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We use a two-state ratchet model to study the cooperative bidirectional motion of molecular motors on
cytoskeletal tracks with randomly alternating polarities. Our model is based on a previously proposed model
�Badoual et al., Proc. Natl. Acad. Sci. U.S.A. 99, 6696 �2002�� for collective motor dynamics and, in addition,
takes into account the cooperativity effect arising from the elastic tension that develops in the cytoskeletal track
due to the joint action of the walking motors. We show, both computationally and analytically, that this
additional cooperativity effect leads to a dramatic reduction in the characteristic reversal time of the bidirec-
tional motion, especially in systems with a large number of motors. We also find that bidirectional motion takes
place only on �almost� apolar tracks, while on even slightly polar tracks the cooperative motion is unidirec-
tional. We argue that the origin of these observations is the sensitive dependence of the cooperative dynamics
on the difference between the number of motors typically working in and against the instantaneous direction of
motion.
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I. INTRODUCTION

Many cellular processes such as cell motility and mitosis
require the cooperative work of many motors in order to
preserve continuous motion and force generation �1�. Muscle
contraction, for example, involves the simultaneous action of
hundreds of myosin II motors pulling on attached actin fila-
ments and causing them to slide against each other �2�.
Groups of myosin II motors are also responsible for the con-
traction of the contractile ring during cytokinesis �3�. In cer-
tain biological systems, cooperative behavior of molecular
motors produces oscillatory motion. In some insects, for in-
stance, cooperative behavior of molecular motors leads to
oscillations of the flight muscles �4�. Another example is the
oscillatory motion of axonemal cilia and flagella, which is
believed to be generated by a large number of interacting
dynein motors �5,6�. Finally, cooperative action of motors is
required for the extraction of membrane tubes from vesicles
�7,8�

One of the more interesting outcomes of cooperative ac-
tion of molecular motors is their ability to induce bidirec-
tional motion. “Back and forth” dynamic has been observed
in various motility assays including: �i� myosin II motors
walking on actin tracks with randomly alternating polarities
�9�, �ii� NK11 �kinesin related Ncd mutants which individu-
ally exhibit random motion with no preferred directionality�
moving on microtubules �MTs� �10�, �iii� mixed population
of plus-end �kinesin-5 KLP61F� and minus-end �Ncd� driven
motors acting on MTs �11�, and �iv� myosin II motors walk-
ing on actin filaments in the presence of external stalling
forces �12�. Reversible transport of organelles through the
combined action of kinesin II, dynein, and myosin V has
been also observed in Xenopus melanophores �13�. In the
latter example, the kinesin and dynein move the organelle in
opposite directions along MTs, while the myosin motors
�which take the organelle on occasional “detours” along the
actin filaments� function as “molecular ratchets,” controlling

the directionality of the movement along the MT transport
system. From a theoretical point of view, cooperative dynam-
ics of molecular motors and, in particular, bidirectional
movement, have been investigated using several distinct
models. These models include: �i� lattice and continuum
asymmetric exclusion models �14–20�, �ii� ratchet models of
interacting particles moving in the presence of a periodic
potential �16,21–24�, and �iii� the tug-of-war model which
has been recently proposed for describing the transport of
cargo by the action of a few motors �25–28�. The common
theme in these experimental and theoretical studies is the
association of bidirectionality with the competition between
two populations of motors that work against each other to
drive the system in opposite directions. The occasional rever-
sals of the transport direction reflect the “victory” of one
group over the other during the respective time intervals. The
balance of power is shifting between the two motor parties as
a result of stochastic events of binding and unbinding of
motors to the cytoskeletal track. Without going into the de-
tails of the various existing models of cooperative bidirec-
tional motion, we note that most of them assume that the
motors interact mechanically but act independently, i.e., their
binding to and unbinding from the track are uncorrelated. By
further assuming that the attachment and detachment events
of individual motors are Markovian, the distribution of “re-
versal times” �i.e., the durations of unidirectional intervals of
motion� can be shown to take an exponential form

p��t� = exp�− �t/�rev� , �1�

where �rev is the characteristic reversal time of the bidirec-
tional motion.

