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We present a simple model for the bidirectional dynamics of actin bundles with alternating polarities in

gliding assays with nonprocessive myosin motors. The bundle is represented as an elastic chain consisting

of monomers with positive and negative polarities. The motion of the bundle is induced by the pulling

forces of the underlying motors which stochastically attach to the monomers and, depending on their

polarities, pull them in the right or left direction. We demonstrate that perfectly apolar chains consisting of

equal numbers of monomers with positive and negative polarities may exhibit biased bidirectional motion

with a nonzero drift. This effect is attributed to the elastic tension developed in the chain due to the action

of the myosin motors. We also show that as a result of this tension, the attachment probability of the

motors is greatly reduced and becomes strongly dependent on the length of the chain.
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Motor proteins are molecular machines that convert
chemical energy into mechanical work by ATP hydrolysis.
They ‘‘walk’’ on the microtubule and actin cytoskeleton
and pull vesicles or organelles across the cell [1]. The
intracellular transport of cargoes is achieved mainly by
the action of individual motors which propagate along
the cytoskeleton tracks in a direction determined by the
intrinsic polarity of the filaments [2]. Other processes, such
as cell motility and mitosis, require the cooperativework of
many motors. Muscle contraction, for instance, involves
the simultaneous action of hundreds of myosin II motors
pulling on attached actin filaments and causing them to
slide against each other [3]. One interesting outcome of
cooperative action of molecular motors is their ability to
generate bidirectional motion [4]. Bidirectional movement
results from the competition between two populations of
motors that work against each other in opposite directions
[4–8]. The direction of motion flips from one direction to
the other due to stochastic events of binding and unbinding
of motors to the filament which tip the force balance
between the two motor groups.

The dynamics of motor-filament systems are often
studied using in vitromotility assays in which the filaments
glide over a dense bed of immobilized motors and their
motion is tracked by fluorescent microscopy [9]. Recently,
we used such a motility assay to study the dynamics of
actin bundles induced by the cooperative action of myosin
II motors [10]. The bundles in these experiments were
composed of short actin segments which, through a se-
quence of fusion events, assemble into filaments with
randomly alternating polarities. Such apolar bundles ex-
hibit ‘‘back and forth’’ bidirectional motion. We showed
that the distribution of ‘‘reversal times’’ (i.e., the durations
of unidirectional intervals of motion) take an exponential
form Pð�tÞ � expð��t=�revÞ, where �rev is the character-

istic reversal time of the bidirectional motion [10,11].
Detailed analysis of the dynamics of many bundles re-
vealed that �rev is of the order of a few second and has
no dependence on the length (number of monomers, N) of
the bundle. This result was in marked contradiction with
previous theoretical models which predicted that �rev
grows exponentially with N [4]. To resolve this disagree-
ment, we have introduced a model that takes into account
the elastic energy stored in the actin bundle due to the
action of the working motors [10,11]. The elastic energy
modifies the rates at which motors attach to and detach
from the actin and eliminates the exponential dependence
of �rev on N.
Our previous theoretical treatment of cooperative bidi-

rectional motion was based on a mean field calculation of
the actin elastic energy, ignoring both (i) the sequential
order of the polarities of the monomers, and (ii) the posi-
tions along the filament where the pulling forces of motors
are applied. The mean field elastic energy scales as E�
NNc, where Nc is the number of attached motors [10,11].
Within the mean field picture, the bidirectional motion on
perfectly apolar tracks consisting of an equal number of
monomers with right-pointing (‘‘positive’’) and left-
pointing (‘‘negative’’) polarities has no bias; i.e., the inter-
vals of motion in both directions occur with equal proba-
bility. In this Letter we discuss an interesting effect related
to the elasticity of the actin. We show that apolar elastic
filaments may exhibit a biased bidirectional motion and
achieve a net migration along the motors-coated surface.
For myosin II-actin systems, we find that the drift velocity
is typically 2–3 orders of magnitude smaller than the
velocity of a single myosin II motor and is comparable
with the speed by which the motors move the apolar bundle
cooperatively during the intervals of unidirectional motion.
This newly identified mechanism of propagation may,
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therefore, be relevant to processes of active self-
organization of cytoskeletal structures during which fila-
ments are transported and joined with each other by motor
proteins.

