBT ln
(r0

l

)

= F1(L) + U(r0). (7)

The first term in eq. (7) is the free-energy cost of a sin-
gle adhesion site (2), which is the expected value when
the two adhesion points coincide (r0 ≃ l) to form a single
cluster. The second term, which represents the additional
free-energy cost associated with the separation of the ad-
hesion points, is identified as the fluctuation-induced pair
potential, in agreement with eq. (1).

We now wish to generalize eqs. (5) and (7), and pro-
pose that the many-body fluctuation-mediated potential
is given by

U (r1, r2, r3, . . . , rN ) = FN (r1, r2, r3, . . . , rN , L)−F1(L).
(8)

The attachment free energy FN of N adhesion points is
calculated by integrating the free-energy density

FN =

∫

kBT

πd2 (r, r1, r2, r3, . . . , rN )
dr, (9)

where d is the distance of the membrane unit area to the
nearest adhesion point

d = min
i=1...N

(|r − ri|) , (10)

and the integration is carried over the projected area of
the membrane except for small regions of size l near each
adhesion point. What we essentially argue here is that the
extent by which the membrane thermal fluctuations are
limited at each spot depends almost exclusively on the
distance to the nearest adhesion point. All the other ad-
hesion points are effectively screened. This suggestion is
supported not only by the above example, eqs. (5)-(7),
but also by our observation from recent computer simula-
tions presented in ref. [17]. In that paper, we determined
the pair potential (1) by using Monte Carlo simulations of
a coarse-grained bilayer model with two adhesion points.
Our simulations results were in excellent agreement with
eq. (1) despite the fact that each adhesion point interacts
not only with the other adhesion point but also with its
infinite array of periodic images. It is unlikely that the pe-
riodic images have such a negligible contribution on U(r)
for all values of r unless they are simply screened. In other
words, the local fluctuation behavior of the membrane is
governed by the distance to the nearest adhesion point
while the spatial distribution of the other, more distant,
points is irrelevant. Thus, calculating FN for a given dis-
tribution of adhesion points involves the construction of
the 2D Voronoi diagram of the configuration, and sum-
mation of the free-energy contributions coming from each
Voronoi cell, Si

FN =

N
∑

i=1

∫

dSi
kBT

πr2
, (11)

where r is the distance to the adhesion point which is
located inside the Voronoi cell.

3 Mean-field theory

To study the formation of adhesion clusters in supported
membranes, we consider a lattice of Ns sites with lattice
spacing set equal to l (the cut-off microscopic length scale)
of which N < Ns sites are occupied by adhesion points.
For each spatial configuration of the system, the energy is
written as the sum of two terms

E = ELG + FN . (12)

For the first term in eq. (12) representing the direct in-
teraction between the adhesion points, we take the lattice
gas energy with nearest-neighbor interactions

ELG =
∑

〈i,j〉

−ǫsisj , (13)

where si = 1 for an occupied site, si = 0 for a vacant site,
and ǫ is the site-site interaction energy. The second term
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in eq. (12), which represents the attachment free energy,
is given by the discrete form of eq. (11)

FN =

Ns
∑

i=1

kBT

π

(

l

r

)2

(1 − si), (14)

where r is the distance from a vacant lattice site to the
nearest occupied lattice site.

The phase behavior of the system can be analyzed
through mean-field theory. Let us assume that the ad-
hesion points form Nc < N clusters. The free energy of
system includes three contributions: i) the mixing entropy
of the adhesion clusters, ii) the energy ELG of the direct
interactions between the adhesion points, and iii) the at-
tachment free energy FN . The first free-energy contribu-
tion is given by

Fmix

kBT
= Nc

[

ln

(

Nc

Ns

)

− 1

]

+
1

2
c

(

N2
c

Ns

)

, (15)

where c is the second virial coefficient. On average, each
cluster consists of (N/Nc) adhesion points; and if we as-
sume that it has a roughly circular shape, then c ≃
4(N/Nc). Denoting the number densities of the adhesion
points by φ = N/Ns, and of the clusters by φ∗ = Nc/Ns ≤
φ, the free energy of mixing per lattice site is given by