The magnitude of �rev can be taken as a measure for the
degree of cooperativity between the motors. The more coop-
erative the motors are, the more persistent is the movement
and the longer are the periods of unidirectional transport. The
run lengths �in each direction� of highly cooperative motors
may be of a few microns even for nonprocessive motors such
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as myosin II �9�. As noted above, the mechanical coupling
between the motors is sufficient for the generation of highly
cooperative bidirectional motion, even if the motors attach
to/detach from the track in an uncorrelated fashion. This has
been demonstrated theoretically by Badoual et al. some years
ago �23�. A slightly modified version of this model is illus-
trated schematically in Fig. 1. The model considers the one-
dimensional motion of a group of N point particles �repre-
senting the motors� connected �mechanically coupled� to a
rigid rod with equal spacing q. The cytoskeletal track is rep-
resented by a periodic saw-tooth potential, U�x�, with period
l and height H. The model requires that q is larger than and
incommensurate with l. The motors are identical and walk on
a track which is globally apolar and, thus, does not permit
net transport to the right or left over large time scales. The
temporal direction of motion is determined by the net force
generated by all the motors. The local polarity of the track is
represented by an additional force of size f ran �denoted by a
horizontal arrow in each periodic unit in Fig. 1� which,
within each unit of the periodic potential, points to the right
or to the left. The globally apolar nature of the track is en-
sured by requiring that the sum of these random forces van-
ishes.

The instantaneous force between the track and the motors
is given by the sum of all the forces acting on the individual
motors:

Ftot = �
i=1

N

fi
motor = �

i=1

N �−
�U�x1 + �i − 1�q�

�x

+ f ran�x1 + �i − 1�q�� · Ci�t� , �2�

where xi=x1+ �i−1�q is the coordinate of the ith motor. The
two terms in the square brackets represent the forces due to
the symmetric saw-tooth potential and the additional random
local forces acting in each periodic unit. The function Ci�t�
takes two possible values, 0 or 1, depending on whether the
motor i is detached from or attached to the track, respec-
tively, at time t. The motors change their binding states �0:
detached; 1: attached� independently of each other, according
to the following rules: We define an interval of size 2a� l

centered around the potential minima �the gray-shaded area
in Fig. 1�. If located in one of these regions, an attached
motor may become detached �1→0� with a probability per
unit time �1. Conversely, a detached motor may attach to the
track �0→1� with transition rate �2 only if located outside
this region of size 2a.

At each instance, the group velocity of the motors is pro-
portional to the total force exerted by the motors �Eq. �2��,

v�t� = Ftot�t�/� , �3�

where the friction coefficient, �, depends mainly on motors
attached to the track and is, therefore, taken proportional to
the number of connected motors, Nc�N at time t: �=�0Nc.
Because the track is globally apolar, it is clear that the mo-
tors exhibit “back and forth” motion with vanishing mean
velocity and displacement. The characteristic time of move-
ment in each direction, �rev, may nevertheless be macroscopi-
cally large. The origin of this feature �which reflects the co-
operative character of the motors’ action� can be explained as
follows: the stochastic equations of motion of our model
system have two identical �except for sign reversal� steady-
state solutions corresponding to right and left motion of the
mechanically coupled motors. Each of these solutions is
characterized by Nc=N · P�P�1� connected motors. The
connected motors are partitioned to N+ and N−=Nc−N+
�N+ motors that, respectively, support and object the mo-
tion. Let us define the excess number of motors working in
the direction of the motion as N ·�=N+−N−, where � will be
termed the “bias parameter.” Notice that P and � denote the
averages of quantities �which we, respectively, denote by
P�t� and ��t�� whose values fluctuate in time due to the
stochastic binding and unbinding of motors. To switch the
direction of motion, ��t� must vanish, and the occurrence
probability of this event, 	���t�=0����rev�−1. In Sec. III we
derive an approximate expression for 	���t�=0� and show
that the mean reversal time of the bidirectional motion in-
creases exponentially with the size of the system,

�rev � �1 − P + 	P2 − �2�−N. �4�

Thus, for sufficiently large N, the characteristic reversal time
of the bidirectional motion becomes macroscopically large.
In the “thermodynamic limit” �N→
�, �rev diverges and the
motion persists in the direction chosen at random at the ini-
tial time.

