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Probability distribution of Brownian motion in periodic potentials
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We calculate the probability distribution function (PDF) of an overdamped Brownian particle moving in
a periodic potential energy landscape U (x ). The PDF is found by solving the corresponding Smoluchowski
diffusion equation. We derive the solution for any periodic even function U (x ) and demonstrate that it is
asymptotically (at large time t) correct up to terms decaying faster than ∼ t−3/2. As part of the derivation, we also
recover the Lifson-Jackson formula for the effective diffusion coefficient of the dynamics. The derived solution
exhibits agreement with Langevin dynamics simulations when (1) the periodic length is much larger than the
ballistic length of the dynamics, and (2) when the potential barrier �U = max[U (x )] − min[U (x )] is not much
larger than the thermal energy kBT .
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I. INTRODUCTION

Brownian motion in a periodic potential constitutes one of
the fundamental problems of particle transport with numerous
applications in various fields of science and technology. Many
classical examples of diffusion in periodic systems are found
in the area of condensed matter physics, including diffusion of
atoms in and on the surface of lattices [1,2], and fluctuations
of Josephson supercurrent through a tunneling junction [3]. In
many situations, e.g., the cases of superionic conductors [4]
and rotating dipoles in external fields [5], a constant force
which biases the stochastic dynamics in a given direction is
also present. In such scenarios, often referred to as diffusion
in a tilted periodic potential, different types of dynamics are
observed in the overdamped (high-friction) regime depending
on whether the total potential energy (the sum of periodic and
linear potentials) has minima or not [6]. In the former case, the
particle moves from one minimum to another and the solution
is termed “locked”; in the latter case, the particle moves down
the corrugated potential gradient and the solution in termed
“running” [7].

The problem of diffusion in periodic systems is also rele-
vant to the study of thermal ratchets [8–10]. Thermal ratchets
employ a time-varying spatially asymmetric periodic potential
that drives isothermal systems out of equilibrium and allows
for the rectification of the thermal noise in the form of a
directed probability (particle) flux. Thermal ratchets attracted
much renewed interest in the 1990s as possible models for
motor proteins [11]. Advances in various experimental tech-
niques, most notably in optical trapping (“tweezers”) devices,
have led to novel experimental setups where some of the
new theoretical concepts were tested [12]. Another closely
related problem attracting considerable recent attention is dif-
fusion in corrugated channels [13]. Understanding Brownian
motion in confined geometries is important for the study of
transport of materials in, e.g., zeolites [14] and microfluidic
channels [15]. Such dynamics can be studied by considering a
one-dimensional Fick-Jacobs diffusion equation of a particle

moving in the presence of an effective potential of mean force
arising from the variations in the cross-sectional area of the
channel [16,17].

Here we consider one-dimensional diffusion in the high
friction regime. The probability distribution function (PDF),
P (x, t ), of finding the particle at coordinate x at time t can be
found by solving the Smoluchowski equation [18]

∂P (x, t )

∂t
= D

∂

∂x

{
e−βU (x) ∂

∂x
[eβU (x)P (x, t )]

}
, (1)

where D is the diffusion coefficient of the medium, U (x) is
the potential energy function, and β = 1/kBT where T is the
temperature and kB is Boltzmann’s constant. Throughout the
paper, we assume that U (x) is an even periodic function with
period λ and consider a particle initially located at the origin,
i.e., P (x, t = 0) = δ(x), where δ is the Dirac delta-function.
From symmetry considerations, the mean displacement of
the particle vanishes identically, 〈x〉 = 0. The mean-squared
displacement does not vanish but rather exhibits, at asymp-
totically large times, a linear growth with time characterizing
the diffusive nature of the dynamics. However, the effective
diffusion coefficient defined by

D∗ = lim
t→∞

〈x2〉
2t

(2)

is not equal to the medium diffusion coefficient, but is given
by the Lifson-Jackson (LJ) formula [19]

D∗ = D

〈e−βU (x)〉〈eβU (x)〉 , (3)

where 〈· · · 〉 denotes an average over a unit cell: 〈c〉 =
(λ)−1

∫ λ

0 c(x) dx. This formula has been derived by several
authors using somewhat different approaches [20–22], and it
has been proved that D∗ � D [20]. Physically, the fact that
D∗ � D is directly related to the tendency of the Brownian
particle to get trapped, for some duration, in the minima of
the periodic potential before moving to the adjacent cell.
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We note here that the LJ formula is valid only when the
potential barrier, �U = Umax − Umin is not too high. In the
high barrier limit, β�U � 1, the particle only rarely escapes
the vicinity of a potential minimum, and it advances to a
neighboring cell with a characteristic time that scales as τ ∼
exp(β�U ). In this limit, the effective diffusion coefficient
is expected to follow an Arrhenius-Kramer behavior [23]:
D∗ ∼ De−β�U .

