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Different measures for characterizing the motion of molecules along a temperature gradient
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We study the motion of a Brownian particle in a medium with inhomogeneous temperature. In the overdamped
regime of low Reynolds numbers, the probability distribution function (PDF) of the particle is obtained from
the van Kampen diffusion equation [J. Phys. Chem. Solids 49, 673 (1988)]. The thermophoretic behavior
is commonly described by the Soret coefficient, a parameter that can be calculated from the steady-state
PDF. Motivated by recent advances in experimental methods for observing and analyzing single nanoparticle
trajectories, we here consider the time-dependent van Kampen equation from which the temporal evolution of
the PDF of individual particles can be derived. We analytically calculate the PDF describing dynamics driven
by a generalized thermophoretic force. Single-particle statistics are characterized by measures such as the mean
displacement (drift) and the probability difference between moving along and against the temperature gradient
(bias). We demonstrate that these quantities do not necessarily have the same sign as the Soret coefficient, which
causes ambiguity in the distinction between thermophilic and thermophobic response (i.e., migration in and
against the direction of the temperature gradient). The different factors determining the thermophoretic response
and their influence on each measure are discussed.
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I. INTRODUCTION

The motion of molecules induced by a temperature gradi-
ent is commonly referred to as thermophoresis, thermodiffu-
sion, or the Soret effect. Since its discovery in liquid mixtures
more than a century and a half ago [1,2], the phenomenon
of thermophoresis has been experimentally observed in aque-
ous solutions containing colloidal particles, micelles, poly-
mers, proteins, and DNA molecules (see extensive review
in Ref. [3]). Several studies have shown thermophoresis
to be a promising tool for manipulating and concentrating
biomolecules in solutions [4–6], which has even led to the
speculations that it may play a role in the accumulation of
nucleotides required for molecular evolution of early life [7].

In this work we theoretically study the thermal diffusion
of colloidal particles which, in general, is a much stronger
effect than thermophoresis in simple molecular mixtures. The
relevant length and time scales of the colloidal particles are
orders of magnitude larger than those of the embedding
solvent, and hence the solvent may be treated as an effective
medium. The thermal motion of the colloidal particle is driven
by stresses induced on its surface by the surrounding fluid
[8–10]. These forces are balanced by viscous drag forces
when the particle attains a steady-state velocity [11]. Ther-
mophoresis can therefore be treated as a mass transport pro-
cess, which, for dilute suspensions (low concentration, c) can
be phenomenologically described by the continuity equation
∂t c = −−→∇ · −→

J , with the particle flux
−→
J given by [12]

−→
J = −D

−→∇ c − cDT
−→∇ T . (1)

The first term on the right-hand side of Eq. (1) describes
regular diffusion due to concentration gradients, where D is

the Fickian diffusion coefficient. The second term describes
an additional contribution to the flux resulting from the tem-
perature gradient,

−→∇ T , with DT termed the thermal diffusion
coefficient. When a closed system reaches a steady state, the
flux vanishes and a concentration gradient is established that
satisfies

−→∇ c = −cST
−→∇ T, (2)

where ST = DT /D is called the Soret coefficient. For ST > 0,
the colloids tend to accumulate on the colder side of the
system, displaying thermophobic behavior. Conversely, for
ST < 0, the migration is toward the hotter side, which is
termed thermophilic motion.

The sign and magnitude of ST are hard to predict since they
depend on multitude of interactions and influences. Impor-
tantly, ST may exhibit a pronounced temperature dependence
and, quite interestingly, it tends to change its sign close to
room temperature in many colloidal systems [13]. Experimen-
tal measurements of ST are typically based on the application
of a thermal gradient in a diffusion cell and using indirect
optical methods to quantify the concentration gradients in-
duced by thermal diffusion [3]. Recently, it became possible
to measure thermophoretic forces on a single colloidal particle
confined in submicrometer regions with a nearly uniform
temperature gradient (and an overall small temperature differ-
ence) [14]. Moreover, we can now study not only the steady-
state probability distribution of the particle, but also follow its
trajectory to relaxation [15]. These advances in experimental
methods call for a better understanding of the problem of a
single-particle diffusion in a temperature gradient.
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II. VAN KAMPEN EQUATION