The validity of Eq. �4� was recently tested using a motility
assay in which myosin II motors drive the motion of globally
apolar actin bundles �9�. In contrast to the predicted expo-
nential dependence of �rev on the number of working motors,
the experimentally measured reversal times showed no de-
pendence on N. The apparent disagreement between the the-
oretical model and the experimental results can be reconciled
by noting that Eq. �4� describes exponential growth of �rev
with N only when P and � are themselves independent of N.
This is indeed the case in the original model presented by
Badoual et al. �23�, where both the on ��2� and off ��1� rates
do not depend on N. In Ref. �9� we introduced a slightly
modified version of Badoual’s model, which to a large extent
explains the experimentally observed independence of �rev on
N. We argued that the origin of this behavior can be attrib-

FIG. 1. N point particles �representing the motors� are connected
to a rigid rod with equal spacing q. The motors interact with the
actin track via a periodic symmetric saw-tooth potential with period
l and height H. In each periodic unit, there is a random force of size
f ran, pointing either to the right or to the left. The motors are subject
to these forces only if connected to the track. The detachment rate
�1 is localized in the shaded area of length 2a� l, while the attach-
ment rate �2 is located outside of this region. The off rate �3 is
permitted only outside the gray-shaded area.
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uted to the tension developed in the actin track due to the
action of the attached myosin II motors. An increase in the
number of attached motors leads to an increase in the me-
chanical load which, in turn, leads to an increase in the de-
tachment rate of the motors, as already suggested in models
of muscle contraction �29–32�. But unlike most previous
studies where the myosin conformational energy was calcu-
lated, in ref. �9� we considered the elastic energy stored in
the actin track. Within a mean-field approximation, this en-
ergy scales as E�
Ftot

2 � /ksp, where ksp is the effective spring
constant of the track and Ftot is the total force exerted by the
motors �see Eq. �3��. The total force is the sum of Nc random
forces working in opposite directions. Therefore, the mean
force 
Ftot�=0, while 
Ftot

2 � scales linearly with Nc. The
spring constant is inversely proportional to the length of the
track, i.e., to the size of the system and to the total number of
motors N. We thus conclude that the mean elastic energy of
the actin scales like E /kBT�NNC, which means that the de-
tachment of a motor �Nc→Nc−1� leads, on average, to an
energy gain dE /kBT=−�N �� is some dimensionless num-
ber�. This effect can be incorporated within the model by
introducing an additional off rate, �3=�3

0 exp��N�, outside
the gray-shaded area in Fig. 1 �i.e., around the potential
maxima�. Thus, in the modified model, the on and off rates
within each unit cell �−l /2�x�+l /2� of the periodic poten-
tial are given by

�on�x� = �0 x � a

�2 a � x � l/2� �5�

and

�off�x� = ��1 x � a

�3
0 exp��N� a � x � l/2� . �6�

The dependence of �off�x� on N is another, indirect, manifes-
tation of cooperativity between the motors which is mediated
through the forces that the motors jointly exert on the actin
track. Notice, however, that the cooperative action of the
motors does not lead �within the modified model� to correla-
tions between attachment and detachment events of different
motors. Moreover, the attachment/detachment rates do not
depend on the number of connected motors and, thus, are
fixed over time. In Ref. �9� we compared the predictions of
the original and modified models for model parameters cor-
responding to the myosin II-actin motility assay. In the
former, the reversal times grew exponentially with N from
�rev�1 sec for N�1000, to �rev�103 s for N�3000. The
modified model showed a much better agreement with the
experimental results �9�. Specifically, the reversal time did
not grow exponentially with N but rather showed a weak
maximum around N�2000, where �rev�10 s.

In this paper we present a more detailed account of the
theoretical model. Several aspects of the model not studied
in Ref. �9� will be discussed in Sec. II, including the dynam-
ics on non-random and slightly polar tracks. The steady-state
solutions of the bidirectional motion are derived analytically
in Sec. III. We use these solutions to estimate the reversal

times and compare our analytical predictions with the com-
putational results. We summarize and discuss the results in
Sec. IV.

II. COMPUTATIONAL RESULTS

The model has been presented in details in Ref. �9�, as
well as above in Sec. I. The model parameters used in this
paper are summarized in Table I. The choice of these values
which represent various chemical and physical parameters of
the myosin II-actin system is explained in detail in Ref. �9�.
The model features two parameters which do not appear in
the original model �23�. The off rate �3

0 represents the prob-
ability of a motor to detach from the track without complet-
ing a unit step, and its value was estimated in Ref. �9� by
noting that in the absence of an elastic load, the probability
of such an event is 1–2 orders of magnitude smaller than the
complementary probability that the attached motor will ex-
ecute the step. The constant � depends on the effective elas-
tic spring constant of the basic actin unit �monomer� as well
as on the magnitude of the forces that the motors typically
apply on the track �see Eq. 5 in Ref. �9��. The best fit to the
experimental data is achieved with �=0.0018 �9�, which
gives a weak nonmonotonic dependence of �rev on N. Here
we set �=0.002, which gives somewhat poorer agreement
with the experimental results but which highlights the dif-
ferences between Badoual’s model �23� and our model that
takes the elasticity of the actin track into account. As noted
above, the consideration of the elastic properties of the actin
and the cooperative nature of the action of the working mo-
tors considerably improves the results of the original model
by replacing the very strong exponential dependence of �rev
on N with a much weaker nonmonotonic dependence.