Despite the extensive theoretical literature on the problem
of diffusion in periodic potentials, the general solution of
Eq. (1) subject to the delta-function initial condition is not
known. Here we take a major step forward and derive an
asymptotic (at large times) solution for the Smoluchowski
equation for any even periodic potential function U (x). We
use Langevin dynamics simulations of a case study to demon-
strate excellent agreement between our analytical solution
and the computed PDF. As part of our derivation, we inde-
pendently arrive at the LJ formula for the effective diffusion
coefficient.

II. PRELIMINARY CONSIDERATIONS

Although we focus here on diffusive (overdamped) dy-
namics, our computational results are actually based on in-
ertial (underdamped) Langevin dynamics simulations. The
Langevin equation is given by [24]

m
dv

dt
= −αv + ξ (t ) + f (x), (4)

where m and v denote, respectively, the mass and velocity of
the particle, f = −dU (x)/dx is the deterministic force acting
on the particle, α > 0 is the medium’s friction coefficient, and
ξ (t ) is a thermal white noise with zero average 〈ξ (t )〉 = 0
and delta function autocorrelation 〈ξ (t )ξ (t ′)〉 = 2kBT αδ(t −
t ′) [7]. Langevin dynamics is inertial at timescales much
smaller than the ballistic time τb ∼ m/α, during which the
particle moves a characteristic distance lb ∼ vthτb, where
vth = √

kBT /m is the thermal velocity of the particle. The
dynamics becomes diffusive at length scales much larger
than lb. From Smoluchowski equation (1) with D = kBT /α

(Einstein’s relation), one can derive the particle’s PDF in the
overdamped limit of Langevin’s equation, i.e., when lb → 0.
This description, however, is valid only if the spatial variations
of the deterministic force on length scales of the order of lb
are much smaller than the characteristic friction force, i.e.,
for (m/α2)|df/dx| � 1 [25]. In the case of a periodic force
|df/dx| ∼ �U/λ2, implying that Eq. (1) may not be valid
when the periodic length of the potential becomes comparable
to the ballistic length, or in the case when �U � kBT . We
will later see that, indeed, in these limits, the LJ formula
derived from Eq. (1) fails to depict correctly the effective
diffusion coefficient D∗.

We notice that if U (x) is periodic then the Boltzmann’s
weight exp[−βU (x)] is also a periodic function. We thus
define the periodic function η(x)

1 + εη(x) = e−βU (x)

〈e−βU (x)〉 , (5)

with the variable

ε = 1 − e−βUmax

〈e−βU (x)〉 (6)

satisfying 0 � ε < 1. The function η(x) has the following
properties: (1) 〈η(x)〉 = 0 and (2) min[η(x)] = −1. With the
definition of ε and η(x), the Smoluchowski equation (1) takes
the form

∂P (x, t )

∂t
= D

∂

∂x

{
[1 + εη(x)]

∂

∂x

P (x, t )

[1 + εη(x)]

}
, (7)

and LJ formula (3) reads

D∗ = D

〈[1 + εη(x)]−1〉 . (8)

In the high barrier limit ε → 1, we expect the Arrhenius-
Kramer law, which takes the form

D∗ ∼ D(1 − ε). (9)

III. LANGEVIN DYNAMICS SIMULATIONS

We simulate the dynamics of a particle of unity mass
m = 1 moving in a system with friction coefficient α = 1
at constant temperature kBT = 1. For this choice of param-
eters the ballistic time τb ∼ m/α = 1 and ballistic length
lb ∼ √

mkBT /α = 1. As a numerical example, we consider
the case where η(x) = cos(2πx/λ) (f (x) = −dU (x)/dx =
kBT εη′(x)/[1 + εη(x)]). The particle’s trajectory begins at
x = 0 with initial velocity which is drawn from the equi-
librium Maxwell-Boltzmann distribution and is numerically
integrated using the algorithm of Grønbech-Jensen and Farago
(G-JF) [26,27] with dt = 0.1, which is an order of magnitude
smaller than τb. The numerical results presented here are
based on statistical averages of 2×108 independent trajecto-
ries. Figure 1(a) shows the ratio between 〈x2〉 and 2t [see
Eq. (2)] as a function of t for ε = 0.5 and λ = 50 � lb. At
asymptotically large times, this ratio converges to the effective
diffusion coefficient D∗ � 0.863, which is indeed smaller
than the medium diffusion coefficient D = kBT /α = 1. The
open circles in Fig. 1(b) show our computational results for
D∗/D as a function of ε, for λ = 50. The results exhibit ex-
cellent agreement with the solid line depicting the LJ formula
(8) which, for the specific choice of η(x) discussed here, gives
D∗/D = √