Consider a single Brownian particle moving in a one-
dimensional medium with a temperature gradient along the
x direction. In order to derive an equation for the evolution
of the probability distribution function (PDF) of the particle,
P(x, t ), one has to consider the Langevin equation of the dy-
namics or the corresponding Fokker-Planck equation. These
equations capture both the inertial short-time and dissipative
long-time regimes of the dynamics. In practice, however, only
the latter is of interest for colloidal systems at low Reynolds
numbers. In this so-called overdamped limit, the dynamics
is depicted by a Smoluchowski-like diffusion equation that
can be derived by an adiabatic elimination process of the fast
relaxing momentum degree of freedom. The derivation was
carried out by van Kampen for different models of diffusion
in inhomogeneous media [16]. One of the cases considered
by van Kampen is of a Brownian particle in a system with
spatially varying temperature. The equation corresponding to
this model is

∂t P(x, t ) = −∂xJ (x, t ) = ∂x{μ(x)∂x[kBT (x)P(x, t )]

−μ(x) f (x)P(x, t )}, (3)

where f is the mechanical force acting on the particle,
while T (x) and μ(x) denote, respectively, the coordinate-
dependent temperature and mobility. The latter are related
to the coordinate-dependent diffusion coefficient, D(x), via
Einstein’s relation D(x) = kBT (x)μ(x), with kB denoting the
Boltzmann constant [16]. As noted by van Kampen, this is
a diffusion equation, which does not follow either Itô [17]
or Stratonovich [18] prescriptions for overdamped Brownian
dynamics in inhomogeneous media.

It is important to note that while the nonisothermal dy-
namics considered here is clearly out of thermal equilib-
rium, the overdamped limit depicted by van Kampen equa-
tion (3) is based on the approximation that the momentum
of the particle, p, is always at equilibrium with the local
temperature T (x), i.e., follows the Maxwell-Boltzmann dis-
tribution ρ(p|x) ≈ T (x)−1/2 exp[−p2/2mkBT (x)] (where m
denotes the mass of the particle). The local thermodynam-
ics equilibrium (LTE) [12] approximation is justified when
lb|−→∇ T |/T � 1, where lb is the ballistic distance character-
izing the crossover between the inertial and diffusive regimes.
Mathematically, the overdamped limit corresponds to lb → 0.

The force f in Eq. (3) includes both contributions from
the thermophoretic force, as well as externally applied forces
such as gravity, which can be minimized by density matching
the colloid with the solvent. We will henceforth ignore all
forces except for the thermophoretic one. Moreover, single-
particle experiments are conducted in small systems where
the applied temperature difference may be as small as a few
degrees K. Assuming that the temperature gradient, T ′ =
dT/dx, and the thermophoretic force are uniform throughout
the small system, one may phenomenologically write that the
thermophoretic force is given by [19]

f = CT kBT ′, (4)

where CT is dimensionless parameter. Using this phenomeno-
logical form in Eq. (3) and comparing with Eqs. (1) and (2),

we arrive at the following expression for the Soret coefficient
[20,21]:

ST = 1 − CT

T
. (5)

From Eq. (5) we conclude that in the absence of a mechanical
thermophoretic force (CT = 0), the Soret coefficient does not
vanish (ST �= 0). The additional contribution to ST is known
as the ideal gas term. Explicitly, the 1/T term in Eq. (5) is
expected because at steady state ∂t P(x, t ) = 0, and from van
Kampen equation (3) one can easily deduce that the stationary
solution is

Ps(x) ∼ 1

T (x)
exp

[∫ x f (y)

kBT (y)
dy

]
, (6)

which, in the absence of a mechanical force ( f (x) = 0),
reduces to

Ps(x) ∼ 1/T (x). (7)