To simulate conditions corresponding to dynamics on
apolar tracks, we randomly chose the direction of random
force �the force representing the local polarity of the track,
see horizontal arrows in Fig. 1� in each unit cell but dis-
carded the tracks at which the sum of random forces did not
exactly vanish. We computationally measured characteristic
reversal time, �rev, as a function of N in the range of 400
�N�2400. For each value of N, we generated 40 different

TABLE I. Values of the model parameters as used in our
simulations.

Parameter Value

l: period length of the potential 5 nm

q: spacing between adjacent motors �5� /12�l�6.54 nm

2a: size of the gray-shaded area �see Fig. 7A� 3.8 nm

2H / l: force due to the periodic potential 5 pN

f ran: random force in each unit cell 1 pN

��1�−1 �see Eq. �6�� 0.5 ms

��2�−1 �see Eq. �5�� 33 ms

��3
0�−1 �see Eq. �6�� 7500 ms

� �see Eq. �6�� 0.002

�0: friction coefficient per connected motor 85103 kg /s
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realizations of random tracks �each of which consisting of
M ��q / l�N units with periodic boundary conditions� and
simulated the associated dynamics for a total period of
2 ·105 seconds. During this period of time we followed the
changes in the direction of motion and calculated the prob-
ability distribution function �PDF� of the reversal times. The
characteristic reversal time corresponding to each random
track was extracted by fitting the PDF to an exponential form
�see Eq. �1��, as demonstrated in Fig. 2�a�. Figure 2�b� sum-
marizes our results, where here for each N the reversal time
plotted �denoted by 
�rev�� is the average of �rev calculated for
the different track realizations. The error bars represent the
standard deviation of �rev between realizations. The data
points depicted in solid circles correspond to �=0.002, while
the open circles correspond to �=0, i.e., to the model origi-
nally presented in ref. �23� where the on and off rates defined
in Eqs. �5� and �6� are independent of N. As predicted by Eq.
�4� and indicated by the straight line in Fig. 2�b�, for �=0 the
mean reversal time 
�rev� exhibits a very strong exponential
dependence on N. Because of this very rapid increase of

�rev� with N, the reversal times �in the �=0 case� could not
be accurately measured for N�1800. Based on the exponen-
tial fit �solid line in Fig. 2�B��, we estimate that for N
=2400 the mean reversal time will be of the order of a few
hours. In contrast, the calculated 
�rev� corresponding to �
=0.002 show a nonmonotonic dependence on N. The com-
puted 
�rev� are much smaller in this case, and fall below 1
min for all values of N. In Ref. �9�, we used slightly different
values of the model parameters than those given in Table I.
For the model parameters in Ref. �9�, the variation of 
�rev�
with N was even weaker than in Fig. 2�b� and the largest
computed 
�rev��12 sec. These computational results were

in a very good quantitative agreement with the experimental
results of the in vivo actin-myosin motility assay.

Our simulations reveal surprisingly large variations in the
�rev values between random tracks of similar size �see error
bars in Fig. 2�b��. The origin of these variations lies in the
fact that the spacing between motors is larger than the peri-
odicity of the ratchet potential �q� l� and, thus, only N out of
M ��q / l�N unit cells are “occupied” with motors �which
may be either connected or disconnected� at each instance.
Thus, although the track is perfectly apolar and contains an
equal number of cells with random forces pointing in both
directions, the subset of occupied cells may have net polarity
which constantly changes with time as the motors move col-
lectively along the track. The direction of the net polarity of
the occupied cells is also the instantaneous preferred direc-
tion of motion. Therefore, the temporal variations in the net
polarity must be correlated with the changes in the direction-
ality of the motion. We thus expect tracks on which the net
polarity changes more frequently to have smaller �rev. The
effect of net polarity fluctuations does not occur when the
motion takes place on periodic apolar tracks, because in this
case the equally spaced motors occupy equal number of cells
with left- and right-pointing random forces. Therefore, the
reversal times on periodic apolar tracks are expected to be �i�
independent of the periodicity of the track and �ii� larger than
the reversal time on random apolar tracks. These predictions
are fully corroborated by the results from simulations with
two very distinct periodic tracks: one with period 2 �i.e.,
where the local random force changes its sign every unit cell�
and one with period M �i.e., when the track is divided into
two equal domains of opposite polarities�. The results from
these two sets of simulations are denoted by triangles in