To demonstrate the effect, we consider the chain illus-
trated in Fig. 1, consisting of N monomers connected by
ðN � 1Þ identical springs with a spring constant k. Each
monomer may be either free and experience no pulling
force (f ¼ 0), or attached to one motor in which case it is
subjected to a force of magnitude f which is directed to the
right (þ f) for monomers with positive polarities and left
(� f) for monomers with negative polarities. The moving
velocity of the filament is given by V ¼ ftotal=�, where
ftotal ¼

P
N
l¼1 fl is the sum of motor forces applied on the

monomers and � is the friction coefficient of the chain. A
chain of N monomers has 2N connection configurations,
where each such configuration can be represented by a

vector ~C of size N specifying the state (connected or
disconnected) of each monomer. For example, a chain of
4 monomers in which the first and third monomers are

connected to motors will be represented by ~C ¼ ð1; 0; 1; 0Þ.
Let us also introduce a vector ~S whose components are

related to the polarities of the monomers. The vector ~S ¼
ð1; 1;�1; 1Þ, for instance, corresponds to a chain of 4
monomers in which the polarities of the first, second, and
fourth monomers is positive while the third monomer has a
negative polarity. The drift velocity can be calculated by
averaging over all possible connection configurations of

the motors (all possible values of the vector ~C):

Vdriftð ~SÞ � hVi ¼ X2N
j¼1

f

�j

ð ~Cj � ~SÞPj; (1)

where Pj is the occurrence probability of the configuration,

and the subscript j has been added to � to account for
possible variations in the friction coefficient between the
different configurations. The probability Pj depends on

(i) the number of attached motors in the configuration,

NcðjÞ ¼ k ~Cjk2, (ii) the attachment probability of a single

motor, q, and (iii) the total elastic energy of the springs Eel
j :

Pj ¼ 1

Z
qNcðjÞð1� qÞðN�NcðjÞÞe��Eel

j ; (2)

where � ¼ ðkBTÞ�1 is the inverse temperature and Z is the
partition function of the system. The elastic energy is the
sum of the energies of the springs, Eel

j ¼ PN�1
i¼1 F2

i =2k,

where Fi is the force stretching (or compressing) the ith
spring. The forces Fi can be calculated using the following

steps: (i) calculate the mean force �f � ftotal=N ¼ fð ~C �
~SÞ=N, (ii) calculate the access forces acting on the mono-
mers f�l ¼ fClSl � �f, and (iii) sum the access forces

applied on all the monomers located on one side of the
spring Fi ¼

P
i
l¼1 f

�
l ¼ �P

N
l¼iþ1 f

�
l . Our analysis is based

on the assumption that variations in ~C (which occur when
motors attach to or detach from the actin track) lead to
instantaneous changes in the velocity of the filament which
should always be proportional to the total exerted force.
This assumption is expected to hold for low Reynolds
numbers where inertia can be neglected.
Let us analyze the dynamics of a chain of size N ¼ 4.

There are six different apolar sequences for a chain of this

length: ~S1a ¼ � ~S1b ¼ ð1; 1;�1;�1Þ, ~S2a ¼ � ~S2b ¼
ð1;�1; 1;�1Þ, ~S3a ¼ � ~S3b ¼ ð1;�1;�1; 1Þ. It is easy to
prove that the drift velocity [see Eqs. (1) and (2)] vanishes
for the first four sequences which are antisymmetric with
respect to reflection around the midpoint. This is not the
case with the last two symmetric sequences. To see this,

consider the sequence ~S3a and assume, for simplicity, that
�j ¼ �. In the limit q � 1, one can ignore the configura-

tions in which more than one out of the four monomers is
connected to a motor. This leaves us with only five con-

figurations: (i) ~Cj ¼ ð0; 0; 0; 0Þ, for which Vj ¼ 0 and

Pj ¼ ð1� qÞ4=Z, (ii) ~Cj ¼ ð1; 0; 0; 0Þ and ~Cj ¼
ð0; 0; 0; 1Þ, for which Vj ¼ f=� and Pj ¼ qð1�
qÞ3e�ð7=8Þð�f2=2kÞ=Z, and (iii) ~Cj ¼ ð0; 1; 0; 0Þ and ~Cj ¼
ð0; 0; 1; 0Þ, for which Vj ¼ �f=� and Pj ¼ qð1�
qÞ3e�ð3=8Þð�f2=2kÞ=Z. Substituting this in Eq. (2) gives