In Ref. [16], van Kampen notes that he has no simple
explanation for the prefactor 1/T (x) in Eq. (6); however,
in the special case f (x) = 0, Eq. (7) was nicely rational-
ized by Fayolle et al. [21]. They noted that the mechanical
thermophoretic force vanishes in the absence of interaction
between the colloidal particles and the embedding solvent,
i.e., in the limit of extremely small colloidal particles that
can be viewed as an ideal gas. In a closed system at steady
state, the pressure of this ideal gas, � = c(x)kBT (x), must
be uniform (or otherwise, the gradient pressure force would
act on the gas and change its distribution). Equation (7) then
means that in the absence of a mechanical thermophoretic
force, the ideal gas thermal collisions induce a steady-state
distribution that is higher on the colder than on the hotter
side. The associated Soret coefficient ST = 1/T > 0 reflects
the thermophobic nature of the thermal collisions (which
are stronger on the hotter side, thus pushing the particle
to the colder side). The Soret effect is associated with the
interaction term in Eq. (5) and, in practice, this term is typ-
ically larger than the ideal gas term |C| 	 1, with the excep-
tion of relatively small colloidal particles (see discussion in
Appendix).

Returning to van Kampen equation, we notice that it also
takes into account the spatial variation in the mobility, which
within a small system can be approximated by

μ(x) 
 μ0 + μ′x, (8)

where μ0 is the mobility in the middle of the cell at x = 0 and
μ′ = dμ/dx. We note here that the spatial variations in μ(x)
can, in general, be further divided into two parts: those arising
from the temperature dependence of the fluid viscosity [22]
and those also encountered at equilibrium isothermal systems,
for instance due to hydrodynamic interactions between the
colloidal particle and the walls of the container [23]. As
we will see below, the particle’s drift (to be mathematically
defined later) depends on both T ′ and μ′, and one must keep
in mind that these two gradients are not entirely independent
of each other because of the temperature dependence of the
mobility. On the other hand, non-temperature-related reasons
for spatial variation in the mobility imply that μ′ does not
necessarily vanish when T ′ = 0.
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Using Eqs. (4) and (8) [together with the expansion T (x) 

T0 + T ′x] in the van Kampen equation (3), yields the follow-
ing form:

∂t P(x, t )=D0

{
∂x

(
1 + xμ′

μ0

)
∂x

(
1 + xT ′

T0

)
− CT

xT ′

T0
∂x

}

× P(x, t ), (9)

where D0 = D(x = 0) = kBT0μ0. This is the van Kampen
equation in the limit when (i) all forces besides the ther-
mophoretic one are ignored, and (ii) the system is sufficiently
small to justify the linear approximations of T (x) and μ(x).
(iii) Another assumption implied in Eq. (9) is the form (4) for
the thermophoretic force.

III. PROBABILITY DISTRIBUTION FUNCTION

In a homogeneous (μ′ = 0) isothermal (T ′ = 0) system,
Eq. (9) reduces to a simple diffusion equation, the solution

of which takes the Gaussian form P(x, t ) = exp(−x2/4D0t )/√
4πD0t ≡ G(x, t ) [assuming Dirac δ-function initial condi-

tion P(x, 0) = δ(x)]. For a system under a small temperature
difference (xT ′/T0 � 1) and limited changes in the mobility
(xμ′/μ0 � 1), we may seek a linear approximate solution of
the form

P(x, t ) = G(x, t )

[
1 + xH

(
x2

D0t

)]
, (10)

where H is some function that can be determined in the
following simple manner: (i) write H in Eq. (10) as a series ex-
pansion in the argument y = (x2/D0t ): H = ∑∞

i=0 anyn, then
(ii) determine the coefficients of the expansion by substituting
Eq. (10) in van Kampen equation (9), and by comparing
terms of similar order in y on both sides of the equation. In
this process of determining H (y), we ignore the terms that
are nonlinear in x. We find, a0 = (−3/4 + CT /2)(T ′/T0) −
1/4(μ′/μ0), a1 = 1/8(T ′/T0) + 1/8(μ′/μ0), and an = 0 for
n > 1, and thus write

P(x, t ) = exp(−x2/4D0t )√
4πD0t

[
1 + x

{
T ′

T0

(
−3

4
+ CT

2
+ x2

8D0t

)
+ μ′

μ0

(
−1

4
+ x2

8D0t

)}]
, (11)

which is the main result of the paper.