FIG. 2. �a� The probability distribution function �PDF� of reversal times corresponding to one track realization. The distribution is fitted
by a single exponential decay function �see Eq. �1��. �b� The mean reversal time 
�rev� as a function of the number of motors N. For each
value of N, the calculation of 
�rev� is based on simulations of 40 different track realizations, where the error bars represent the standard
deviation of �rev between realizations. The solid and open circles denote the results corresponding to �=0.002 �our model� and �=0 �original
model presented in Ref. �23��, respectively. In the latter case 
�rev� increases exponentially with N �as indicated by the solid straight line�,
while in the former case 
�rev� exhibits a nonmonotonic behavior �as indicated by the dashed line which serves as a guide to the eyes� and
reaches considerably lower values. The triangles denote the results for periodic tracks whose reversal times are always larger than those
measured on random tracks.
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Fig. 2�b�. The reversal times of both periodic tracks are
nearly indistinguishable from each other �the differences be-
tween them are smaller than the size of the symbols� and are
larger than the reversal times measured for all the random
tracks of similar size.

What happens when the simulated track is not perfectly
apolar and the number unit cells in which the random force is
pointing in one direction is slightly larger than in the oppo-
site direction? Obviously, the nature of motion is expected to
gradually change from bidirectional to unidirectional. In or-
der to investigate this transition between two types of dy-
namics, we simulated the dynamics of motors on tracks in
which the fraction of random forces pointing in one direc-
tion, pl, is slightly larger than 0.5. In the simulations, we
fixed the number of motors to N=1000 and varied the differ-
ence D= pl− �1− pl�=2pl−1 between the fractions of random
forces pointing in the favored and disfavored directions. For
each track, the simulation data was analyzed in a manner
similar to that described above for apolar tracks, i.e., by fit-
ting the PDF of time intervals of unidirectional motion to an
exponential function. There is one notable difference, how-
ever, between the analysis of the results for apolar and for
slightly polar tracks. In the latter case, two PDFs, one corre-
sponding for each direction of motion, must be generated
with different characteristic reversal times. The motion in the
preferred direction is characterized by the larger reversal
time, �rev−l, which increases with D. Conversely, the smaller
reversal time, �rev−s, corresponding to the motion in the op-
posite unpreferred direction decreases with D. These obser-
vations are summarized in Figs. 3 and 4. In Fig. 3, the PDFs
corresponding to tracks with D values varying from 0 to 0.05
are shown. In the apolar case D=0, the two PDFs coincide
with each others, and the velocity histogram �see inset� is

bimodal. As D increases, the two PDFs become increasingly
different—the one corresponding to the preferred direction
of motion becomes flatter �due to the increase in �rev−l�,
while the other one gets more peaked at the origin �as a result
of the decrease in �rev−s�. The fact that the motors spend
larger time intervals moving in one direction is also reflected
in the corresponding velocity histograms which become less
and less symmetric. The results presented in Fig. 3 are ob-
tained from simulations of six different track realizations,
one for each different value of D. The mean reversal times,

�rev−l� and 
�rev−s�, obtained by averaging the reversal times
computed for eight track realizations for each value of D, are
shown in Fig. 4. For D=0.05, 
�rev−l��10
�rev−s�. For even
larger values of D, the dynamics are essentially unidirec-
tional, as intervals of motion in the unpreferred direction
become very rare and short. We, thus, conclude that bidirec-
tional motion can be observed only on apolar or slightly
polar tracks. This conclusion is directly related to the coop-
erativity of the motors which causes persistent motion that
cannot be easily reversed.