Fmix

NskBT
= φ∗ [ln (φ∗) − 1] + 2φφ∗. (16)

The second contribution to the free energy is due to
the direct interactions between the adhesion points. The
ground state of the interaction energy ELG is achieved
when a single circular adhesion domain with minimal sur-
face is formed. If we set the ground state as the reference
energy, the energy of an ensemble of clusters can be es-
timated as being proportional to the total length of the
domain boundaries. For Nc circular clusters of size (N/Nc)
we have

ELG

NskBT
= λ

Nc

Ns

√

N

Nc
= λ

√

φφ∗, (17)

where λ, the associated dimensionless line tension, is pro-
portional to the interaction energy ǫ in eq. (13) and B,
the mean number of nearest-neighbor vacant sites per oc-
cupied site on the boundary of a cluster (B → 1 for very
large clusters).

λ = 2
√

πBǫ. (18)

The sum of free-energy contributions (16) and (17) con-
stitutes the total free-energy density (per lattice site) of a
2D lattice gas of clusters

FLG

NskBT
= φ∗ ln(φ∗) − φ∗ + 2φφ∗ + λ

√

φφ∗. (19)

The third contribution of the attachment free energy
can be estimated as follows. The clusters form Nc Voronoi
cells, each of which has on average an area of AVor =
(Ns/Nc)l

2. The attachment free energy of each Voroni cell
is given an equation similar to eq. (2) for the attachment

free energy of one adhesion point, but with AVor instead
of the total membrane area L2. Thus

FN = Nc

[

kBT ln

(

Ns

Nc

)]

, (20)

and the attachment free-energy density is given by

FN

NskBT
= −φ∗ ln(φ∗), (21)

which eliminates the first term in the lattice gas free-
energy density (eq. (19)), yielding

F

NskBT
=

FLG

NskBT
+

FN

NskBT
= −φ∗ + 2φφ∗ + λ

√

φφ∗.

(22)
We consider a low density of adhesion sites φ ≪ 1,

which also implies a low number density of adhesion clus-
ters since φ∗ ≤ φ. By minimizing the free-energy density
we obtain the equilibrium value of the φ∗ for the lattice gas
problem (eq. (19)) and for the adhesion points of a fluctu-
ating supported membrane (eq. (22)). In both cases, the
system undergoes a first-order phase transition at λ1(φ)
from the gas phase (φ∗ = φ) to a condensed phase consist-
ing of only a few clusters (φ∗ ∼ 0). Also, in both cases the
free energy reaches a maximum at intermediate densities
(0 < φ∗ < φ). This free-energy barrier for condensation
disappears at the spinodal point λ2(φ) > λ1(φ). For the
lattice gas problem we find

λLG
1 = 1 − 2φ − ln(φ)

λLG
2 = −4φ − 2 ln(φ), (23)

while for the adhesion points of fluctuating membranes we
have

λ1 = 1 − 2φ

λ2 = 2 − 4φ = 2λ1. (24)

The results of eqs. (23) and (24) are summarized in fig. 2A
and B, respectively. The important points in the results
are that: i) λ1 > 0, which means that the fluctuation-
induced interactions alone are not sufficient to induce ag-
gregation of adhesion domains, but ii) they greatly reduce
the strength of the direct interactions required to facilitate
cluster formation since λ1 < λLG

1 (and also λ2 < λLG
2 ).

In the following section we support these conclusions with
MC simulations. We show that for adhesion points of fluc-
tuating membranes, the site-site cohesive energy ǫ for the
onset of aggregation falls below the thermal energy kBT .