IV. DRIFT AND FLUX

The drift of an individual particle is characterized by the
mean displacement, 〈x〉, and from the PDF (11), we find that

〈x〉 =
∫ ∞

0
xP(x, t )dx =

(
CT

T ′

T0
+ μ′

μ0

)
D0t . (12)

We notice that the drift does not necessarily have the same
sign as CT , which means that the average displacement of
the particle is not necessarily in the same direction as the
thermophoretic force. The reason for this remarkable result is
an additional contribution to the drift originating from spatial
dependence of the mobility. In general, the mobility of simple
liquids increases with temperature, while gases exhibit an
opposite trend and have mobility that decreases approximately
like the square root of the temperature [24]. As noted earlier
[see discussion after Eq. (8)], nonthermal effects may also
contribute to μ′. Indeed, it is well known that drift is also
observed in isothermal systems with nonuniform mobilities
[25]. This equilibrium phenomenon has been termed spurious
drift, which is misleading since it is a real effect [26]. In the
isothermal case (T ′ = 0), we can use Einstein relation and
Eq. (8) to write Eq. (12) in the more common form, 〈x〉/t = D′
[27], relating the drift velocity and the spatial derivative of the
diffusion coefficient. Thus, our result Eq. (12) generalizes the
well-known expression for the drift of Brownian particles in
isothermal inhomogeneous media to nonisothermal systems.

Recall that the derivation of van Kampen equation (3) is
based on assuming LTE in the overdamped limit. Within this
approximation, the mean kinetic energy of a particle found at
some coordinate x is related to the local temperature via the
equipartition theorem 〈Ek〉x = 〈mv2/2〉x = kBT (x)/2, where
〈· · · 〉x denotes average at a given x. Taking the average with

respect to x and using Eq. (12) gives

d〈Ek (t ) − Ek (t = 0)〉
dt

= kBT ′

2

d〈x〉
dt

= kBT ′

2

(
CT

T ′

T0
+ μ′

μ0

)
D0. (13)

For μ′ = 0 (constant mobility), the particle is heated on
average (i.e., gains kinetic energy) when CT > 0, i.e., when
the thermophoretic force drives the particle to the high-
temperature side, and vice versa. This, however, may not be
true when the mobility varies in space, in which case it is
the sign of CT + (T0μ

′/T ′μ0) rather then the direction of
the thermophoretic force that determines whether the particle
gains or loses heat.

A common error is to confuse the above-discussed drift
with the flux, defined by J (x, t ) = −D(x)∂xP(x, t ). A closed
system at steady state has zero flux, J = 0, but this does
not necessarily imply that the average displacement (i.e.,
drift) of each individual particle must also vanish. On time
scales smaller than the characteristic diffusion time across
the system, particles located at different parts of the sys-
tem (e.g., near the center or close to the boundaries) may
have different nonvanishing displacements. This situation
has been previously dubbed drift without flux in equilib-
rium isothermal systems [28]. Here, we consider dynam-
ics in an open system with time-dependent flux. The ten-
dency of particles to migrate favorably to one side may be
characterized by the flux at the origin J0 ≡ J (x = 0, t ) =√

D0/(πt )[(T ′/8T0)(3 − 2CT ) + (μ′/8μ0)]. The flux at the
origin causes a bias, i.e., a difference in the probability of
finding the particle in the hotter and colder sides relative to
its initial location. Assuming (without loss of generality) that

062108-3



ODED FARAGO PHYSICAL REVIEW E 99, 062108 (2019)

T ′ > 0, the bias, �(t ), is defined by

�(t ) ≡
∫ ∞

0
P(x, t )dx −

∫ 0

−∞
P(x, t )dx

=
√

D0t

π

[
T ′

2T0
(2CT − 1) + μ′

2μ0

]

= 〈x〉√
4πD0t

−
√

D0t

4π
T ′ST , (14)

with the drift, 〈x〉, and the Soret coefficient, ST , given by
Eqs. (12) and (5), respectively. Depending on the values of
T0μ

′/T ′μ0 and CT , it now becomes clear that while �, 〈x〉,
and −ST can all be used to characterize the response of
colloidal particles to a temperature gradient, these quantities
describe different features of the Soret effect, and may occa-
sionally have different signs.