III. ANALYTICAL TREATMENT

In the following section we use mean-field master equa-
tions to analyze the bidirectional motion exhibited by our
computational model. The mean-field approach corresponds
to the limit N�1 where one can introduce the probability
densities patt�x� and pdet�x� of finding a motor in the attached
or detached state, respectively, at position −l /2�x� l /2
within the unit cell of the periodic potential. These probabil-
ity densities are the steady-state solutions of the following
set of coupled master equations which govern the transitions
between the two connectivity states:

� �tpatt�x,t� + v�xpatt�x,t� = − �off�x�patt�x,t� + �on�x�pdet�x,t�
�tpdet�x,t� + v�xpdet�x,t� = − �on�x�pdet�x,t� + �off�x�patt�x,t� � . �7�

In Eq. �7�, �on�x� and �off�x� denote the space-dependent on and off rates, and v is the group velocity of the motors. Because
the spacing between the motors is incommensurate with the periodicity of the potential, the total spatial distribution is uniform
in x for N�1,

patt�x,t� + pdet�x,t� =
1

l
. �8�

Using Eq. �8�, together with Eqs. �5� and �6� to define the on and off rates in Eq. �7�, the following steady-state equation
��tp=0� can be derived for patt�x�:

lv
dpatt�x�

dx
= �− l�1patt�x� for x � a

�2 − l��2 + �3
0 exp��N��patt�x� for a � x � l/2� . �9�

Equation �9� should be solved subject to the boundary con-
dition that patt�−l /2�= patt�l /2� and the requirement that
patt�x� is continuous anywhere in the interval −l /2�x� l /2,
including at x= �a. Several solutions are plotted in Fig. 5
for 2a=0.76l �see Table I�, �3

0=0, and ��1 ,�2�= �v / l ,v / l�

�thin solid line�, �5v / l ,5v / l� �dashed line�, and
�30v / l ,30v / l� �thick solid line�. The solutions correspond to
the case when the motors move to the right �v�0� and,
therefore, it is easy to understand why patt reaches its maxi-
mum at x=−a �just before the motors enter, from the left,
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FIG. 3. The PDFs of reversal times corresponding to N=1000 motors moving on slightly polar tracks. The variable D denotes the

difference between the fraction of random forces pointing in the favored and disfavored directions. The motion in the favored and disfavored

directions is analyzed by different PDFs, each of which can be fitted by a single exponential form but with distinct reversal times �except for

D=0 where the two PDFs coincide with each other�. The insets show the velocity histogram corresponding to each value of D. As D

increases, the histograms become less and less symmetric.
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into the central gray-shaded detachment interval �−a�x
�a�� and its minimum at x=a �just before leaving the cen-
tral detachment interval through the right side�. We also no-
tice that when the off rate �1�v / l, patt drops very rapidly
�exponentially� to near zero in the detachment interval.
When the attachment rates �2�v / l, patt increases exponen-
tially fast for x�a and rapidly reaches the maximum pos-
sible value patt=1 / l. The second steady-state solution corre-
sponding to the case when the motors move to the left �v
�0� is simply a mirror reflection of the first solution with
respect to x=0.

The mean fraction of connected motors, P, can be ob-
tained by integrating the function patt�x� over the interval
−l /2�x� l /2,

P = �
−l/2

l/2

patt�x�dx . �10�

The population of connected motors can be divided into two
groups: The connected motors which are located left to the
minimum of the periodic potential �−l /2�x�0� experience
forces pushing them to the right, i.e., forces directed in their
direction of motion. Conversely, attached motors which are
located right to the minimum experience forces directed op-
posite to their direction of motion. Thus, the bias parameter
�, previously defined as the excess mean fraction of motors
supporting the motion, can be related to patt by

� = �
−l/2

0

patt�x�dx − �
0

l/2

patt�x�dx . �11�

In order to derive an expression for the reversal time of the
dynamics, we now consider the fluctuations of the instanta-
neous bias parameter, ��t�, around the mean value �. The
motors may switch their direction of motion when ��t�=0,
i.e., when the motion momentarily stops. The occurrence
probability of such an event can be related to the mean re-
versal by

�rev � �	���t� = 0��−1. �12�

To estimate 	���t�=0� we proceed by noting that the prob-
ability of finding a motor attached left to the minimum of the
potential, i.e., a motor experiencing a force directed in the
direction of motion, is P+= �P+�� /2. The probability that a
motor is experiencing a force directed opposite to the direc-
tion of motion is P−= �P−�� /2. The probability of having N+
and N−�N+ motors which, respectively, support and object
to the motion can thus be approximated by the trinomial
distribution function

��N+,N−� =
N!

N+ ! N− ! �N − N+ − N−�!

�P + �

2
�N+�P − �

2
�N−

�1 − P��N−N+−N−�.