4 Computer simulations

To further investigate the aggregation behavior of adhe-
sion points, we performed Monte Carlo (MC) simulations
of our lattice gas model with the total configurational en-
ergy given by the sum of direct (eq. (13)) and fluctuation-
induced (eq. (14)) interactions. We used a 120×138 trian-
gular lattice (that has an aspect ratio very close to 1) with
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Fig. 2. The phase diagram of the adhesion sites calculated
within the mean-field approximation. (A) Equation (23) for
the lattice gas model. (B) Equation (24) for adhesion points
of fluctuating membranes. λ1 and λ2 represent the first-order
transition and spinodal lines, respectively.

periodic boundary conditions. We simulated the system at
two different densities φ = N/Ns = 0.05 and φ = 0.1, and
for various values of ǫ ranging from 0 to 3kBT . For com-
parison, we also simulated the standard lattice gas model
(for which the configurational energy is given by eq. (13),
without the fluctuation-mediated free energy eq. (14)). For
each density φ and for each value of ǫ, we performed 8-16
independent runs starting from different initial configu-
rations where the points are either randomly distributed
on the lattice (as in fig. 3A) or put in a single cluster (see
fig. 3B). The system was then equilibrated until the distri-
bution of points in all the independent runs looks similar
(see e.g., fig. 3C vs. D, and fig. 3E vs. F). Equilibrium time
for the different samples ranges from 3.6× 105 to 106 MC
time units, where each MC time unit consists of N single-
particle move attempts. For the adhesion points problem,
each particle was displaced to a randomly chosen nearest-
neighbor lattice site, which enabled us to employ an effi-
cient algorithm to update the Voronoi diagram needed for
calculating the fluctuation-mediated free energy (14). For
the standard lattice gas model, each move attempt con-

A

D

E

B

C

F

Fig. 3. Initial configurations of the simulations in which (A)
the sites are randomly distributed on the lattice, and (B) put
in a single compact cluster. Representative equilibrium config-
urations of (C-D) our model (eqs. (13) and (14)) and (E-F)
the standard lattice gas model (eq. (13) only) for φ = 0.1 and
ǫ = 1kBT . Configurations (C) and (E) evolved from the initial
state (A), while (D) and (F) evolved from (B).

sisted of randomly selecting a particle and moving it to
the nearest vacant point in a randomly chosen lattice di-
rection [22]. After the first stage of equilibration, the sim-
ulations were continued for 3× 105 MC time units during
which data was collected every third MC time unit.

To examine the occurrence of a phase transition from a
gas to a condensed phase, we measured the average num-
ber of clusters in the system (where a cluster is defined as
a set of neighboring occupied sites), and the mean value
of the energy of direct interactions between sites, 〈ELG〉
(see eq. (13)). Our results are summarized in fig. 4A (for
φ = 0.05) and B (for φ = 0.1). For each φ we measured
these quantities both for the standard lattice gas model
(open symbols and dash-dotted lines in fig. 4) and for
adhesion points which also interact via the fluctuation-
mediated free energy eq. (14) (solid symbols and solid lines
in fig. 4). The number of clusters is denoted by squares
(values on the right y-axis of the figures), while 〈ELG〉 is
represented by circles (values on the left y-axis).

The gas phase is characterized by a large number of
small clusters, some of which may be of the size of a single
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Fig. 4. Left y-axis: the energy of direct interactions between
sites, 〈ELG〉 (eq. (13)), as a function of ǫ, for φ = 0.05 (A)
and φ = 0.1 (B). Solid circles: results for our model for adhe-
sion points. Open circles: results for the standard lattice gas
model. Right y-axis: the number of clusters as a function of ǫ,
for φ = 0.05 (A) and φ = 0.1 (B). Solid squares: results for
our model for adhesion points. Open squares: results for the
standard lattice gas model.

site. Furthermore, since each occupied site has a relatively
small number of neighboring occupied sites, the mean con-
figurational energy 〈−ELG〉 is relatively low. Conversely,
when the sites form large clusters in the condensed phase,
〈−ELG〉 is high, and the total number of clusters decreases
(and in many cases, especially for large values of ǫ, we
simply observe only a single cluster in our system). Fig-
ure 4 exhibits an abrupt, clearly first-order, transition
from a gas phase with a large number of clusters and small
〈−ELG〉 to a condensed state with a small number of clus-
ters and large 〈−ELG〉. The estimated values of ǫ at the
transition are (see vertical lines in fig. 4): ǫt ≃ 0.7kBT