V. DISCUSSION AND SUMMARY

Motivated by recent single-molecule experiments for
studying the behavior of macromolecules along a tempera-
ture gradient, we considered here the question of Brownian
dynamics of a colloidal particle in a nonisothermal fluid. In
the overdamped limit, the PDF of the particle is described by
time-dependent van Kampen diffusion equation (3). Assum-
ing a small temperature and mobility differences between the
ends of the (small) system (T ′x/T0 � 1 and μ′x/μ0 � 1), we
considered the linear (in x) version of van Kampen equation
(9) and analytically derived the solution for δ-function initial
condition (11). The asymmetric PDF characterizes the general
tendency of the particle to migrate in the direction of the
thermophoretic force caused by the temperature gradient.
However, the thermophoretic force is not the only factor de-
termining the direction of the motion, and we have identified
three different measures for the thermodiffusive response of
the colloidal particle. The first measure is the Soret coefficient
ST (5), relating the concentration and temperature gradients
in steady state. The Soret coefficient has been traditionally
used to distinguish between thermophilic (−ST > 0) and
thermophobic (−ST < 0) behaviors. However, we see from
Eq. (5) that −ST and CT do not necessarily have the same
sign, indicating that the steady-state concentration gradient
is not solely dictated by the direction of the thermophoretic
force. The origin of the discrepancy are the thermal col-
lisions, which set a concentration gradient opposite to the
temperature gradient. In fact, in some recent experiments
on colloidal systems it has been found that ST exhibits a
strong temperature-dependence and tends to change its sign in
the vicinity of room temperature. Moreover, the magnitude of
the Soret coefficient in many of these experiments is found to
be of the order of 0.01–1 K−1 [13,29]. These findings indicate
that (i) the effect of the thermal collisions may sometimes be
as important as the thermophoretic force that accounts for the
particle-solvent interactions, and that (ii) the thermophoretic
force (coefficient CT ) is sensitive to temperature variations.
Due to the system-specific nature of the thermophoretic force,
there is no clear explanation for its temperature sensitiv-
ity of CT , which is likely dependent on numerous factors,
e.g., the thermal expansivity of the solvent [13], the surface

functionality [15] and size [5] of the colloidal particle, and
electrostatic effects [30]. In order to understand this behavior
of CT one must consider a microscopic model that takes
into account some of these factor (see, e.g., the theoretical
discussion in Ref. [20]). This is beyond the scope of the
phenomenological discussion presented herein; however, in
light of the pronounced temperature dependence of ST , it
must be reemphasized that our derivation assumes that the
thermophoretic force is phenomenologically given by Eq. (4),
namely assuming nonequilibrium linear response. The same
linear form has been considered in other works (see, e.g.,
Ref. [21]), and it is consistent with the linearity of our solution
for the PDF (11) with respect to T ′. More generally, the
variations of CT with T can be accounted for by a Taylor
expansion around T0: CT = CT (T0) + (dCT /dT )�T + · · · =
CT (T0) + (dCT /dT )T ′�x + · · · , which shows that the linear
approximation is valid if the total temperature difference
across the experimental cell �T 
 T ′�x is sufficiently small,
i.e., if the size of the experimental setup, �x, and the temper-
ature gradient, T ′, satisfy

�T 
 T ′�x �
∣∣∣∣ CT

dCT /dT

∣∣∣∣ ≈
∣∣∣∣ ST

dST /dT

∣∣∣∣. (15)

In Appendix we review some experimental measurements of
the Soret coefficient where the total temperature variation �T
does not exceed a few degrees K and, thus, reasonably satisfy
the above criterion.

The second quantity that can be used to characterize ther-
mophoretic response is the drift of individual particles 〈x〉
(12), or better, the drift velocity v = d〈x〉/dt . This measure
is interesting for two reasons. First, we now have the experi-
mental means to measure single-particle trajectories. Second,
in the overdamped limit, the drift velocity is directly related
to the rate of heat taken from the solvent by the particle
[see Eq. (13)]. Similarly to −ST , a positive (negative) value
of v/T ′ indicates thermophilic (thermophobic) response, but
these quantities are different as apparent from the comparison
of Eqs. (5) and (12). Importantly, the direction of the drift
is set by both directions of the thermophoretic force and
the direction of the mobility gradient. Obviously, part of the
mobility spatial variation can be attributed to the temperature
gradient, but it is important to recall that coordinate-dependent
mobility, μ(x), is also encountered in isothermal systems, i.e.,
in equilibrium situations. Indeed, our result Eq. (12) gener-
alizes the expression for the drift velocity in inhomogeneous
isothermal solutions.