�13�

The instantaneous bias is given by ��t�= �N+−N−� /N, and
the probability that ��t�=0 can be expressed as sum over the
relevant terms in Eq. �13� for which N−=N+,

	���t� = 0� = �
i=0

N/2

��i,i� = �
i=0

N/2
N!

�i!�2�N − 2i�!

�P2 − �2

4
�i

�1 − P��N−2i�. �14�

Replacing the sum in Eq. �14� by an integral, using Sterling’s
approximation for factorials, expanding the logarithm of
the integrand in a Taylor series �up so second order�
around the maximum, which is at imax= �N /2�	P2−�2 / �1
− P+	P2−�2� and then exponentiating the expansion, and
finally extending the limits of integration to �
 �which has a
negligible effect on the result for N�1� lead to

FIG. 4. The mean reversal times �computed based on simula-
tions of eight track realizations with N=1000 motors� as a function
of D, the difference between the fraction of random forces along the
track which point in the favored and disfavored directions. The
motion in the favored and disfavored directions is characterized by
the larger ��rev−l� and smaller ��rev−s� reversal times, respectively.
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FIG. 5. The steady-state probability density, patt, as a function of
x, the position within a unit cell of the periodic potential. The func-
tions plotted in the figure correspond to 2a=0.76l, �3

0=0, and
��1 ,�2�= �v / l ,v / l� �thin solid line�, ��1 ,�2�= �5v / l ,5v / l� �dashed
line�, and ��1 ,�2�= �30v / l ,30v / l� �thick solid line�.
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	���t� = 0� = �1 − P + 	P2 − �2�N�
−


+


dy

exp�−
2

C�1 − C�N
�y − imax�2� , �15�

where C=	P2−�2 / �1− P+	P2−�2�. This yields

�rev =
2�0

	���t� = 0�
= 2�0	 2

�C�1 − C�N

�1 − P + 	P2 − �2�−N, �16�

where �0 is some microscopic time scale. �The factor of 2 in
the numerator in Eq. �16� is due to the fact that once the
motors stop, they have equal probability to move in both
directions.� As noted before �see Sec. I�, Eq. �16� predicts an
almost exponential dependence of �rev on N only for constant
values of P and �, which was the case in Ref. �23�. In the
more general case, the dependence of �rev on N can be de-
rived by calculating the values of P and � as a function of N
and substituting these values into Eq. �16�.

To test the validity and accuracy of the analytical expres-
sion for �rev, we take the following steps: �i� set the model
parameters l, a, �1, �2, �3

0, and � to the values used in our
computer simulations which are given in Table I, �ii� calcu-
late the probability density patt corresponding to these values
�Eq. �9�� and use Eqs. �10� and �11� to calculate P and � over
the range of N studied in the simulations, �iii� substitute the
values of P and � into Eq. �16�, to obtain �rev as a function of
N, and �iv� fit the analytical expression for �rev�N� to the
simulation results plotted in Fig. 2�b�. This procedure in-
volves two fitting parameters: the microscopic time scale �0
appearing in Eq. �16�, and the group velocity v appearing in
the steady-state equation �Eq. �9��. A seemingly reasonable
choice for the latter would be v=20 nm /s, which is where
the velocity histogram of the bidirectional motion is peaked
�see inset of Fig. 3�a��. However, the motors slow down be-
fore each change in their direction of the motion; and be-
cause these changes in the directionality are fairly rare
events, their occurrence probability is likely to be strongly
influenced by the short periods of slow motion preceding
them. Thus, it can be expected that the best fit of Eq. �16� to
the simulation results is achieved for v�20 nm /s. Indeed,
for v=8.2 nm /s and �0=680 ms, we obtain the fitting curve
shown in Fig. 6�a�, which is an excellent agreement with our
computational results for the reversal times �plotted in Fig.
2�b� and replotted here in Fig. 6�a�� over the whole range of
values of N investigated �400�N�2400�. The steady-state
probability density, patt�x�, on the basis of which �rev was
calculated is shown in Fig. 6�B� for several different values
of N �N=1000: solid line, N=2000: dashed line, and N
=2500: thick solid line�. As can be seen from the figure, the
detachment rate �1 in our simulations is so large that the
central detachment interval of the unit cell �−a�x�a� is
completely depleted of motors. Increasing N leads to a de-
crease in the effective attachment rate around the potential
maximum, which reduces both the number of motors sup-
porting �−l /2�x�−a� and objecting �a�x� l /2� the mo-
tion and leads to the nonmonotonic dependence of � on N.