1 − ε2. Very small deviations from the LJ formula
are observed for ε > 0.6 when the potential barrier becomes
larger [exp(−β�U ) � 0.17]. In contrast, the results for
λ = 2, which are plotted in Fig. 1(c), exhibit agreement with
LJ formula only for ε < 0.1. This behavior is expected since
LJ formula is derived from the Smoluchowski equation, but
the latter becomes invalid when λ is comparable to the bal-
listic length lb. For ε → 1, we observe that D∗/D diminishes
like (1 − ε), in accordance with Eq. (9).

Figure 2(a) shows the PDF normalized by the Boltz-
mann factor, �(x, t ) = P (x, t )/[1 + εη(x)], for ε = 0.5 and
λ = 50 at t = 104 (squares) and t = 5×104 (circles). The
graphs indicate that at large times, the function �(x, t ) is
very well approximated by a Gaussian form (solid lines)
G(x,D∗t ) = exp(−x2/4D∗t )/

√
4πD∗t , where D∗ = 0.863

is the effective diffusion coefficient for the corresponding
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FIG. 1. (a) The ratio between the mean-squared displacement
and twice the time, D∗ = 〈x2〉/2t , as a function of t for ε = 0.5
and λ = 50. At large times this ratio converges to D∗ � 0.863 that
matches the value for the effective diffusion coefficient D∗ predicted
by the LJ formula. (b) The effective diffusion coefficient D∗ (nor-
malized by the medium diffusion coefficient D) as a function of ε for
λ = 50. Circles, simulation results; solid curve, the LJ formula. (c)
Same as panel (b) for λ = 2. The thin dotted line depicts the function
(1 − ε).
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FIG. 2. (a) The function �(x, t ) as a function of x for ε =
0.5 and λ = 50, at t = 104 (squares) and and t = 5×104 (cir-
cles). The solid curves depict the Gaussian form G(x,D∗t ) =
exp(−x2/4D∗t )/

√
4πD∗t with D∗ = 0.863. (b) The function

t[�(x, t )/G(x,D∗t ) − 1] as a function of x for t = 5×104 (red) and
t = 2×105 (black). The light blue curve is the analytical approxi-
mation xg(x )/(4D∗) with g(x ) given by Eq. (18). The inset shows
a magnification of the region with the best agreement between the
analytical approximation and numerical results.

values of ε and λ (see above). This, however, is only an ap-
proximation, and it is straightforward to check that P (x, t ) =
[1 + εη(x)]G(x,D∗t ) is not a solution of Eq. (7). Careful
inspection of Fig. 2(a) reveals small undulations of �(x, t )
with wavelength λ around the Gaussian form. We thus spec-
ulate that the Gaussian form is the leading term in an ex-
pression including additional terms, and write P (x, t ) = [1 +
εη(x)]G(x,D∗t )[1 + q0(x) + q1(x, t )], where q0(x) and
q1(x, t ) denote, respectively, static and time-decaying correc-
tions exhibiting oscillations with periodicity λ. The static term
can be ruled out based on the simple argument that it con-
tributes a term equal to G(x,D∗t ) d{[1 + εη(x)]q ′

0(x)}/dx
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on the right-hand side of Eq. (7), and this term dominates
the asymptotic behavior of ∂tP (x, t ) at long times. Since the
Gaussian function G(x,D∗t ) is positive, it follows that the
long-time limit of ∂tP (x, t ) has the same sign as the static
function d{[1 + εη(x)]q ′

0(x)}/dx that oscillates between pos-
itive and negative values [28]. This, however, is impossible
because the particle propagates to further distances with time
and the probability density cannot accumulate at any point in
space. Stated differently, for any x0, the probability density
P (x0, t ) must decay at large times, namely, ∂tP (x0, t ) < 0 for
some t > t0. This property of P (x, t ) precludes the possibility
of a static correction q0(x) and allows only a time-decaying
term q1(x, t ).