Also suggested by Eq. (12) is that for μ′ = 0, the tempera-
ture gradient causes a nonvanishing drift vanishing drift only
when CT �= 0, i.e., only in the presence of a thermophoretic
force, but not due to thermal collisions (fluctuations) that
are also influenced by the temperature gradient. This can be
understood by noting that the stochastic noise term in the
Langevin equation depicting the dynamics of the particle has
a zero mean, even for multiplicative (state-dependent) noise
(see discussion in Ref. [27]).

Finally, the third quantity defined here is the bias � (14),
measuring the probability difference of moving along and
against the temperature gradient. Similarly to the previously
discussed measures, a positive (negative) value of �/T ′ may
indicate thermophilic (thermophobic) response. From Eq. (14)
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we infer that the bias may be expressed as a linear combi-
nation of 〈x〉 and −ST and, thus, the value of this quantity
is influenced by all three factors of asymmetry discussed
in the work, namely the thermophoretic force, the spatial
dependence of the mobility, and thermal collision effect.
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APPENDIX: ANALYSIS OF EXPERIMENTAL DATA

We begin by noting that a key assumption in our theoretical
analysis is the form of Eq. (4), stating a linear relation-
ship between the thermophoretic force and the temperature
gradient. This form is consistent with the frequently used
linear-response theory for nonequilibrium systems. As dis-
cussed in the main text, the strong variations of ST with
temperature reported in many experimental studies [13,14,29]
restrict the validity of the linear form Eq. (2) to small systems
where the total temperature difference, �T , applied across
the experimental setup satisfy criterion (15). Reviewing the
experimental data, it can be concluded that the linear approxi-
mation holds reasonably well in many setups where �T does
not exceed a few degrees K. [Some noticeable exceptions
include: (i) Ref. [15] where the �T was as high as 30 K,
but in that work ST was found to be temperature independent.
(ii) the measurements of ST for large colloidal particles of
size 2.5 × 10−1 μm reported in [29] exhibiting exceptionally
strong variations in ST over a temperature range smaller than
5K which, in fact, calls for care in the interpretation of the
experimental data.]

The distance, �x, across which the temperature difference,
�T (of order of a few degrees K), is applied, varies from
h ≈ 500 μm in older experiments [29] to h ≈ 10 μm in
more recent ones [14,15]. Thus, the experimental range of
the temperature gradient is roughly 3 × 10−3–3 × 10−1. As
these experiments are conducted around room temperature
T ≈ 300 K, we find that l−1

T ≡ T ′/T0 ≈ 10−5–10−3 μm−1.
Furthermore, the range of experimental values for the
Soret coefficient varies from |ST | ≈ 10−2 K−1 for micellar
solution, globular proteins and small colloidal particles
(a ≈ 10−2 μm) [3] to |ST | ≈ 1 K−1 for large colloidal
particles (a ≈ 2.5 × 10−1 μm) [29]. (A noticeable exception
is Ref. [14] where |ST | ≈ 50 K−1 was measured for large
colloidal particles of diameter a ≈ 2.5 μm.) Recalling that
CT 
 (1 − T0ST ) (5), we can deduce from this relationship
that the experimental range of the thermophoretic force
coefficient is −103 � CT � 103.

The confinement of the particle in a thin slit between
two plates leads to strong variations in the mobility due to
hydrodynamic interactions between the Brownian particle and
the walls of the cell. The hydrodynamic effect overshadows
the additional (nonequilibrium) contribution to μ′ due to the
temperature variation, which is typically negligible because of
the smallness of �T . From theoretical considerations [23,31]
we can estimate that the relative variations in the mobil-
ity, �μ/μ0 ≈ a/h, where a is the diameter of the colloidal

particle. Therefore, the inverse length l−1
μ ≡ μ′/μ0 ≈ a/h2.