The fitting value of �0=680 ms is very close to ��= l /v
=5 nm / �8 nm /s�=625 ms, which is the traveling time of
the motors within a unit cell of the potential �once we set
v=8.2 nm /s� and, therefore, is also the characteristic time
scale at which the motors change their “states” �detached,
connected and supporting the motion, connected and object-
ing the motion�. The remarkable agreement between the ana-
lytical and simulation results for �rev should not, however, be
allowed to obscure the fact that Eq. �16� is based on a mean-
field approximation which, in principle, is not suitable for the
calculating the probabilities of rare fluctuation events �such
as velocity reversals in cooperative bidirectional movement�.
The agreement is achieved with effective velocity �v
=8.2 nm /s� which is significantly smaller than the typical
velocity measured in the simulations �v=20 nm /s�. There-
fore, one should not expect the steady-state probability den-
sity patt�x� plotted in Fig. 6�b� to perfectly match the simu-
lations data.

IV. SUMMARY

We use a two-state ratchet model to study the cooperative
bidirectional motion of myosin II motors on actin tracks with
randomly alternating polarities. Our model is an extension of
a model previously proposed by Badoual et al. to explain the
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FIG. 6. �a� The reversal time 
�rev� function of the number of
motors N. The circles denote the simulations results �replotted from
Fig. 2�. The curve is a fit of the results to Eq. �16�, with �0

=680 ms and v=8.2 nm /sec. �b� The steady-state probability den-
sity patt�x� computed for several values of N �N=1000 �solid line�,
N=2000 �dashed line�, and N=2500 �thick solid line��. The group
velocity of the motors is v=8.2 nm /s �as in �a�, above�, while the
model parameters are set to the values used in our simulations �see
Table I�.
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macroscopically large reversal times measured in motility
assays �23�. These time scales of velocity reversals are orders
of magnitude longer than the microscopic typical stepping
times of individual motors and can be understood as a result
of collective effects in many-motor systems. The ratchet
model that we use assumes that the motors are coupled me-
chanically but act independently, i.e., their binding to and
unbinding from the cytoskeletal track are statistically uncor-
related. These assumptions lead to a predicted exponential
increase of �rev with N, the number of motors. Motivated by
recent experiments which exhibit no such dependence of �rev
on N �9�, we introduced a modified version of Badoual’s
model, which accounts for an additional cooperative effect of
the molecular motors and which eliminates the exponential
increase of �rev with N. This additional collective effect
arises from the forces that the motors jointly exert on the
actin and the associated elastic energy which �within a mean-
field approximation� scales as E /KBT�NNC �where NC�N
is the number of attached motors�. This scaling relationship
implies that the typical energy released when a motor is de-
taching from the track increases linearly with N and, there-
fore, the detachment rate in many-motor systems should be
larger than the detachment rate of individual motors. We
show, both computationally and analytically, that when this
effect is taken into account and the detachment rate is prop-
erly redefined, the characteristic reversal time does not di-
verge for large N. Instead, �rev exhibits a much weaker de-
pendence on N and reaches a maximum at intermediate
values of N.

While our model definitely improves the agreement with
the experimental results �compared to the original model�,
further improvement is needed in order to eliminate the non-

monotonic dependence of �rev on N. One step in this direc-
tion may be to consider other forms of the off rate �3 which
are based on more accurate evaluations of the actin elastic
energy. In the present work, our analysis is based on a mean-
field approximation which makes the calculation tractable by
assuming that the detachment rate depends only on N �the
total number of motors�, but not on the instantaneous number
of attached motors and their locations along the cytoskeletal
track. A full statistical mechanical treatment is feasible only
for small systems, which we plan to report in a future pub-
lication. As a final remark here we note that the mean-field
approximation probably leads to overestimation of the effect
of the “track-mediated” elastic interactions on the reversal
times �which may explain the decrease in �rev for large N�. In
a non mean-field calculation the motors which release higher
energy will detach at higher rates, and the detachment of
these “energetic” motors will lead to the release of much of
the elastic energy stored in the actin track. By contrast, in the
mean-field approximation the contribution of all the con-
nected motors to the energy is the same. Therefore, within
the mean-field approximation, a larger number of motors
must be disconnected at a higher frequency, which increases
the “stochastic noise” in the system that reduced �rev.
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