Vdriftð ~S3aÞ ¼ �Vdriftð ~S3bÞ ’ �2ðf=�Þq½e�ð3=8Þð�f2=2kÞ �
e�ð7=8Þð�f2=2kÞ�. For �f2=2k � 1 we find that the drift
velocity increases with a third power of the motor force,
Vdrift ’ �ð�=2k�Þf3. This power law has a different ex-
ponent than 1—the scaling exponent for the velocity of
stiff polar chains.
To further investigate this effect, we calculated the drift

velocity for chains of N ¼ 4M monomers with sequences

of the form ~S ¼ ð�1; . . . ;�1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{M

; 1; . . . ; 1
zfflfflffl}|fflfflffl{2M

;�1; . . . ;�1
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{M

Þ. Our
results are summarized in Figs. 2(a) and 2(b). Fig-
ure 2(a) is based on a calculation in which the friction
coefficient [see Eq. (1)], �j ¼ �0N, while in Fig. 2(b), we

1

+−+ +− −

N2

k

motors

FIG. 1. A schematic drawing of the system: A chain of con-
sisting of N monomers with alternating polarities, connected to
each other by identical springs. The chain lies on a ‘‘bed’’ of
motors, some of which are connected to the monomers. A
connected monomer with positive (negative) polarity feels a
pulling force of size þf (�f). Disconnected monomers expe-
rience no force.
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assumed that �j ¼ �0NcðjÞ. The results for N � 28 have

been derived using a full statistical calculation of the
partition function, while for larger N they have been ob-
tained from Monte Carlo simulations. The model parame-
ters were assigned the following values which are
representative of myosin II-actin systems [11,12]:
�f2=2k ¼ 0:002, q ¼ 0:1, and f=�0 ¼ 6 �m= sec . Both
figures show that for small chains of sizeN < 200, the drift
velocity increases rapidly with N. For larger chains (N >
200), Vdrift behaves differently in Figs. 2(a) and 2(b). In the
former it decreases with N, while in the latter it saturates
and increases again for N > 600. Note also that the differ-
ent scales of the y axis in both figures. These differences
can be attributed to the different values of �j used in the

cases represented by Figs. 2(a) and 2(b). Since for each
configuration, the ratio between the friction coefficients in
both cases r� � �B

j =�
A
j ¼ NcðjÞ=N � 1, the drift velocity

in (b) must always be larger than in (a). Figure 3 depicts the
mean value of r� (i.e., the mean fraction of connected
monomers) as a function of N. For N < 50, hr�i ’ q ¼
0:1 and, accordingly, the ratio between the drift velocities

in (b) and (a) in this regime is close to 1 order of magni-
tude. ForN > 50, hr�i drops to values much smaller than q,
which implies that the friction coefficient per monomer
decreases with N in case (b) and explains why the drift
velocity remains high and does not decrease sharply as in
(a). The decrease in the mean fraction of connected mono-
mers can be traced to the fact that configurations with
larger NcðjÞ have, in general, higher elastic energies and,
therefore, smaller statistical weights. For the mean field
elastic energy, Eel

j =kBT ¼ cð�f2=2kÞNNcðjÞ [10,11], one
gets

hr�i ¼
�
Nc

N

�
¼ q expð�cN�f2=2kÞ

1� q½1� expð�cN�f2=2kÞ� ; (3)