(φ = 0.05) and ǫt ≃ 0.65kBT (φ = 0.1). In compari-
son (see also fig. 4), for the standard lattice gas model,
the transition values are roughly twice larger than these
values: ǫLG

t ≃ 1.45kBT (φ = 0.05) and ǫLG
t ∼ 1.3kBT

(φ = 0.1). Figure 3C-F exhibit typical equilibrium con-
figurations of the system at φ = 0.1 and ǫ = 1kBT . For
the lattice gas model ǫLG

t > 1kBT , and at equilibrium the
system is in the gas phase (figs. 3E and F). When the
fluctuation-induced interactions eq. (14) are introduced,
ǫt falls below 1kBT and the system is in the condensed
phase where most of the particles belong to one large clus-
ter (figs. 3C and D).

Our computational results, which show that the
fluctuation-mediated interactions reduce the strength of
ǫt, are in a qualitative agreement with the mean-field the-
ory prediction (sect. 3). To make a quantitative compari-
son between the theory and the simulations, one needs to
estimate the parameter B appearing in eq. (18). Several
reasons make such an estimation difficult and inaccurate:
First, our non-standard mean-field theory is based on the
assumption that the clusters are circular and roughly have
the same size, which is quite a crude approximation. Sec-
ond, tracing the precise location of ǫt in fig. 4 is largely
inaccurate because of the finite size of the system that
makes the transition look like a crossover. To reduce the
large uncertainties associated with the determination of
ǫt, one can look at the difference between the value of this
quantity in our model and for the standard lattice gas
model. Using

λLG
1 − λ1 = 2

√
πB

(

ǫLG
t − ǫt

)

, (25)

for φ = 0.1, we find B ≃ 1, as indeed expected for large
clusters.

5 Summary and discussion

In this paper we studied the aggregation behavior of ad-
hesion points between a fluctuating membrane and a sup-
porting surface. We demonstrated that the problem can
be mapped onto a lattice gas model with two types of
molecular interactions: i) direct site-site pair interactions
and ii) Casimir-like interactions which are mediated by the
membrane thermal fluctuations. The fluctuation-mediated
interactions, which are inherently of many-body character,
are calculated in our model by summing over the vacant
rather than the occupied sites of the lattice. Each vacant
site represents a small unit area of the fluctuating mem-
brane, and the fluctuation-mediated potential expresses
the local free-energy cost due to the restriction imposed
by the adhesion points on the membrane thermal fluctu-
ations. This free-energy cost depends mainly on the dis-
tance between the vacant sites and the nearest occupied
site. Therefore, such a many-body potential is calculated
by determining the Voronoi diagram for each lattice con-
figuration, which can be quite easily implemented in MC
simulations.

We used mean-field calculations and MC computer
simulations to investigate the phase behavior of a lattice
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gas of adhesion sites at low densities. We showed that
upon increasing the strength of the site-site interactions
ǫ, the system undergoes a first-order phase transition into
a condensed state. The fluctuation-induced interactions
lower the value of ǫ at the phase transition to below the
thermal energy kBT . This result suggests that fluctuation-
mediated effects play a central role in the formation of ad-
hesion domains in biomimetic and biological membranes.

This work was supported by the Israel Science foundation
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References

1. M.C. Beckerle (Editor), Cell Adhesion (Oxford University
Press, Oxford, 2001).

2. D.A. Lauffenburger, J. Linderman, Receptors: Models for

binding, Trafficking, and Signaling (Oxford University
Press, Oxford, 1995).

3. A.-S. Smith, U. Seifert, Soft Matter 3, 275 (2007).
4. T.R. Weikl, M. Asfaw, H. Krobath, B. Różycki, R.
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