Insight into the form of the time-decaying correction
can be gained from Fig. 2(b) where we plot the function
t[�(x, t )/G(x,D∗t ) − 1] = tq2(x, t ) as a function of x for
ε = 0.5 and λ = 50, at t = 5×104 (red) and t = 2×105

(black). While the collapse of the data for the different
times in not perfect, it seems to indicate that the time-
decaying correction may have the form q1(x, t ) ∼ (x/t )g(x),
where g(x) is a scaling function with periodicity λ. This
term decays at a rate t1/2 faster than the leading Gaussian
form because of the scaling x ∼ (D∗t )1/2. (Larger values
of x need not be considered because for x2 � D∗t the
PDF is practically zero.) The solution can be further re-
fined by introducing a series of corrections P (x, t ) = [1 +
εη(x)]G(x,D∗t )[1 + q1(x, t ) + q2(x, t ) + · · · ], with each
term decaying t1/2 faster than the previous one.

Here we attempt to find the first two leading corrections
and, therefore, consider the following form:

P (x, t ) =
{

[1 + εη(x)]G(x,D∗t )

[
1 + λxg(x)

4D∗t
Q1

(
x2

4D∗t

)

+ λ2h(x)

4D∗t
Q2

(
x2

4D∗t

)]}
, (10)

where g(x) and h(x) are two dimensionless functions with
periodicity λ, while Q1 and Q2 are polynomials in x2/4D∗t .
This solution constitutes the asymptotic solution to Smolu-
chowski equation (7) at large times t � τb, up to order
G(x,D∗t )/t ∼ 1/t3/2.

IV. THE PROBABILITY DISTRIBUTION

A. The leading asymptotic correction

We consider a symmetric system with an even function
η(x), which implies that the PDF is symmetric and, therefore,
g(x) must be an odd function while h(x) is even. Both scaling
functions are periodic with periodicity λ and have a finite
amplitude. Thus, η′(x), as well as g′(x) and h′(x), are all
of order 1/λ. With this in mind, we substitute the solution
(10) into Eq. (7). On the right-hand side, we find terms that
scale as like G(x,D∗t )(x/λt ). These terms must cancel each
other, which occurs provided that (1) Q1 = const [which, by
a proper definition of g(x), can be arbitrarily set to unity], and
(2) the scaling function g(x) satisfies the ordinary differential
equation

[1 + εη(x)]λg′′(x) + εη′(x)[λg′(x) − 2] = 0. (11)

Taking into account that g(x) is an odd function and therefore
g(0) = 0, we readily arrive at the solution

λg(x) = kI

[
1

1 + εη(x)

]
+ 2x, (12)

where I [y(x)] denotes the primitive function of y(x) with
I (x = 0) = 0. The constant k can be found from the re-
quirement that g(x) is periodic. Thus,

∫ λ

0 g′(x) dx = g(λ) −
g(0) = 0, which gives

k = − 2

〈[1 + εη(x)]−1〉 . (13)

B. The next asymptotic correction

We now proceed and find the function h(x) and
the polynomial Q2 by comparing terms of the form
G(x,D∗t )(x2/4D∗t )n/t (where n is an integer), on both sides
of Eq. (7). From this comparison, we readily conclude that
Q2(x2/4D∗t ) = [1 + bx2/(4D∗t )]. This leaves us with two
different differential equations for the scaling function h(x)
which cannot be solved simultaneously unless we set b = −2,
in which case the equations coincide and read

(1 + φ)[1 + εη(x)][λ2h′′(x) + 2λg′(x)]

+(1 + φ)εη′(x)[λ2h′(x) + λg(x)] = 2φ([1 + εη(x)],

(14)

where φ = D/D∗ − 1. By defining the function h̃(x) =
[1 + εη(x)][λ2h′(x) + λg(x)], we arrive at the simple equa-
tion

h̃′(x) = −
[

2

1 + φ
+ k

]
− 2εη(x)

1 + φ
, (15)

which can be integrated once to yield h̃(x), from which
the scaling function h(x) can be derived by performing yet
another integration in x. Importantly, the fact that h(x) is
an even periodic function with a finite amplitude imposes
the relationship 2/(1 + φ) + k = 0 from which D∗ can be
deduced. Using Eq. (13) we find

D∗ = D

1 + φ
= −kD

2
= D

〈[1 + εη(x)]−1〉 , (16)

which is identical to the LJ formula (8). The scaling function
h(x) is given by

λ2h(x) = kI

{
I [εη(x)]

1 + εη(x)
− I

[
1

1 + εη(k)

]}
− x2 + λ2C,

(17)

where the constant C is determined by the normalization
condition

∫ ∞
−∞ P (x, t ) dx = 1 (which must be satisfied up to

an order of 1/t).