where c is a dimensionless constant of the order of 1. For
c ¼ 0:75 and N � 1000, this expression (solid line in
Fig. 3) gives a fair agreement with the computational
results. For larger values of N (i.e., when hNc=Ni becomes
very small), the expression tends to overestimate the rate of
decrease in the mean fraction of connected monomers (or,
equivalently, the effective attachment probability). The
decrease in the attachment probability of the motors is
another, indirect, manifestation of cooperativity between
the motors which is mediated through the forces that they
jointly exert on the actin track. Equation (3) suggests that
the elasticity of the track can be neglected for small fila-
ments whose size N � ð�f2=2kÞ�1 � N�. In this regime,
the two cooperativity effects discussed here which are
associated with the elasticity of the actin filaments disap-
pear: (i) The drift velocity Vdrift � ð�=2k�Þf3 ¼ ðf=�Þ	
ðN�=NÞ � ðf=�Þ is vanishingly smaller than the typical
speed by which the bidirectionally moving bundle propa-
gates in each direction, and (ii) the fraction of attached
motors hNc=Ni ’ q is very close to the attachment proba-
bility of individual motors. The elasticity effects can be
detected only for long filaments with N * N�, which are
softer (the effective force constant of the filament decrease
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FIG. 2. The drift velocity Vdrift as a function of the length of
the chain. The friction coefficient �j is proportional to the

number of monomers N in (a) and the number of connected
motors NcðjÞ in (b). The lines are guides to the eye.
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FIG. 3. The mean fraction of monomers connected motors,
hNc=Ni as a function of N. The solid line represents the mean
field result Eq. (3) with c ¼ 0:75.
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as N�1) and, hence, more influenced by the forces of the
motors. For infinitely stiff filaments (k ! 1), the cross-
over filament size diverges (N� ! 1) and the filament
elasticity is, of course, irrelevant on all length scales.

Figures 2(a) and 2(b) represent two limiting cases. In the
former, the friction is caused by the drag of the actin bundle
in the viscous environment, while in the latter it originates
from the attachment of the actin to the underlying surface
of motors. The actual friction coefficient is expected to lie
between these two extreme values and, therefore, the drift
velocity should exhibit an intermediate behavior between
those shown in Figs. 2(a) and 2(b). Thus, the typical
magnitude of Vdrift is expected to be of the order of
10 nm= sec . Interestingly, the drift velocity of the bundle
is of the same order of magnitude as its speed during the
bidirectional motion [10], which has also been found to be
2–3 orders of magnitude smaller than the moving velocity
of individual myosin II motors (v� 6 �m= sec [12]). Over
a period of a few minutes the apolar bundle may progress a
distance of a few micrometers. This implies that the drift of
apolar bundles may be relevant to the active remodeling of
the cell cytoskeleton occurring during many cellular
processes.

Our investigation of the role of the filament elasticity in
modifying collective motion of molecular motors has been
motivated by experiments which have been described and
analyzed by using a ratchet model and a mean field ap-
proximation for the elastic energy [10,11]. In this paper we
presented a more realistic microscopic based model that
involves the determination of the exact elastic energy of the
filaments. We demonstrated that such a model leads to new
insights and novel results like the biased transport of
filaments with no net polarities. Experimental verification
of this surprising result is, however, difficult. It requires
that (i) the moving filaments are perfectly apolar with
internal (sequential) order, and (ii) that they move for
sufficiently long period of time such that the net drift can
be extracted from the statistics of the unidirectional inter-
vals of motion. Unfortunately, the apolar bundles are not
formed by a well controlled process, but rather through a
sequence of stochastic fusion events that usually generate
filaments with disordered, random, sequences and with
little residual polarities [10]. Also, in the existing experi-
mental setup, the bidirectional motion cannot be tracked
for more than about 10 min, which is too short for a
meaningful statistical analysis. What should be more ex-
perimentally testable is the other elasticity effect, namely,
the reduction in the fraction of connected motors. This

effect, which has been attributed to the dependence of
the elastic energy on the configuration of connected motors

(denoted by the vector ~C), is not limited to apolar fila-
ments. Polar filaments experiencing a nonuniform distri-
bution of motor forces (i.e., when only a fraction of the
monomers are connected to motors) will also develop a
tensile stress that could potentially alter the attachment
probability of the motors. In a future publication we plan
to present a theoretical analysis of the attachment proba-
bility for perfectly polar filaments, similar to the analysis
presented here for apolar filaments. We also plan to inves-
tigate this effect experimentally by using a motility assay
combined with micro-manipulation technique (such as
optical tweezers) to stall the gliding filament and measure
the mean force generated by the motors. In the case of
perfectly polar filaments, the forces of all the motors are
applied along the same direction and, therefore, the total
measured force should be simply proportional to the num-
ber of attached motors.
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