Experimentally, colloids of diameter a ≈ 2.5 × 10−2–2.5 μm
have been studies, corresponding to a wide range of values
l−1
μ ≈ 10−6–10−2 μm−1.

Three quantities that characterize the thermophoretic re-
sponse of a system are highlighted in the paper: ST , v (the
drift velocity), and � (the probability bias). These can be
rescaled to allow direct comparison with CT . We thus define
the following dimensionless quantities:

(i) the scaled negative Soret coefficient,

−S̃T ≡ −T0ST = CT − 1;

(ii) the scaled drift velocity,

ṽ ≡ v(T0/D0T ′) = CT + lT /lμ;

(iii) the scaled bias,

�̃ ≡ �
√

π/D0t (T0/T ′) = CT − 1/2 + lT /2lμ,

where the length scales lT and lμ were defined in the previous
two paragraphs. All of these quantities have the form Q =
CT + A, implying that they do not change sign at exactly the
same temperature like the thermophoretic force coefficient
CT . As discussed extensively in the paper, the additional
contribution to each quantity, A, arises from both a thermal
collision effect (which is represented by the negative constants
in the definitions of the scaled quantities) and from spatial
variations in the mobility (the terms proportional to l−1

μ ). Let
us look at a few experimental examples in order to assess the
relative importance of the additional contribution, A/CT , to
the thermophoretic force.

(i) In experiments with charged micelles [13], the ther-
mophoretic force coefficient was found to be of order
|CT | � 10 within the experimental temperature range (|ST | ≈
10−2 K−1). The size of these micelles is of order of a few
tens of nanometers, and the cell size in the experiments h >

100 μm. Thus, l−1
T ≈ 10−2μm−1, while l−1

μ ≈ 10−5 μm−1.
We therefore conclude that in these classical experiments,
the hydrodynamics effect is negligible, while the thermal
collision effect is small but, nevertheless, important because
the thermophoretic force is also fairly small.

(ii) When colloidal particles of diameter a ≈ 5 × 10−2μm
are studied in similar diffusion cells, the thermophoretic force
coefficient is typically an order of magnitude larger, CT ≈ 102

[13]. For larger colloidal particles of size a ≈ 2 × 10−1 μm,
CT ≈ 103 [29]. Thus, in these experiments, the additional
contributions to the scaled quantities defined above are
vanishingly small: A/CT � 1.

(iii) Large colloidal particles of size a ≈ 2 × 10−1μm
were also studies in Ref. [5], but in a much narrower diffusion
cell of height h ≈ 10 μm. Here we also have CT ≈ 103, but
in this case l−1

T ≈ 3 × 10−4 μm−1 and l−1
μ ≈ 5 × 10−3μm−1.

Thus, the sign of the thermophoretic force dominates the
direction of movement, but the influence of the hydrodynamic
effect on the drift and the bias may be felt close to the
transition temperature from thermophilic to thermophobic
response.

(iv) In a recent experiment [15], a temperature-
independent Soret coefficient ST ≈ 0.2 K−1 was measured for
colloidal particles of diameter a ≈ 1 μm, diffusing between
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plates with spacing h ≈ 10 μm and an unusually large
temperature difference �T � 30 K. In this setup, CT ≈ 50,
l−1
T ≈ 10−2 μm−1, and l−1

μ ≈ 10−2 μm−1. These values
suggest that the thermophoretic force is the key factor in
determining the diffusive behavior of the colloidal particles.
Collision and hydrodynamic effects are equally important and
their influence is about 1–2 orders of magnitude weaker than
that of the thermophoretic force.

To conclude, in most of the above experimental examples,
the magnitude of CT is at least one order of magnitude larger

than that of other contributions (denoted collectively by A)
over most of the investigated temperature range. Collision
effect has influence on the Soret coefficient of small particles
and micelles of diameter not larger than 5 × 10−2 μm, espe-
cially close to the transition temperature from thermophilic to
thermophobic behavior (i.e., when CT becomes small). The
hydrodynamic interactions between the Brownian particle
and the walls of the diffusion cell may influence the drift
behavior of large colloidal particles (a � 1 μm) in small cells
(h ≈ 10 μm).
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