C. Comparison with simulation results

Returning to our simulation results above for η(x) =
cos(2πx/λ), the corresponding scaling function g(x) can be
found:

g(x) = − 2

π
arctan

[√
1 − ε

1 + ε
tan

(
πx

λ

)]
+ 2x

λ
, (18)
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where the arctan function is interpreted such that it returns
a value between −π/2 and π/2, which is then shifted by an
integer number of π in order that g(λ/2 + nλ) = 0 (where
n is an integer). We were unable to analytically perform the
integration in Eq. (17), necessary for finding a closed-form
expression for the scaling function h(x); however, we take ad-
vantage of the fact that it represents a correction to the Gaus-
sian form of �(x, t ) which is asymptotically smaller than the
one involving the function g(x) [see Eq. (10)] and use the ap-
proximation t[�(x, t )/G(x,D∗t ) − 1] � xg(x)/(4D∗). This
approximation, which is plotted in Fig. 2(b) in light blue,
shows a good fit to the simulation results. The deviations,
which can be attributed to the higher order correction term
in Eq. (10), are particularly small for x2 � 2D∗t ; see inset in
Fig. 2(b).

V. SUMMARY AND FUTURE OUTLOOK

In summary, we derived an asymptotic (at large times)
expression for the PDF of a particle diffusing in a periodic po-
tential energy landscape U (x). The solution, which is given by
Eq. (10), is correct to order 1/t3/2. Faster decaying corrections
can, in principle, be systematically derived by comparing,
on both sides of Eq. (7), terms of order 1/t2, 1/t5/2, . . . .
This will require solving increasingly complicated differential
equations involving the scaling functions of slower decaying
terms.

We conclude by noting that our approach to solving the
Smoluchowski equation can be used, with only simple mod-
ifications, to solving other closely related diffusion equation.
These include, for instance, the equation describing Brownian
motion in a tilted periodic potential, i.e., when a particle
diffuses under the action of both a periodic potential U (x) and
a constant force f . In this case, the Smoluchowski equation
reads

∂P (x, t )

∂t
= D

∂

∂x

{
e−β(U (x)−f x) ∂

∂x

[
eβ(U (x)−f x)P (x, t )

]}

= −f

α

∂P

∂x
+ D

∂

∂x

{
[1 + εη(x)]

∂

∂x

P (x, t )

[1 + εη(x)]

}
,

(19)

where α = kBT /D, while η(x) and ε are defined similarly to
Eqs. (5) and (6). The two main differences with respect to the
case f = 0 considered previously: (1) The Gaussian “moves”

at constant velocity f/α∗, where α∗ = α is the effective
friction coefficient satisfying α∗ → kBT /D∗ for f → 0 [21].
(2) Corrections to the Gaussian form also include a static
term q0(x) missing when f = 0, with oscillations having the
wavelength λ of the potential U (x). Thus, we speculate that
the solution takes the form

P (x, t ) = [1 + εη(x)]G

(
x − f

α∗ t, D∗t
)

× [1 + q0(x) + q1(x, t ) + q2(x, t ) + · · · ], (20)

where G = exp[−(x − tf/α∗)2/4D∗t]/
√

4πD∗t denotes the
“running” Gaussian, while q1 and q2 are the time decaying
corrections of order 1/t1/2 and 1/t , respectively, having the
same general form as in Eq. (10).

Upon substituting the solution (20) into Eq. (19) and com-
paring terms of similar order, we first arrive at the following
differential equation for the static term q0(x):

∂

∂x
{[1 + εη(x)][βf + βf q0(x) − q ′

0(x)]} = 0. (21)

From the requirements that (1) q0(x) does not diverge ex-
ponentially for x → ∞, and that (2) P (x, t ) is normalized
to unity at any time (including for t → ∞, when the time-
decaying terms become irrelevant), we arrive at

q0(x) = βf eβf xI

[
e−βf x

(
c1

1 + εη(x)
+ 1

)]
, (22)

where (as above) I denotes a primitive function, and

c1 =
{
βf

〈
[1 + εη(x)]eβf xI

[
e−βf x

1 + εη(x)

]〉}−1

. (23)

The first time-decaying correction q1(x) can be now found
by solving the equation obtained from the terms that scale
as 1/t1/2. This equation involves the already found static
scaling function q0(x). Then, the second correction, q2(x),
can be found from the equation corresponding to the terms
proportional to 1/t , which involves q0(x) and q1(x) (and
so on). Notice that the form of q0 (22) does not give any
information on the effective parameters α∗ and D∗. These will
be found from the equations for q1 and q2, respectively.
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